JP2013057121A - Method of manufacturing soft dilute copper alloy material - Google Patents

Method of manufacturing soft dilute copper alloy material Download PDF

Info

Publication number
JP2013057121A
JP2013057121A JP2012180717A JP2012180717A JP2013057121A JP 2013057121 A JP2013057121 A JP 2013057121A JP 2012180717 A JP2012180717 A JP 2012180717A JP 2012180717 A JP2012180717 A JP 2012180717A JP 2013057121 A JP2013057121 A JP 2013057121A
Authority
JP
Japan
Prior art keywords
copper alloy
soft
copper
annealing
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012180717A
Other languages
Japanese (ja)
Inventor
Hideyuki Sagawa
英之 佐川
Masayoshi Aoyama
正義 青山
Hiromitsu Kuroda
洋光 黒田
Toru Washimi
亨 鷲見
Keisuke Fujito
啓輔 藤戸
Ryohei Okada
良平 岡田
Shinichi Masui
信一 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012180717A priority Critical patent/JP2013057121A/en
Publication of JP2013057121A publication Critical patent/JP2013057121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45611Tin (Sn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45618Zinc (Zn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45655Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a high conductive soft-dilute-copper-alloy material that has high tensile strength and high elongation percentage even though it is a soft material and whose manufacturing steps are simple and low cost.SOLUTION: The method of manufacturing a soft-dilute-copper-alloy material includes plastic working of a soft-dilute-copper-alloy containing an additional element selected from a group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn and Cr, and the balance copper and inevitable impurity, and a subsequent annealing treatment of the soft-dilute-copper-alloy. A working ratio in the plastic working before the annealing treatment is not less than 50%.

Description

本発明は、高い導電性を備え、かつ軟質材においても高い引張り強さと伸び率を有する
新規な軟質希薄銅合金材料の製造方法に関するものである。
The present invention relates to a method for producing a novel soft dilute copper alloy material having high electrical conductivity and having high tensile strength and elongation even in a soft material.

近年の科学技術においては、動力源としての電力や、電気信号など、あらゆる部分に電
気が用いられており、それらを伝達するためにケーブルやリード線、電子部品の分野など
では、ボンディングワイヤなどの導線が用いられている。そして、その導線に用いられて
いる素材としては、銅、銀、金などの比較的導電率の高い金属が用いられ、とりわけ、コ
スト面などを考慮し、銅線が多く用いられている。
In recent science and technology, electricity is used in all parts, such as power as a power source and electrical signals. In the field of cables, lead wires, electronic parts, etc. to transmit them, bonding wires, etc. Conductor wire is used. As a material used for the conductive wire, a metal having a relatively high conductivity such as copper, silver, or gold is used. In particular, a copper wire is often used in consideration of cost.

銅と一括りにする中にも、その分子の配列などに応じて、大きく分けて、硬質銅と軟質
銅とに分けられる。そして利用目的に応じて所望の性質を有する種類の銅が用いられてい
る。
The copper and lump can be broadly divided into hard copper and soft copper according to the molecular arrangement. And the kind of copper which has a desired property according to the utilization purpose is used.

電子部品用リード線には、硬質銅線が多く用いられるが、例えば、医療機器、産業用ロ
ボット、ノート型パソコンなどの電子機器などに用いられるケーブルは、過酷な曲げ、ね
じれ、引張りなどが組み合わさった外力が繰り返し負荷される環境下で使用されているた
め、硬直な硬質銅線は不適格であり、軟質銅線が用いられている。
Hard lead wires are often used for lead wires for electronic parts. For example, cables used in electronic devices such as medical devices, industrial robots, and notebook computers are combined with severe bending, twisting, and tension. Since it is used in an environment where repeated external force is repeatedly applied, rigid hard copper wire is not suitable, and soft copper wire is used.

このような用途に使用される導線には、導電性が良好(高導電率)で、かつ、引張り強
さや伸び率、屈曲特性が良好で、更には硬さが小さいという相反する特性が求められるも
のがあり、今日までに、高導電性、引張強さ及び伸び率を維持する銅材料の開発が進めら
れている。
Conductive wires used for such applications are required to have contradictory properties such as good conductivity (high conductivity), good tensile strength, elongation, bending properties, and low hardness. To date, copper materials that maintain high electrical conductivity, tensile strength, and elongation have been developed.

例えば、特許文献1に係る発明は、引張強さ、伸び率及び導電率が良好な耐屈曲ケーブ
ル用導体に関する発明であり、特に純度99.99mass%以上の無酸素銅に、純度9
9.99mass%以上のインジウムを0.05〜0.70mass%、純度99.9m
ass%以上のPを0.0001〜0.003mass%の濃度範囲で含有させてなる銅
合金を線材に形成した耐屈曲ケーブル用導体について記載されている。
For example, the invention according to Patent Document 1 is an invention related to a conductor for a bending-resistant cable having good tensile strength, elongation rate, and electrical conductivity. In particular, oxygen-free copper having a purity of 99.99 mass% or more has a purity of 9
0.99 mass% or more of indium 0.05 to 0.70 mass%, purity 99.9 m
It describes a conductor for a bending-resistant cable in which a copper alloy containing P of ass% or more in a concentration range of 0.0001 to 0.003 mass% is formed on a wire.

また、特許文献2に係る発明には、インジウムが0.1〜1.0mass%、硼素が0
.01〜0.1mass%、残部が銅である耐屈曲性銅合金線について記載されている。
Further, in the invention according to Patent Document 2, indium is 0.1 to 1.0 mass% and boron is 0.
. It describes a flex-resistant copper alloy wire having a content of 01 to 0.1 mass% and the balance being copper.

特許文献3には、ボンディングワイヤ用途として、引張強さと伸び率が良好であること
に加え、素材状態での硬さを小さくした導体などが提案されており、99.999mas
s%以上の高純度銅中の不純物量を調整することで、高い引張強さと伸び率、更に軟らか
さを兼ね揃えた導体について記載されている。
Patent Document 3 proposes a conductor with reduced tensile strength and elongation in addition to good tensile strength and elongation for bonding wire use, such as 99.999mas.
It describes a conductor that has both high tensile strength and elongation, and softness by adjusting the amount of impurities in high-purity copper of s% or more.

特開2002−363668号公報JP 2002-363668 A 特開平9−256084号公報Japanese Patent Laid-Open No. 9-256084 特開昭61−224443号公報Japanese Patent Laid-Open No. 61-224443

しかしながら、特許文献1に係る発明は、添加元素としてのInの含有量が多いあくま
でも硬質銅線に関する発明であり、引張強さと伸び率に優れる軟質銅線についての検討は
なされていない。また、添加元素としてのInの含有量が多いため、導電性が低下してし
まう。
However, the invention according to Patent Document 1 is an invention related to a hard copper wire with a large content of In as an additive element, and no investigation has been made on a soft copper wire excellent in tensile strength and elongation. Moreover, since there is much content of In as an additive element, electroconductivity will fall.

また、特許文献2に係る発明は、軟質銅線に関する発明であるが、特許文献1に係る発
明と同様に、添加元素の添加量が多いため、導電性が低下してしまう。
Moreover, although the invention which concerns on patent document 2 is invention regarding a soft copper wire, since the addition amount of an additional element is large similarly to the invention which concerns on patent document 1, electroconductivity will fall.

一方で、原料となる銅材料として無酸素銅(OFC)などの高導電性銅材を選択するこ
とで高い導電性を確保することが考えられる。しかしながら、この無酸素銅(OFC)を
原料とし、導電性を維持すべく他の元素を添加せずに使用した場合には、銅荒引線の加工
度をあげて伸線することにより無酸素銅線内部の結晶組織を細かくすることによって高い
引張強さと伸び率を両立させることが考えられ、伸線加工による加工硬化により硬質線材
としての用途には適しているが、軟質線材への適用ができないという問題がある。
On the other hand, it is conceivable to secure high conductivity by selecting a highly conductive copper material such as oxygen-free copper (OFC) as a copper material as a raw material. However, when this oxygen-free copper (OFC) is used as a raw material and it is used without adding other elements in order to maintain conductivity, oxygen-free copper can be obtained by increasing the degree of processing of the copper rough drawing wire. It is conceivable to achieve both high tensile strength and elongation by making the crystal structure inside the wire finer, and it is suitable for use as a hard wire by work hardening by wire drawing, but cannot be applied to soft wire. There is a problem.

特許文献3に係る発明は、99.999mass%以上の高純度銅をベースとしている
ため、高い導電率となることが予測されるが、銅の高純度化は、帯域溶融法や真空ビーム
溶解法などの特殊な製法を必要とするため、製造工程が複雑となると共に、高コストの材
料にならざるをえない。
Since the invention according to Patent Document 3 is based on high-purity copper of 99.999 mass% or higher, it is predicted that high conductivity will be obtained. However, high-purity copper is obtained by a zone melting method or a vacuum beam melting method. Therefore, the manufacturing process becomes complicated and the material has to be expensive.

本発明の目的は、高い導電性を備え、かつ、軟質材においても高い引張り強さと伸び率
を有し、製造工程が単純で安価である軟質希薄銅合金材料の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for producing a soft dilute copper alloy material that has high conductivity, has a high tensile strength and elongation even in a soft material, and has a simple and inexpensive manufacturing process. .

本発明は、Ti、Mg、Zr、Nb、Ca、V、Ni、Mn、及びCrからなる群から
選択された添加元素とを含み、残部が銅及び不可避的不純物である軟質希薄銅合金に塑性
加工を施し、次いで焼鈍処理を施す軟質希薄銅合金材料の製造方法であって、上記焼鈍処理を行う前の前記塑性加工における加工度が50%以上であることを特徴とする。
The present invention is plastic to a soft dilute copper alloy containing an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr, the balance being copper and inevitable impurities A method for producing a soft dilute copper alloy material that is processed and then annealed, wherein the degree of processing in the plastic processing before the annealing is 50% or more.

本発明の軟質希薄銅合金材料の製造方法は、上記焼鈍処理を、温度250℃〜800℃
及び時間0.6秒〜10.0秒の範囲において管状炉中を通過させながら連続的に行うこ
と、通電電圧21V〜35V及び走行速度100m/分〜600m/分の範囲において通電
アニーラによって行うこと、温度150℃〜700℃及び3時間以下の範囲においてバッ
チ処理によって行うこと、又、前記軟質希薄銅合金は、2〜12mass ppmの硫黄
と、2mass ppmを超えて30mass ppm以下の酸素と、前記添加元素として
Tiを4〜55mass ppm含むことが好ましい。
In the method for producing a soft diluted copper alloy material of the present invention, the annealing treatment is performed at a temperature of 250 ° C to 800 ° C.
In addition, it is performed continuously while passing through the tubular furnace in the range of 0.6 second to 10.0 seconds, and is performed by the current annealing in the range of current supply voltage 21 V to 35 V and travel speed 100 m / min to 600 m / min. The soft dilute copper alloy is 2 to 12 mass ppm sulfur, more than 2 mass ppm and not more than 30 mass ppm oxygen; It is preferable to contain 4-55 mass ppm of Ti as an additive element.

本発明に係る軟質希薄銅合金材料は、導電率98%IACS(万国標準軟銅(Inter
national Anneld Copper Standard)抵抗率1.7241×
10−8Ωmを100%とした導電率)、100%IACS、更には102%IACSを
満足する軟質型銅材としての軟質希薄銅合金材料を用いて構成されるのが好ましい。また
、副次的には、表面傷が少なく、製造範囲が広く、安定生産が可能であるSCR連続鋳造
圧延設備を用いること、又、ワイヤロッドに対する加工度90%(例えばφ8mm→φ2
.6mm)での軟化温度が148℃以下の材料を用いて構成されるのが好ましい。
The soft dilute copper alloy material according to the present invention has a conductivity of 98% IACS (universal standard soft copper (Inter
national Announce Copper Standard) resistivity 1.7241 ×
(Conductivity with 10 −8 Ωm as 100%), 100% IACS, and preferably a soft dilute copper alloy material as a soft copper material that satisfies 102% IACS. As a secondary matter, use of an SCR continuous casting and rolling facility that has few surface scratches, a wide manufacturing range, and enables stable production, and a processing degree of 90% for wire rods (for example, φ8 mm → φ2).
. 6 mm) is preferably formed using a material having a softening temperature of 148 ° C. or lower.

冷間伸線加工後に軟化温度と導電率を満足する銅ワイヤロッドを得るためには、以下の
(a)と(b)により、銅中の硫黄が晶出と析出を行うことが好ましい。
In order to obtain a copper wire rod that satisfies the softening temperature and electrical conductivity after cold wire drawing, it is preferable that sulfur in copper is crystallized and precipitated by the following (a) and (b).

(a)素材の酸素濃度を2mass ppmを超える量に増やしてチタンを添加すること
が好ましい。これにより、先ず溶銅中ではTiSとチタン酸化物(TiO2)やTi−O
−S粒子が形成されると考えられる。
(A) It is preferable to add titanium by increasing the oxygen concentration of the material to an amount exceeding 2 mass ppm. Thus, first, in molten copper, TiS and titanium oxide (TiO 2 ) or Ti—O
-S particles are believed to be formed.

(b)次に、熟間圧延温度を、通常の銅の製造条件の950〜600℃よりも低く設定す
る880〜550℃とすることで、銅中に転位を導入し、Sが析出し易いようにすること
が好ましい。これによって転位上へのSの析出又はチタンの酸化物(TiO2)を核とし
てSを析出させ、その一例として溶銅と同様Ti−O−S粒子等を形成させる。
(B) Next, by setting the aging rolling temperature to 880 to 550 ° C., which is set lower than the normal copper production conditions of 950 to 600 ° C., dislocations are introduced into the copper, and S is likely to precipitate. It is preferable to do so. As a result, S precipitates on the dislocations or precipitates with the titanium oxide (TiO 2 ) as a nucleus, and as an example, Ti—O—S particles and the like are formed as in the case of molten copper.

(1)添加元素について
添加元素としてTi、Mg、Zr、Nb、Ca、V、Ni、Mn及びCrからなる群か
ら選択される元素を選択した理由は、これらの元素は他の元素と結合しやすい活性元素で
あり、特に硫黄(S)と結合しやすいためSをトラップすることができ、マトリックスの
銅母材を高純度化し、素材の硬さを低下させることができるためである。また、Sをトラ
ップすることにより高い導電性を実現することができるという効果も得られる。添加元素
は1種類又は2種類以上含まれる。また、合金の性質に悪影響を及ぼすことのないその他
の元素及び不純物を合金に含有させることもできる。
(1) Additive elements The reason why elements selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr are selected as the additive elements is that these elements are combined with other elements. This is because it is an easily active element and can be easily trapped with sulfur (S), so that S can be trapped, the copper base material of the matrix can be highly purified, and the hardness of the material can be reduced. Moreover, the effect that high electroconductivity is realizable by trapping S is also acquired. One type or two or more types of additive elements are included. Also, other elements and impurities that do not adversely affect the properties of the alloy can be included in the alloy.

添加元素として、Ti、Ca、V、Ni、Mn及びCrの1種又は2種以上の合計の含
有量は4〜55mass ppmであり、より10〜20mass ppmが好ましく、M
gの含有量は2〜30mass ppm、より5〜10mass ppmが好ましく、Zr
、Nbの含有量は8〜100mass ppm、より20〜40mass ppmが好まし
い。
As an additive element, the total content of one or more of Ti, Ca, V, Ni, Mn and Cr is 4 to 55 mass ppm, more preferably 10 to 20 mass ppm.
The content of g is 2 to 30 mass ppm, more preferably 5 to 10 mass ppm, and Zr
, Nb content is preferably 8 to 100 mass ppm, more preferably 20 to 40 mass ppm.

また、後述する好適な実施の形態においては、酸素含有量が2mass ppmを超え
30mass ppm以下が良好であり、より5〜15mass ppmが好ましく、添加
元素の添加量及び硫黄の含有量によっては、合金の性質を備える範囲において、2mas
s ppmを超え400mass ppmを含むことができる。
In a preferred embodiment to be described later, the oxygen content exceeds 2 mass ppm and is preferably 30 mass ppm or less, more preferably 5 to 15 mass ppm. Depending on the addition amount of the additive element and the sulfur content, In the range having the properties of
More than s ppm and 400 mass ppm can be included.

硫黄の含有量は、3〜12mass ppm、より3〜8mass ppmが好ましい。   The content of sulfur is preferably 3 to 12 mass ppm, more preferably 3 to 8 mass ppm.

導電率が98%IACS以上の軟質銅合金材料を得る場合、不可避的不純物を含む純銅
(べ一ス素材)が、3〜12mass ppmの硫黄と、2mass ppmを超えて30m
ass ppm以下の酸素と、Tiを4〜55mass ppm含む軟質希薄銅合金材料で
ワイヤロッド(荒引き線)を製造するものである。2mass ppmを超え30mass
ppm以下の酸素を含有していることから、この実施の形態では、いわゆる低酸素銅(L
OC)を対象としている。
When obtaining a soft copper alloy material having a conductivity of 98% IACS or higher, pure copper containing inevitable impurities
(Base material) is 3-12 mass ppm sulfur and more than 2 mass ppm 30m
A wire rod (rough drawing wire) is manufactured with a soft dilute copper alloy material containing oxygen of less than as ppm and Ti of 4 to 55 mass ppm. More than 2mass ppm and 30mass
In this embodiment, since oxygen is contained in ppm or less, so-called low oxygen copper (L
OC).

ここで、導電率が100%IACS以上の軟質銅合金材料を得る場合には、不可避的不
純物を含む純銅に2〜12mass ppmの硫黄と、2mass ppmを超えて30m
ass ppm以下の酸素とTiを4〜37mass ppm含む軟質希薄銅合金材料でワ
イヤロッドとするのがよい。
Here, in order to obtain a soft copper alloy material having an electrical conductivity of 100% IACS or more, 2 to 12 mass ppm of sulfur is added to pure copper containing inevitable impurities, and the mass exceeds 2 mass ppm to 30 m.
A wire rod is preferably made of a soft dilute copper alloy material containing oxygen of not more than ppm and Ti of 4 to 37 mass ppm.

さらに、導電率が102%IACS以上の軟質銅合金材料を得る場合、不可避的不純物
を含む純銅に3〜12mass ppmの硫黄と、2mass ppmを超えて30mas
s ppm以下の酸素と、Tiを4〜25mass ppm含む軟質希薄銅合金材料でワイ
ヤロッドとするのがよい。
Furthermore, when obtaining a soft copper alloy material having an electrical conductivity of 102% IACS or higher, pure copper containing inevitable impurities is added to 3 to 12 mass ppm of sulfur and more than 2 mass ppm to 30 mass.
The wire rod is preferably made of soft dilute copper alloy material containing oxygen of s ppm or less and Ti of 4 to 25 mass ppm.

通常、純銅の工業的製造において、電気銅を製造する際に、硫黄が銅中に取り込まれて
しまうため、硫黄を3mass ppm以下とするのは難しい。汎用電気銅の硫黄濃度上
限は12mass ppmである。
Usually, in the industrial production of pure copper, sulfur is taken into copper when producing electrolytic copper, so it is difficult to make sulfur 3 mass ppm or less. The upper limit of the sulfur concentration of general-purpose electrolytic copper is 12 mass ppm.

制御する酸素は、上述したように、少ないと軟化温度が下がり難いので2mass p
pmを超える量とするのが好ましい。また酸素が多すぎると、熱間圧延工程で、表面傷が
出やすくなるので30mass ppm以下とするのが好ましい。
As described above, if the amount of oxygen to be controlled is small, it is difficult to lower the softening temperature.
An amount exceeding pm is preferred. Moreover, when there is too much oxygen, it becomes easy to produce a surface flaw in a hot rolling process, so it is preferable to set it to 30 mass ppm or less.

(2)分散している物質について
分散粒子のサイズは小さく沢山分布することが望ましい。その理由は、硫黄の析出サイ
トとして働くためサイズが小さく数が多いことが要求される。
(2) About dispersed substances It is desirable that the size of dispersed particles be small and distributed. The reason is that the size is small and the number is large because it functions as a sulfur deposition site.

通常、硫黄及びチタンは、TiO、TiO2、TiS、Ti−O−Sの形で化合物又は
、凝集物を形成し、残りのTiとSが固溶体の形で存在している。TiOのサイズが20
0nm以下、TiO2は1000nm以下、TiSは200nm以下、Ti−O−Sは3
00nm以下で結晶粒内に分布している軟質希薄銅合金材料とする。「結晶粒」とは、銅
の結晶組織のことを意味する。
Usually, sulfur and titanium form compounds or aggregates in the form of TiO, TiO 2 , TiS, and Ti—O—S, and the remaining Ti and S are present in the form of a solid solution. TiO size is 20
0 nm or less, TiO 2 is 1000 nm or less, TiS is 200 nm or less, Ti—O—S is 3
A soft dilute copper alloy material distributed in crystal grains at 00 nm or less is used. “Crystal grains” means the crystal structure of copper.

但し、鋳造時の溶銅の保持時間や冷却状況により、形成される粒子サイズが変わるので
鋳造条件の設定も必要である。
However, since the size of the formed particles changes depending on the holding time of the molten copper during casting and the cooling condition, it is necessary to set casting conditions.

(3)連続鋳造圧延条件について
SCR連続鋳造圧延法(South Continuous Rod System)に
より、鋳塊ロッドの加工度が90%(30mm)〜99.8%(5mm)でワイヤロッド
を造る。一例として、加工度99.3%でφ8mmワイヤロッドを造る方法を用いる。
(3) Continuous casting and rolling conditions Wire rods are manufactured with an ingot rod working degree of 90% (30 mm) to 99.8% (5 mm) by the SCR continuous casting and rolling method (South Continuous Rod System). As an example, a method of making a φ8 mm wire rod with a processing degree of 99.3% is used.

(a)溶解炉内での溶銅温度は、1100℃以上1320℃以下とするのが望ましい。溶
銅の温度が高いとブローホールが多くなり、傷が発生するとともに粒子サイズが大きくな
る傾向にあるので1320℃以下とする。1100℃以上としたのは、銅が固まりやすく
製造が安定しないためであるが、鋳造温度は、出来るだけ低い温度が望ましい。
(A) The molten copper temperature in the melting furnace is desirably 1100 ° C. or higher and 1320 ° C. or lower. When the temperature of the molten copper is high, blowholes increase, scratches are generated, and the particle size tends to increase. The reason why the temperature is set to 1100 ° C. or higher is that copper is likely to solidify and the production is not stable, but the casting temperature is preferably as low as possible.

(b)熱間圧延温度は、最初の圧延ロールでの温度が880℃以下、最終圧延ロールでの
温度が550℃以上とするのが望ましい。
(B) As for the hot rolling temperature, the temperature at the first rolling roll is preferably 880 ° C. or lower, and the temperature at the final rolling roll is preferably 550 ° C. or higher.

通常の純銅製造条件と異なり、溶銅中での硫黄の晶出と熱間圧延中の硫黄の析出が本発
明の課題であるので、その駆動力である固溶限をより小さくするためには、溶銅温度と熱
間圧延温度を(a)、(b)とするのがよい。
Unlike normal pure copper production conditions, crystallization of sulfur in molten copper and precipitation of sulfur during hot rolling are the subject of the present invention, so in order to reduce the solid solubility limit that is the driving force. The molten copper temperature and the hot rolling temperature are preferably (a) and (b).

通常の熱間圧延温度は、最初の圧延ロールでの温度が950℃以下、最終圧延ロールで
の温度が600℃以上であるが、固溶限をより小さくするためには、最初の圧延ロールで
の温度を880℃以下、最終圧延ロールでの温度を550℃以上に設定するのが望ましい。
The normal hot rolling temperature is such that the temperature at the first rolling roll is 950 ° C. or lower and the temperature at the final rolling roll is 600 ° C. or higher. In order to reduce the solid solution limit, It is desirable to set the temperature at 880 ° C. or lower and the temperature at the final rolling roll at 550 ° C. or higher.

このような条件で、直径φ8mmサイズのワイヤロッドの導電率が98%IACS以上
、100%IACS、更に102%IACS以上が好ましく、冷間伸線加工後の線材(例
えば、φ2.6mm)の軟化温度が130℃〜148℃である軟質希薄銅合金線又は板状
材料を得ることができる。
Under such conditions, the conductivity of a wire rod having a diameter of φ8 mm is preferably 98% IACS or more, 100% IACS, or more preferably 102% IACS or more, and softening of the wire (for example, φ2.6 mm) after cold drawing. A soft dilute copper alloy wire or plate-like material having a temperature of 130 ° C. to 148 ° C. can be obtained.

工業的に使うためには、電気銅から製造した工業的に利用される純度の軟質銅線にて9
8%IACS以上必要であり、軟化温度はその工業的価値から見て148℃以下である。
Tiを添加しない場合は、160〜165℃である。高純度銅(6N)の軟化温度は12
7〜130℃であったので、得られたデータから限界値を130℃とする。このわずかな
違いは、高純度銅(6N)にない不可避的不純物の存在にある。
In order to use industrially, the soft copper wire of the purity used industrially manufactured from electrolytic copper is used.
8% IACS or more is necessary, and the softening temperature is 148 ° C. or less in view of its industrial value.
When Ti is not added, the temperature is 160 to 165 ° C. The softening temperature of high purity copper (6N) is 12
Since it was 7-130 degreeC, a limit value shall be 130 degreeC from the acquired data. This slight difference is in the presence of inevitable impurities not found in high purity copper (6N).

導電率は、無酸素銅のレベルで101.7%IACS程度であり、高純度銅(6N)で
102.8%IACSであるため、出来るだけ高純度銅(6N)に近い導電率であること
が望ましい。
The conductivity is about 101.7% IACS at the level of oxygen-free copper, and 102.8% IACS for high-purity copper (6N), so that the conductivity is as close as possible to high-purity copper (6N). Is desirable.

ベース材の銅はシャフト炉での溶解が銅酸化物の混入や粒子サイズが大きくなり品質を
低下させるので、その溶解の後、還元状態の樋になるように制御した、すなわち還元ガス
(CO)雰囲気下で、希薄合金の構成元素の硫黄濃度、Ti濃度、酸素濃度を制御して鋳
造し、圧延するワイヤロッドを安定して製造する方法がよい。
Since the copper in the base material is melted in the shaft furnace, the copper oxide is mixed in and the particle size is increased and the quality is lowered. Therefore, after the melting, the copper is controlled so that it is in a reduced state, that is, reducing gas (CO). A method of stably producing a wire rod that is cast and rolled under the atmosphere by controlling the sulfur concentration, Ti concentration, and oxygen concentration of the constituent elements of the dilute alloy is preferable.

以上により、本発明の製造方法によって製造された軟質希薄銅合金材料は、導電率、軟
化温度、表面品質に優れた実用的な軟質希薄銅合金材料を得ることが可能となり、溶融半
田めっき材(線、板、箔)、エナメル線、軟質純銅、高導電率銅、やわらかい銅線として
使用できると共に、焼鈍時のエネルギーを低減できるので、高い生産性が得られる。
As described above, the soft diluted copper alloy material manufactured by the manufacturing method of the present invention can obtain a practical soft diluted copper alloy material excellent in electrical conductivity, softening temperature, and surface quality. Wire, plate, foil), enameled wire, soft pure copper, high conductivity copper, soft copper wire and energy during annealing can be reduced, so that high productivity can be obtained.

また、本発明の製造方法によって製造された軟質希薄銅合金材料は、その表面にめっき
層を形成してもよい。めっき層としては、例えば、錫、ニッケル、銀、亜鉛、パラジウム
を主成分とするものを適用可能であり、いわゆるPbフリーめっきを用いてもよい。
Moreover, the soft diluted copper alloy material manufactured by the manufacturing method of this invention may form a plating layer on the surface. As the plating layer, for example, a layer mainly composed of tin, nickel, silver, zinc, and palladium is applicable, and so-called Pb-free plating may be used.

また、本発明の製造方法によって製造された軟質希薄銅合金材料は、線とすることによ
りそれを複数本撚り合わせた軟質希薄銅合金撚線として使用することも可能である。
Moreover, the soft diluted copper alloy material manufactured by the manufacturing method of the present invention can be used as a soft diluted copper alloy stranded wire obtained by twisting a plurality of wires into a wire.

また、本発明の製造方法によって製造された軟質希薄銅合金材料は、線又は撚線とする
ことによりそれらの周りに、絶縁層を設けたケーブルとして使用することもできる。
Moreover, the soft diluted copper alloy material manufactured by the manufacturing method of this invention can also be used as a cable which provided the insulating layer around them by setting it as a wire or a twisted wire.

また、本発明の製造方法によって製造された軟質希薄銅合金材料は、線とすることによ
り複数本撚り合わせて中心導体とし、中心導体の外周に絶縁体被覆を形成し、絶縁体被覆
の外周に銅又は銅合金からなる外部導体を配置し、その外周にジャケット層を設けた同軸
ケーブルとして使用することもできる。また、この同軸ケーブルの複数本をシールド層内
に配置し、前記シールド層の外周にシースを設けた複合ケーブルとして使用することもで
きる。
In addition, the soft diluted copper alloy material manufactured by the manufacturing method of the present invention is formed by twisting a plurality of wires into a central conductor, forming an insulator coating on the outer periphery of the central conductor, and forming an insulator coating on the outer periphery of the insulator coating. It can also be used as a coaxial cable in which an outer conductor made of copper or a copper alloy is arranged and a jacket layer is provided on the outer periphery thereof. Further, a plurality of coaxial cables can be arranged in the shield layer and used as a composite cable in which a sheath is provided on the outer periphery of the shield layer.

また、本発明の製造方法によって製造された軟質希薄銅合金材料の用途は、放熱板など
に使用される銅板、リードフレームに使用される異形条銅材、配線基板に使用される銅箔
など幅広い用途に適合しうるものである。
Moreover, the use of the soft dilute copper alloy material manufactured by the manufacturing method of the present invention is wide, such as a copper plate used for a heat sink, a deformed copper material used for a lead frame, a copper foil used for a wiring board, etc. It can be adapted to the application.

本発明の軟質希薄銅合金材料の用途は、例えば、民生用太陽電池向け配線材、モーター
用エナメル線用導体、200℃から700℃で使う高温用軟質銅材料、電源ケーブル用導
体、信号線用導体、焼きなましが不要な溶融半田めっき材、FPC用の配線用導体、熱伝
導に優れた銅材料、高純度銅代替え材料としての使用が挙げられ、これら幅広いニーズに
応えるものである。また、形状は特に限定されず、断面丸形状の導体であっても、棒状の
もの、平角導体であってもよい。
Applications of the soft dilute copper alloy material of the present invention include, for example, wiring materials for consumer solar cells, conductors for enameled wires for motors, soft copper materials for high temperatures used at 200 ° C to 700 ° C, conductors for power cables, and signal wires It can be used as a conductor, a molten solder plating material that does not require annealing, a wiring conductor for FPC, a copper material excellent in heat conduction, and a high-purity copper replacement material. The shape is not particularly limited, and may be a conductor having a round cross section, a rod-shaped conductor, or a flat conductor.

また、本発明の軟質希薄銅合金材料の製造方法として、SCR連続鋳造圧延法によりワ
イヤロッドを作製し、熱間圧延にて軟質材を作製する例で説明したが、双ロール式連続鋳
造圧延法又はプロペルチ式連続鋳造圧延法により製造するようにしても良い。
In addition, as an example of the method for producing the soft dilute copper alloy material of the present invention, the wire rod was produced by the SCR continuous casting rolling method, and the soft material was produced by hot rolling. Or you may make it manufacture by the propel type continuous casting rolling method.

(4)軟質希薄銅合金材料の加工度及び焼鈍方法について
所望の結晶組織を得るために、本発明の軟質希薄銅合金材料の製造方法は、焼鈍の熱処
理を行う前の塑性加工における加工度を50%以上にするものである。ここで加工度とは
、次と定義できる。
(4) About degree of work and annealing method of soft dilute copper alloy material In order to obtain a desired crystal structure, the method for producing soft dilute copper alloy material of the present invention has a degree of work in plastic working before annealing heat treatment. 50% or more. Here, the degree of processing can be defined as follows.

加工度(%)=[伸線前(軟質材)の断面積−伸線加工後の断面積]×100
/[伸線前(軟質材)の断面積]
Degree of processing (%) = [cross-sectional area before drawing (soft material) −cross-sectional area after drawing] × 100
/ [Cross sectional area before drawing (soft material)]

その理由として、加工度が50%よりも小さい材料を焼鈍した場合、再結晶の過程で、
結晶の核を多数発生させるための歪エネルギーが十分でなく、少ない数の結晶の核しか存
在せず、結晶の成長する際に粗大な結晶となりやすいためである。より好ましい加工度は
、80〜99.8%である。
The reason for this is that when a material with a workability of less than 50% is annealed, in the process of recrystallization,
This is because the strain energy for generating a large number of crystal nuclei is not sufficient, and only a small number of crystal nuclei exist, and a coarse crystal tends to be formed when the crystal grows. A more preferable degree of processing is 80 to 99.8%.

本発明の軟質希薄銅合金材料の製造方法は、軟質希薄銅合金の冷間による伸線加工を複
数段に亘って行ない、その加工の都度、加工度を50%以上とし、その加工後にその都度
、焼鈍処理が行われる。
The method for producing a soft dilute copper alloy material of the present invention performs cold drawing of a soft dilute copper alloy in a plurality of stages, and each time the processing is performed, the processing degree is set to 50% or more. An annealing process is performed.

本発明の製造方法によって得られる軟質希薄銅合金材料は、結晶組織がその表面から内
部に向けて線径又は板厚の20%の深さまでの平均結晶粒サイズが20μm以下とするこ
とが好ましい。
The soft dilute copper alloy material obtained by the production method of the present invention preferably has an average crystal grain size of 20 μm or less from the surface to the inside thereof until the depth of 20% of the wire diameter or plate thickness.

塑性加工を実施した材料を用いて所望の結晶組織を得るための焼鈍方法として、直径1
mm未満の線形状においては、温度250℃〜550℃及び時間0.6秒〜5.0秒の範
囲において管状炉中を通過させる連続的な焼鈍が適用できる。この理由として、温度が2
50℃よりも小さく、或いは時間が0.6秒よりも短い場合、材料には依然として加工組
織が存在し、伸び率の値は小さいためである。逆に、温度が550℃を超える、或いは5
.0秒よりも長い場合、結晶粒が粗大化し所望の結晶組織、或いは伸び率が得られない、
或いは、過剰に軟質化した導体が巻き取り時の張力により変形してしまう恐れがあるから
である。
As an annealing method for obtaining a desired crystal structure using a material subjected to plastic working, a diameter of 1
For linear shapes less than mm, continuous annealing through a tubular furnace can be applied at temperatures of 250 ° C. to 550 ° C. and times of 0.6 seconds to 5.0 seconds. This is because the temperature is 2
This is because when the temperature is lower than 50 ° C. or when the time is shorter than 0.6 seconds, the material still has a processed structure and the elongation value is small. Conversely, the temperature exceeds 550 ° C or 5
. When longer than 0 seconds, the crystal grains are coarsened and the desired crystal structure or elongation cannot be obtained.
Or it is because there exists a possibility that the conductor softened excessively may deform | transform by the tension | tensile_strength at the time of winding.

又、直径1mm以上の線形状においては、温度300℃〜800℃及び時間1.0秒〜
10.0秒の範囲において管状炉中を通過させる連続的な焼鈍が適用できる。
In the case of a linear shape with a diameter of 1 mm or more, a temperature of 300 ° C. to 800 ° C. and a time of 1.0 second
Continuous annealing through a tubular furnace in the range of 10.0 seconds can be applied.

別の焼鈍方法として、直径1mm未満の線形状においては、温度150℃〜550℃及
び3時間以下の範囲においてバッチ式焼鈍が適用できる。バッチ式焼鈍の特徴として、大
容量の焼鈍炉を使用することで、一回の焼鈍作業で大量の処理が可能となることであり、
単位長さあたりの体積が小さい細サイズ導体の焼鈍に有効である。本焼鈍条件を選ぶ理由
としては、上記同様、温度が150℃よりも小さい場合、軟質化が十分でなく、伸び率の
値が低くなるためである。逆に、温度が550℃を超える、或いは3時間よりも長い場合
、結晶粒が粗大化し所望の結晶組織が得られない、或いは、伸び率が小さく、或いは、線
同士の粘着等の不具合が発生しやすくなる恐れがあるためである。
As another annealing method, batch-type annealing can be applied at a temperature of 150 ° C. to 550 ° C. and a range of 3 hours or less in a linear shape having a diameter of less than 1 mm. As a feature of batch type annealing, it is possible to perform a large amount of processing by one annealing work by using a large capacity annealing furnace,
It is effective for annealing thin conductors with a small volume per unit length. The reason for selecting this annealing condition is that, as described above, when the temperature is lower than 150 ° C., the softening is not sufficient and the elongation value is low. Conversely, if the temperature exceeds 550 ° C. or longer than 3 hours, the crystal grains become coarse and the desired crystal structure cannot be obtained, or the elongation rate is low, or defects such as adhesion between lines occur. This is because it may be easy to do.

又、直径1mm以上の線形状においては、温度170℃〜700℃及び3時間以下の範
囲においてバッチ式焼鈍が適用できる。
In the case of a linear shape having a diameter of 1 mm or more, batch-type annealing can be applied within a temperature range of 170 ° C. to 700 ° C. and 3 hours or less.

焼鈍時間の下限値としては、所望の結晶組織を得るため、かつ材料を軟質化するため、
0.5hr以上が望ましい。
As the lower limit of the annealing time, in order to obtain a desired crystal structure and soften the material,
0.5 hr or more is desirable.

別の焼鈍方法として、直径1mm未満の線形状においては、通電電圧21V〜33V及
び走行速度が300m/分〜600m/分の範囲において通電アニーラによる連続的な処理
も可能である。通電アニーラによる焼鈍は、速い製造速度で軟質化させることが可能とな
るため、高効率製造、つまり、低コスト化に寄与することができる。本焼鈍条件を選ぶ理
由としては、通電電圧が20Vよりも小さい、或いは、走行速度が600m/分を超える
場合、軟質化が十分でなく、伸び率の値が低くなるためである。逆に、通電電圧が30V
を超える、或いは300m/分小さい場合、結晶粒が粗大化し所望の結晶組織が得られな
い、或いは、伸びが小さく、或いは、過剰な熱エネルギーにより導体が変形もしくは断線
の恐れがある。
As another annealing method, in the case of a line shape having a diameter of less than 1 mm, continuous treatment with an energization annealer is also possible in the range of energization voltages of 21 V to 33 V and travel speeds of 300 m / min to 600 m / min. Annealing with a current-carrying annealer can be softened at a high production rate, which can contribute to high-efficiency production, that is, cost reduction. The reason for selecting this annealing condition is that when the energized voltage is less than 20 V or the traveling speed exceeds 600 m / min, the softening is not sufficient and the elongation value is low. Conversely, the energizing voltage is 30V
If it exceeds 300 m or less than 300 m / min, the crystal grains become coarse and the desired crystal structure cannot be obtained, or the elongation is small, or the conductor may be deformed or disconnected due to excessive thermal energy.

又、直径1mm以上の線形状においては、通電電圧25V〜35V及び走行速度が10
0m/分〜500m/分の範囲において通電アニーラによる連続的な処理も可能である。
In the case of a linear shape having a diameter of 1 mm or more, the energization voltage is 25 V to 35 V and the traveling speed is 10
In the range of 0 m / min to 500 m / min, continuous treatment with energization annealing is also possible.

又、これらの焼鈍には、銅合金材料の酸化を防止するため、窒素ガス或いは、アルゴン
ガスなどの不活性ガス中で行うことが望ましい。
Moreover, it is desirable that these annealing be performed in an inert gas such as nitrogen gas or argon gas in order to prevent oxidation of the copper alloy material.

(5)軟質希薄銅合金材料の結晶組織について
本発明に係る軟質希薄銅合金材料は、結晶組織が少なくとも線又は板の表面から銅導体
の内部に向けて線径又は板厚に対して最大20%の深さまでの平均結晶粒サイズが20μ
m以下の結晶粒を表層に含み、その内部の平均結晶粒サイズが前記表層の平均結晶粒サイ
ズより大きい。
(5) Crystal structure of soft dilute copper alloy material The soft dilute copper alloy material according to the present invention has a crystal structure of at most 20 with respect to the wire diameter or plate thickness from the surface of the wire or plate toward the inside of the copper conductor. % Average grain size up to 20% depth
The surface layer contains m or less crystal grains, and the average crystal grain size inside thereof is larger than the average crystal grain size of the surface layer.

結晶が微細、特に表層に微細な結晶が存在することで、材料の引張強さや伸び率の向上
が期待できるためである。この理由として、引張り変形により粒界近傍に導入される局所
ひずみが,結晶粒径が微細なほど小さくなり、粒界応力集中の緩和に寄与し、これに伴い
、粒界応力集中が低減して粒界破壊が抑制されると考えられるからである。
This is because the presence of fine crystals, particularly fine crystals on the surface layer, can be expected to improve the tensile strength and elongation of the material. The reason for this is that the local strain introduced near the grain boundary due to tensile deformation becomes smaller as the crystal grain size becomes finer, which contributes to the relaxation of the grain boundary stress concentration. This is because it is considered that the grain boundary destruction is suppressed.

本発明によれば、高い導電性を備え、かつ、軟質材においても高い引張強さと伸び率を
有し、製造工程が単純で安価である軟質希薄銅合金材料の軟質希薄銅合金材料の製造方法
を提供することにある。
According to the present invention, a method for producing a soft dilute copper alloy material of a soft dilute copper alloy material having high electrical conductivity, having a high tensile strength and elongation even in a soft material, and having a simple and inexpensive manufacturing process. Is to provide.

実施材1と比較材1の焼鈍温度と伸び率との関係を示す図である。It is a figure which shows the relationship between the annealing temperature of the implementation material 1 and the comparison material 1, and elongation rate. 焼鈍温度500℃における実施材1の径方向の断面組織の写真による図である。It is a figure by the photograph of the cross-sectional structure | tissue of the radial direction of the implementation material 1 in the annealing temperature of 500 degreeC. 焼鈍温度700℃における実施材1の径方向の断面組織を示す写真による図である。It is a figure by the photograph which shows the cross-sectional structure | tissue of the radial direction of the implementation material 1 in the annealing temperature of 700 degreeC. 比較材1の径方向の断面組織を示す写真による図である。3 is a photograph showing a cross-sectional structure in the radial direction of the comparative material 1. FIG. 屈曲疲労試験の概略を示す図である。It is a figure which shows the outline of a bending fatigue test. 比較材2と実施材2における表面曲げ歪みと屈曲回数との関係を示す屈曲寿命を測定したグラフである。5 is a graph obtained by measuring a bending life showing a relationship between a surface bending strain and the number of bendings in Comparative Material 2 and Example Material 2. 実施材2の幅方向の断面組織を示す写真による図である。5 is a photograph showing a cross-sectional structure in the width direction of an implementation material 2. FIG. 比較材2の試料の幅方向の断面組織を示す写真による図である。It is a figure by the photograph which shows the cross-sectional structure | tissue of the width direction of the sample of the comparative material 2. FIG. 比較材3と実施材3における表面曲げ歪みと屈曲回数との関係を示す屈曲寿命を測定したグラフである。6 is a graph obtained by measuring a bending life showing a relationship between a surface bending strain and the number of bendings in Comparative Material 3 and Example Material 3. 実施材3の幅方向の断面組織を示す写真による図である。FIG. 4 is a photograph view showing a cross-sectional structure in the width direction of the working material 3. 比較材3の幅方向の断面組織を示す写真による図である。It is a figure by the photograph which shows the cross-sectional structure | tissue of the width direction of the comparative material. 試料の表層における平均結晶粒サイズの測定方法の概略を示す図である。It is a figure which shows the outline of the measuring method of the average grain size in the surface layer of a sample. 実施材4及び比較材4の引張強さと伸び率との関係を示す図である。It is a figure which shows the relationship between the tensile strength of the implementation material 4 and the comparison material 4, and elongation rate. 実施材4及び比較材4の伸び率と硬さとの関係を示す図である。It is a figure which shows the relationship between the elongation of the implementation material 4 and the comparison material 4, and hardness. 実施材4及び比較材4の引張強さと硬さとの関係を示す図である。It is a figure which shows the relationship between the tensile strength of the implementation material 4 and the comparison material 4, and hardness. 実施材4の幅方向の断面組織を示す写真による図である。FIG. 6 is a photograph view showing a cross-sectional structure in the width direction of the working material 4. 比較材4の幅方向の断面組織を示す写真による図である。It is a figure by the photograph which shows the cross-sectional structure | tissue of the width direction of the comparative material. 表層における平均結晶粒サイズの測定方法の概要図である。It is a schematic diagram of the measuring method of the average grain size in a surface layer.

以下、本発明の実施形態を説明するが、以下に記載した実施形態は特許請求の範囲に係
る発明を限定するものではない。また、実施形態の中で説明した特徴の組合せの全てが発
明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
Hereinafter, although embodiment of this invention is described, embodiment described below does not limit the invention based on a claim. In addition, it should be noted that not all combinations of features described in the embodiments are necessarily essential to the means for solving the problems of the invention.

実験例Experimental example

(本発明に係る軟質希薄銅合金材料の製造)
実験材として、低酸素銅(酸素濃度7mass ppm〜8mass ppm、硫黄濃度
5mass ppm)に、チタン濃度13mass ppmを有するφ8mmの銅線(ワイ
ヤロッド、加工度99.3%)を作製した。φ8mmの銅線は、SCR連続鍛造圧延によ
り、熱間圧延加工を施したものである。Tiは、シャフト炉で溶解された銅溶湯を還元ガ
ス雰囲気で樋に流し、樋に流した銅溶湯を同じ還元ガス雰囲気の鋳造ポットに導き、この
鋳造ポットにて、Tiを添加した後、これをノズルを通して鋳造輪と無端ベルトとの間に
形成される鋳型にて鋳塊ロッドを作成した。この鋳塊ロッドを熱間圧延加工してφ8mm
の銅線を作成したものである。次に、各実験材に冷間伸線加工を施した。これにより、φ
2.6mmサイズの銅線(銅ボンデングワイヤ、加工度89.4%)を作製した。
(Production of soft dilute copper alloy material according to the present invention)
As an experimental material, φ8 mm copper wire (wire rod, degree of processing 99.3%) having a titanium concentration of 13 mass ppm in low oxygen copper (oxygen concentration: 7 mass ppm to 8 mass ppm, sulfur concentration: 5 mass ppm) was prepared. The φ8 mm copper wire is hot rolled by SCR continuous forging. Ti flows the molten copper melted in the shaft furnace into the reed in the reducing gas atmosphere, guides the molten copper flowing in the reed to the casting pot of the same reducing gas atmosphere, and after adding Ti in this casting pot, An ingot rod was made with a mold formed between the cast ring and the endless belt through the nozzle. This ingot rod is hot-rolled and φ8mm
The copper wire was created. Next, cold drawing was applied to each experimental material. As a result, φ
A 2.6 mm-sized copper wire (copper bonding wire, processing degree: 89.4%) was produced.

このφ2.6mmサイズの銅線を用いて、まずは銅ボンディングワイヤに使用する素材
の特性を検証した。
Using the copper wire of φ2.6 mm size, first, the characteristics of the material used for the copper bonding wire were verified.

(軟質希薄銅合金材料の軟質特性)
表1は、無酸素銅線を用いた比較材1と、低酸素銅に13mass ppmのTiを含
有した軟質希薄銅合金線を用いた実施材1とを試料とし、異なる焼鈍温度で1時間の焼鈍
を施したもののビッカース硬さ(Hv)を検証した表である。
(Soft properties of soft dilute copper alloy materials)
Table 1 uses as a sample a comparative material 1 using an oxygen-free copper wire and an embodiment material 1 using a soft dilute copper alloy wire containing 13 mass ppm Ti in low-oxygen copper, with different annealing temperatures for 1 hour. It is the table | surface which verified Vickers hardness (Hv) of what gave annealing.

Figure 2013057121
Figure 2013057121

表1に示すように、焼鈍温度が400℃のときに比較材1と、実施材1とのビッカース
硬さ(Hv)は同等レベルとなり、焼鈍温度が600℃でも同等のビッカース硬さ(Hv
)を示している。このことから、本発明に係る軟質希薄銅合金線は十分な軟質特性を有す
るとともに、無酸素銅線と比較しても、特に焼鈍温度が400℃を超える領域においては
優れた軟質特性を備えていることがわかる。
As shown in Table 1, when the annealing temperature is 400 ° C., the Vickers hardness (Hv) of the comparative material 1 and the working material 1 is equivalent, and even when the annealing temperature is 600 ° C., the equivalent Vickers hardness (Hv
). From this, the soft dilute copper alloy wire according to the present invention has sufficient soft properties, and also has excellent soft properties even in the region where the annealing temperature exceeds 400 ° C., even when compared with the oxygen-free copper wire. I understand that.

[軟質希薄銅合金線の耐力及び屈曲寿命について]
表2は、無酸素銅線を用いた比較材1と、低酸素銅に13mass ppmのTiを含
有した軟質希薄銅合金線を用いた実施材1の異なる焼鈍温度で1時間の焼鈍を施したもの
の0.2%耐力値の推移を検証した表である。なお、試料としては、2.6mm径の試料
を用いた。
[Resistance and bending life of soft dilute copper alloy wire]
Table 2 shows that the comparison material 1 using an oxygen-free copper wire and the annealing material for 1 hour at different annealing temperatures of the embodiment material 1 using a soft dilute copper alloy wire containing 13 mass ppm Ti in low oxygen copper were applied. It is the table | surface which verified the transition of 0.2% proof stress value. As a sample, a 2.6 mm diameter sample was used.

Figure 2013057121
Figure 2013057121

表2に示すように、焼鈍温度が400℃のときに比較材1と実施材1の0.2%耐力値
が同等レベルであり、焼鈍温度600℃では実施材1も比較材1もほぼ同等の0.2%耐
力値となっていることがわかる。
As shown in Table 2, when the annealing temperature is 400 ° C., the 0.2% proof stress values of the comparative material 1 and the implementation material 1 are equivalent, and at the annealing temperature of 600 ° C., the implementation material 1 and the comparison material 1 are almost equivalent. It can be seen that the 0.2% proof stress value is.

[軟質希薄銅合金線の伸び特性と結晶構造との関係について]
図1は、2.6mm径の無酸素銅線を用いた比較材1と2.6mm径の低酸素銅に13
mass ppmのTiを含有した軟質希薄銅合金線を用いた実施材1の異なる焼鈍温度
で1時間の焼鈍を施したものの伸び(%)の値の推移を検証したグラフである。図1に示
す丸記号は実施材1を示し、四角記号は比較材1を示す。
[Relationship between elongation characteristics and crystal structure of soft dilute copper alloy wire]
FIG. 1 shows comparison material 1 using an oxygen-free copper wire with a diameter of 2.6 mm and low-oxygen copper with a diameter of 2.6 mm.
It is the graph which verified the transition of the value of elongation (%) of what performed annealing for 1 hour at different annealing temperature of execution material 1 using soft dilute copper alloy wire containing mass ppm Ti. The circle symbol shown in FIG. 1 indicates the working material 1, and the square symbol indicates the comparative material 1.

図1に示すように、比較材1に比して実施材1の方が、焼鈍温度100℃を超え130
℃付近から900℃の広い範囲で優れた伸び特性を示すことがわかる。
As shown in FIG. 1, the working material 1 exceeds the annealing temperature of 100 ° C. and 130 as compared with the comparative material 1.
It can be seen that excellent elongation characteristics are exhibited in a wide range from about 900C to 900C.

図2は、焼鈍温度500℃における実施材1の銅線の断面写真を示した図である。図2
に示すように、銅合金線の断面全体において微細な結晶組織が形成されており、この微細
な結晶組織が伸び特性に寄与しているものと思われる。これに対し、焼鈍温度500℃に
おける比較材1の断面組織は2次再結晶が進んでおり、図2の結晶組織に比して、断面組
織中の結晶粒が粗大化しているため、伸び特性が低下したものと考えられる。
FIG. 2 is a view showing a cross-sectional photograph of the copper wire of Example 1 at an annealing temperature of 500 ° C. FIG.
As shown in FIG. 4, a fine crystal structure is formed in the entire cross section of the copper alloy wire, and this fine crystal structure is considered to contribute to the elongation characteristics. On the other hand, the cross-sectional structure of the comparative material 1 at an annealing temperature of 500 ° C. has undergone secondary recrystallization, and the crystal grains in the cross-sectional structure are coarser than the crystal structure of FIG. Is thought to have been reduced.

図3は、焼鈍温度700℃における実施材1の銅線の断面写真を示した図である。銅合
金線の断面における表層の結晶粒サイズが、内部における結晶粒サイズに比べて極めて小
さくなっていることがわかる。内部における結晶組織は2次再結晶が進んでいるものの、
外層における微細な結晶粒の層は残存している。実施材1は、内部の結晶組織が大きく成
長するが、表層に微細結晶の層が残っているため、高い伸び特性を維持しているものと思
われる。
FIG. 3 is a view showing a cross-sectional photograph of the copper wire of Example 1 at an annealing temperature of 700 ° C. It can be seen that the crystal grain size of the surface layer in the cross section of the copper alloy wire is extremely smaller than the crystal grain size inside. Although the internal recrystallization of the crystal structure is progressing,
The fine crystal grain layer in the outer layer remains. Although the material 1 of the execution material 1 grows greatly in the internal crystal structure, it seems that the fine crystal layer remains on the surface layer, and thus maintains high elongation characteristics.

図4は、比較材1の断面組織を示した断面写真である。比較材1は、表面から中央にか
けて全体的に略等しい大きさの結晶粒が均一に並んでおり、断面組織全体において2次再
結晶が進行しているため、実施材1に比して600℃以上の高温領域における伸び特性は
、低下しているものと考えられる。
FIG. 4 is a cross-sectional photograph showing a cross-sectional structure of the comparative material 1. In Comparative Material 1, crystal grains having substantially the same size are arranged uniformly from the surface to the center, and secondary recrystallization proceeds in the entire cross-sectional structure. It is considered that the elongation characteristics in the above high temperature region are deteriorated.

このように、実施材1では、比較材1よりも伸び特性の点で優れているため、この導体
を用いて撚線を製造するときの取り扱い性に優れ、耐屈曲特性に優れ、曲げやすさの点に
おいてもケーブルの配策が容易になるという利点がある。
As described above, the working material 1 is superior to the comparative material 1 in terms of elongation characteristics, so that it is excellent in handleability when manufacturing a stranded wire using this conductor, excellent in bending resistance, and easy to bend. Also in this point, there is an advantage that the cable arrangement becomes easy.

つぎに、本発明に係る軟質希薄銅合金材料は、屈曲寿命の長さが要求されるが、無酸素
銅線を用いた比較材2と低酸素銅に13mass ppmのTiを添加した軟質希薄銅合
金線を用いた実施材2における屈曲寿命を測定した。ここでは試料としては、0.26m
m径の線材に対して焼鈍温度400℃で1時間の焼鈍を施したものを用い、比較材2は比
較材1と同様の成分組成であり、実施材2も実施材1と同様の成分組成のものを使用した
Next, the soft dilute copper alloy material according to the present invention is required to have a long bending life, but the soft dilute copper in which 13 mass ppm of Ti is added to the comparative material 2 using low oxygen copper and low oxygen copper is required. The bending life of Example 2 using an alloy wire was measured. Here, as a sample, 0.26 m
The wire material of m diameter was annealed at 400 ° C. for 1 hour, the comparative material 2 has the same component composition as the comparative material 1, and the working material 2 has the same component composition as the working material 1. I used one.

図5は、屈曲寿命の測定方法を示し、その方法により屈曲疲労試験を行った。屈曲疲労
試験は、荷重を負荷し、試料表面に引張と圧縮の繰返し曲げひずみを与える試験である。
試料は、(A)のように曲げ治具(図中、リングと記載)の間にセットし、荷重を負荷し
たまま、(B)のように治具が90度回転し曲げを与える。この操作で、曲げ治具に接し
ている線材表面には圧縮ひずみが、これに対応して反対側の表面には、引張ひずみが負荷
される。その後、再び(A)の状態に戻る。次に(B)に示した向きと反対方向に90度
回転し曲げを与える。この場合も、曲げ治具に接している線材表面には圧縮ひずみが、こ
れに対応して反対側の表面には引張ひずみが負荷され、(C)の状態になる。そして(C
)から最初の状態(A)に戻る。この屈曲疲労1サイクル(A)→(B)→(A)→(C
)→(A)に要する時間は4秒である。表面曲げ歪は以下の式により求めることができる。
FIG. 5 shows a method for measuring the bending life, and a bending fatigue test was conducted by this method. The bending fatigue test is a test in which a load is applied and repeated bending strain of tension and compression is applied to the sample surface.
The sample is set between bending jigs (denoted as rings in the figure) as shown in (A), and the jig is rotated 90 degrees as shown in (B) while applying a load to bend. By this operation, a compressive strain is applied to the surface of the wire rod in contact with the bending jig, and a tensile strain is applied to the opposite surface correspondingly. Thereafter, the state returns to the state (A) again. Next, it is rotated 90 degrees in the direction opposite to the direction shown in FIG. Also in this case, a compressive strain is applied to the surface of the wire rod in contact with the bending jig, and a corresponding tensile strain is applied to the opposite surface, resulting in a state (C). And (C
) To return to the initial state (A). This bending fatigue cycle 1 (A) → (B) → (A) → (C
) → (A) takes 4 seconds. The surface bending strain can be obtained by the following equation.

表面曲げ歪(%)=r/(R+r)×100(%)
{R:素線曲げ半径(30mm)、r=素線半径}
Surface bending strain (%) = r / (R + r) × 100 (%)
{R: Wire bending radius (30 mm), r = wire radius}

図6は、400℃で1時間の焼鈍処理を施した後の、無酸素銅線を用いた比較材2と、
低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材2における屈曲寿命を測定し
た表面曲げ歪みと屈曲回数との関係を示す図である。図6に示すように、本発明に係る実
施材2は、表面曲げ歪み0.45%で、屈曲回数が比較材2の2000回弱に比して、4
000回強と2倍の高い屈曲寿命を示した。
FIG. 6 shows a comparative material 2 using an oxygen-free copper wire after annealing at 400 ° C. for 1 hour,
It is a figure which shows the relationship between the surface bending distortion and the frequency | count of bending which measured the bending life in the implementation material 2 using the soft dilute copper alloy wire which added Ti to low oxygen copper. As shown in FIG. 6, the working material 2 according to the present invention has a surface bending strain of 0.45%, and the number of bendings is 4 as compared with the comparative material 2 slightly less than 2000 times.
The bending life was a little over 000 times and twice as long.

図7は、実施材2の幅方向の結晶構造を示す断面組織を写真により表した図であり、図
8は、比較材2の幅方向の結晶構造を示す断面組織を写真により表した図である。実施材
2は、実施材1と同じ成分のもので、最も軟質材導電率が高い0.26mm径の線材で、
焼鈍温度400℃で1時間の焼鈍処理を経て作製される。又、比較材2は、無酸素銅(O
FC)からなる0.26mm径の線材、焼鈍温度400℃で1時間の焼鈍処理を経て作製
される。
FIG. 7 is a view showing the cross-sectional structure showing the crystal structure in the width direction of the embodiment material 2 with a photograph. FIG. 8 is a view showing the cross-sectional structure showing the crystal structure in the width direction of the comparative material 2 with a photograph. is there. The implementation material 2 is the same component as the implementation material 1 and is a 0.26 mm diameter wire with the highest soft material conductivity.
It is fabricated through an annealing process for 1 hour at an annealing temperature of 400 ° C. Comparative material 2 is oxygen-free copper (O
FC), and a 0.26 mm diameter wire rod is manufactured through an annealing treatment at an annealing temperature of 400 ° C. for 1 hour.

表3は、実施材2及び比較材2の導電率を示す。   Table 3 shows the conductivity of Example Material 2 and Comparative Material 2.

Figure 2013057121
Figure 2013057121

表3に示すように、実施材2は、比較材2と比べて、電流を流したときに、電子の流れ
が妨げられることが少なく進むこととなり、電気抵抗が小さくなる。従って、実施材2は
、比較材2と比べて導電率(%IACS)が大きくなっている。
As shown in Table 3, the working material 2 is less obstructed by the flow of electrons when the current is passed as compared with the comparative material 2, and the electrical resistance is reduced. Therefore, the implementation material 2 has a higher conductivity (% IACS) than the comparison material 2.

図8に示すように、比較材2の結晶構造は、表面部から中央部にかけて全体的に大きさ
の等しい結晶粒が均一に並んでいることがわかる。これに対し、図7に示すように、実施
材2の結晶構造は、表層と内部とで結晶粒の大きさに差があり、表層における結晶粒サイ
ズに比べて内部の結晶粒サイズが極めて大きくなっている。
As shown in FIG. 8, it can be seen that the crystal structure of the comparative material 2 has uniform crystal grains having the same overall size from the surface portion to the center portion. On the other hand, as shown in FIG. 7, the crystal structure of the embodiment material 2 has a difference in crystal grain size between the surface layer and the inside, and the inside crystal grain size is extremely larger than the crystal grain size in the surface layer. It has become.

実施材2は、例えば、φ2.6mm、φ0.26mmとなるように加工した導体の銅中
のSをTi−S、Ti−O−Sの形で補足している。また、銅中に含まれる酸素(O)は
、例えば、TiOのように、TixOyの形で存在しており、結晶粒内、結晶粒界に析
出している。
The implementation material 2 supplements, for example, S in the copper of the conductor processed so as to have φ2.6 mm and φ0.26 mm in the form of Ti—S and Ti—O—S. The oxygen contained in the copper (O), for example, as TiO 2, is present in the form of TixOy, the crystal grains are precipitated in the grain boundaries.

このため、銅を焼鈍して結晶組織を再結晶させたときには、実施材2は、再結晶化が進
み易く内部の結晶粒が大きく成長する。このため、実施材2は、比較材2と比べて、電流
を流したときに、電子の流れが妨げられることが少なく進むこととなり、電気抵抗が小さ
くなる。従って、実施材2は、比較材2と比べて導電率(%IACS)が大きくなる。
For this reason, when copper is annealed and the crystal structure is recrystallized, the recrystallized material of Example 2 is likely to proceed and the internal crystal grains grow greatly. For this reason, compared with the comparative material 2, the implementation material 2 progresses with less obstruction of the flow of electrons when a current is passed, and the electrical resistance is reduced. Therefore, the implementation material 2 has higher conductivity (% IACS) than the comparison material 2.

以上の結果により、実施材2を用いた製品では、軟らかく、導電率が向上し、且つ屈曲
特性を向上させることができる。従来の導体では、結晶組織を実施材2のような大きさに
再結晶させるためには、高温の焼鈍処理が必要となる。しかし、焼鈍温度が高過ぎると、
Sが再固溶してしまう。また、従来の導体では、再結晶させると、軟らかくなり、屈曲特
性は低下する問題があった。実施材2では、焼鈍したときに双晶とならずに再結晶できる
ため、内部の結晶粒が大きくなり、軟らかくなるが、一方で表層は、微細結晶が残ってい
るため、屈曲特性が低下しない。
Based on the above results, the product using the embodiment material 2 is soft, has improved conductivity, and can improve bending characteristics. In the conventional conductor, a high-temperature annealing process is required to recrystallize the crystal structure to the size of the embodiment material 2. However, if the annealing temperature is too high,
S is dissolved again. Further, the conventional conductor has a problem that when it is recrystallized, it becomes soft and the bending property is lowered. In the execution material 2, since it can be recrystallized without being twinned when annealed, the internal crystal grains become large and soft, but on the other hand, since the fine crystals remain in the surface layer, the bending characteristics do not deteriorate. .

図9は、600℃で1時間の焼鈍処理を施した後の、無酸素銅線を用いた比較材3と、
低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材3における屈曲寿命を測定し
た結果を表した表面曲げ歪みと屈曲回数との関係を示す図である。ここでは試料としては
、0.26mm径の線材に対して焼鈍温度600℃で1時間の焼鈍を施したものを用い、
比較材3は比較材1と同様の成分組成であり、実施材3も実施材1と同様の成分組成のも
のを使用した。屈曲寿命の測定方法は、図5の測定方法と同様の条件により行った。
FIG. 9 shows a comparative material 3 using an oxygen-free copper wire after annealing at 600 ° C. for 1 hour,
It is a figure which shows the relationship between the surface bending distortion and the frequency | count of bending showing the result of having measured the bending life in the implementation material 3 using the soft dilute copper alloy wire which added Ti to low oxygen copper. Here, as a sample, a 0.26 mm diameter wire was annealed at an annealing temperature of 600 ° C. for 1 hour,
The comparative material 3 has the same component composition as that of the comparative material 1, and the example material 3 also has the same component composition as that of the example material 1. The measuring method of the bending life was performed under the same conditions as the measuring method of FIG.

図9に示すように、この場合も、本発明に係る実施材3は、表面曲げ歪み0.45%で
、屈曲回数が比較材3の1000回に比して、2000回弱であるが約2倍の高い屈曲寿
命を示した。この結果は、いずれの焼鈍条件下においても実施材2、3の方が比較材2、
3に比して0.2%耐力値が大きい値を示していたことに起因するものであると理解され
る。
As shown in FIG. 9, also in this case, the embodiment material 3 according to the present invention has a surface bending strain of 0.45% and the number of bendings is less than 2000 times compared to 1000 times of the comparative material 3, but about The bending life was twice as high. As a result, under the annealing conditions, the execution materials 2 and 3 were compared with the comparison material 2,
It is understood that this is due to the fact that the 0.2% proof stress value was larger than that of 3.

図10は、実施材3の幅方向の結晶構造を示す断面組織を写真により表した図であり、
図11は、比較材3の幅方向の結晶構造を示す断面組織を写真により表した図である。図
10及び図11に示すように、比較材3の結晶構造は、表面部から中央部にかけて全体的
に大きさの等しい結晶粒が均一に並んでいることがわかる。これに対し、実施材3の結晶
構造は、全体的に結晶粒の大きさがまばらであり、特筆すべきは、試料の断面方向の表面
付近に薄く形成されている層における結晶粒サイズが内部の結晶粒サイズに比べて極めて
小さくなっていることである。
FIG. 10 is a photograph showing a cross-sectional structure showing the crystal structure in the width direction of the embodiment material 3,
FIG. 11 is a view showing a cross-sectional structure showing the crystal structure in the width direction of the comparative material 3 by a photograph. As shown in FIGS. 10 and 11, it can be seen that the crystal structure of the comparative material 3 has uniform crystal grains of the same size from the surface portion to the central portion. On the other hand, the crystal structure of the embodiment material 3 has a sparse crystal grain size as a whole, and it should be noted that the crystal grain size in the layer formed thin near the surface in the cross-sectional direction of the sample is internal. It is extremely small compared to the crystal grain size.

発明者らは、比較材3には形成されていない、実施材3の表層に現れた微細結晶粒層が
実施材3の屈曲特性の向上に寄与しているものと考えている。
The inventors consider that the fine crystal grain layer that is not formed in the comparative material 3 and appears on the surface layer of the working material 3 contributes to the improvement of the bending characteristics of the working material 3.

このことは、通常であれば、焼鈍温度600℃で1時間の焼鈍処理を行えば、比較材3
のように再結晶により均一に粗大化した結晶粒が形成されるものであると理解されるが、
本発明の場合には、焼鈍温度600℃で1時間の焼鈍処理を行ってもなお、その表層には
微細結晶粒層が残存していることから、軟質銅材でありながら、屈曲特性の良好な軟質希
薄銅合金材料が得られたものであると考えられる。
If this is normal, if the annealing process is performed for 1 hour at an annealing temperature of 600 ° C., the comparative material 3
It is understood that crystal grains uniformly coarsened by recrystallization are formed,
In the case of the present invention, even if the annealing process is performed at an annealing temperature of 600 ° C. for 1 hour, a fine crystal grain layer still remains on the surface layer. It is thought that a soft dilute copper alloy material was obtained.

図10及び図11に示す結晶構造の断面写真をもとに、実施材3及び比較材3の試料の
表層における平均結晶粒サイズを測定した。
Based on the cross-sectional photographs of the crystal structure shown in FIG. 10 and FIG. 11, the average crystal grain size in the surface layer of the samples of Example Material 3 and Comparative Material 3 was measured.

図12は、表層における平均結晶粒サイズの測定方法を示す。図12に示すように、0
.26mm径の幅方向断面の表面から深さ方向に10μm間隔で50μmの深さまでのと
ころの長さ1mmの線上の範囲での結晶粒サイズを測定した夫々の実測値を平均した値を
表層における平均結晶粒サイズとした。
FIG. 12 shows a method for measuring the average grain size in the surface layer. As shown in FIG.
. The average value in the surface layer was obtained by averaging the measured values of the crystal grain size in the range on the line of 1 mm in length from the surface of the cross section in the width direction of 26 mm diameter to the depth of 50 μm at 10 μm intervals in the depth direction. The grain size was used.

測定の結果、比較材3の表層における平均結晶粒サイズは、50μmであったのに対し
、実施材3の表層における平均結晶粒サイズは、10μmである点で大きく異なっていた
。表層の平均結晶粒サイズが細かいことによって、屈曲疲労試験による亀裂の進展が抑制
され、屈曲疲労寿命が延びたと考えられる。即ち、結晶粒サイズが大きいと結晶粒界に沿
って亀裂が進展してしまうが、結晶粒サイズが小さいと亀裂の進展の方向が変わるため、
進展が抑制されるもので、このことが、上述のとおり、比較材3と実施材3との屈曲特性
の面で大きな相違を生じたものと考えられる。
As a result of the measurement, the average crystal grain size in the surface layer of Comparative Material 3 was 50 μm, whereas the average crystal grain size in the surface layer of Example Material 3 was greatly different in that it was 10 μm. It is thought that the fineness of the average crystal grain size of the surface layer suppresses the progress of cracks in the bending fatigue test and extends the bending fatigue life. That is, if the crystal grain size is large, cracks propagate along the grain boundaries, but if the crystal grain size is small, the direction of crack growth changes,
The progress is suppressed, and this is considered to have caused a great difference in the bending characteristics between the comparative material 3 and the working material 3 as described above.

また、前述の2.6mm径である実施材1、比較材1の表層における平均結晶粒サイズ
として、2.6mm径の幅方向断面の表面から深さ方向に50μmの深さのところの長さ
10mmの範囲での結晶粒サイズを測定した。測定の結果、比較材1の表層における平均
結晶粒サイズは100μmであったのに対し、実施材1の表層における平均結晶粒サイズ
は20μmであった。本発明の効果を奏するものとして、表層の平均結晶粒サイズの上限
値としては、20μm以下のものが好ましく、製造上の限界値から5μm以上のものが想
定される。
Further, the average crystal grain size in the surface layer of the embodiment material 1 having the diameter of 2.6 mm described above and the comparative material 1 is a length of 50 μm in the depth direction from the surface of the cross section in the width direction of 2.6 mm diameter. The crystal grain size in the range of 10 mm was measured. As a result of the measurement, the average crystal grain size in the surface layer of Comparative Material 1 was 100 μm, whereas the average crystal grain size in the surface layer of Example Material 1 was 20 μm. As an effect of the present invention, the upper limit value of the average grain size of the surface layer is preferably 20 μm or less, and a value of 5 μm or more is assumed from the manufacturing limit value.

(軟質希薄銅合金材料の製造)
φ2.6mmサイズの銅線を作製するところまでは、軟質希薄銅合金材料の実施材1と
同様である。これをφ0.9mmまで伸線加工を施し、通電アニーラにて一旦焼鈍した後
、φ0.05mmまで伸線した。φ2.6mmからφ0.9mmへの加工度は88.0%で
ある。
(Manufacture of soft dilute copper alloy materials)
The process up to producing a copper wire of φ2.6 mm size is the same as that of the embodiment 1 of the soft dilute copper alloy material. This was subjected to wire drawing to φ0.9 mm, once annealed with a current-carrying annealer, and then drawn to φ0.05 mm. The degree of processing from φ2.6 mm to φ0.9 mm is 88.0%.

このφ0.05mmの材料を通電アニーラにより、通電電圧21〜33V、巻き取り速
度500m/minで連続焼鈍を施し、実施材4の材料とした。比較として、φ0.05
mmの無酸素銅(純度99.99%以上、OFC)も同様の加工熱処理条件で作製し比較
材4の材料とした。この場合のφ0.9mmからφ0.05mmへの伸線加工度は99.
7%である。
The material of φ0.05 mm was subjected to continuous annealing with an energization annealer at an energization voltage of 21 to 33 V and a winding speed of 500 m / min. As a comparison, φ0.05
Oxygen-free copper of mm (purity 99.99% or more, OFC) was also produced under the same heat treatment conditions and used as the material for comparative material 4. In this case, the wire drawing degree from φ0.9 mm to φ0.05 mm is 99.
7%.

別の焼鈍方法として、前述同様に、φ0.9mmからφ0.05mmまで伸線した軟質
希薄銅合金材料を、管状炉にて400℃〜600℃×0.8〜4.8秒、走行焼鈍を施し
実施材4の材料とした。比較として、φ0.05mmの無酸素銅(99.99%以上、O
FC)も同様の加工熱処理条件で作製し比較材4の材料とした。
As another annealing method, a soft dilute copper alloy material drawn from φ0.9 mm to φ0.05 mm is subjected to running annealing at 400 ° C. to 600 ° C. × 0.8 to 4.8 seconds in a tubular furnace as described above. The material of the application material 4 was used. As a comparison, φ0.05mm oxygen-free copper (99.99% or more, O
FC) was also produced under the same thermomechanical processing conditions and used as the material for Comparative Material 4.

これらの材料の機械的特性(引張強さ、伸び率)、硬さ、結晶粒サイズを測定した。表
層における平均結晶粒サイズは、0.05mm径の幅方向断面の表面から深さ方向に10
μmの深さのところの長さ0.25mmの範囲での結晶粒サイズを測定した。
The mechanical properties (tensile strength, elongation), hardness, and crystal grain size of these materials were measured. The average grain size in the surface layer is 10 in the depth direction from the surface of the cross section in the width direction of 0.05 mm diameter.
The crystal grain size in the range of 0.25 mm length at a depth of μm was measured.

(軟質希薄銅合金材料の軟質特性、伸び率及び引張強さ)
図13は、無酸素銅線を用いた比較材1に係るワイヤロッドと、低酸素銅に13mas
s ppmのTiを含有させた軟質希薄銅合金線から作製した実施材1に係るワイヤロッ
ドとについて、φ0.9mm(なまし材)からφ0.05mmまで伸線加工をし、通電アニ
ーラによる焼鈍(電圧21〜33V、巻き取り速度500m/min)をしたあとの引張
強さと伸び率との関係を測定した実施材4と比較材4の結果を示す図である。
(Soft properties, elongation and tensile strength of soft dilute copper alloy materials)
FIG. 13 shows a wire rod according to the comparative material 1 using an oxygen-free copper wire, and 13 mass for low-oxygen copper.
About the wire rod which concerns on the implementation material 1 produced from the soft dilute copper alloy wire containing s ppm Ti, it wire-draws from φ0.9mm (annealing material) to φ0.05mm, and anneals by an electric annealing ( It is a figure which shows the result of the implementation material 4 and the comparative material 4 which measured the relationship between the tensile strength and elongation rate after performing voltage 21-33V and winding-up speed 500m / min.

図13に示すように、ほぼ同じ伸び率で比較した場合、実施材4の引張強さは、比較材
4よりも15MPa以上大きいことがわかる。無酸素銅との比較で、伸び率を低下させる
ことなく、引張強さを高くできることで、例えば、実施材4の軟質希薄銅合金線は、無酸
素銅を使用する導体に比して、応力付加による断線の発生を低減させることができる。
As shown in FIG. 13, it can be seen that the tensile strength of the working material 4 is 15 MPa or more larger than that of the comparative material 4 when compared at substantially the same elongation rate. Compared with oxygen-free copper, the tensile strength can be increased without reducing the elongation. For example, the soft dilute copper alloy wire of the embodiment material 4 has a stress higher than that of a conductor using oxygen-free copper. The occurrence of disconnection due to the addition can be reduced.

図14は、無酸素銅線を用いた比較材4に係るワイヤロッドと、低酸素銅に13mas
s ppmのTiを含有させた軟質希薄銅合金線から作製した実施材4に係るワイヤロッ
ドとについて、φ0.9mm(なまし材)からφ0.05mmまで伸線加工をし、管状炉に
よる走行焼鈍(温度300℃〜600℃、時間0.8〜4.8秒)をしたあとの断面硬さ(
Hv)と機械的特性(伸び率)との関係を示す図である。
FIG. 14 shows a wire rod according to the comparative material 4 using an oxygen-free copper wire, and 13 mass for low-oxygen copper.
About the wire rod which concerns on the implementation material 4 produced from the soft dilute copper alloy wire containing s ppm Ti, it wire-draws from (phi) 0.9mm (annealing material) to (phi) 0.05mm, and it is run annealing by a tubular furnace Cross-sectional hardness after (temperature 300 ° C-600 ° C, time 0.8-4.8 seconds)
It is a figure which shows the relationship between Hv) and a mechanical characteristic (elongation rate).

断面硬さは、樹脂中に埋め込んだφ0.05mmワイヤの横断面を研磨し、ワイヤ中央
部のビッカース硬さを測定することで評価した。測定数はn=5であり、その平均値とし
た。
The cross section hardness was evaluated by polishing the cross section of a φ0.05 mm wire embedded in the resin and measuring the Vickers hardness at the center of the wire. The number of measurements was n = 5, and the average value was used.

引張強さと伸び率の測定は、φ0.05mmワイヤを標点距離100mm、引張速度2
0mm/minの条件で引張試験を行うことにより評価した。材料が破断するときの最大
の引張応力が引張強さであり、材料が破断するときの最大の変形量(ひずみ)を伸び率と
した。
Tensile strength and elongation were measured using a 0.05 mm wire with a gauge distance of 100 mm and a tensile speed of 2
Evaluation was performed by conducting a tensile test under the condition of 0 mm / min. The maximum tensile stress when the material breaks is the tensile strength, and the maximum amount of deformation (strain) when the material breaks is defined as the elongation percentage.

図14に示すように、ほぼ同じ伸び率で比較した場合、実施材4の硬さは、比較材4よ
りも10Hvほど小さいことがわかる。無酸素銅との比較で、伸び特性を低下させること
なく、硬さを小さくできることで、例えば、実施材4の軟質希薄銅合金材料は、無酸素銅
を使用するボンディングワイヤに比して、ボンディング時のパッドダメージを低減させる
ことができる。
As shown in FIG. 14, when compared at substantially the same elongation rate, it can be seen that the hardness of the working material 4 is about 10 Hv smaller than that of the comparative material 4. Compared with oxygen-free copper, the hardness can be reduced without deteriorating the elongation characteristics. For example, the soft dilute copper alloy material of the embodiment material 4 is bonded to the bonding wire using oxygen-free copper. The pad damage at the time can be reduced.

表4は、図13に示す評価結果のうち、実施材4と比較材4とで硬さがほぼ同等になる
条件のデータを抜粋し比較した結果を示す。実施材4は、実施材1に係るワイヤロッドを
、φ0.9mm(なまし材)からφ0.05mmまで伸線加工をし、管状炉中を400℃×
1.2秒間の走行焼鈍したときの機械的特性及び硬さを示したものである。同じく比較材
4は、比較材1に係るワイヤロッドを、φ0.9mm(なまし材)からφ0.05mmまで
伸線加工をし、管状炉中を600℃×2.4秒間走行焼鈍したときの機械的特性及び硬さ
を示したものである。
Table 4 shows the results of extracting and comparing data of conditions under which the hardness is substantially the same between the embodiment material 4 and the comparative material 4 among the evaluation results shown in FIG. The implementation material 4 is a wire rod according to the implementation material 1 which is drawn from φ0.9 mm (annealing material) to φ0.05 mm, and the inside of the tubular furnace is 400 ° C. ×
The mechanical properties and hardness when running annealed for 1.2 seconds are shown. Similarly, the comparative material 4 is obtained when the wire rod according to the comparative material 1 is drawn from φ0.9 mm (annealed material) to φ0.05 mm and annealed at 600 ° C. for 2.4 seconds in a tubular furnace. It shows the mechanical properties and hardness.

Figure 2013057121
Figure 2013057121

表4に示すように、同じ硬さの材料であっても、実施材4の伸び率は、比較材4よりも
7%以上も高いため、例えば、ボンディングワイヤとして使用した場合、ワイヤボンディ
ング時の接続信頼性やハンドリング特性の向上に大きく寄与できる。また、同じ硬さであ
りながら無酸素銅を使用するボンディングワイヤに比して、引張強さが高いため、接続部
(ボールネック部)の強度信頼性に大きく寄与できる。
As shown in Table 4, even when the materials have the same hardness, the elongation percentage of the implementation material 4 is 7% or more higher than that of the comparative material 4, so that, for example, when used as a bonding wire, It can greatly contribute to the improvement of connection reliability and handling characteristics. Moreover, since the tensile strength is higher than that of a bonding wire using oxygen-free copper while having the same hardness, it can greatly contribute to the strength reliability of the connecting portion (ball neck portion).

ここでのワイヤボンディング部の接続信頼性とは、ワイヤボンディング後に樹脂モール
ドした後、銅ワイヤと樹脂材との熱膨張差により発生する応力に対する耐性のことである
Here, the connection reliability of the wire bonding portion is resistance to stress generated by a difference in thermal expansion between the copper wire and the resin material after resin molding after wire bonding.

また、ハンドリング性とは、ワイヤスプールからボンディング部へワイヤを供給する際
の応力に対する耐性、その他、巻きぐせのつきにくさのことである。
The handling property means resistance to stress when a wire is supplied from the wire spool to the bonding portion, and other difficulty in winding.

図15は、硬さ(Hv)と引張強さとの関係を示す図である。図15に示すように、ほ
ぼ同じ引張強さで比較した場合、実施材4の硬さは、比較材4よりも10Hvほど小さい
ことがわかる。引張強さを低下させることなく、硬さを小さくできることで、例えば、実
施材4の軟質希薄銅合金材料をボンディングワイヤとして使用した場合、ボンディング時
のパッドダメージを低減させることができる。
FIG. 15 is a diagram showing the relationship between hardness (Hv) and tensile strength. As shown in FIG. 15, it can be seen that the hardness of the working material 4 is about 10 Hv smaller than that of the comparative material 4 when compared with substantially the same tensile strength. Since the hardness can be reduced without reducing the tensile strength, for example, when the soft diluted copper alloy material of the embodiment material 4 is used as a bonding wire, pad damage during bonding can be reduced.

表5は、実施材4と比較材4とで引張強さがほぼ同等になる条件のデータを抜粋し比較
した結果を示す。実施材4は、実施材1に係るワイヤロッドを、φ0.9mm(なまし材
)からφ0.05mmまで伸線加工をし、管状炉中を500℃×4.8秒間の走行焼鈍した
ときの機械的特性及び硬さを示したものである。同じく比較材4は、比較材1に係るワイ
ヤロッドを、φ0.9mm(なまし材)からφ0.05mmまで伸線加工をし、管状炉中を
600℃×2.4秒間走行焼鈍したときの機械的特性及び硬さを示したものである。
Table 5 shows the results of extracting and comparing the data under conditions in which the tensile strength is almost equal between the working material 4 and the comparative material 4. The execution material 4 is obtained when the wire rod according to the implementation material 1 is drawn from φ0.9 mm (annealing material) to φ0.05 mm, and the tube furnace is annealed at 500 ° C. for 4.8 seconds. It shows the mechanical properties and hardness. Similarly, the comparative material 4 is obtained when the wire rod according to the comparative material 1 is drawn from φ0.9 mm (annealed material) to φ0.05 mm and annealed at 600 ° C. for 2.4 seconds in a tubular furnace. It shows the mechanical properties and hardness.

Figure 2013057121
Figure 2013057121

表5に示すように、同じ引張強さの材料であっても、実施材4の伸びは、比較材4より
も5%も高いため、例えば、ボンディングワイヤとして使用した場合、ワイヤボンディン
グ時の接続信頼性やハンドリング特性の向上に大きく寄与できる。また、同じ引張強さの
材料でありながらも、実施材4の硬さは、比較材4よりも十分小さいため、ワイヤボンデ
ィング時のパッドダメージを小さくすることができる。
As shown in Table 5, even when the materials have the same tensile strength, the elongation of the implementation material 4 is 5% higher than that of the comparison material 4, so that, for example, when used as a bonding wire, connection during wire bonding It can greatly contribute to the improvement of reliability and handling characteristics. In addition, although the material has the same tensile strength, the hardness of the working material 4 is sufficiently smaller than that of the comparative material 4, so that pad damage during wire bonding can be reduced.

ここでのワイヤボンディング部の接続信頼性及びハンドリング性は、前述と同じである
The connection reliability and handling property of the wire bonding part here are the same as described above.

引張強さ、伸び率及び硬さのバランスは、製品により要求される仕様は多少異なるが、
一例として、本発明によると、引張強さを重視する場合、引張り強さ270MPa以上、
伸び7%以上の導体が供給可能であり、更に硬さの小ささを重視する場合、210MPa
以上270MPa、伸び率15%以上、かつ硬さ65Hv以下の導体の供給が可能である
The balance of tensile strength, elongation and hardness is slightly different depending on the product,
As an example, according to the present invention, when stressing the tensile strength, the tensile strength is 270 MPa or more,
When a conductor with an elongation of 7% or more can be supplied, and when the importance of small hardness is emphasized, 210 MPa
It is possible to supply a conductor having a hardness of 270 MPa, an elongation of 15% or more, and a hardness of 65 Hv or less.

(軟質希薄銅合金線の結晶構造について)
図16は、実施材4に係る幅方向の断面組織を写真にて表した図であり、図17は、比
較材4に係る幅方向の断面組織を写真にて表した図である。図16(a)と(b)とは異
なった場所でのものである。
(Crystal structure of soft dilute copper alloy wire)
FIG. 16 is a view showing a cross-sectional structure in the width direction according to the embodiment material 4 with a photograph, and FIG. 17 is a view showing a cross-sectional structure in the width direction according to the comparative material 4 with a photograph. FIGS. 16A and 16B are at different places.

図17に示すように、比較材4の結晶構造は、表面部から中央部にかけて全体的に大き
さの等しい結晶粒が均一に並んでいることが分かる。一方、実施材4の結晶構造は、全体
的に結晶粒の大きさがまばらであり、試料の断面方向の表面付近に薄く形成されている層
における結晶粒サイズが内部の結晶粒サイズに比べて極めて小さくなっている。
As shown in FIG. 17, it can be seen that the crystal structure of the comparative material 4 has uniform crystal grains of uniform size as a whole from the surface portion to the center portion. On the other hand, the crystal structure of the embodiment material 4 has a sparse crystal grain size as a whole, and the crystal grain size in the layer formed thin near the surface in the cross-sectional direction of the sample is smaller than the internal crystal grain size. It is extremely small.

本発明者らは、比較材4には形成されていない実施材4の表層に現れた微細結晶粒層が
実施材4の軟質特性を有し、かつ、引張強さと伸び特性を併せ持つことに寄与しているも
のと考えている。
The present inventors contribute to the fact that the fine crystal grain layer appearing on the surface layer of the embodiment material 4 that is not formed in the comparison material 4 has the soft characteristics of the embodiment material 4 and has both tensile strength and elongation characteristics. I believe that.

通常、軟質化を目的とした熱処理を行うと、比較材4のように再結晶により均一に粗大
化した結晶粒が形成されると理解される。しかし、本実施例においては、内部に粗大な結
晶粒を形成する焼鈍処理を実行しても表層には微細結晶粒層が残存している。したがって
、本実施例では、軟質銅材でありながら引張強さと伸び率に優れた軟質希薄銅合金材料が
得られたと考えられる。
In general, it is understood that when heat treatment for softening is performed, crystal grains uniformly coarsened by recrystallization are formed as in the comparative material 4. However, in this embodiment, even if an annealing process for forming coarse crystal grains inside is performed, a fine crystal grain layer remains on the surface layer. Therefore, in the present Example, it is thought that the soft dilute copper alloy material excellent in tensile strength and elongation was obtained though it was a soft copper material.

図16及び図17に示す結晶構造の断面写真を基に、実施材4及び比較材4に係る表層
における平均結晶粒サイズを測定した。
Based on the cross-sectional photographs of the crystal structure shown in FIGS. 16 and 17, the average crystal grain size in the surface layer according to the example material 4 and the comparative material 4 was measured.

図18は、表層における平均結晶粒サイズの測定方法の概要を示す図である。図18に
示すように、0.05mm径の幅方向断面の表面から深さ方向に5μm間隔で10μmの
深さまでの長さ0.25mmの線上の範囲で、結晶粒サイズを測定した。そして、各測定
値(実測値)から平均値を求め、この平均値を平均結晶粒サイズにした。
FIG. 18 is a diagram showing an outline of a method for measuring the average crystal grain size in the surface layer. As shown in FIG. 18, the crystal grain size was measured in a range on the line of 0.25 mm length from the surface of the cross section in the width direction of 0.05 mm diameter to the depth of 10 μm at intervals of 5 μm in the depth direction. And the average value was calculated | required from each measured value (actually measured value), and this average value was made into the average crystal grain size.

測定の結果、比較材4の表層における平均結晶粒サイズは、22μmであったのに対し
、実施材4の表層における平均結晶粒サイズは、図16(a)では7μm及び図16(b
)では15μmであり、異なっていた。表層の平均結晶粒サイズが細かいことを一つの理
由として、高い引張強さと伸び率が得られたと考えられる。なお、結晶粒サイズが大きい
と、結晶粒界に沿って亀裂が進展する。しかし、結晶粒サイズが小さいと亀裂の進展方向
が変わるので、進展が抑制される。このことから、実施材4の疲労特性は、比較材4より
も優れると考えられる。疲労特性とは繰り返し応力を受けたとき、材料が破断に至るまで
の応力付加サイクル数或いは時間を示す。
As a result of the measurement, the average crystal grain size in the surface layer of the comparative material 4 was 22 μm, whereas the average crystal grain size in the surface layer of the example material 4 was 7 μm in FIG. 16A and FIG.
) Was 15 μm and different. It is considered that high tensile strength and elongation were obtained, for one reason that the average grain size of the surface layer was fine. When the crystal grain size is large, cracks develop along the crystal grain boundary. However, if the crystal grain size is small, the growth direction of the cracks changes, so that the growth is suppressed. From this, it is considered that the fatigue characteristics of the working material 4 are superior to those of the comparative material 4. The fatigue characteristics indicate the number of stress application cycles or time until the material breaks when subjected to repeated stress.

本実施例の効果を奏するには、表層の平均結晶粒サイズとしては15μm以下が好まし
い。
In order to achieve the effect of the present embodiment, the average crystal grain size of the surface layer is preferably 15 μm or less.

(φ0.05mmの軟質希薄銅合金材料の管状炉、通電アニーラ及びバッチ処理)
表6〜表8は、φ0.05mmの軟質希薄銅合金材料の加工度や熱処理条件と、上述の
とおり引張強さと伸び率、屈曲特性の向上に寄与する表層の微細結晶の存在、及び、伸び
率、硬さについて評価した結果を示す。φ0.9mmサイズの銅線を作製するところまで
は、上述した軟質希薄銅合金材料の実施材1と同様である。
(Tube furnace, energization annealer and batch processing of soft dilute copper alloy material of φ0.05mm)
Tables 6 to 8 show the degree of processing and heat treatment conditions of a soft dilute copper alloy material having a diameter of 0.05 mm, the presence of fine crystals on the surface layer that contribute to the improvement of tensile strength and elongation, and bending properties as described above, and elongation. The result evaluated about a rate and hardness is shown. The process up to the production of a φ0.9 mm copper wire is the same as that of the embodiment 1 of the soft dilute copper alloy material described above.

表6は、最終線径で、管状炉による走行焼鈍を行ったものであり、その時の温度と時間
に対する表層の平均結晶粒サイズと伸び率を評価したものである。
Table 6 shows the final wire diameters obtained by running annealing with a tubular furnace, and the average crystal grain size and elongation rate of the surface layer with respect to temperature and time at that time are evaluated.

表7は、最終線径で、通電アニーラによる焼鈍を行ったものであり、そのときの通電電
圧及び走行速度に対する表層の平均結晶粒サイズと導体の断面硬さを評価したものである。
Table 7 shows the final wire diameters that were annealed by energization annealing, and evaluated the average crystal grain size of the surface layer and the cross-sectional hardness of the conductor with respect to the energization voltage and running speed at that time.

Figure 2013057121
Figure 2013057121

Figure 2013057121
Figure 2013057121

表6、表7の評価に用いた試料の加工度は、最終線径をいずれもφ0.05mmとし、
φ0.9mmのなまし材からの加工の途中のいくつかの中間の線径サイズでなまし処理を
行うことで調整した。
The degree of processing of the samples used for the evaluations in Tables 6 and 7 is such that the final wire diameter is φ0.05 mm.
Adjustment was performed by performing annealing treatment at several intermediate wire diameter sizes in the middle of machining from φ0.9 mm annealing material.

伸び率の値は、引張試験を行うことによる評価であり、伸び率15%以上を合格(○)
、10〜15%未満を不十分(△)、10%を下回る場合不適(×)とした。硬さの評価
は、樹脂中に埋め込んだ材料の横断面をビッカース硬さ試験にて行い、80Hv以下を合
格(○)、80Hvを超えるものを不適(×)とした。
The value of the elongation rate is an evaluation by conducting a tensile test, and an elongation rate of 15% or more passes (○).
, Less than 10 to 15% is insufficient (Δ), and less than 10% is unsuitable (x). The evaluation of the hardness was performed by performing a Vickers hardness test on the cross section of the material embedded in the resin, and 80Hv or less was accepted (O), and a material exceeding 80Hv was unsuitable (X).

表層の平均結晶粒サイズについては、図18に示す方法で測定し、各測定値(実測値)
から平均値を求め、15μm以下を合格(○)、15μmを超える場合不適(×)とした。
The average crystal grain size of the surface layer was measured by the method shown in FIG. 18, and each measured value (actual value)
The average value was determined from the above, and 15 μm or less was determined to be acceptable (◯), and exceeding 15 μm was unsuitable (×).

表8は、最終線径で、バッチ焼鈍を行ったときのものであり、そのときの温度及び時間
に対する表層の平均結晶サイズと伸びを評価したものである。
Table 8 shows the final wire diameter when batch annealing is performed, and the average crystal size and elongation of the surface layer with respect to temperature and time at that time are evaluated.

Figure 2013057121
Figure 2013057121

表8の評価に用いた試料の加工度は、最終線径をいずれもφ0.25mmとし、φ0.9
mmのなまし材からの加工の途中のいくつかの中間の線径サイズでなまし処理を行うこと
で調整した。
The degree of processing of the samples used for the evaluation in Table 8 is such that the final wire diameter is φ0.25 mm and φ0.9 mm.
It adjusted by performing the annealing process by some intermediate | middle wire diameter sizes in the middle of the process from the annealing material of mm.

表層の平均結晶粒サイズについては、表6、表7と同様の方法で測定し、伸び率の値は
、引張試験を行うことによる評価であり、伸び率18%以上を合格(○)、13〜18%
未満を不十分(△)、13%を下回る場合不適(×)とした。
The average grain size of the surface layer was measured by the same method as in Tables 6 and 7, and the elongation value was evaluated by conducting a tensile test. ~ 18%
When less than 13%, it was considered unsuitable (x).

(管状炉による走行焼鈍)
表6の管状炉による走行焼鈍を行ったものによると、同じ熱処理条件であっても、加工
度が異なる場合、表層の結晶粒のサイズに影響があることがわかる。表6の実施例1〜1
2に示すとおり、加工度が50%以上であれば、引張強度、伸び率、屈曲特性を向上させ
るための微細な結晶を形成させることができ、また、伸び特性も兼ね備えている。一方、
比較例1〜7に示すとおり、加工度が50%未満である場合、表層の平均結晶粒は、細か
くすることができない。また、一部それに付随して、高い伸び率を得ることができない。
この理由として、加工度が50%未満である場合、再結晶の核を多数形成させるための歪
エネルギーが不十分であり、少数の結晶粒が粗大に成長してしまうためである。
(Running annealing with a tubular furnace)
According to the result of running annealing with the tubular furnace shown in Table 6, it can be seen that even if the heat treatment conditions are the same, if the degree of processing is different, the size of the crystal grains in the surface layer is affected. Examples 1 to 1 in Table 6
As shown in FIG. 2, when the degree of work is 50% or more, fine crystals for improving the tensile strength, the elongation rate, and the bending property can be formed, and the elongation property is also obtained. on the other hand,
As shown in Comparative Examples 1 to 7, when the degree of processing is less than 50%, the average crystal grain of the surface layer cannot be made fine. Moreover, a high elongation rate cannot be obtained in part with it.
This is because when the degree of work is less than 50%, the strain energy for forming a large number of recrystallization nuclei is insufficient, and a small number of crystal grains grow coarsely.

熱処理条件に関しては、温度が250℃以上550℃以下、時間は0.6秒以上5.0秒
以下であれば、同じく結晶粒サイズが細かく伸び率に優れる。
Regarding the heat treatment conditions, if the temperature is 250 ° C. or more and 550 ° C. or less and the time is 0.6 seconds or more and 5.0 seconds or less, the crystal grain size is fine and the elongation is excellent.

一方、熱処理温度を250℃未満、或いは550℃を超える場合、又は、熱処理時間が
、0.5秒以下、或いは5.0秒を越える場合、微細な結晶粒サイズと高い伸び率を得るこ
とができない。これは、温度250℃未満或いは、時間0.5秒以下である場合、再結晶
が十分でなく、加工組織が存在しているためであり、逆に温度550℃を超えるか或いは
時間5.0秒を超える場合、過剰な熱により結晶が粗大化し、伸び率も低下してしまうた
めである。
On the other hand, when the heat treatment temperature is less than 250 ° C. or more than 550 ° C., or when the heat treatment time is 0.5 seconds or less or more than 5.0 seconds, a fine crystal grain size and a high elongation can be obtained. Can not. This is because when the temperature is less than 250 ° C. or the time is 0.5 seconds or less, the recrystallization is not sufficient and the processed structure exists, and conversely, the temperature exceeds 550 ° C. or the time is 5.0. This is because when the time exceeds 2 seconds, the crystal becomes coarse due to excessive heat and the elongation rate also decreases.

(通電アニーラによる焼鈍)
表7の通電アニーラによる焼鈍を行ったものによると、その熱処理条件のうち、電圧が
21V〜33Vの範囲にて、表層の結晶粒サイズが細かく、かつ軟質な導体を製造できる
ことがわかる。一方、電圧が21Vよりも小さい場合、或いは33Vを超える場合には、
それらの特性が得られないことがわかった。これは、電圧が21Vよりも小さい場合、加
工効果による歪を十分に開放させるための熱エネルギーが不十分であるためと考えられる
。逆に33Vを超える電圧で熱処理を行った場合、過剰な抵抗発熱により、材料が溶断し
てしまった。
(Annealing with energized annealing)
According to the annealing performed by energization annealing shown in Table 7, it can be seen that a soft conductor with a fine crystal grain size in the surface layer can be produced in the voltage range of 21V to 33V among the heat treatment conditions. On the other hand, if the voltage is less than 21V or exceeds 33V,
It was found that those characteristics could not be obtained. This is presumably because when the voltage is lower than 21 V, the thermal energy for sufficiently releasing the strain due to the processing effect is insufficient. Conversely, when heat treatment was performed at a voltage exceeding 33 V, the material was blown out due to excessive resistance heat generation.

走行速度については、300〜600m/minの間で同じく表層の結晶粒サイズが細
かく、かつ軟質な導体を製造できることがわかった。一方、走行速度が300m/min
よりも小さい場合、或いは、600m/minを超える場合、それらの特性を得ることが
できないことがわかった。これは、速度が300m/minよりも小さい場合、熱エネル
ギーが過剰で、結晶が粗大化してしまったためであり、600m/minを超えると、軟
質化させるための熱エネルギーを十分に与えられなかったためと考えられる。
Regarding the running speed, it was found that a soft conductor having a fine crystal grain size on the surface layer can be produced at a speed of 300 to 600 m / min. On the other hand, traveling speed is 300m / min
It has been found that these characteristics cannot be obtained when it is smaller than 600 m / min. This is because when the speed is lower than 300 m / min, the thermal energy is excessive and the crystal is coarsened, and when it exceeds 600 m / min, the thermal energy for softening cannot be sufficiently provided. it is conceivable that.

(バッチ式による焼鈍)
表8のバッチ式による焼鈍を行ったものによると、その熱処理の温度を150℃以上、
550℃以下にした場合、表層の結晶粒サイズを小さく、かつ優れた伸びを得ることがで
きた。一方、温度を120℃以下、或いは560℃以上とした場合、上記特性を得ること
ができなかった。これは、温度が120℃以下の場合、再結晶が十分でなく、加工組織が
存在しているためであり、560℃以上の場合、過剰な熱により結晶が粗大化してしまっ
ているからである。
(Batch type annealing)
According to the batch-type annealing in Table 8, the heat treatment temperature is 150 ° C. or higher.
When the temperature was set to 550 ° C. or lower, the crystal grain size of the surface layer was reduced and excellent elongation could be obtained. On the other hand, when the temperature was 120 ° C. or lower or 560 ° C. or higher, the above characteristics could not be obtained. This is because when the temperature is 120 ° C. or lower, recrystallization is not sufficient and a processed structure exists, and when it is 560 ° C. or higher, the crystal is coarsened by excessive heat. .

熱処理時間に関して、3時間以内の場合、表層の結晶粒サイズを小さく、かつ優れた伸
び率を得ることができた。一方、3時間を超える場合、上記特性を得ることができなかっ
た。これは、3時間を超えると、過剰な熱エネルギーにより結晶粒が粗大化してしまうた
めである。バッチ式の場合、短時間での処理が難しいため、熱処理時間の下限値としては
、0.5時間が適当である。
With respect to the heat treatment time, when it was within 3 hours, the crystal grain size of the surface layer was made small and an excellent elongation rate could be obtained. On the other hand, when the time exceeded 3 hours, the above characteristics could not be obtained. This is because if the time exceeds 3 hours, the crystal grains become coarse due to excessive thermal energy. In the case of the batch type, since processing in a short time is difficult, 0.5 time is appropriate as the lower limit of the heat treatment time.

以上の結果から、本発明の軟質希薄銅合金材料の製造方法としては、加工度が50%以
上であり、その線径が1.0mm未満の場合には、焼鈍処理の条件が、温度250℃〜5
50℃、時間0.6秒〜5.0秒の管状炉中を通過させる連続焼鈍を行うことが望ましい。
From the above results, as a method for producing the soft dilute copper alloy material of the present invention, when the workability is 50% or more and the wire diameter is less than 1.0 mm, the annealing treatment condition is a temperature of 250 ° C. ~ 5
It is desirable to perform continuous annealing through a tubular furnace at 50 ° C. and a time of 0.6 seconds to 5.0 seconds.

また、別の形態として、焼鈍処理の条件が、通電電圧21V〜33V、走行速度が30
0m/分〜600m/分の通電アニーラによる連続焼鈍を行うことが望ましい。
Moreover, as another form, the conditions of annealing treatment are energization voltage 21V-33V, and traveling speed is 30.
It is desirable to perform continuous annealing with a current-carrying annealer at 0 m / min to 600 m / min.

また、別の形態として、鈍処理の条件が、温度150℃〜550℃、3時間以下のバッ
チ式焼鈍で行うことが望ましい。
Moreover, as another form, it is desirable to carry out by the batch type annealing of the conditions of a blunt process at the temperature of 150 to 550 degreeC, and 3 hours or less.

(φ2.6mmの軟質希薄銅合金材料の管状炉、通電アニーラ及びバッチ処理)
表9〜11は、線径の影響を確認するため、材料の加工度や熱処理条件と、引張強さと
伸び率、屈曲特性の向上に寄与する表層の微細結晶の存在、及び、伸び率、硬さについて
評価した結果を示す。φ2.6mmサイズの銅線を作製するところまでは、上述した軟質
希薄銅合金材料の実験例と同様である。
(Tube furnace, energizing annealer and batch processing of soft dilute copper alloy material of φ2.6mm)
In Tables 9 to 11, in order to confirm the influence of the wire diameter, the degree of processing of the material, the heat treatment conditions, the presence of fine crystals of the surface layer contributing to the improvement of the tensile strength and elongation, and the bending properties, the elongation, The result evaluated about is shown. The process up to the production of a copper wire of φ2.6 mm size is the same as the experimental example of the soft dilute copper alloy material described above.

表9及び表10の評価に用いた試料の加工度は、最終線径をいずれもφ2.6mmとし
、φ8.0mmの鋳造材からの加工の途中のいくつかの中間の線径サイズでなまし処理を
行うことで調整した。
The degree of processing of the samples used for the evaluations in Tables 9 and 10 is that the final wire diameter is φ2.6 mm, and the intermediate wire diameters during the processing from φ8.0 mm cast material are annealed. Adjustments were made by performing processing.

表9は、最終線径で、管状炉による走行焼鈍を行ったものであり、その時の温度と時間
に対する表層の平均結晶粒サイズと伸び率を評価した。
Table 9 shows the final wire diameter, which was obtained by running annealing with a tubular furnace, and evaluated the average grain size and elongation rate of the surface layer with respect to temperature and time at that time.

表10は、最終線径で、通電アニーラによる焼鈍を行ったものであり、そのときの通電
電圧及び走行速度に対する表層の平均結晶粒サイズと導体の断面硬さを評価したものであ
る。
Table 10 shows the final wire diameters that were annealed by energization annealing, and evaluated the average crystal grain size of the surface layer and the cross-sectional hardness of the conductor with respect to the energization voltage and running speed at that time.

表11は、最終線径で、バッチ式焼鈍による焼鈍を行ったものであり、そのときの温度
及び加熱保持時間に対する表層の平均結晶粒サイズと導体の断面硬さを評価したものであ
る。
Table 11 shows the final wire diameter, which was annealed by batch annealing, and evaluated the average crystal grain size of the surface layer and the cross-sectional hardness of the conductor with respect to the temperature and the heating and holding time at that time.

Figure 2013057121
Figure 2013057121

Figure 2013057121
Figure 2013057121

Figure 2013057121
Figure 2013057121

表層の平均結晶粒サイズについては、図12に示す方法で測定し、各測定値(実測値)
から平均値を求め、平均結晶粒サイズが20μm以下を合格(○)、20μmを超える場
合不適(×)とした。
The average crystal grain size of the surface layer was measured by the method shown in FIG.
The average value was obtained from the above, and the average crystal grain size was determined to be 20 μm or less as acceptable (◯), and unacceptable (x) when exceeding 20 μm.

伸び率の値は、引張試験を行うことによる評価であり、伸び率18%以上を合格(○)
、13〜18%未満を不十分(△)、13%を下回る場合不適(×)とした。硬さの評価は、樹脂中に埋め込んだ材料の横断面をビッカース硬さ試験にて行い、80Hv以下を合格(○)、80Hvを超えるものを不適(×)とした。
The value of the elongation rate is an evaluation by conducting a tensile test, and an elongation rate of 18% or more passes (○).
, 13 to less than 18% was deemed insufficient (Δ), and less than 13% was deemed inappropriate (x). The evaluation of the hardness was performed by performing a Vickers hardness test on the cross section of the material embedded in the resin, and 80Hv or less was accepted (O), and a material exceeding 80Hv was unsuitable (X).

表9〜表11に示すように、同じ熱処理条件であっても、加工度が異なる場合、表層の
結晶粒サイズに影響があることがわかる。実施例に示すとおり、いずれの熱処理方法にお
いても、加工度50%以上であれば、引張強度、伸び率、屈曲特性を向上させるための微
細な結晶を形成させることができ、また、伸び特性も兼ね備えている。一方、比較例に示
すとおり、加工度が50%未満である場合、表層の平均結晶粒は、細かくすることができ
ない。また、一部それに付随して、高い伸び率を得ることができない。
As shown in Tables 9 to 11, it can be seen that even if the heat treatment conditions are the same, if the degree of processing is different, the crystal grain size of the surface layer is affected. As shown in the examples, in any of the heat treatment methods, if the degree of work is 50% or more, fine crystals for improving the tensile strength, the elongation rate, and the bending property can be formed. Have both. On the other hand, as shown in the comparative example, when the degree of processing is less than 50%, the average crystal grain of the surface layer cannot be made fine. Moreover, a high elongation rate cannot be obtained in part with it.

(管状炉による焼鈍)
熱処理条件に関しては、表9に示す管状炉による焼鈍では、温度が300℃以上800
℃以下、時間は1.0秒以上10.0秒以下であれば、同じく結晶粒サイズが細かく伸びに
優れる。
(Annealing with tubular furnace)
Regarding the heat treatment conditions, in the annealing by the tubular furnace shown in Table 9, the temperature is 300 ° C. or higher and 800 ° C.
If the temperature is not higher than ° C. and the time is not less than 1.0 seconds and not more than 10.0 seconds, the crystal grain size is also fine and excellent in elongation.

一方、熱処理温度を300℃未満、或いは820℃を超える場合、又は、熱処理時間が
、0.5秒以下、或いは10.0秒を越える場合、微細な結晶粒サイズと高い伸びを得るこ
とができない。これは、温度300℃未満、或いは、時間0.5秒以下である場合、再結
晶が十分でなく、加工組織が存在しているためであり、逆に温度820℃を超えるか或い
は時間10.0秒を超える場合、過剰な熱により結晶が粗大化し、伸びも低下してしまうた
めである。
On the other hand, when the heat treatment temperature is less than 300 ° C. or over 820 ° C., or when the heat treatment time is 0.5 seconds or less or over 10.0 seconds, it is impossible to obtain fine crystal grain size and high elongation. . This is because when the temperature is less than 300 ° C. or when the time is 0.5 seconds or less, recrystallization is not sufficient and a processed structure exists, and conversely, the temperature exceeds 820 ° C. or the time is 10. This is because when the time exceeds 0 seconds, the crystal becomes coarse due to excessive heat, and the elongation also decreases.

(通電アニーラによる焼鈍)
表10の通電アニーラによる焼鈍では、その熱処理条件のうち、電圧が25〜35Vの
範囲にて、表層の結晶粒サイズが細かく、かつ軟質な導体を製造できることがわかる。一
方、電圧が21Vよりも小さい場合、或いは35Vを超える場合には、それらの特性が得
られないことがわかった。これは、電圧が21Vよりも小さい場合、加工効果による歪を
十分に開放させるための熱エネルギーが不十分であるためと考えられる。逆に35Vを超
える電圧で熱処理を行った場合、過剰な抵抗発熱により結晶が粗大化した。
(Annealing with energized annealing)
It can be seen that the annealing with the current-carrying annealer shown in Table 10 can produce a soft conductor with a fine crystal grain size in the surface layer within the voltage range of 25 to 35 V among the heat treatment conditions. On the other hand, when the voltage is smaller than 21V or exceeds 35V, it has been found that those characteristics cannot be obtained. This is presumably because when the voltage is lower than 21 V, the thermal energy for sufficiently releasing the strain due to the processing effect is insufficient. Conversely, when heat treatment was performed at a voltage exceeding 35 V, the crystals became coarse due to excessive resistance heat generation.

走行速度については、100〜500m/minの間で同じく表層の結晶粒サイズが細
かく、かつ軟質な導体を製造できることがわかった。一方、走行速度が80m/minよ
りも小さい場合、或いは、700m/minを超える場合、それらの特性を得ることがで
きないことがわかった。これば、速度が300m/minよりも小さい場合、熱エネルギ
ーが過剰で、結晶が粗大化してしまったためであり、700m/minを超えると、軟質
化させるための熱エネルギーを十分に与えられなかったためと考えられる。80m/mi
nよりも小さい走行速度は生産効率が悪いため、コスト高となる。
Regarding the running speed, it was found that a soft conductor with a fine crystal grain size on the surface layer can be produced between 100 and 500 m / min. On the other hand, it has been found that when the traveling speed is lower than 80 m / min or exceeds 700 m / min, those characteristics cannot be obtained. This is because when the speed is lower than 300 m / min, the thermal energy is excessive and the crystal is coarsened, and when it exceeds 700 m / min, the thermal energy for softening cannot be sufficiently provided. it is conceivable that. 80m / mi
A traveling speed smaller than n results in poor production efficiency, resulting in high costs.

(バッチ式による焼鈍)
表11のバッチ式による焼鈍では、その熱処理の温度を170℃以上、700℃以下に
した場合、表層の結晶粒サイズを小さく、かつ優れた伸びを得ることができた。一方、温
度を120℃以下、或いは750℃以上とした場合、上記特性を得ることができなかった
。これは、温度は120℃以下の場合、再結晶が十分でなく、加工組織が存在しているた
めであり、750℃以上の場合、過剰な熱により結晶が粗大化してしまっているからであ
る。
(Batch type annealing)
In the annealing by the batch method shown in Table 11, when the temperature of the heat treatment was set to 170 ° C. or higher and 700 ° C. or lower, the crystal grain size of the surface layer was reduced and excellent elongation could be obtained. On the other hand, when the temperature was 120 ° C. or lower, or 750 ° C. or higher, the above characteristics could not be obtained. This is because when the temperature is 120 ° C. or lower, recrystallization is not sufficient and a processed structure exists, and when it is 750 ° C. or higher, the crystal is coarsened by excessive heat. .

熱処理時間に関して、3時間以内の場合、表層の結晶粒サイズを小さく、かつ優れた伸
びを得ることができた。一方、5時間を超える場合、上記特性を得ることができなかった
。これは、5時間を超えると、過剰な熱エネルギーにより結晶粒が粗大化してしまうため
である。バッチ式の場合、昇温、冷却のスピードを考えると、短時間での処理が難しいた
め、熱処理時間の下限値としては、0.5時間が適当である。
When the heat treatment time was within 3 hours, the crystal grain size of the surface layer was small and excellent elongation could be obtained. On the other hand, when the time exceeded 5 hours, the above characteristics could not be obtained. This is because if the time exceeds 5 hours, the crystal grains become coarse due to excessive thermal energy. In the case of the batch method, considering the speed of temperature rise and cooling, it is difficult to perform the treatment in a short time, and therefore 0.5 hours is appropriate as the lower limit of the heat treatment time.

以上の結果から、本発明の軟質希薄銅合金材料の製造方法としては、加工度が50%以
上であり、加工後の焼鈍処理の条件が、温度250℃〜800℃、時間0.6秒〜10.
0秒の管状炉による焼鈍が望ましい。
From the above results, as a method for producing the soft diluted copper alloy material of the present invention, the degree of work is 50% or more, and the conditions of the annealing treatment after the process are temperatures 250 ° C. to 800 ° C., time 0.6 seconds to 10.
Annealing in a 0 second tubular furnace is desirable.

また、別の形態として、焼鈍処理の条件が、通電電圧21V〜35V、走行速度が10
0m/分〜600m/分の通電アニーラによる焼鈍が望ましい。
Moreover, as another form, the conditions of an annealing process are energizing voltage 21V-35V, and traveling speed is 10.
Annealing with a current-carrying annealer at 0 m / min to 600 m / min is desirable.

また、別の形態として、焼鈍処理の条件が、温度150℃〜700℃、3時間以下のバ
ッチ式焼鈍が望ましい。
Moreover, as another form, the batch-type annealing whose conditions of annealing treatment are the temperature of 150 to 700 degreeC and 3 hours or less is desirable.

更に詳しくは、加工後に焼鈍しようとする材料の線径サイズがφ1.0mm未満である
場合、焼鈍処理の条件が、温度250℃〜550℃、時間0.6秒〜5.0秒の管状炉に
よる焼鈍がより望ましく、別の形態として、焼鈍処理の条件が、通電電圧21V〜33V
、走行速度が300m/分〜600m/分の通電アニーラによる焼鈍がより望ましく、また
、別の形態として、焼鈍処理の条件が、温度150℃〜550℃、3時間以下のバッチ式
焼鈍がより望ましい。
More specifically, when the diameter of the material to be annealed after processing is less than φ1.0 mm, the annealing process is performed at a temperature of 250 ° C. to 550 ° C. for a time of 0.6 seconds to 5.0 seconds. Annealing is more desirable, and as another form, the annealing treatment condition is an energization voltage of 21V to 33V.
In addition, annealing with a current-carrying annealer with a traveling speed of 300 m / min to 600 m / min is more desirable, and as another form, annealing conditions are more preferably batch annealing at a temperature of 150 ° C. to 550 ° C. for 3 hours or less. .

また、加工後に焼鈍しようとする材料の線径サイズがφ1.0mm以上である場合、焼
鈍処理の条件が、温度300℃〜800℃、時間1.0秒〜10.0秒の管状炉による焼
鈍がより望ましく、別の形態として、焼鈍処理の条件が、通電電圧25V〜35V、走行
速度が100m/分〜500m/分の通電アニーラによる焼鈍がより望ましく、また、別の
形態として、焼鈍処理の条件が、温度170℃〜700℃、3時間以下のバッチ式による
焼鈍がより望ましい。
Moreover, when the wire diameter size of the material to be annealed after processing is φ1.0 mm or more, annealing is performed in a tubular furnace at a temperature of 300 ° C. to 800 ° C. for a time of 1.0 second to 10.0 seconds. More preferably, as another form, annealing conditions are more preferably annealing with a current-carrying annealer with an energization voltage of 25 V to 35 V and a traveling speed of 100 m / min to 500 m / min, and as another form, As for conditions, annealing by a batch method with a temperature of 170 ° C. to 700 ° C. for 3 hours or less is more desirable.

以上の本実施形態に係る軟質希薄銅合金材料の製造方法は、Ti等を含み残部が銅から
なる軟質希薄銅合金に塑性加工による加工を施し、次いで焼鈍処理を施す前の加工度を5
0%以上とすることにより、結晶組織が少なくとも表面から線径の20%の深さまでの平
均結晶粒サイズが15μm以下にできることから、高い導電性を備え、かつ、軟質材にお
いても高い引張り強さと伸び率を両立できるため、製品の接続信頼性を向上させることが
できる。
The manufacturing method of the soft dilute copper alloy material according to the present embodiment as described above has a degree of work before applying a soft dilute copper alloy containing Ti or the like and the remainder being made of copper by plastic working, and then performing annealing treatment.
By setting it to 0% or more, the average crystal grain size from the surface to the depth of 20% of the wire diameter at least from the surface can be reduced to 15 μm or less, so that it has high conductivity and high tensile strength even in a soft material. Since both elongation rates can be achieved, the connection reliability of the product can be improved.

又、添加したTiと同様に、本実施形態に係る軟質希薄銅合金材料の製造方法としてM
g、Zr、Nb、Ca、V、Ni、Mn及びCrからなる群から選択された添加元素にお
いても不純物である硫黄(S)をトラップするので、マトリックスとしての銅母相が高純
度化し、素材の軟質特性が向上される。このため、その軟質希薄銅合金材料を銅ボンディ
ングワイヤとして用いることによりボンディング時にシリコンチップ上の脆弱なアルミパ
ットにダメージを与えることを抑制できる効果が得られることが確認されている。
As with the added Ti, M is used as a method for producing the soft diluted copper alloy material according to this embodiment.
Since the additive element selected from the group consisting of g, Zr, Nb, Ca, V, Ni, Mn, and Cr traps sulfur (S) as an impurity, the copper matrix phase as a matrix is highly purified, and the material The soft properties of the are improved. For this reason, it has been confirmed that by using the soft dilute copper alloy material as a copper bonding wire, it is possible to suppress the damage to the fragile aluminum pad on the silicon chip during bonding.

又、本実施形態に係る製造方法によって得られる軟質希薄銅合金材料は、銅の高純度化
(99.999質量%以上)処理を要せず、安価なSCR連続鋳造圧延法により高い導電
率を実現することができるので、生産性が高く、低コスト化ができる。
In addition, the soft dilute copper alloy material obtained by the manufacturing method according to the present embodiment does not require copper purification (99.999 mass% or more), and has high conductivity by an inexpensive SCR continuous casting and rolling method. Since it can be realized, the productivity is high and the cost can be reduced.

更に、本実施形態に係る製造方法によって得られる軟質希薄銅合金材料からなる銅ボン
ディングワイヤは、車載用パワーモジュール用途のφ0.3mm程度のAlボンディング
ワイヤの代替としても適用でき、素材の高熱伝導性によるワイヤ径の減少に伴うモジュー
ルの小型化、熱伝導性向上による放熱性アップによって電流密度増大による接続信頼性の
低下を回避できる。
Furthermore, a copper bonding wire made of a soft dilute copper alloy material obtained by the manufacturing method according to the present embodiment can be applied as an alternative to an Al bonding wire of about φ0.3 mm for use in a vehicle power module, and has a high thermal conductivity of the material. By reducing the size of the module as the wire diameter decreases due to, and increasing the heat dissipation by improving thermal conductivity, it is possible to avoid a decrease in connection reliability due to an increase in current density.

Claims (8)

Ti、Mg、Zr、Nb、Ca、V、Ni、Mn及びCrからなる群から選択された添
加元素を含み、残部が銅である軟質希薄銅合金に塑性加工を施し、次いで焼鈍処理を施す
軟質希薄銅合金材料の製造方法であって、
前記焼鈍処理を行う前の前記塑性加工における加工度が50%以上であることを特徴とする軟質希薄銅合金材料の製造方法。
A soft soft copper alloy containing an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr, with the balance being copper, and then annealing. A method for manufacturing a diluted copper alloy material,
A method for producing a soft dilute copper alloy material, wherein a degree of processing in the plastic processing before the annealing treatment is 50% or more.
請求項1において、前記軟質希薄銅合金材料が直径1.0mm未満である線形状であり
、前記焼鈍処理を、温度250℃〜550℃及び時間0.6秒〜5.0秒の範囲にて管状炉中を通過させることによって連続的に行うことを特徴とする軟質希薄銅合金材料の製造方法。
2. The soft dilute copper alloy material according to claim 1, wherein the soft dilute copper alloy material has a linear shape with a diameter of less than 1.0 mm, and the annealing treatment is performed at a temperature of 250 ° C. to 550 ° C. and a time of 0.6 seconds to 5.0 seconds. A method for producing a soft dilute copper alloy material, which is continuously performed by passing through a tubular furnace.
請求項1において、前記軟質希薄銅合金材料が直径1.0mm未満である線形状であり
、前記焼鈍処理を、通電電圧21V〜33V及び走行速度300m/分〜600m/分の範囲にて通電アニーラによって連続的に行うことを特徴とする軟質希薄銅合金材料の製造方法。
In Claim 1, the soft dilute copper alloy material has a linear shape with a diameter of less than 1.0 mm, and the annealing treatment is performed in a range of energization voltage of 21 V to 33 V and travel speed of 300 m / min to 600 m / min. A method for producing a soft dilute copper alloy material, characterized in that the method is continuously performed by the method.
請求項1において、前記軟質希薄銅合金材料が直径1.0mm未満である線形状であり
、前記焼鈍処理を、温度150℃〜550℃及び3時間以下の範囲にてバッチ処理によって行うことを特徴とする軟質希薄銅合金材料の製造方法。
2. The soft dilute copper alloy material according to claim 1, wherein the soft dilute copper alloy material has a linear shape with a diameter of less than 1.0 mm, and the annealing treatment is performed by batch treatment at a temperature of 150 ° C. to 550 ° C. and a range of 3 hours or less. A method for producing a soft dilute copper alloy material.
請求項1において、前記軟質希薄銅合金材料が直径1.0mm以上である線形状であり
、前記焼鈍処理を、温度300℃〜800℃及び時間1.0秒〜10.0秒の範囲にて管状炉中を通過させることによって連続的に行うことを特徴とする軟質希薄銅合金材料の製造方法。
2. The soft dilute copper alloy material according to claim 1, wherein the soft dilute copper alloy material has a linear shape having a diameter of 1.0 mm or more, and the annealing treatment is performed at a temperature of 300 ° C. to 800 ° C. and a time of 1.0 second to 10.0 seconds. A method for producing a soft dilute copper alloy material, which is continuously performed by passing through a tubular furnace.
請求項1において、前記軟質希薄銅合金材料が直径1.0mm以上である線形状であり
、前記焼鈍処理が、通電電圧25V〜35V及び走行速度100m/分〜500m/分の範囲にて通電アニーラによって連続的に行うことを特徴とする軟質希薄銅合金材料の製造方法。
In Claim 1, the said soft dilute copper alloy material is a linear shape whose diameter is 1.0 mm or more, and the said annealing process is energization annealing in the range of energization voltage 25V-35V and running speed 100m / min-500m / min. A method for producing a soft dilute copper alloy material, characterized in that the method is continuously performed by the method.
請求項1において、前記軟質希薄銅合金材料が直径1.0mm以上である線形状であり
、前記焼鈍処理を、温度170℃〜700℃及び3時間以下の範囲にてバッチ処理によって行うことを特徴とする軟質希薄銅合金材料の製造方法。
2. The soft dilute copper alloy material according to claim 1, wherein the soft dilute copper alloy material has a linear shape with a diameter of 1.0 mm or more, and the annealing treatment is performed by batch treatment at a temperature of 170 ° C. to 700 ° C. and a range of 3 hours or less. A method for producing a soft dilute copper alloy material.
請求項1〜7のいずれかにおいて、前記軟質希薄銅合金は、2〜12mass ppm
の硫黄と、2mass ppmを超えて30mass ppm以下の酸素と、前記添加元素
としてTiを4〜55mass ppmとを含むことを特徴とする軟質希薄銅合金材料の
製造方法。
In any one of Claims 1-7, the said soft dilute copper alloy is 2-12 mass ppm.
A method for producing a soft dilute copper alloy material, comprising sulfur of 2 mass ppm, oxygen of greater than 2 mass ppm and less than or equal to 30 mass ppm, and 4-55 mass ppm of Ti as the additive element.
JP2012180717A 2011-08-17 2012-08-17 Method of manufacturing soft dilute copper alloy material Pending JP2013057121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012180717A JP2013057121A (en) 2011-08-17 2012-08-17 Method of manufacturing soft dilute copper alloy material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011178349 2011-08-17
JP2011178349 2011-08-17
JP2012180717A JP2013057121A (en) 2011-08-17 2012-08-17 Method of manufacturing soft dilute copper alloy material

Publications (1)

Publication Number Publication Date
JP2013057121A true JP2013057121A (en) 2013-03-28

Family

ID=47711780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012180717A Pending JP2013057121A (en) 2011-08-17 2012-08-17 Method of manufacturing soft dilute copper alloy material

Country Status (3)

Country Link
US (1) US20130042949A1 (en)
JP (1) JP2013057121A (en)
CN (1) CN102953022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210973A (en) * 2013-04-04 2014-11-13 日立金属株式会社 Copper wire and method for manufacturing the same
JP2015004118A (en) * 2013-06-24 2015-01-08 三菱マテリアル株式会社 Drawn copper wire, method of producing drawn copper wire and cable
WO2015053128A1 (en) * 2013-10-10 2015-04-16 三菱マテリアル株式会社 Bonding-wire copper strand, and manufacturing method for bonding-wire copper strand
JP2018503743A (en) * 2014-12-22 2018-02-08 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド Corrosion- and moisture-resistant copper-based bonding wires containing nickel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709296B2 (en) 2009-04-17 2011-06-22 日立電線株式会社 Method for manufacturing diluted copper alloy material
JP5589756B2 (en) * 2010-10-20 2014-09-17 日立金属株式会社 Flexible flat cable and manufacturing method thereof
US9887607B2 (en) * 2013-10-21 2018-02-06 Borgwarner Inc. Method for forming and annealing an insulated conductor
CN104328369B (en) * 2014-07-16 2017-02-08 国家电网公司 Heat treatment method of copper-chromium alloy used for high-voltage switch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041447A (en) * 2006-08-07 2008-02-21 Hitachi Cable Ltd Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same
JP2010205623A (en) * 2009-03-04 2010-09-16 Sumitomo Electric Ind Ltd Conductor for winding
WO2011096576A1 (en) * 2010-02-08 2011-08-11 日立電線株式会社 Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656236B2 (en) * 1985-10-30 1997-09-24 株式会社東芝 Semiconductor device
JP2737965B2 (en) * 1988-12-15 1998-04-08 日立電線株式会社 Soft copper wire for piano strings
JP2001032029A (en) * 1999-05-20 2001-02-06 Kobe Steel Ltd Copper alloy excellent in stress relaxation resistance, and its manufacture
US20060292029A1 (en) * 2005-06-23 2006-12-28 Hitachi Cable, Ltd. Soft copper alloy, and soft copper wire or plate material
US8610291B2 (en) * 2006-08-31 2013-12-17 Nippon Steel & Sumikin Materials Co., Ltd. Copper alloy bonding wire for semiconductor device
ATE518968T1 (en) * 2006-10-02 2011-08-15 Kobe Steel Ltd COPPER ALLOY PLATE FOR ELECTRICAL AND ELECTRONIC COMPONENTS
JP4709296B2 (en) * 2009-04-17 2011-06-22 日立電線株式会社 Method for manufacturing diluted copper alloy material
JP5772338B2 (en) * 2011-07-21 2015-09-02 日立金属株式会社 Soft dilute copper alloy wire, soft dilute copper alloy sheet and soft dilute copper alloy stranded wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041447A (en) * 2006-08-07 2008-02-21 Hitachi Cable Ltd Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same
JP2010205623A (en) * 2009-03-04 2010-09-16 Sumitomo Electric Ind Ltd Conductor for winding
WO2011096576A1 (en) * 2010-02-08 2011-08-11 日立電線株式会社 Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210973A (en) * 2013-04-04 2014-11-13 日立金属株式会社 Copper wire and method for manufacturing the same
JP2015004118A (en) * 2013-06-24 2015-01-08 三菱マテリアル株式会社 Drawn copper wire, method of producing drawn copper wire and cable
WO2015053128A1 (en) * 2013-10-10 2015-04-16 三菱マテリアル株式会社 Bonding-wire copper strand, and manufacturing method for bonding-wire copper strand
JP2015076559A (en) * 2013-10-10 2015-04-20 三菱マテリアル株式会社 Copper elemental wire for bonding wire use
KR101558138B1 (en) 2013-10-10 2015-10-06 미쓰비시 마테리알 가부시키가이샤 Bonding-wire copper strand, and manufacturing method for bonding-wire copper strand
JP2018503743A (en) * 2014-12-22 2018-02-08 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド Corrosion- and moisture-resistant copper-based bonding wires containing nickel

Also Published As

Publication number Publication date
CN102953022A (en) 2013-03-06
US20130042949A1 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP2013057121A (en) Method of manufacturing soft dilute copper alloy material
JP5760544B2 (en) Soft dilute copper alloy wire, soft dilute copper alloy stranded wire, insulated wire, coaxial cable and composite cable using them
JP5607853B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP5772338B2 (en) Soft dilute copper alloy wire, soft dilute copper alloy sheet and soft dilute copper alloy stranded wire
JP5077416B2 (en) Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these
JP4609866B2 (en) Aluminum alloy wire
JP6019547B2 (en) Copper bonding wire
JP4776727B2 (en) Aluminum wire for automobile
JP5589756B2 (en) Flexible flat cable and manufacturing method thereof
JP5193375B2 (en) Method for producing aluminum alloy conductor
WO2016088887A1 (en) Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
WO2011105585A1 (en) Aluminum alloy conductor
JP5831034B2 (en) Manufacturing method of molten solder plating stranded wire
KR20130089656A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
JP5732809B2 (en) Extruded product and manufacturing method thereof
JP2012089685A (en) Copper bonding wire and method of manufacturing the same
JP5609564B2 (en) Manufacturing method of molten solder plating wire
JP2013040386A (en) Conductor for earphone cable, and earphone cable
JP5088449B2 (en) Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cable using them
JP2012089686A (en) Three-dimentional wiring body and method for manufacturing three-dimentional wiring body
JP2012089369A (en) Cable for movable portion and method of manufacturing the same
JP2013040384A (en) Wiring material and plate material using soft dilute copper alloy
JP2014102996A (en) Method of joining soft dilute copper alloy wire to connection terminal
JP2012087378A (en) Winding for micro speaker voice coil, and method for producing the same
JP2012087368A (en) Clad material excellent in workability and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027