JP2015076559A - Copper elemental wire for bonding wire use - Google Patents

Copper elemental wire for bonding wire use Download PDF

Info

Publication number
JP2015076559A
JP2015076559A JP2013213114A JP2013213114A JP2015076559A JP 2015076559 A JP2015076559 A JP 2015076559A JP 2013213114 A JP2013213114 A JP 2013213114A JP 2013213114 A JP2013213114 A JP 2013213114A JP 2015076559 A JP2015076559 A JP 2015076559A
Authority
JP
Japan
Prior art keywords
wire
copper
bonding
plane
bonding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013213114A
Other languages
Japanese (ja)
Other versions
JP5747970B2 (en
Inventor
訓 熊谷
Tsutomu Kumagai
訓 熊谷
雨 谷
Ame Tani
雨 谷
雄次 佐藤
Yuji Sato
雄次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013213114A priority Critical patent/JP5747970B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to KR1020157018027A priority patent/KR101558138B1/en
Priority to PCT/JP2014/075999 priority patent/WO2015053128A1/en
Priority to CN201480004297.7A priority patent/CN104904000B/en
Priority to SG11201602116YA priority patent/SG11201602116YA/en
Priority to MYPI2016701080A priority patent/MY177767A/en
Priority to TW103134559A priority patent/TWI540212B/en
Publication of JP2015076559A publication Critical patent/JP2015076559A/en
Application granted granted Critical
Publication of JP5747970B2 publication Critical patent/JP5747970B2/en
Priority to PH12016500617A priority patent/PH12016500617A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wire Bonding (AREA)
  • Metal Extraction Processes (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper elemental wire for bonding wire use which has good processability, and is less likely to cause disconnection even when it is formed into a fine wire; and a method for manufacturing such a copper elemental wire for bonding wire use.SOLUTION: A copper elemental wire for bonding wire use is for forming a bonding wire. The copper elemental wire is made of high-purity copper having a purity of 99.9999 mass% or more, of which the wire diameter is 0.5-3.5 mm; the areal percentage of (001) plane in a section perpendicular to a wire-drawing direction is 15-30%.

Description

本発明は、ボンディングワイヤを形成するためのボンディングワイヤ用銅素線に関するものである。   The present invention relates to a bonding wire copper wire for forming a bonding wire.

一般に、半導体素子を搭載した半導体装置においては、半導体素子とリードとが、ボンディングワイヤによって接続されている。従来、ボンディングワイヤとしては、伸線性及び導電性等の観点から主にAu線が使用されている。しかしながら、Auは高価であることから、Au線を代替するボンディングワイヤとして、Cu線からなるボンディングワイヤが提供されている。   Generally, in a semiconductor device on which a semiconductor element is mounted, the semiconductor element and the lead are connected by a bonding wire. Conventionally, as a bonding wire, Au wire is mainly used from the viewpoints of drawability and conductivity. However, since Au is expensive, a bonding wire made of a Cu wire is provided as a bonding wire that replaces the Au wire.

Cu線からなるボンディングワイヤは、例えば、線径4mm〜8mmの鋳造材を0.5mmまで伸線加工して、ボンディングワイヤ用銅素線とした後に、このボンディングワイヤ用銅素線をさらに伸線加工して、線径30μmから50μmに加工することによって製造される。例えば特許文献1、2には、純度が99.9999質量%以上の高純度銅(いわゆる6NCu)のCu線からなるボンディングワイヤが提案されている。このボンディングワイヤは、純度が高いため強度が低く、ワイヤのループ形状等を形成し易くなり信頼性が向上する。また、純度が高いため介在物が少なく、伸線加工時において断線が生じることを抑制できる。   For example, a bonding wire made of Cu wire is obtained by drawing a cast material having a wire diameter of 4 mm to 8 mm to 0.5 mm to obtain a copper wire for bonding wire, and further drawing the copper wire for bonding wire. It is manufactured by processing to a wire diameter of 30 μm to 50 μm. For example, Patent Documents 1 and 2 propose bonding wires made of Cu wire of high-purity copper (so-called 6NCu) having a purity of 99.9999% by mass or more. Since this bonding wire has high purity, its strength is low, and it becomes easy to form a loop shape of the wire and the reliability is improved. Moreover, since there is high purity, there are few inclusions and it can suppress that a disconnection arises at the time of wire drawing.

特開昭62−111455号公報Japanese Patent Laid-Open No. 62-111455 特開平04−247630号公報Japanese Patent Laid-Open No. 04-247630

ところで、近年、半導体装置の小型化や低コスト化のために、ボンディングワイヤの細線化が求められており、今後、ボンディングワイヤの線径は、例えば10μm以下まで進むことが想定される。したがって、ボンディングワイヤを形成するためのボンディングワイヤ用銅素線には、細線化しても伸線加工時において断線することのない加工性が必要とされている。   By the way, in recent years, in order to reduce the size and cost of a semiconductor device, the bonding wire is required to be thinned. In the future, the wire diameter of the bonding wire is expected to advance to, for example, 10 μm or less. Therefore, the copper wire for bonding wire for forming the bonding wire is required to have a workability that does not break during the wire drawing even if the wire is thinned.

しかしながら、特許文献1、2に示されたボンディングワイヤの製造時において、ボンディングワイヤ用銅素線を伸線加工して例えば線径10μmまで加工すると、素線の伸びが不十分となり、高い頻度で素線の断線が生じてしまう。このようにボンディングワイヤ用銅素線を伸線加工する際に断線が生じると、生産性が著しく低下してしまう問題が生じる。   However, when the bonding wires shown in Patent Documents 1 and 2 are manufactured, if the copper wire for bonding wires is drawn and processed to, for example, a wire diameter of 10 μm, the elongation of the wires becomes insufficient, and frequently occurs. Wire breakage will occur. Thus, when a wire breakage occurs when the copper wire for bonding wires is drawn, there arises a problem that the productivity is significantly reduced.

この発明は、前述した事情に鑑みてなされたものであって、加工性が良好で、細線化しても断線が生じ難いボンディングワイヤ用銅素線を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a copper wire for a bonding wire that has good workability and is less likely to be disconnected even if it is thinned.

本発明者らは、上述した課題を解決すべく検討した結果、ボンディングワイヤ用銅素線を伸線加工してボンディングワイヤを製造する際に、ボンディングワイヤ用銅素線において、伸線方向と垂直な断面における(001)面の面積率を特定の範囲に制御することにより、ボンディングワイヤ用銅素線の加工性を向上させ、伸線加工時における断線を抑制できるとの知見を得た。
本発明は、上記の知見に基づき完成させたものであって、その要旨は以下の通りである。
As a result of studying to solve the above-described problems, the inventors of the present invention have made a copper wire for bonding wire drawn to produce a bonding wire, and the copper wire for bonding wire is perpendicular to the wire drawing direction. It was found that by controlling the area ratio of the (001) plane in a simple cross section to a specific range, the workability of the copper wire for bonding wire can be improved and the disconnection during wire drawing can be suppressed.
The present invention has been completed based on the above findings, and the gist thereof is as follows.

すなわち、本発明のボンディングワイヤ用銅素線は、ボンディングワイヤを形成するためのボンディングワイヤ用銅素線であって、純度が99.9999質量%以上の高純度銅からなり、線径が0.5mm以上3.5mm以下であり、伸線方向と垂直な断面において(001)面の面積率が15%以上30%以下であることを特徴としている。   That is, the copper wire for bonding wire of the present invention is a copper wire for bonding wire for forming a bonding wire, and is made of high-purity copper having a purity of 99.9999% by mass or more, and the wire diameter is 0.00. The area ratio of the (001) plane is 15% or more and 30% or less in a cross section perpendicular to the wire drawing direction.

本発明のボンディングワイヤ用銅素線によれば、伸線方向と垂直な断面において(001)面の面積率が15%以上30%以下とされているので、加工性を向上させることができ、伸線時における断線の発生を抑制可能となる。
伸線方向と垂直な断面において(001)面の面積率が15%未満の場合、(111)面をはじめとする他の方位が増加してしまい、強度が低下し、伸線加工時に破断が生じ易くなる。また、伸線方向と垂直な断面において(001)面の面積率が30%超の場合、伸びが低下し、伸線加工時に破断が生じ易くなる。したがって、(001)面の面積率は、上述の範囲に設定されている。
さらに、ボンディングワイヤ用銅素線が、純度99.9999質量%以上の高純度銅からなるので、このボンディングワイヤ用銅素線を用いたボンディングワイヤの強度を十分に低くし、ボンディングワイヤの信頼性を向上できる。また、純度が99.9999質量%以上の高純度銅は、介在物が少ないので、伸線加工時において介在物に起因する断線の発生を抑制できる。
According to the copper wire for bonding wire of the present invention, the area ratio of the (001) plane in the cross section perpendicular to the drawing direction is 15% or more and 30% or less, so that workability can be improved. The occurrence of disconnection during wire drawing can be suppressed.
When the area ratio of the (001) plane is less than 15% in the cross section perpendicular to the wire drawing direction, other orientations including the (111) plane increase, the strength decreases, and the wire breaks during wire drawing. It tends to occur. Further, when the area ratio of the (001) plane is more than 30% in a cross section perpendicular to the wire drawing direction, the elongation is lowered, and breakage is likely to occur during the wire drawing. Therefore, the area ratio of the (001) plane is set in the above range.
Further, since the copper wire for bonding wire is made of high-purity copper having a purity of 99.9999% by mass or more, the strength of the bonding wire using the copper wire for bonding wire is sufficiently lowered, and the reliability of the bonding wire is improved. Can be improved. Moreover, since high purity copper with a purity of 99.9999% by mass or more has few inclusions, it is possible to suppress the occurrence of disconnection due to the inclusions during wire drawing.

本発明によれば、加工性が良好で、細線化しても断線が生じ難いボンディングワイヤ用銅素線を提供することができる。   According to the present invention, it is possible to provide a copper wire for a bonding wire that has good workability and hardly breaks even if it is thinned.

本発明の実施形態に係るボンディングワイヤ用銅素線の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper strand for bonding wires which concerns on embodiment of this invention.

以下に、本発明の実施形態に係るボンディングワイヤ用銅素線、及びボンディングワイヤ用銅素線の製造方法について説明する。   Below, the copper strand for bonding wires which concerns on embodiment of this invention, and the manufacturing method of the copper strand for bonding wires are demonstrated.

本実施形態に係るボンディングワイヤ用銅素線は、線径80μm以下、望ましくは線径5μm以上50μm以下のボンディングワイヤを製造する際の素線として使用されるものである。また、ボンディングワイヤ用銅素線は、線径が0.5mm以上3.5mm以下とされている。   The copper wire for bonding wires according to the present embodiment is used as a wire when manufacturing a bonding wire having a wire diameter of 80 μm or less, preferably 5 μm or more and 50 μm or less. The copper wire for bonding wire has a wire diameter of 0.5 mm to 3.5 mm.

ボンディングワイヤ用銅素線は、純度が99.9999質量%以上の高純度銅(6NCu)からなる。
そして、このボンディングワイヤ用銅素線は、伸線方向と垂直な断面において(001)面の面積率が15%以上30%以下とされている。本実施形態において、伸線方向と垂直な断面とは、ボンディングワイヤ用銅素線の中心軸を含む断面である。また、本実施形態では、伸線方向と垂直な断面において、(001)面に対してズレ角15°以内の結晶面の合計の面積率を(001)面の面積率としている。
The copper wire for bonding wires is made of high-purity copper (6NCu) having a purity of 99.9999% by mass or more.
The copper wire for bonding wire has an area ratio of (001) plane of 15% to 30% in a cross section perpendicular to the drawing direction. In the present embodiment, the cross section perpendicular to the wire drawing direction is a cross section including the central axis of the copper wire for bonding wires. In the present embodiment, in the cross section perpendicular to the wire drawing direction, the total area ratio of crystal faces within a deviation angle of 15 ° with respect to the (001) plane is defined as the area ratio of the (001) plane.

ここで、伸線方向と垂直な断面において(001)面の面積率が15%未満の場合、(111)面をはじめとする他の方位が増加してしまい、強度が低下し、伸線加工時に破断が生じ易くなる。また、伸線方向と垂直な断面において(001)面の面積率が30%超の場合、伸びが低下し、伸線加工時に破断が生じ易くなる。
このような理由により、伸線方向と垂直な断面において(001)面の面積率は、上述の範囲に設定されている。
Here, when the area ratio of the (001) plane is less than 15% in the cross section perpendicular to the wire drawing direction, other orientations including the (111) plane increase, the strength decreases, and the wire drawing is performed. Sometimes breakage tends to occur. Further, when the area ratio of the (001) plane is more than 30% in a cross section perpendicular to the wire drawing direction, the elongation is lowered, and breakage is likely to occur during the wire drawing.
For these reasons, the area ratio of the (001) plane in the cross section perpendicular to the drawing direction is set in the above range.

なお、伸線方向と垂直な断面の(001)面の面積率については、電子後方散乱回折像(Electron Back Scatter Diffraction Patterns)法(EBSD法)によって測定することができる。このEBSD法は、SEM(走査電子顕微鏡)にEBSD検出器を接続し、収束電子ビームを試料表面に照射したときに発生する個々の結晶の回折像(EBSD)の方位を解析、方位データと測定点の位置情報から材料の結晶方位を測定する方法である。   The area ratio of the (001) plane in the cross section perpendicular to the wire drawing direction can be measured by an electron back scatter diffraction patterns method (EBSD method). In this EBSD method, an EBSD detector is connected to an SEM (scanning electron microscope) to analyze the orientation of individual crystal diffraction images (EBSD) generated when a focused electron beam is irradiated onto the sample surface, and to measure the orientation data and measurement. This is a method of measuring the crystal orientation of a material from point position information.

次に、本実施形態に係るボンディングワイヤ用銅素線の製造方法について説明する。ボンディングワイヤ用銅素線の製造方法は、例えば図1に示すように、熱間加工工程S1と、伸線加工工程S2と、加熱処理工程S3とを備えている。以下に、各工程の詳細を説明する。   Next, the manufacturing method of the copper wire for bonding wires which concerns on this embodiment is demonstrated. As shown in FIG. 1, for example, the method for manufacturing a copper wire for bonding wire includes a hot working step S1, a wire drawing step S2, and a heat treatment step S3. Details of each step will be described below.

(熱間加工工程S1)
まず、純度が99.9999質量%以上の高純度銅からなる直径250mm、長さ700mmのビレット(鋳塊)を用意する。
そして、このビレットを700℃以上900℃以下の温度範囲に加熱し、減面率99%以上99.9%以下の範囲で熱間押出し加工し、6mm以上20mm以下の素線を製出する。この熱間加工工程S1においては、ビレット(鋳塊)が有する鋳造組織を破壊し、鋳造組織に比較して微細で均一な熱間加工組織にするために、上述の温度範囲及び減面率で熱間押出し加工を行っている。
本実施形態においては、800℃に加熱し、減面率99.9%の条件で熱間押出し加工を行い、8mmの素線を製出した。
(Hot processing step S1)
First, a billet (ingot) having a diameter of 250 mm and a length of 700 mm made of high-purity copper having a purity of 99.9999% by mass or more is prepared.
Then, the billet is heated to a temperature range of 700 ° C. or more and 900 ° C. or less, and hot-extruded in a range of 99% or more and 99.9% or less in area reduction to produce a strand of 6 mm to 20 mm. In this hot working step S1, in order to destroy the cast structure of the billet (ingot) and make a fine and uniform hot worked structure as compared with the cast structure, in the above temperature range and area reduction rate. Hot extrusion is performed.
In this embodiment, heating was performed at 800 ° C., and hot extrusion was performed under the condition of a surface reduction rate of 99.9% to produce an 8 mm strand.

(伸線加工工程S2)
上述の熱間加工工程S1において製出された素線を、減面率80%以上99.6%以下の範囲内で伸線加工(冷間伸線加工)し、線径0.5mm以上3.5mm以下に加工する。ここで、伸線加工は、1パスで行われても良いが、複数パスに分けて行われることが好ましい。この伸線加工工程S2においては、熱間加工工程S1で形成された熱間加工組織(結晶粒)が伸線加工方向に伸長し、繊維状の金属組織となる。
本実施形態においては、15パスで直径8mmから1mmまで加工を行っており、減面率は98%とされている。
なお、伸線加工工程S2においては、皮剥ぎ伸線加工が行われても良い。
(Wire drawing process S2)
The wire produced in the hot working step S1 described above is drawn (cold drawing) within a range of the area reduction rate of 80% or more and 99.6% or less, and the wire diameter is 0.5 mm or more and 3 Process to 5mm or less. Here, the wire drawing may be performed in one pass, but is preferably performed in a plurality of passes. In this wire drawing process S2, the hot work structure (crystal grains) formed in the hot work process S1 extends in the wire drawing direction to form a fibrous metal structure.
In this embodiment, machining is performed from 8 mm to 1 mm in diameter in 15 passes, and the area reduction rate is 98%.
In the wire drawing step S2, a peeling wire drawing process may be performed.

(加熱処理工程S3)
上述の伸線加工工程S2において伸線された素線に対して200℃以上260℃以下、30分以上300分以下の範囲内で加熱処理を行う。ここで、加熱処理工程S3は、還元雰囲気とされたバッチ式焼鈍炉で行われる。この加熱処理工程S3においては、伸線加工工程S2で繊維状とされた金属組織のうちの一部が再結晶し、繊維状の金属組織と等軸の再結晶組織とが混在した金属組織となっている。
本実施形態においては、バッチ式焼鈍炉によって、220℃で60分の条件で、還元ガス雰囲気中で素線の加熱処理が行われている。
(Heat treatment step S3)
The element wire drawn in the wire drawing step S2 is subjected to heat treatment within a range of 200 ° C. to 260 ° C. and 30 minutes to 300 minutes. Here, the heat treatment step S3 is performed in a batch annealing furnace having a reducing atmosphere. In this heat treatment step S3, a part of the metal structure made fibrous in the wire drawing step S2 is recrystallized, and a metal structure in which a fibrous metal structure and an equiaxed recrystallized structure coexist. It has become.
In the present embodiment, the wire is heat-treated in a reducing gas atmosphere by a batch-type annealing furnace at 220 ° C. for 60 minutes.

以上のようにして本実施形態に係るボンディングワイヤ用銅素線が製造される。
なお、このボンディングワイヤ用銅素線をボンディングワイヤに加工する場合、例えば減面率99.96%で伸線加工することにより、20μmのボンディングワイヤとされる。
As described above, the copper wire for bonding wire according to the present embodiment is manufactured.
In addition, when processing this copper wire for bonding wires into a bonding wire, it is set as a 20-micrometer bonding wire, for example by drawing at a surface reduction rate of 99.96%.

以上のような構成とされた本実施形態に係るボンディングワイヤ用銅素線によれば、伸線方向と垂直な断面において(001)面の面積率が15%以上30%以下とされているので、加工性を向上させることができ、伸線時における断線の発生を抑制可能となる。   According to the copper wire for bonding wire according to the present embodiment configured as described above, the area ratio of the (001) plane is 15% or more and 30% or less in the cross section perpendicular to the drawing direction. The workability can be improved and the occurrence of disconnection at the time of wire drawing can be suppressed.

さらに、ボンディングワイヤ用銅素線が、純度99.9999質量%以上の高純度銅からなるので、このボンディングワイヤ用銅素線を用いたボンディングワイヤの強度を十分に低くし、ボンディングワイヤの信頼性を向上できる。また、純度が99.9999質量%以上の高純度銅は、介在物が少ないので、伸線加工時において介在物に起因する断線の発生を抑制できる。   Further, since the copper wire for bonding wire is made of high-purity copper having a purity of 99.9999% by mass or more, the strength of the bonding wire using the copper wire for bonding wire is sufficiently lowered, and the reliability of the bonding wire is improved. Can be improved. Moreover, since high purity copper with a purity of 99.9999% by mass or more has few inclusions, it is possible to suppress the occurrence of disconnection due to the inclusions during wire drawing.

また、本実施形態に係るボンディングワイヤ用銅素線の製造方法によれば、高純度銅からなる鋳塊を熱間加工して素線を製出する熱間加工工程S1と、素線を減面率80%以上99.6%以下の範囲内で伸線加工をする伸線加工工程S2と、この伸線加工された素線に対して200℃以上260℃以下、30分以上300分以下の範囲内で加熱処理を行う加熱処理工程S3と、を備える構成とされているので、伸線方向と垂直な断面において(001)面の面積率が15%以上30%以下とされたボンディングワイヤ用銅素線を製造することができる。   Further, according to the method for manufacturing a copper wire for bonding wire according to the present embodiment, a hot working step S1 for hot-working an ingot made of high-purity copper to produce a wire, and the number of wires are reduced. A wire drawing step S2 for drawing in an area ratio of 80% or more and 99.6% or less, and 200 to 260 ° C. for 30 to 300 minutes with respect to the drawn wire. In the cross section perpendicular to the wire drawing direction, the (001) plane area ratio is 15% or more and 30% or less. Copper wire can be manufactured.

熱間加工工程S1で製出された素線に対して、減面率80%以上99.6%以下の範囲内で伸線加工工程S2を行うと、結晶粒が伸線方向に繊維状に伸びた金属組織となり、伸線方向と垂直な断面において(001)面が増加する。この繊維状に伸びた金属組織は、さらに伸線加工を行うと、伸びが低いために破断が生じてしまうことがある。そこで、上述した条件で加熱処理工程S3を行うことによって、繊維状に伸びた金属組織の一部を再結晶させて(001)面の面積率を所定の範囲に制御して伸びを改善し、伸線時の加工性を向上させているのである。   When the wire drawing step S2 is performed within the range of the area reduction rate of 80% or more and 99.6% or less with respect to the strand produced in the hot working step S1, the crystal grains become fibrous in the drawing direction. An elongated metal structure is formed, and the (001) plane increases in a cross section perpendicular to the drawing direction. When the metal structure stretched in the form of fibers is further drawn, the elongation may be low and breakage may occur. Therefore, by performing the heat treatment step S3 under the above-described conditions, a part of the metal structure elongated in a fibrous form is recrystallized to improve the elongation by controlling the area ratio of the (001) plane to a predetermined range, This improves the workability during wire drawing.

また、加熱処理工程S3においては、伸線加工工程S2で伸線された素線に対して、バッチ式焼鈍炉によって、200℃以上260℃以下、30分以上300分以下の範囲内で加熱処理を行う構成とされているので、伸線方向と垂直な断面における(001)面の面積率を15%以上30%以下に確実に制御することができる。   In addition, in the heat treatment step S3, the wire drawn in the wire drawing step S2 is subjected to a heat treatment within a range of 200 ° C. to 260 ° C. and 30 minutes to 300 minutes by a batch annealing furnace. Therefore, the area ratio of the (001) plane in the cross section perpendicular to the drawing direction can be reliably controlled to 15% or more and 30% or less.

加熱処理工程S3において、加熱温度が200℃未満の場合、再結晶が十分に発生せず(001)面の面積率を30%以下に制御することが困難となり、伸びが低下し伸線加工時に破断が発生するおそれがある。また、加熱温度が260℃超の場合、再結晶が進行し過ぎて(001)面の面積率を15%以上に制御することが困難となり、強度が低下し、伸線加工時に破断し易くなってしまう。   In the heat treatment step S3, when the heating temperature is less than 200 ° C., recrystallization does not occur sufficiently, and it becomes difficult to control the area ratio of the (001) plane to 30% or less, and the elongation decreases and during wire drawing. There is a risk of breakage. In addition, when the heating temperature exceeds 260 ° C., recrystallization progresses too much, and it becomes difficult to control the area ratio of the (001) plane to 15% or more, the strength is lowered, and it is easy to break during wire drawing. End up.

また、加熱処理工程S3において、加熱時間が30分未満の場合、再結晶が十分に発生せず(001)面の面積率を30%以下に制御することが困難となる。また、加熱時間が300分超の場合、再結晶が進行し過ぎて(001)面の面積率が15%以上に制御することが困難となる。
以上の理由により、加熱処理工程の熱処理条件は、200℃以上260℃以下、30分以上300分以下の範囲内とされている。
In the heat treatment step S3, when the heating time is less than 30 minutes, recrystallization does not occur sufficiently, and it becomes difficult to control the area ratio of the (001) plane to 30% or less. When the heating time exceeds 300 minutes, recrystallization proceeds excessively, and it becomes difficult to control the area ratio of the (001) plane to 15% or more.
For the above reasons, the heat treatment conditions of the heat treatment step are set in the range of 200 ° C. to 260 ° C. and 30 minutes to 300 minutes.

例えば、電流焼鈍のような高温短時間の加熱処理では、伸線加工によって形成された繊維状の組織中に再結晶組織を安定して形成することができず、伸線方向と垂直な断面における(001)面の面積率を上述の範囲に制御することが困難となる。一方、本実施形態では、バッチ式焼鈍炉を用いて上述の加熱条件で加熱処理を行うことにより、安定して(001)面の面積率を上述の範囲に制御することができるのである。   For example, in a high-temperature short-time heat treatment such as current annealing, a recrystallized structure cannot be stably formed in a fibrous structure formed by wire drawing, and in a cross section perpendicular to the wire drawing direction. It becomes difficult to control the area ratio of the (001) plane within the above range. On the other hand, in this embodiment, the area ratio of the (001) plane can be stably controlled within the above range by performing the heat treatment under the above heating conditions using a batch annealing furnace.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.

なお、純度99.9999質量%以上の高純度銅からなる鋳塊の形状やサイズに限定はなく、本実施形態に限定されることはない。   In addition, there is no limitation in the shape and size of the ingot which consists of high purity copper with a purity of 99.9999 mass% or more, and it is not limited to this embodiment.

以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。
(本発明例1〜5)
まず、純度99.9999質量%以上の高純度銅からなる直径250mm、長さ700mmのビレットを用意した。このビレットを800℃に加熱し、熱間押出し加工を行い、直径8mmの素線を製出した。
次に、直径8mmの素線に対して、冷間皮剥ぎ伸線を含め、直径1mmまで伸線加工を行った。なお、この伸線加工は、減面率98%とし、パス回数は15回とした。
次いで、伸線加工された素線をバッチ式焼鈍炉に装入して、表1に示す加熱温度、加熱時間で加熱処理を行った。なお、バッチ式焼鈍炉の雰囲気は、還元雰囲気とした。
以上のようにして、本発明例1〜5のボンディングワイヤ用銅素線を製造した。
Below, the result of the confirmation experiment performed in order to confirm the effectiveness of this invention is demonstrated.
(Invention Examples 1 to 5)
First, a billet having a diameter of 250 mm and a length of 700 mm made of high-purity copper having a purity of 99.9999% by mass or more was prepared. The billet was heated to 800 ° C. and subjected to hot extrusion to produce a strand having a diameter of 8 mm.
Next, a wire having a diameter of 1 mm was drawn to a diameter of 1 mm, including cold peel drawing. In this wire drawing, the area reduction rate was 98%, and the number of passes was 15.
Next, the drawn wire was placed in a batch annealing furnace, and heat treatment was performed at the heating temperature and heating time shown in Table 1. The atmosphere of the batch type annealing furnace was a reducing atmosphere.
As described above, copper wires for bonding wires according to Invention Examples 1 to 5 were manufactured.

(比較例1)
比較例1では、伸線加工後の加熱処理を行わずにボンディングワイヤ用銅素線を製造した。すなわち、伸線加工後の加熱処理を行わないこと以外は、上述した本発明例と同様にして、比較例1のボンディングワイヤ用銅素線を製造した。
(Comparative Example 1)
In Comparative Example 1, a copper wire for bonding wire was manufactured without performing heat treatment after wire drawing. That is, a copper wire for bonding wire of Comparative Example 1 was manufactured in the same manner as the above-described example of the present invention except that the heat treatment after the wire drawing was not performed.

(比較例2)
まず、純度99.9999%以上の高純度銅からなる鋳塊を用意した。この鋳塊を原料として直径8mmの素線を鋳造した。
次に、直径8mmの素線に対して、冷間皮剥ぎ伸線を含め、直径1mmまで伸線加工を行った。なお、この伸線加工は、減面率98%とし、パス回数は15回とした。
このようにして、比較例2のボンディングワイヤ用銅素線を製造した。なお、比較例2においても、伸線加工後の加熱処理を行っていない。
(Comparative Example 2)
First, an ingot made of high-purity copper having a purity of 99.9999% or more was prepared. Using this ingot as a raw material, a strand having a diameter of 8 mm was cast.
Next, a wire having a diameter of 1 mm was drawn to a diameter of 1 mm, including cold peel drawing. In this wire drawing, the area reduction rate was 98%, and the number of passes was 15.
Thus, the copper wire for bonding wires of Comparative Example 2 was produced. In addition, also in the comparative example 2, the heat processing after a wire drawing process are not performed.

上述のようにして製造されたボンディングワイヤ用銅素線において、伸線方向に垂直な断面のEBSD測定を行い、(001)面の面積率を測定した。
EBSD測定の手順について以下に説明する。まず、ボンディングワイヤ用銅素線を耐水研磨紙、及びダイヤモンド砥粒を用いて機械研磨した後、コロイダルシリカ溶液を用いて仕上げ研磨した。そして、EBSD測定装置(HITACHI社製 S4300−SEM、EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、ボンディングワイヤ用銅素線の伸線方向に垂直な断面の結晶方位を測定した。具体的には、試料表面の測定範囲内の個々の測定点に電子線を照射し、電子線を試料表面に2次元で走査させ、後方散乱電子線回折による方位解析を行った。
なお、EBSD測定されるボンディングワイヤ用銅素線の断面において、(001)面に対してズレ角15°以内の結晶面を(001)面として、(001)面の面積率を評価した。
In the copper wire for bonding wire manufactured as described above, EBSD measurement was performed on a cross section perpendicular to the drawing direction, and the area ratio of the (001) plane was measured.
The EBSD measurement procedure will be described below. First, a copper wire for bonding wire was mechanically polished using water-resistant polishing paper and diamond abrasive grains, and then finish-polished using a colloidal silica solution. And the EBSD measuring device (HITACHI S4300-SEM, EDAX / TSL OIM Data Collection) and analysis software (EDAX / TSL OIM Data Analysis ver.5.2) The crystal orientation of the cross section perpendicular to the drawing direction was measured. Specifically, each measurement point in the measurement range on the sample surface was irradiated with an electron beam, the electron beam was scanned two-dimensionally on the sample surface, and orientation analysis by backscattered electron beam diffraction was performed.
In the section of the copper wire for bonding wire measured by EBSD, the area ratio of the (001) plane was evaluated with the crystal plane having a deviation angle of 15 ° or less with respect to the (001) plane as the (001) plane.

また、製造されたボンディングワイヤ用銅素線に対して、さらに伸線加工を行い、直径5μmまで加工した。具体的には、直径1mm(1000μm)から100μmに伸線加工を行い、さらに100μm→50μm→25μm→10μm→5μmのように伸線加工した。このとき、100μmから5μmまで各直径に加工する際に発生した断線回数を測定した。なお、この伸線加工は、5μmまで加工した段階で、全長100mのワイヤが得られるように実施した。
なお、比較例1については、伸線加工において、断線が多発したため、途中で製造を中止した。
上記の測定結果を表1に示す。
Further, the manufactured copper wire for bonding wire was further drawn to a diameter of 5 μm. Specifically, the wire was drawn from 1 mm (1000 μm) in diameter to 100 μm, and further drawn in the order of 100 μm → 50 μm → 25 μm → 10 μm → 5 μm. At this time, the number of breaks that occurred when processing each diameter from 100 μm to 5 μm was measured. In addition, this wire drawing process was implemented so that the wire of 100 m of full length might be obtained in the step processed to 5 micrometers.
In addition, about the comparative example 1, in the wire drawing process, since disconnection occurred frequently, manufacture was stopped on the way.
The measurement results are shown in Table 1.

Figure 2015076559
Figure 2015076559

本発明例1〜5は、表1に示すように、100μmから5μmまで伸線加工を施しても断線回数が少なく、加工性が良好であることが確認された。すなわち、本発明例1〜5は、細線化しても断線が生じ難いボンディングワイヤ用銅素線であることが確認された。   As shown in Table 1, Invention Examples 1 to 5 were confirmed to have good workability because the number of wire breakage was small even when wire drawing was performed from 100 μm to 5 μm. In other words, it was confirmed that Examples 1 to 5 of the present invention are copper wires for bonding wires that are less likely to be broken even if they are thinned.

比較例1は、直径1mmまで伸線加工した後に、加熱処理が行われていないので、(001)面の面積率が30%超となり、断線回数が本発明例と比較して多くなった。
また、比較例2は、直径8mmの素線を鋳造し、この素線を直径1mmまで伸線加工しており、直径1mmまでの伸線加工の減面率が本発明例と比較して不足しているために、(001)面の面積率が15%未満となり、断線回数が本発明例と比較して多くなった。
In Comparative Example 1, since the heat treatment was not performed after the wire was drawn to a diameter of 1 mm, the area ratio of the (001) plane was over 30%, and the number of disconnections was increased compared to the inventive example.
In Comparative Example 2, an element wire having a diameter of 8 mm is cast, and the element wire is drawn to a diameter of 1 mm. The area reduction rate of the drawing process to a diameter of 1 mm is insufficient as compared with the example of the present invention. For this reason, the area ratio of the (001) plane was less than 15%, and the number of disconnections increased compared to the inventive example.

S1 熱間加工工程
S2 伸線加工工程
S3 加熱処理工程
S1 Hot working process S2 Wire drawing process S3 Heat treatment process

Claims (1)

ボンディングワイヤを形成するためのボンディングワイヤ用銅素線であって、
純度が99.9999質量%以上の高純度銅からなり、
線径が0.5mm以上3.5mm以下であり、
伸線方向と垂直な断面において(001)面の面積率が15%以上30%以下であることを特徴とするボンディングワイヤ用銅素線。
A copper wire for bonding wire for forming a bonding wire,
It consists of high-purity copper with a purity of 99.9999% by mass or more,
The wire diameter is 0.5 mm or more and 3.5 mm or less,
A copper wire for bonding wire, wherein the area ratio of the (001) plane is 15% or more and 30% or less in a cross section perpendicular to the drawing direction.
JP2013213114A 2013-10-10 2013-10-10 Copper wire for bonding wire Active JP5747970B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013213114A JP5747970B2 (en) 2013-10-10 2013-10-10 Copper wire for bonding wire
PCT/JP2014/075999 WO2015053128A1 (en) 2013-10-10 2014-09-30 Bonding-wire copper strand, and manufacturing method for bonding-wire copper strand
CN201480004297.7A CN104904000B (en) 2013-10-10 2014-09-30 Copper wire for bonding wire and method for manufacturing copper wire for bonding wire
SG11201602116YA SG11201602116YA (en) 2013-10-10 2014-09-30 Copper wire for bonding wire and method of producing copper wire for bonding wire
KR1020157018027A KR101558138B1 (en) 2013-10-10 2014-09-30 Bonding-wire copper strand, and manufacturing method for bonding-wire copper strand
MYPI2016701080A MY177767A (en) 2013-10-10 2014-09-30 Copper wire for bonding wire
TW103134559A TWI540212B (en) 2013-10-10 2014-10-03 Raw copper wire for bonding wire and method for producing the same
PH12016500617A PH12016500617A1 (en) 2013-10-10 2016-04-05 Copper wire for bonding wire and method of producing copper wire for bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213114A JP5747970B2 (en) 2013-10-10 2013-10-10 Copper wire for bonding wire

Publications (2)

Publication Number Publication Date
JP2015076559A true JP2015076559A (en) 2015-04-20
JP5747970B2 JP5747970B2 (en) 2015-07-15

Family

ID=52812946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213114A Active JP5747970B2 (en) 2013-10-10 2013-10-10 Copper wire for bonding wire

Country Status (8)

Country Link
JP (1) JP5747970B2 (en)
KR (1) KR101558138B1 (en)
CN (1) CN104904000B (en)
MY (1) MY177767A (en)
PH (1) PH12016500617A1 (en)
SG (1) SG11201602116YA (en)
TW (1) TWI540212B (en)
WO (1) WO2015053128A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667709B1 (en) * 2017-08-09 2024-05-15 NIPPON STEEL Chemical & Material Co., Ltd. Cu alloy bonding wire for semiconductor device
CN111033706B (en) * 2017-08-09 2021-05-25 日铁化学材料株式会社 Cu alloy bonding wire for semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786325A (en) * 1993-09-14 1995-03-31 Hitachi Cable Ltd Copper wire for electronic device
JP2009140942A (en) * 2007-12-03 2009-06-25 Nippon Steel Materials Co Ltd Bonding wire for semiconductor device
JP2013057121A (en) * 2011-08-17 2013-03-28 Hitachi Cable Ltd Method of manufacturing soft dilute copper alloy material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006035B1 (en) * 2005-06-15 2011-01-06 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786325A (en) * 1993-09-14 1995-03-31 Hitachi Cable Ltd Copper wire for electronic device
JP2009140942A (en) * 2007-12-03 2009-06-25 Nippon Steel Materials Co Ltd Bonding wire for semiconductor device
JP2013057121A (en) * 2011-08-17 2013-03-28 Hitachi Cable Ltd Method of manufacturing soft dilute copper alloy material

Also Published As

Publication number Publication date
JP5747970B2 (en) 2015-07-15
WO2015053128A1 (en) 2015-04-16
KR20150085126A (en) 2015-07-22
TWI540212B (en) 2016-07-01
MY177767A (en) 2020-09-23
SG11201602116YA (en) 2016-05-30
CN104904000A (en) 2015-09-09
PH12016500617B1 (en) 2016-06-13
TW201522673A (en) 2015-06-16
PH12016500617A1 (en) 2016-06-13
KR101558138B1 (en) 2015-10-06
CN104904000B (en) 2019-05-17

Similar Documents

Publication Publication Date Title
JP6499159B2 (en) Copper alloy wire and method for producing the same
JP6639908B2 (en) Copper alloy wire and method of manufacturing the same
TWI586448B (en) Raw copper wire for bonding wire and method for manufacturing raw copper wire for bonding wire
CN105830205A (en) Bonding wire for semiconductor devices
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
TWI548761B (en) Copper alloy for electronic/electric device, plastically-worked copper alloy material for electronic/electric device, part for electronic/electric device, and terminal
JP6135932B2 (en) Copper alloy wire and method for producing the same
TW201247908A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
JP2013023736A (en) Soft dilute copper alloy wire, soft dilute copper alloy sheet and soft dilute copper alloy twisted wire
JP2013216973A (en) Drawn copper wire, method for producing drawn copper wire, and cable
JP2017002337A (en) High flexural fatigue resistant copper-based alloy wire
JP2013057121A (en) Method of manufacturing soft dilute copper alloy material
JP5747970B2 (en) Copper wire for bonding wire
JP2011111634A (en) Copper wire and method for manufacturing the same
JP6175932B2 (en) Drawing copper wire, drawing copper wire manufacturing method and cable
KR20130109182A (en) Metal wire rod made of iridium-containing alloy
JP6591212B2 (en) Copper alloy material
JP2015134955A (en) Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
JP5609564B2 (en) Manufacturing method of molten solder plating wire
CN117836450A (en) Tungsten wire, method of processing the same, and electrolytic wire
JP2018070916A (en) Copper alloy
JP2013102054A (en) Solar cell lead wire
JP5757547B1 (en) Probe pin made of Rh-based alloy and method of manufacturing the same
JP2012197503A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP5514762B2 (en) Cu-Co-Si alloy with excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150216

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150