JP2012089685A - Copper bonding wire and method of manufacturing the same - Google Patents

Copper bonding wire and method of manufacturing the same Download PDF

Info

Publication number
JP2012089685A
JP2012089685A JP2010235263A JP2010235263A JP2012089685A JP 2012089685 A JP2012089685 A JP 2012089685A JP 2010235263 A JP2010235263 A JP 2010235263A JP 2010235263 A JP2010235263 A JP 2010235263A JP 2012089685 A JP2012089685 A JP 2012089685A
Authority
JP
Japan
Prior art keywords
copper
mass ppm
bonding wire
wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010235263A
Other languages
Japanese (ja)
Other versions
JP5556577B2 (en
Inventor
Hiromitsu Kuroda
洋光 黒田
Toru Washimi
亨 鷲見
Hideyuki Sagawa
英之 佐川
Masayoshi Aoyama
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010235263A priority Critical patent/JP5556577B2/en
Publication of JP2012089685A publication Critical patent/JP2012089685A/en
Application granted granted Critical
Publication of JP5556577B2 publication Critical patent/JP5556577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45618Zinc (Zn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45655Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Wire Bonding (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper bonding wire having high conductivity, soft characteristics, and excellent fatigue characteristics at low cost, and to provide a method of manufacturing the same.SOLUTION: The copper bonding wire contains copper and an additive element selected from a group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr, and the remainder of inevitable impurities. The copper bonding wire has a surface layer where the unprocessed crystal structure has an average crystal grain size of 20 μm or less from the surface down to a depth of 50 μm.

Description

本発明は、銅ボンディングワイヤ及び銅ボンディングワイヤの製造方法に関する。   The present invention relates to a copper bonding wire and a method for manufacturing a copper bonding wire.

従来より、半導体素子の電極と外部リードとを接続するボンディングワイヤには、Au線、又はAl合金線が用いられている。特に、樹脂モールドタイプの半導体素子では、接続の信頼性の観点からφ0.025mm程度のAu線が用いられている。また、近年では、自動車用パワーモジュールのボンディングワイヤとして、φ0.3mm程度のAl線が用いられている。   Conventionally, Au wire or Al alloy wire has been used as a bonding wire for connecting an electrode of a semiconductor element and an external lead. In particular, in a resin mold type semiconductor element, Au wire of about φ0.025 mm is used from the viewpoint of connection reliability. In recent years, Al wires having a diameter of about 0.3 mm have been used as bonding wires for automobile power modules.

Au線は、優れた導電性、耐食性、軟質性を有する半面、コストが非常に高い。そこで、銅(Cu)を素材とするボンディングワイヤが提案されている。例えば、純度99.99wt%以上の純銅に、0.0005〜0.2wt%のチタンを含有したボンディング用銅細線が知られている(例えば、特許文献1参照。)。   The Au wire has excellent conductivity, corrosion resistance, and flexibility, but the cost is very high. Therefore, a bonding wire using copper (Cu) as a material has been proposed. For example, a copper fine wire for bonding containing 0.0005 to 0.2 wt% titanium in pure copper having a purity of 99.99 wt% or more is known (for example, see Patent Document 1).

特開昭62−130249号公報JP-A-62-130249

しかしながら、特許文献1に記載のボンディングワイヤは、Auより硬いCuから構成されているので、このボンディングワイヤを用い、例えば、半導体素子(一例として、シリコンチップ)に設けられている電極パットとしてのアルミパットにボンディングすると、アルミパットにダメージを与える場合がある。このボンディングワイヤを構成するCuの純度を、例えば、99.9999質量%以上の高純度にすることでボンディングワイヤを軟質化させることができるものの、ボンディングワイヤの疲労特性がAu線より低下するので、Au線と同等の信頼性を確保することが難しくなる。   However, since the bonding wire described in Patent Document 1 is made of Cu harder than Au, this bonding wire is used, for example, aluminum as an electrode pad provided on a semiconductor element (for example, a silicon chip). Bonding to the pad may damage the aluminum pad. Although the bonding wire can be softened by setting the purity of Cu constituting the bonding wire to, for example, a high purity of 99.9999% by mass or more, the fatigue characteristics of the bonding wire are lower than those of the Au wire. It becomes difficult to ensure the same reliability as the Au wire.

また、ボンディングワイヤを構成するCuの純度を高めるコストがボンディングワイヤに転嫁されると、ボンディングワイヤが高コスト化する。更に、高純度のCuから構成されるボンディングワイヤを製造する場合には結晶粒の粗大化を抑制するので、ボンディングワイヤの硬さが硬くなる。したがって、このようなボンディングワイヤを用いると、半導体素子に設けられている電極パットとしてのアルミパットにダメージを与える場合がある。また、高純度のCuへの不純物の混入により、ボンディングワイヤの導電率が低下する場合もある。   Further, when the cost for increasing the purity of Cu constituting the bonding wire is transferred to the bonding wire, the cost of the bonding wire increases. Furthermore, when manufacturing a bonding wire made of high-purity Cu, since the crystal grains are prevented from becoming coarse, the hardness of the bonding wire is increased. Therefore, when such a bonding wire is used, the aluminum pad as the electrode pad provided in the semiconductor element may be damaged. In addition, the conductivity of the bonding wire may decrease due to the mixing of impurities into high purity Cu.

したがって、本発明の目的は、低コストであり、また、高い導電性、軟質特性、及び優れた疲労特性を有する銅ボンディングワイヤ及び銅ボンディングワイヤの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a copper bonding wire and a method for producing the copper bonding wire that are low in cost and have high conductivity, soft properties, and excellent fatigue properties.

本発明は、上記課題を解決することを目的として、銅とTi、Mg、Zr、Nb、Ca、V、Ni、Mn、及びCrからなる群から選択された添加元素とを含み、残部が不可避的不純物である銅ボンディングワイヤであって、前記銅ボンディングワイヤは、加工前の結晶組織がその表面から内部に向けて50μmの深さまでの平均結晶粒サイズが20μm以下である表層を有する銅ボンディングワイヤが提供される。   In order to solve the above problems, the present invention includes copper and an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr, and the remainder is inevitable. A copper bonding wire having a surface layer having an average crystal grain size of 20 μm or less from the surface to the depth of 50 μm from the surface to the inside thereof. Is provided.

また、上記銅ボンディングワイヤにおいて、2mass ppm以上12mass ppm以下の硫黄と、2mass ppmを超え30mass ppm以下の酸素と、4mass ppm以上55mass ppm以下のチタンとを含んでもよい。   The copper bonding wire may contain sulfur of 2 mass ppm or more and 12 mass ppm or less, oxygen of more than 2 mass ppm and 30 mass ppm or less, and titanium of 4 mass ppm or more and 55 mass ppm or less.

また、上記銅ボンディングワイヤにおいて、導電率が98%IACS以上であってもよい。   The copper bonding wire may have a conductivity of 98% IACS or higher.

また、上記銅ボンディングワイヤにおいて、前記硫黄(S)及び前記チタン(Ti)が、TiO、TiO、TiS、若しくはTi−O−S結合を有する化合物又は前記TiO、前記TiO、前記TiS、若しくは前記Ti−O−S結合を有する化合物の凝集物として含まれ、残部のTi及びSが固溶体として含まれてもよい。 In the copper bonding wire, the sulfur (S) and the titanium (Ti) are a compound having a TiO, TiO 2 , TiS, or Ti—O—S bond, the TiO, the TiO 2 , the TiS, or It may be included as an aggregate of compounds having the Ti—O—S bond, and the remaining Ti and S may be included as a solid solution.

また、上記銅ボンディングワイヤにおいて、前記TiO、前記TiO、前記TiS、前記Ti−O−Sの形の化合物又は凝集物が結晶粒内に分布しており、前記TiOが、200nm以下のサイズを有し、前記TiOが、1000nm以下のサイズを有し、前記TiSが、200nm以下のサイズを有し、前記Ti−O−Sの形の化合物又は凝集物が、300nm以下のサイズを有し、500nm以下の粒子が90%以上であってもよい。 Further, in the copper bonding wire, a compound or an aggregate in the form of the TiO, the TiO 2 , the TiS, or the Ti—O—S is distributed in crystal grains, and the TiO has a size of 200 nm or less. The TiO 2 has a size of 1000 nm or less, the TiS has a size of 200 nm or less, and the compound or aggregate in the form of Ti—O—S has a size of 300 nm or less. 90% or more of particles of 500 nm or less may be used.

また、本発明は、上記課題を解決することを目的として、Ti、Mg、Zr、Nb、Ca、V、Ni、Mn、及びCrからなる群から選択された添加元素を含む軟質希薄銅合金材料を1100℃以上1320℃以下の溶銅温度で溶湯にする溶湯製造工程と、前記溶湯からワイヤロッドを作製するワイヤロッド作製工程と、前記ワイヤロッドに880℃以下550℃以上の温度で熱間圧延を施す熱間圧延工程と、前記熱間圧延工程を経た前記ワイヤロッドに伸線加工を施す伸線加工工程とを備える銅ボンディングワイヤの製造方法が提供される。   In addition, the present invention aims to solve the above-mentioned problems, and a soft diluted copper alloy material containing an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr A molten metal manufacturing process for forming a molten metal at a molten copper temperature of 1100 ° C. or higher and 1320 ° C. or lower, a wire rod manufacturing process for manufacturing a wire rod from the molten metal, and hot rolling at a temperature of 880 ° C. or lower and 550 ° C. or higher on the wire rod There is provided a method for producing a copper bonding wire, comprising: a hot rolling step for applying a wire; and a wire drawing step for drawing the wire rod that has undergone the hot rolling step.

また、上記銅ボンディングワイヤの製造方法において、前記添加元素がTiであり、前記軟質希薄銅合金材料が、2mass ppm以上12mass ppm以下の硫黄と、2mass ppmを超えて30mass ppm以下の酸素と、4mass ppm以上55mass ppm以下のチタンとを含んでもよい。   In the method for producing a copper bonding wire, the additive element is Ti, and the soft dilute copper alloy material is sulfur of 2 mass ppm or more and 12 mass ppm or less, oxygen exceeding 2 mass ppm and oxygen of 30 mass ppm or less, and 4 mass. Titanium of not less than ppm and not more than 55 mass ppm may be included.

また、上記銅ボンディングワイヤの製造方法において、前記軟質希薄銅合金材料の軟化温度が、φ2.6mmのサイズで130℃以上148℃以下であってもよい。   In the method for producing a copper bonding wire, the soft dilute copper alloy material may have a softening temperature of φ2.6 mm and 130 ° C. or more and 148 ° C. or less.

本発明に係る銅ボンディングワイヤ及び銅ボンディングワイヤの製造方法は、低コストであり、また、高い導電性、軟質特性、及び優れた疲労特性を有する銅ボンディングワイヤ及び銅ボンディングワイヤの製造方法を提供できる。   The copper bonding wire and the method for manufacturing the copper bonding wire according to the present invention are low in cost, and can provide a copper bonding wire and a method for manufacturing the copper bonding wire having high conductivity, soft characteristics, and excellent fatigue characteristics. .

TiS粒子のSEM像である。It is a SEM image of TiS particle. 図1の分析結果を示す図である。It is a figure which shows the analysis result of FIG. TiO粒子のSEM像である。SEM images of the TiO 2 particles. 図3の分析結果を示す図である。It is a figure which shows the analysis result of FIG. Ti−O−S粒子のSEM像である。It is a SEM image of Ti-O-S particle. 図5の分析結果を示す図である。It is a figure which shows the analysis result of FIG. 屈曲疲労試験の概要を示す図である。It is a figure which shows the outline | summary of a bending fatigue test. 400℃で1時間の焼鈍処理を施した後の、無酸素銅を用いた比較例13に係るワイヤロッドと、低酸素銅にTiを添加した軟質希薄銅合金線を用いて作製した実施例7に係るワイヤロッドとの屈曲寿命を測定した結果を示す図である。Example 7 produced using a wire rod according to Comparative Example 13 using oxygen-free copper after annealing at 400 ° C. for 1 hour and a soft dilute copper alloy wire obtained by adding Ti to low-oxygen copper It is a figure which shows the result of having measured the bending life with the wire rod which concerns on this. 600℃で1時間の焼鈍処理を施した後の、無酸素銅を用いた比較例14に係るワイヤロッドと、低酸素銅にTiを添加した軟質希薄銅合金線を用いて作製した実施例8に係るワイヤロッドとの屈曲寿命を測定した結果を示す図である。Example 8 produced using a wire rod according to Comparative Example 14 using oxygen-free copper after annealing at 600 ° C. for 1 hour and a soft dilute copper alloy wire obtained by adding Ti to low-oxygen copper It is a figure which shows the result of having measured the bending life with the wire rod which concerns on this. 比較例14に係る試料の幅方向の断面組織を示す図である。It is a figure which shows the cross-sectional structure | tissue of the width direction of the sample which concerns on the comparative example 14. FIG. 実施例8に係る試料の幅方向の断面組織を示す図である。FIG. 10 is a diagram showing a cross-sectional structure in the width direction of a sample according to Example 8. 表層における平均結晶粒サイズの測定方法の概要図である。It is a schematic diagram of the measuring method of the average grain size in a surface layer.

[実施の形態]
(銅ボンディングワイヤの構成)
本実施の形態に係る銅ボンディングワイヤは、例えば、自動車等に用いられるパワーモジュールの小型化、及び/又はパワーモジュールに供給される電流の電流密度の増大の観点から、アルミニウムよりも熱伝導率の高い材料である銅から構成する。
[Embodiment]
(Composition of copper bonding wire)
The copper bonding wire according to the present embodiment has a thermal conductivity higher than that of aluminum, for example, from the viewpoint of downsizing a power module used in an automobile or the like and / or increasing the current density of current supplied to the power module. Constructed from copper, a high material.

例えば、本実施の形態に係る銅ボンディングワイヤは、導電率98%IACS(万国標準軟銅(International Anneld Copper Standard)以上、抵抗率1.7241×10−8Ωmを100%とした場合の導電率)、好ましくは100%IACS以上、より好ましくは102%IACS以上を満足する軟質型銅材としての軟質希薄銅合金材料を用いて構成される。 For example, the copper bonding wire according to the present embodiment has an electrical conductivity of 98% IACS (conductivity when the universal annealed copper standard or higher, and a resistivity of 1.7241 × 10 −8 Ωm is 100%) Preferably, the soft dilute copper alloy material is used as a soft copper material that satisfies 100% IACS or more, more preferably 102% IACS or more.

また、本実施の形態に係る銅ボンディングワイヤは、SCR連続鋳造設備を用い、表面の傷が少なく、製造範囲が広く、安定生産が可能である。また、ワイヤロッドに対する加工度90%(例えば、φ8mmからφ2.6mmのワイヤへの加工)での軟化温度が148℃以下の材料を用いて構成される。   Further, the copper bonding wire according to the present embodiment uses an SCR continuous casting facility, has few scratches on the surface, has a wide manufacturing range, and can be stably produced. The wire rod is made of a material having a softening temperature of 148 ° C. or less at a processing degree of 90% (for example, processing from φ8 mm to φ2.6 mm wire).

具体的に、本実施の形態に係る銅ボンディングワイヤは、銅とTi、Mg、Zr、Nb、Ca、V、Ni、Mn、及びCrからなる群から選択された添加元素とを含み、残部が不可避的不純物である銅ボンディングワイヤである。そして、本実施の形態に係る銅ボンディングワイヤは、加工前の結晶組織が銅ボンディングワイヤの表面から銅ボンディングワイヤの内部に向けて50μmの深さまでを表層とした場合に、平均結晶粒サイズが20μm以下の結晶粒を表層に含む。添加元素としてTi、Mg、Zr、Nb、Ca、V、Ni、Mn、及びCrからなる群から選択される元素を選択した理由は、これらの元素は他の元素と結合しやすい活性元素であり、Sと結合しやすいためSをトラップすることができ、銅母材(マトリクス)を高純度化することができるためである。添加元素は1種類以上含まれていてもよい。また、合金の性質に悪影響を及ぼすことのないその他の元素及び不純物を合金に含有させることもできる。また、以下に説明する好適な実施の形態においては、酸素含有量が2を超え30mass ppm以下が良好であることを説明しているが、添加元素の添加量及びSの含有量によっては、合金の性質を備える範囲において、2を超え400mass ppmを含むことができる。   Specifically, the copper bonding wire according to the present embodiment includes copper and an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr, with the remainder being It is a copper bonding wire that is an inevitable impurity. The copper bonding wire according to the present embodiment has an average crystal grain size of 20 μm when the crystal structure before processing is a surface layer from the surface of the copper bonding wire to a depth of 50 μm toward the inside of the copper bonding wire. The following crystal grains are included in the surface layer. The reason for selecting an element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr as an additive element is that these elements are easily active elements that are easily combined with other elements. This is because S can be trapped because it is easily combined with S, and the copper base material (matrix) can be highly purified. One or more additive elements may be included. Also, other elements and impurities that do not adversely affect the properties of the alloy can be included in the alloy. Further, in the preferred embodiment described below, it is described that the oxygen content is more than 2 and not more than 30 mass ppm, but depending on the addition amount of the additive element and the S content, In the range having the property of, it is possible to include more than 2 and 400 mass ppm.

また、本実施の形態に係る銅ボンディングワイヤは、添加元素がTiである場合、2mass ppm以上12mass ppm以下の硫黄と、2mass ppmを超え30mass ppm以下の酸素と、4mass ppm以上55mass ppm以下のチタンとを含む。更に、硫黄(S)及びチタン(Ti)は、TiO、TiO、TiS、若しくはTi−O−S結合を有する化合物又はTiO、TiO、TiS、若しくはTi−O−S結合を有する化合物の凝集物として銅ボンディングワイヤに含まれ、残部のTi及びSは、固溶体として銅ボンディングワイヤに含まれる。2mass ppmを超え30mass ppm以下の酸素を含有していることから、この実施の形態では、いわゆる低酸素銅(LOC)を対象としている。 Further, in the copper bonding wire according to the present embodiment, when the additive element is Ti, sulfur of 2 mass ppm or more and 12 mass ppm or less, oxygen of more than 2 mass ppm and 30 mass ppm or less, and titanium of 4 mass ppm or more and 55 mass ppm or less. Including. Furthermore, sulfur (S) and titanium (Ti) is, TiO, agglomeration of TiO 2, TiS, or a compound having a TiO-S bond or TiO, TiO 2, TiS, or a compound having a TiO-S bond It is contained in the copper bonding wire as a product, and the remaining Ti and S are contained in the copper bonding wire as a solid solution. In this embodiment, so-called low oxygen copper (LOC) is targeted because it contains oxygen exceeding 2 mass ppm and not more than 30 mass ppm.

また、TiO、TiO、TiS、Ti−O−Sの形の化合物又は凝集物は銅ボンディングワイヤを構成する結晶粒の内部に分布しており、TiOは、200nm以下のサイズを有し、TiOは、1000nm以下のサイズを有し、TiSは、200nm以下のサイズを有し、Ti−O−Sの形の化合物又は凝集物は、300nm以下のサイズを有する。更に、本実施の形態に係る銅ボンディングワイヤは、500nm以下の粒子を90%以上含む。また「結晶粒」とは、銅の結晶組織のことを意味する。 Further, compounds or aggregates in the form of TiO, TiO 2 , TiS, Ti—O—S are distributed inside the crystal grains constituting the copper bonding wire, and TiO has a size of 200 nm or less, and TiO 2 has a size of 1000 nm or less, TiS has a size of 200 nm or less, and a compound or aggregate in the form of Ti-O-S has a size of 300 nm or less. Furthermore, the copper bonding wire according to the present embodiment includes 90% or more of particles of 500 nm or less. The “crystal grain” means a copper crystal structure.

(銅ボンディングワイヤの製造方法)
本実施の形態に係る銅ボンディングワイヤの製造方法は以下のとおりである。例として、Tiを添加元素に選択した場合を説明する。まず、銅ボンディングワイヤの原料としてのTiを含む軟質希薄銅合金材料を準備する(原料準備工程)。次に、この軟質希薄銅合金材料を1100℃以上1320℃以下の溶銅温度で溶湯にする(溶湯製造工程)。次に、溶湯からワイヤロッドを作製する(ワイヤロッド作製工程)。続いて、ワイヤロッドに880℃以下550℃以上の温度で熱間圧延を施す(熱間圧延工程)。更に、熱間圧延工程を経たワイヤロッドに伸線加工を施す(伸線加工工程)。これにより、本実施の形態に係る銅ボンディングワイヤが製造される。
(Copper bonding wire manufacturing method)
The method for manufacturing the copper bonding wire according to the present embodiment is as follows. As an example, a case where Ti is selected as an additive element will be described. First, a soft dilute copper alloy material containing Ti as a raw material for a copper bonding wire is prepared (raw material preparation step). Next, this soft dilute copper alloy material is made into a molten metal at a molten copper temperature of 1100 ° C. or higher and 1320 ° C. or lower (melt manufacturing process). Next, a wire rod is produced from the molten metal (wire rod production process). Subsequently, the wire rod is hot-rolled at a temperature of 880 ° C. or lower and 550 ° C. or higher (hot rolling step). Further, the wire rod that has undergone the hot rolling process is subjected to a drawing process (drawing process). Thereby, the copper bonding wire which concerns on this Embodiment is manufactured.

また、銅ボンディングワイヤの製造には、2mass ppm以上12mass ppm以下の硫黄と、2mass ppmを超え30mass ppm以下の酸素と、4mass ppm以上55mass ppm以下のチタンとを含む軟質希薄銅合金材料を用いる。具体的に、φ2.6mmのサイズで130℃以上148℃以下の軟化温度を有する軟質希薄銅合金材料を用いる。   In addition, for the production of a copper bonding wire, a soft dilute copper alloy material containing 2 mass ppm or more and 12 mass ppm or less of sulfur, 2 mass ppm or more and 30 mass ppm or less of oxygen, and 4 mass ppm or more and 55 mass ppm or less of titanium is used. Specifically, a soft dilute copper alloy material having a softening temperature of 130 ° C. or more and 148 ° C. or less with a size of φ2.6 mm is used.

以下、本実施の形態に係る銅ボンディングワイヤの実現において、本発明者が検討した内容を説明する。   Hereinafter, the contents studied by the present inventors in the realization of the copper bonding wire according to the present embodiment will be described.

まず、純度が6N(つまり、99.9999%)の高純度銅は、加工度90%における軟化温度は130℃である。したがって、本発明者は、安定生産することができる130℃以上148℃以下の軟化温度で軟質材の導電率が98%IACS以上、好ましくは100%IACS以上、より好ましくは102%IACS以上である軟質銅を安定して製造することができる軟質希薄銅合金材料と、この軟質希薄銅合金材料の製造方法について検討した。   First, high-purity copper having a purity of 6N (that is, 99.9999%) has a softening temperature of 130 ° C. at a workability of 90%. Therefore, the present inventor has a soft material having a softening temperature of 130 ° C. or higher and 148 ° C. or lower that enables stable production, and the conductivity of the soft material is 98% IACS or higher, preferably 100% IACS or higher, more preferably 102% IACS or higher. A soft dilute copper alloy material capable of stably producing soft copper and a method for producing the soft dilute copper alloy material were studied.

ここで、酸素濃度が1〜2mass ppmである高純度銅(4N)を準備して、実験室に設置した小型連続鋳造機(小型連鋳機)を用い、このCuをCuの溶湯にした。そして、この溶湯にチタンを数mass ppm添加した。続いて、チタンを添加した溶湯からφ8mmのワイヤロッドを製造した。次に、φ8mmのワイヤロッドをφ2.6mmに加工した(つまり、加工度が90%である)。このφ2.6mmのワイヤロッドの軟化温度は160℃〜168℃であり、この温度より低い軟化温度にはならなかった。また、このφ2.6mmのワイヤロッドの導電率は、101.7%IACS程度であった。つまり、ワイヤロッドに含まれる酸素濃度を低下させ、チタンを溶湯に添加してもワイヤロッドの軟化温度を低下させることができないと共に、高純度銅(6N)の導電率102.8%IACSよりも導電率が低いという知見を本発明者は得た。   Here, high-purity copper (4N) having an oxygen concentration of 1 to 2 mass ppm was prepared, and this Cu was made into a molten Cu using a small continuous casting machine (small continuous casting machine) installed in a laboratory. And several mass ppm of titanium was added to this molten metal. Subsequently, a φ8 mm wire rod was manufactured from the molten metal to which titanium was added. Next, a φ8 mm wire rod was processed to φ2.6 mm (that is, the processing degree was 90%). The softening temperature of the φ2.6 mm wire rod was 160 ° C. to 168 ° C., and the softening temperature was not lower than this temperature. The conductivity of the φ2.6 mm wire rod was about 101.7% IACS. In other words, the oxygen concentration contained in the wire rod is reduced, and the softening temperature of the wire rod cannot be lowered even if titanium is added to the molten metal, and the conductivity of high purity copper (6N) is 102.8% IACS. The inventor has obtained the knowledge that the electrical conductivity is low.

軟化温度を低下させることができず、導電率が6Nの高純度銅より低くなった原因は、溶湯の製造中に不可避的不純物としての数mass ppm以上の硫黄(S)が含まれることに起因すると推測された。すなわち、溶湯に含まれている硫黄とチタンとの間でTiS等の硫化物が十分に形成されないことに起因して、ワイヤロッドの軟化温度が低下しないものと推測された。   The reason why the softening temperature could not be lowered and the conductivity was lower than that of 6N high-purity copper was that sulfur (S) of several mass ppm or more as an inevitable impurity was contained during the production of the molten metal. I guessed that. That is, it was speculated that the softening temperature of the wire rod does not decrease due to insufficient formation of sulfides such as TiS between sulfur and titanium contained in the molten metal.

そこで、本発明者は、銅ボンディングワイヤの軟化温度の低下と、銅ボンディングワイヤの導電率の向上とを実現すべく、以下の二つの方策を検討した。そして、以下の二つの方策を銅ワイヤロッドの製造に併せ用いることで、本実施の形態に係る銅ボンディングワイヤを得た。   Therefore, the present inventor has studied the following two measures in order to realize a decrease in the softening temperature of the copper bonding wire and an improvement in the conductivity of the copper bonding wire. And the copper bonding wire which concerns on this Embodiment was obtained by using together the following two measures for manufacture of a copper wire rod.

図1は、TiS粒子のSEM像であり、図2は、図1の分析結果を示す。また、図3は、TiO粒子のSEM像であり、図4は、図3の分析結果を示す。更に、図5は、Ti−O−S粒子のSEM像であり、図6は、図5の分析結果を示す。なお、SEM像において図の中心付近に各粒子が示されている。図1〜6は、表1の実施例1の上から三段目に示す酸素濃度、硫黄濃度、Ti濃度をもつφ8mmの銅線(ワイヤロッド)の横断面をSEM観察及びEDX分析にて評価したものである。観察条件は、加速電圧15keV、エミッション電流10μAとした。 FIG. 1 is an SEM image of TiS particles, and FIG. 2 shows the analysis result of FIG. FIG. 3 is an SEM image of TiO 2 particles, and FIG. 4 shows the analysis result of FIG. 5 is an SEM image of Ti—O—S particles, and FIG. 6 shows the analysis result of FIG. In the SEM image, each particle is shown near the center of the figure. FIGS. 1-6 evaluate the cross section of φ8 mm copper wire (wire rod) having the oxygen concentration, sulfur concentration, and Ti concentration shown in the third row from the top in Example 1 of Table 1 by SEM observation and EDX analysis. It is a thing. The observation conditions were an acceleration voltage of 15 keV and an emission current of 10 μA.

まず、第1の方策は、酸素濃度が2mass ppmを超える量のCuに、チタン(Ti)を添加した状態で、Cuの溶湯を作製することである。この溶湯中においては、TiSとチタンの酸化物(例えば、TiO)とTi−O−S粒子とが形成されると考えられる。これは、図1のSEM像と図2の分析結果、図3のSEM像と図4の分析結果からの考察である。なお、図2、図4、及び図6において、Pt及びPdはSEM観察する際に観察対象物に蒸着する金属元素である。 First, the first strategy is to prepare a molten Cu in a state where titanium (Ti) is added to Cu having an oxygen concentration exceeding 2 mass ppm. It is considered that TiS and titanium oxide (for example, TiO 2 ) and Ti—O—S particles are formed in the molten metal. This is a consideration from the SEM image of FIG. 1 and the analysis result of FIG. 2, and the SEM image of FIG. 3 and the analysis result of FIG. 2, 4, and 6, Pt and Pd are metal elements that are vapor-deposited on the observation object when SEM observation is performed.

次に、第2の方策は、銅中に転位を導入することにより硫黄(S)の析出を容易にすることを目的として、熱間圧延工程における温度を通常の銅の製造条件における温度(つまり、950℃〜600℃)より低い温度(880℃〜550℃)に設定することである。このような温度設定により、転位上へのSの析出、又はチタンの酸化物(例えば、TiO)を核としてSを析出させることができる。一例として、図5及び図6のように、溶銅と共にTi−O−S粒子等が形成される。 Next, the second policy aims to facilitate the precipitation of sulfur (S) by introducing dislocations in the copper, and the temperature in the hot rolling process is set to the temperature in the normal copper production conditions (that is, , 950 ° C. to 600 ° C.) lower temperature (880 ° C. to 550 ° C.). By such temperature setting, S can be precipitated on dislocations or by using titanium oxide (for example, TiO 2 ) as a nucleus. As an example, as shown in FIGS. 5 and 6, Ti—O—S particles and the like are formed together with molten copper.

以上の第1の方策及び第2の方策により、銅に含まれる硫黄が晶出すると共に析出するので、所望の軟化温度と所望の導電率とを有する銅ワイヤロッドを冷間伸線加工後に得ることができる。   By the above first and second measures, sulfur contained in copper crystallizes and precipitates, so that a copper wire rod having a desired softening temperature and a desired conductivity is obtained after cold drawing. be able to.

また、本実施の形態に係る銅ボンディングワイヤは、SCR連続鋳造圧延設備を用いて製造する。ここで、SCR連続鋳造圧延設備を用いる場合における製造条件の制限として、以下の3つの条件を設けた。   Moreover, the copper bonding wire which concerns on this Embodiment is manufactured using SCR continuous casting rolling equipment. Here, the following three conditions were provided as restrictions on the manufacturing conditions when using the SCR continuous casting and rolling equipment.

(1)組成について
導電率が98%IACS以上の軟質銅材を得る場合、不可避的不純物を含む純銅(ベース素材)として、3〜12mass ppmの硫黄と、2を超え30mass ppm以下の酸素と、4〜55mass ppmのチタンとを含む軟質希薄銅合金材料を用い、この軟質希薄銅合金材料からワイヤロッド(荒引き線)を製造する。
(1) About composition When obtaining a soft copper material having an electrical conductivity of 98% IACS or more, as pure copper (base material) containing inevitable impurities, 3-12 mass ppm of sulfur, more than 2 and oxygen of 30 mass ppm or less, A soft dilute copper alloy material containing 4-55 mass ppm of titanium is used, and a wire rod (rough drawn wire) is produced from the soft dilute copper alloy material.

ここで、導電率が100%IACS以上の軟質銅材を得る場合には、不可避的不純物を含む純銅(ベース素材)として、2〜12mass ppmの硫黄と、2を超え30mass ppm以下の酸素と、4〜37mass ppmのチタンとを含む軟質希薄銅合金材料を用いる。また、導電率が102%IACS以上の軟質銅材を得る場合には、不可避的不純物を含む純銅(ベース素材)として、3〜12mass ppmの硫黄と、2を超え30mass ppm以下の酸素と、4〜25mass ppmのチタンとを含む軟質希薄銅合金材料を用いる。   Here, when obtaining a soft copper material having an electrical conductivity of 100% IACS or more, as pure copper (base material) containing inevitable impurities, 2 to 12 mass ppm of sulfur, more than 2 and oxygen of 30 mass ppm or less, A soft dilute copper alloy material containing 4-37 mass ppm titanium is used. Further, when obtaining a soft copper material having an electrical conductivity of 102% IACS or more, as pure copper (base material) containing inevitable impurities, 3 to 12 mass ppm of sulfur, more than 2 and less than 30 mass ppm of oxygen, 4 A soft dilute copper alloy material containing ˜25 mass ppm titanium is used.

通常、純銅の工業的製造において、電気銅を製造する際に硫黄が銅の中に取り込まれるので、硫黄を3mass ppm以下にすることは困難である。汎用電気銅の硫黄濃度の上限は、12mass ppmである。   Usually, in the industrial production of pure copper, sulfur is taken into copper when producing electrolytic copper. Therefore, it is difficult to reduce sulfur to 3 mass ppm or less. The upper limit of the sulfur concentration of general-purpose electrolytic copper is 12 mass ppm.

酸素濃度が低い場合、銅ボンディングワイヤの軟化温度が低下しにくいので、酸素濃度は2mass ppmを超える量に制御する。また、酸素濃度が高い場合、熱間圧延工程で銅ボンディングワイヤの表面に傷が生じやすくなるので、30mass ppm以下に制御する。   When the oxygen concentration is low, the softening temperature of the copper bonding wire is difficult to decrease, so the oxygen concentration is controlled to an amount exceeding 2 mass ppm. Further, when the oxygen concentration is high, the surface of the copper bonding wire is likely to be damaged in the hot rolling process, so that it is controlled to 30 mass ppm or less.

(2)分散している物質について
銅ボンディングワイヤ内に分散している分散粒子のサイズは小さいことが好ましく、また、銅ボンディングワイヤ内に分散粒子が多く分散していることが好ましい。その理由は、分散粒子は、硫黄の析出サイトとしての機能を有するからであり、析出サイトとしてはサイズが小さく、数が多いことが要求されるからである。
(2) Dispersed substance It is preferable that the size of the dispersed particles dispersed in the copper bonding wire is small, and that many dispersed particles are dispersed in the copper bonding wire. The reason is that the dispersed particles have a function as a sulfur precipitation site, and the precipitation site is required to have a small size and a large number.

銅ボンディングワイヤに含まれる硫黄及びチタンは、TiO、TiO、TiS、若しくはTi−O−S結合を有する化合物又はTiO、TiO、TiS、若しくはTi−O−S結合を有する化合物の凝集物として含まれ、残部のTi及びSが固溶体として含まれる。銅ボンディングワイヤの原料である軟質希薄銅合金材料としては、TiOが200nm以下のサイズを有し、TiOが1000nm以下のサイズを有し、TiSが200nm以下のサイズを有し、Ti−O−Sの形の化合物が300nm以下のサイズを有しており、これらが結晶粒内に分布している軟質希薄銅合金材料を用いる。 Sulfur and titanium contained in the copper bonding wire, TiO, TiO 2, TiS, or compounds or TiO having TiO-S bond, TiO 2, TiS, or as aggregates of compounds having a TiO-S bond The remaining Ti and S are included as a solid solution. As a soft dilute copper alloy material that is a raw material of a copper bonding wire, TiO has a size of 200 nm or less, TiO 2 has a size of 1000 nm or less, TiS has a size of 200 nm or less, and Ti—O— A soft dilute copper alloy material in which the compound in the form of S has a size of 300 nm or less and these are distributed in crystal grains is used.

なお、鋳造時の溶銅の保持時間及び冷却条件に応じて結晶粒内に形成される粒子サイズが変動するので、鋳造条件も適切に設定することを要する。   In addition, since the particle size formed in a crystal grain changes according to the holding | maintenance time of molten copper at the time of casting, and cooling conditions, it is necessary to set casting conditions appropriately.

(3)鋳造条件について
SCR連続鋳造圧延により、鋳塊ロッドの加工度が90%(30mm)〜99.8%(5mm)でワイヤロッドを作製する。一例として、加工度99.3%でφ8mmのワイヤロッドを製造する条件を採用する。以下、鋳造条件(a)及び(b)について説明する。
(3) Casting conditions By SCR continuous casting and rolling, wire rods are produced with an ingot rod working degree of 90% (30 mm) to 99.8% (5 mm). As an example, a condition for manufacturing a wire rod of φ8 mm with a processing degree of 99.3% is adopted. Hereinafter, casting conditions (a) and (b) will be described.

[鋳造条件(a)]
溶解炉内での溶銅温度は1100℃以上1320℃以下に制御する。溶銅の温度が高いとブローホールが多くなり、傷が発生すると共に粒子サイズが大きくなる傾向にあるので1320℃以下に制御する。また、1100℃以上に制御する理由は、銅が固まりやすく、製造が安定しないことが理由であるものの、溶銅温度は可能な限り低い温度が望ましい。
[Casting conditions (a)]
The molten copper temperature in the melting furnace is controlled to 1100 ° C. or higher and 1320 ° C. or lower. When the temperature of the molten copper is high, blowholes increase, and scratches are generated and the particle size tends to increase, so the temperature is controlled to 1320 ° C. or lower. Moreover, although the reason for controlling to 1100 degreeC or more is because copper is hardened easily and manufacture is not stable, molten copper temperature is desirable as low as possible.

[鋳造条件(b)]
熱間圧延加工の温度は、最初の圧延ロールにおける温度を880℃以下に制御すると共に、最終圧延ロールでの温度を550℃以上に制御する。
[Casting conditions (b)]
As for the temperature of the hot rolling process, the temperature in the first rolling roll is controlled to 880 ° C. or lower, and the temperature in the final rolling roll is controlled to 550 ° C. or higher.

通常の純銅の製造条件と異なり、溶銅中での硫黄の晶出及び熱間圧延中における硫黄の析出の駆動力である固溶限をより小さくすることを目的として、溶銅温度及び熱間圧延加工の温度を「鋳造条件(a)」及び「鋳造条件(b)」において説明した条件に設定することが好ましい。   Unlike normal pure copper production conditions, the temperature of the molten copper and the temperature of the hot metal are reduced for the purpose of reducing the solid solution limit, which is the driving force for the precipitation of sulfur during hot rolling and the crystallization of sulfur. The temperature of the rolling process is preferably set to the conditions described in “Casting conditions (a)” and “Casting conditions (b)”.

また、通常の熱間圧延加工における温度は、最初の圧延ロールにおいて950℃以下、最終圧延ロールにおいて600℃以上であるが、固溶限をより小さくすることを目的として、本実施の形態では、最初の圧延ロールにおいて880℃以下、最終圧延ロールにおいて550℃以上に設定する。   Further, the temperature in the normal hot rolling process is 950 ° C. or less in the first rolling roll and 600 ° C. or more in the final rolling roll, but for the purpose of reducing the solid solution limit, The first rolling roll is set to 880 ° C. or lower, and the final rolling roll is set to 550 ° C. or higher.

なお、最終圧延ロールにおける温度を550℃以上に設定する理由は、550℃未満の温度では得られるワイヤロッドの傷が多くなり、製造される銅ボンディングワイヤを製品として扱うことができないからである。熱間圧延加工における温度は、最初の圧延ロールにおいて880℃以下の温度、最終圧延ロールにおいて550℃以上の温度に制御すると共に、可能な限り低い温度であることが好ましい。このような温度設定にすることで、銅ボンディングワイヤの軟化温度(φ8〜φ2.6mmに加工した後の軟化温度)を、6NのCuの軟化温度(つまり、130℃)に近づけることができる。   The reason why the temperature in the final rolling roll is set to 550 ° C. or more is that the obtained wire bonding flaws increase at temperatures below 550 ° C., and the manufactured copper bonding wire cannot be handled as a product. The temperature in the hot rolling process is preferably as low as possible while controlling the temperature to 880 ° C. or lower in the first rolling roll and 550 ° C. or higher in the final rolling roll. By setting such a temperature, the softening temperature of the copper bonding wire (softening temperature after being processed to φ8 to φ2.6 mm) can be brought close to the softening temperature of 6N Cu (that is, 130 ° C.).

無酸素銅の導電率は101.7%IACS程度であり、6NのCuの導電率は102.8%IACSである。本実施の形態においては、例えば、直径φ8mmサイズのワイヤロッドの導電率が98%IACS以上、好ましくは100%IACS以上、より好ましくは102%IACS以上である。また、本実施の形態においては、冷間伸線加工後の線材(例えば、φ2.6mm)のワイヤロッドの軟化温度が130℃以上148℃である軟質希薄銅合金を製造し、この軟質希薄銅合金線を銅ボンディングワイヤの製造に用いる。   The conductivity of oxygen-free copper is about 101.7% IACS, and the conductivity of 6N Cu is 102.8% IACS. In the present embodiment, for example, the conductivity of a wire rod having a diameter of φ8 mm is 98% IACS or more, preferably 100% IACS or more, more preferably 102% IACS or more. In the present embodiment, a soft dilute copper alloy in which the softening temperature of the wire rod of the wire rod (for example, φ2.6 mm) after cold drawing is 130 ° C. or higher and 148 ° C. is manufactured, and this soft dilute copper is manufactured. Alloy wires are used for the production of copper bonding wires.

工業的に用いるためには、電気銅から製造した工業的に利用される純度の軟質銅線の導電率として、98%IACS以上の導電率が要求される。また、軟化温度は工業的価値から判断して148℃以下である。6Nの高純度銅の軟化温度は127℃〜130℃であるので、得られたデータから軟化温度の上限値を130℃に設定する。工業的に利用されている軟質銅線と高純度銅との導電率、軟化温度のわずかな違いは、6Nの高純度銅には含まれていない不可避的不純物の存在に起因する。   In order to use industrially, the electrical conductivity of 98% IACS or more is requested | required as electrical conductivity of the soft copper wire of the purity utilized industrially manufactured from electrolytic copper. Further, the softening temperature is 148 ° C. or less judging from industrial value. Since the softening temperature of 6N high-purity copper is 127 ° C to 130 ° C, the upper limit value of the softening temperature is set to 130 ° C from the obtained data. The slight difference in electrical conductivity and softening temperature between soft copper wire and high-purity copper that are used industrially is due to the presence of inevitable impurities not contained in 6N high-purity copper.

ベース材の銅は、シャフト炉で溶解された後、還元状態で樋に流すことが好ましい。すなわち、還元ガス(例えば、CO)雰囲気下において、希薄合金の硫黄濃度、チタン濃度、及び酸素濃度を制御しつつ鋳造すると共に、材料に圧延加工を施すことにより、ワイヤロッドを安定的に製造することが好ましい。なお、銅酸化物が混入すること、及び/又は粒子サイズが所定サイズより大きいことは、製造される銅ボンディングワイヤの品質を低下させる。   After the base material copper is melted in the shaft furnace, it is preferably flowed into the trough in a reduced state. That is, in a reducing gas (for example, CO) atmosphere, the wire rod is stably manufactured by casting while controlling the sulfur concentration, titanium concentration, and oxygen concentration of the dilute alloy and rolling the material. It is preferable. In addition, that copper oxide mixes and / or that a particle size is larger than predetermined size will reduce the quality of the copper bonding wire manufactured.

ここで、銅ボンディングワイヤにチタンを添加物として添加した理由は次のとおりである。すなわち、(a)チタンは溶融銅の中で硫黄と結合することにより化合物になりやすく、(b)Zr等の他の添加金属に比べて加工が容易で扱いやすく、(c)Nb等に比べて安価であり、(d)酸化物を核として析出しやすいからである。   Here, the reason for adding titanium as an additive to the copper bonding wire is as follows. That is, (a) titanium is easily compounded by bonding with sulfur in molten copper, (b) easier to handle and easier to handle than other additive metals such as Zr, and (c) compared to Nb, etc. This is because it is inexpensive and (d) the oxide is easily deposited as a nucleus.

以上より、生産性が高く、導電率、軟化温度、表面品質に優れた実用的な軟質希薄銅合金材料を、本実施の形態に係る銅ボンディングワイヤの原料として得ることができる。なお、軟質希薄銅合金材料の表面にめっき層を形成することもできる。めっき層は、例えば、パラジウム、亜鉛、ニッケル、金、白金、銀等の貴金属を主成分とする材料、又はPbフリーめっきを用いることができる。更に、軟質希薄銅合金材料の形状は特に限定されず、断面丸形状、棒状、又は平角導体上にすることができる。   As described above, a practical soft dilute copper alloy material having high productivity and excellent conductivity, softening temperature, and surface quality can be obtained as a raw material for the copper bonding wire according to the present embodiment. A plating layer can also be formed on the surface of the soft dilute copper alloy material. For the plating layer, for example, a material mainly containing a noble metal such as palladium, zinc, nickel, gold, platinum, silver, or Pb-free plating can be used. Further, the shape of the soft dilute copper alloy material is not particularly limited, and can be a round cross-section, a rod shape, or a flat conductor.

また、本実施の形態では、SCR連続鋳造圧延法によりワイヤロッドを作製すると共に、熱間圧延にて軟質材を作製したが、双ロール式連続鋳造圧延法又はプロペルチ式連続鋳造圧延法を採用することもできる。   In the present embodiment, the wire rod is manufactured by the SCR continuous casting and rolling method, and the soft material is manufactured by hot rolling, but the twin roll type continuous casting rolling method or the Properti type continuous casting and rolling method is adopted. You can also.

(実施の形態の効果)
本実施の形態に係る銅ボンディングワイヤは、銅の高純度化(99.9999質量%以上)処理を要さず、安価な連続鋳造圧延法により高い導電率を実現することができるので、低コスト化ができる。銅ボンディングワイヤは、高い導電率の素材から形成されるので、放熱性の向上により半導体素子の温度上昇を抑制でき信頼性が向上する。添加したチタン(Ti)が不純物である硫黄(S)をトラップするので、銅母相(マトリックス)が高純度化し、素材の軟質特性が向上する。このため、ボンディング時にシリコンチップ上の脆弱なアルミパットにダメージを与えることを抑制できる。
(Effect of embodiment)
The copper bonding wire according to the present embodiment does not require copper purification (99.9999% by mass or more), and can realize high conductivity by an inexpensive continuous casting and rolling method. Can be made. Since the copper bonding wire is formed from a material having a high conductivity, the temperature rise of the semiconductor element can be suppressed by improving the heat dissipation, and the reliability is improved. Since the added titanium (Ti) traps sulfur (S), which is an impurity, the copper matrix (matrix) is highly purified, and the soft properties of the material are improved. For this reason, it is possible to suppress damage to the fragile aluminum pad on the silicon chip during bonding.

また、本実施の形態に係る銅ボンディングワイヤは、Tiを含み残部が不可避的不純物からなる軟質希薄銅合金材料において、加工前の結晶組織が表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることから、銅線表層の結晶粒の微細化により屈曲性が向上するので、ワイヤの疲労特性を向上させることができ、製品の信頼性を向上させることができる。   The copper bonding wire according to the present embodiment is a soft dilute copper alloy material containing Ti and the balance of inevitable impurities, and the average crystal grain size in the surface layer from the surface to a depth of 50 μm is 20 μm. Since it is the following, since flexibility is improved by refinement | miniaturization of the crystal grain of a copper wire surface layer, the fatigue characteristic of a wire can be improved and the reliability of a product can be improved.

また、本実施の形態に係る銅ボンディングワイヤは、車載用パワーモジュール用途のφ0.3mm程度のAlボンディングワイヤの代替としても適用でき、素材の高熱伝導性によるワイヤ径の減少に伴うモジュールの小型化、熱伝導性向上による放熱性アップによって電流密度増大による接続信頼性の低下を回避できる。   In addition, the copper bonding wire according to the present embodiment can be applied as an alternative to an Al bonding wire of about φ0.3 mm for use in an in-vehicle power module, and the module can be downsized due to a decrease in wire diameter due to high thermal conductivity of the material. In addition, a reduction in connection reliability due to an increase in current density can be avoided by improving heat dissipation by improving thermal conductivity.

表1は実験条件と結果とを示す。   Table 1 shows the experimental conditions and results.

まず、実験材として、表1に示した酸素濃度、硫黄濃度、チタン濃度を有するφ8mmの銅線(ワイヤロッド、加工度99.3%)を作製した。φ8mmの銅線は、SCR連続鍛造圧延により、熱間圧延加工を施したものである。Tiは、シャフト炉で溶解された銅溶湯を還元ガス雰囲気で樋に流し、樋に流した銅溶湯を同じ還元ガス雰囲気の鋳造ポットに導き、この鋳造ポットにて、Tiを添加した後、これをノズルを通して鋳造輪と無端ベルトとの間に形成される鋳型にて鋳塊ロッドを作成した。この鋳塊ロッドを熱間圧延加工してφ8mmの銅線を作成したものである。次に、各実験材に冷間伸線加工を施した。これにより、φ2.6mmサイズの銅線を作製した。そして、φ2.6mmサイズの銅線の半軟化温度と導電率とを測定すると共に、φ8mmの銅線における分散粒子サイズを評価した。   First, as an experimental material, a φ8 mm copper wire (wire rod, workability 99.3%) having the oxygen concentration, sulfur concentration, and titanium concentration shown in Table 1 was prepared. The φ8 mm copper wire is hot rolled by SCR continuous forging. Ti flows the molten copper melted in the shaft furnace into the reed in the reducing gas atmosphere, guides the molten copper flowing in the reed to the casting pot of the same reducing gas atmosphere, and after adding Ti in this casting pot, An ingot rod was made with a mold formed between the cast ring and the endless belt through the nozzle. This ingot rod is hot-rolled to produce a φ8 mm copper wire. Next, cold drawing was applied to each experimental material. Thus, a copper wire having a size of φ2.6 mm was produced. And while measuring the semi-softening temperature and electrical conductivity of a copper wire of φ 2.6 mm size, the dispersed particle size in the copper wire of φ 8 mm was evaluated.

酸素濃度は、酸素分析器(レコ(Leco(登録商標)酸素分析器)で測定した。硫黄、チタンの各濃度はICP発光分光分析で分析した。   The oxygen concentration was measured with an oxygen analyzer (Leco (registered trademark) oxygen analyzer), and the concentrations of sulfur and titanium were analyzed by ICP emission spectroscopic analysis.

φ2.6mmサイズにおける半軟化温度の測定は、400℃以下で各温度1時間の保持後、水中急冷し、引張試験を実施し、その結果から求めた。室温での引張試験の結果と400℃で1時間のオイルバス熱処理した軟質銅線の引張試験の結果を用いて求め、この2つの引張試験の引張強さを足して2で割った値を示す強度に対応する温度を半軟化温度と定義して求めた。   The measurement of the semi-softening temperature in the φ2.6 mm size was obtained from the result of quenching in water after holding each temperature at 400 ° C. or lower for 1 hour and conducting a tensile test. The value obtained by using the result of the tensile test at room temperature and the result of the tensile test of the soft copper wire heat-treated at 400 ° C. for 1 hour, and adding the tensile strengths of the two tensile tests and dividing by two. The temperature corresponding to the strength was determined as the semi-softening temperature.

実施の形態で述べたとおり、銅ボンディングワイヤ内に分散している分散粒子のサイズは小さいことが好ましく、また、銅ボンディングワイヤ内に分散粒子が多く分散していることが好ましい。したがって、直径500nm以下の分散粒子が90%以上である場合を合格とした。ここに「サイズ」とは化合物のサイズであり、化合物の形状の長径と短径のうちの長径のサイズを意味する。また、「粒子」とは、前記TiO、TiO、TiS、Ti−O−Sのことを示す。また、「90%」とは、全体の粒子数に対しての該当粒子数の割合を示すものである。 As described in the embodiment, the size of the dispersed particles dispersed in the copper bonding wire is preferably small, and it is preferable that many dispersed particles are dispersed in the copper bonding wire. Therefore, the case where the number of dispersed particles having a diameter of 500 nm or less is 90% or more was regarded as acceptable. Here, the “size” is the size of the compound and means the size of the major axis of the major axis and minor axis of the shape of the compound. The “particles” refer to the TiO, TiO 2 , TiS, and Ti—O—S. “90%” indicates the ratio of the number of corresponding particles to the total number of particles.

表1において比較例1は、実験室でAr雰囲気において直径φ8mmの銅線を試作した結果であり、銅溶湯にTiを0〜18mass ppm添加した。Tiを添加していない銅線の半軟化温度が215℃であったのに対し、13mass ppmのTiを添加した銅線の軟化温度は160℃まで低下した(実験した中では最小温度である。)。表1に示すとおり、Ti濃度が15mass ppm、18mass ppmに増加するにつれ、半軟化温度も上昇しており、要求されている軟化温度である148℃以下を実現することはできなかった。また、工業的に要求されている導電率は98%IACS以上であったものの、総合評価は不合格(以下、不合格を「×」と表す)であった。   In Table 1, Comparative Example 1 is the result of trial manufacture of a copper wire having a diameter of 8 mm in an Ar atmosphere in a laboratory, and Ti was added in an amount of 0 to 18 mass ppm to the molten copper. The semi-softening temperature of the copper wire to which Ti was not added was 215 ° C., whereas the softening temperature of the copper wire to which 13 mass ppm of Ti was added decreased to 160 ° C. (the lowest temperature in the experiment). ). As shown in Table 1, as the Ti concentration increased to 15 mass ppm and 18 mass ppm, the semi-softening temperature also increased, and the required softening temperature of 148 ° C. or lower could not be realized. Moreover, although the electrical conductivity requested | required industrially was 98% IACS or more, comprehensive evaluation was disqualified (henceforth, a disqualification is represented as "x").

そこで、比較例2として、SCR連続鋳造圧延法を用い、酸素濃度を7〜8mass ppmに調整したφ8mm銅線(ワイヤロッド)を試作した。   Therefore, as Comparative Example 2, a Φ8 mm copper wire (wire rod) having an oxygen concentration adjusted to 7 to 8 mass ppm was prototyped using the SCR continuous casting and rolling method.

比較例2においては、SCR連続鋳造圧延法で試作した中でTi濃度が最小(つまり、0mass ppm、2mass ppm)の銅線であり、導電率は102%IACS以上であったものの、半軟化温度が164℃、157℃であり、要求されている148℃以下ではなかったことから、総合評価は「×」であった。   In Comparative Example 2, it was a copper wire having a minimum Ti concentration (that is, 0 mass ppm, 2 mass ppm) among the prototype manufactured by the SCR continuous casting and rolling method, and the conductivity was 102% IACS or more, but the semi-softening temperature. Was 164 ° C. and 157 ° C., and was not less than the required 148 ° C., so the overall evaluation was “x”.

実施例1においては、酸素濃度と硫黄濃度とが略一致(つまり、酸素濃度:7〜8mass ppm、硫黄濃度:5mass ppm)すると共に、Ti濃度が4〜55mass ppmの範囲内で異なる銅線を試作した。   In Example 1, the oxygen concentration and the sulfur concentration substantially coincide (that is, the oxygen concentration: 7 to 8 mass ppm, the sulfur concentration: 5 mass ppm), and different copper wires are used within the range of the Ti concentration of 4 to 55 mass ppm. Prototype.

Ti濃度が4〜55mass ppmの範囲では、軟化温度が148℃以下であり、導電率も98%IACS以上102%IACS以上であり、分散粒子サイズは500nm以下の粒子が90%以上であり良好であった。また、ワイヤロッドの表面もきれい(つまり、表面が滑らか)であり、いずれも製品性能を満たしていたので、総合評価は合格(以下、合格を「○」と表す)であった。   When the Ti concentration is in the range of 4 to 55 mass ppm, the softening temperature is 148 ° C. or lower, the conductivity is 98% IACS or higher and 102% IACS or higher, and the dispersed particle size is 90% or higher for particles of 500 nm or less. there were. Moreover, since the surface of the wire rod was also clean (that is, the surface was smooth) and all satisfied the product performance, the comprehensive evaluation was a pass (hereinafter, the pass was expressed as “◯”).

ここで、導電率100%IACS以上を満たす銅線は、Ti濃度が4〜37mass ppmの場合であり、102%IACS以上を満たす銅線は、Ti濃度が4〜25mass ppmの場合であった。Ti濃度が13mass ppmの場合に導電率は最大値である102.4%IACSを示し、この濃度の周辺では、導電率はわずかに低い値であった。これは、Ti濃度が13mass ppmの場合に、銅の中の硫黄分を化合物として捕捉することで、高純度銅(6N)に近い導電率を示すためである。   Here, the copper wire satisfying an electrical conductivity of 100% IACS or more was a case where the Ti concentration was 4 to 37 mass ppm, and the copper wire satisfying the 102% IACS or more was a case where the Ti concentration was 4 to 25 mass ppm. When the Ti concentration was 13 mass ppm, the conductivity showed a maximum value of 102.4% IACS, and the conductivity was slightly lower around this concentration. This is because, when the Ti concentration is 13 mass ppm, by capturing the sulfur content in the copper as a compound, the conductivity is close to that of high-purity copper (6N).

よって、酸素濃度を高くし、Tiを添加することで、半軟化温度と導電率との双方を満足させることができる。   Therefore, by increasing the oxygen concentration and adding Ti, both the semi-softening temperature and the conductivity can be satisfied.

比較例3においては、Ti濃度を60mass ppmにした銅線を試作した。比較例3に係る銅線は、導電率は要求を満たすものの、半軟化温度は148℃以上であり、製品性能を満たしていなかった。更に、ワイヤロッドの表面の傷も多く、製品として採用することは困難であった。よって、Tiの添加量は60mass ppm未満が好ましいことが示された。   In Comparative Example 3, a copper wire having a Ti concentration of 60 mass ppm was prototyped. Although the copper wire which concerns on the comparative example 3 satisfy | fills a request | requirement, semi-softening temperature is 148 degreeC or more, and did not satisfy | fill product performance. Furthermore, there are many scratches on the surface of the wire rod, making it difficult to adopt as a product. Therefore, it was shown that the addition amount of Ti is preferably less than 60 mass ppm.

実施例2に係る銅線おいては、硫黄濃度を5mass ppmに設定すると共に、Ti濃度を13〜10mass ppmの範囲で制御して、酸素濃度を変更することにより酸素濃度の影響を検討した。   In the copper wire which concerns on Example 2, while setting sulfur concentration to 5 mass ppm and controlling Ti concentration in the range of 13-10 mass ppm, the influence of oxygen concentration was examined by changing oxygen concentration.

酸素濃度に関しては、2mass ppmを超え30mass ppm以下まで、大きく濃度が異なる銅線をそれぞれ作製した。ただし、酸素濃度が2mass ppm未満の銅線は生産が困難で安定的に製造できないので、総合評価は「△」とした(なお、「△」は「○」と「×」との中間の評価である。)。また、酸素濃度を30mass ppmにしても半軟化温度及び導電率の双方とも、要求を満たした。   Regarding the oxygen concentration, copper wires having greatly different concentrations from 2 mass ppm to 30 mass ppm were prepared. However, since copper wires with an oxygen concentration of less than 2 mass ppm are difficult to produce and cannot be stably manufactured, the overall evaluation is “△” (“△” is an intermediate evaluation between “○” and “×”) .) Further, even when the oxygen concentration was 30 mass ppm, both the semi-softening temperature and the conductivity met the requirements.

比較例4においては、酸素濃度が40mass ppmの場合に、ワイヤロッドの表面の傷が多く、製品として採用することができない状態であった。   In Comparative Example 4, when the oxygen concentration was 40 mass ppm, there were many scratches on the surface of the wire rod, and the product could not be used as a product.

よって、酸素濃度を2を超え30mass ppm以下の範囲にすることで、半軟化温度、導電率102%IACS以上、分散粒子サイズのいずれの特性も満足させることができ、また、ワイヤロッドの表面もきれいであり、製品性能を満足させることができることが示された。   Therefore, by setting the oxygen concentration in the range of more than 2 and 30 mass ppm or less, all the characteristics of the semi-softening temperature, the electrical conductivity of 102% IACS or more, and the dispersed particle size can be satisfied. It was shown to be clean and satisfy product performance.

実施例3は、酸素濃度とTi濃度とを互いに近づけた濃度に設定すると共に、硫黄濃度を4〜20mass ppmの範囲内で変更した銅線である。実施例3においては、硫黄濃度が2mass ppmより小さい銅線については、原料の制約上、実現できなかった。しかしながら、Ti濃度と硫黄濃度とをそれぞれ制御することで、半軟化温度及び導電率の双方とも、要求を満たすことができた。   Example 3 is a copper wire in which the oxygen concentration and the Ti concentration are set close to each other and the sulfur concentration is changed within a range of 4 to 20 mass ppm. In Example 3, a copper wire having a sulfur concentration of less than 2 mass ppm could not be realized due to restrictions on raw materials. However, by controlling the Ti concentration and the sulfur concentration, the requirements for both the semi-softening temperature and the conductivity could be satisfied.

比較例5においては、硫黄濃度が18mass ppmであり、Ti濃度が13mass ppmである場合には、半軟化温度が162℃と高く、要求される特性を満足しなかった。また、特に、ワイヤロッドの表面品質が悪く、製品化は困難であった。   In Comparative Example 5, when the sulfur concentration was 18 mass ppm and the Ti concentration was 13 mass ppm, the semi-softening temperature was as high as 162 ° C., and the required characteristics were not satisfied. In particular, the surface quality of the wire rod was poor and it was difficult to produce a product.

以上より、硫黄濃度が2〜12mass ppmの範囲の場合には、半軟化温度、導電率102%IACS以上、分散粒子サイズのいずれの特性も満足させることができ、また、ワイヤロッドの表面もきれいであり、製品性能を満足させることができることが示された。   From the above, when the sulfur concentration is in the range of 2 to 12 mass ppm, the semi-softening temperature, the conductivity of 102% IACS or more, and the dispersed particle size can be satisfied, and the surface of the wire rod is also clean. It was shown that the product performance can be satisfied.

比較例6は、6Nの高純度銅を用いた銅線である。比較例6に係る銅線においては、半軟化温度が127℃〜130℃であり、導電率が102.8%IACSであり、分散粒子サイズも500nm以下の粒子は全く認められなかった。   Comparative Example 6 is a copper wire using 6N high-purity copper. In the copper wire according to Comparative Example 6, the semi-softening temperature was 127 ° C. to 130 ° C., the conductivity was 102.8% IACS, and no particles having a dispersed particle size of 500 nm or less were observed.

表2には、製造条件としての溶融銅の温度と圧延温度とを示す。   Table 2 shows the temperature of molten copper and the rolling temperature as production conditions.

比較例7においては、溶銅温度が1330℃〜1350℃で、かつ、圧延温度が950〜600℃でφ8mmのワイヤロッドを作製した。比較例7に係るワイヤロッドは、半軟化温度及び導電率は要求を満たすものの、分散粒子サイズに関しては1000nm程度の粒子が存在しており、500nm以上の粒子も10%を超えて存在していた。よって、実施例7に係るワイヤロッドは不適と判定した。   In Comparative Example 7, a wire rod having a molten copper temperature of 1330 ° C. to 1350 ° C. and a rolling temperature of 950 to 600 ° C. and a diameter of 8 mm was produced. Although the wire rod according to Comparative Example 7 satisfies the requirements for the semi-softening temperature and the electrical conductivity, there are about 1000 nm of particles with respect to the dispersed particle size, and more than 10% of the particles are over 500 nm. . Therefore, the wire rod according to Example 7 was determined to be inappropriate.

実施例4においては、溶銅温度を1200℃〜1320℃の温度範囲で制御すると共に、圧延温度を880℃〜550℃の温度範囲に制御してφ8mmのワイヤロッドを作製した。実施例4に係るワイヤロッドは、ワイヤロッド表面の品質、分散粒子サイズが良好であり、総合評価は「○」であった。   In Example 4, the molten copper temperature was controlled in the temperature range of 1200 ° C. to 1320 ° C., and the rolling temperature was controlled in the temperature range of 880 ° C. to 550 ° C. to produce a φ8 mm wire rod. The wire rod according to Example 4 had good wire rod surface quality and dispersed particle size, and the overall evaluation was “◯”.

比較例8においては、溶銅温度を1100℃に制御すると共に、圧延温度を880℃〜550℃の温度範囲に制御してφ8mmのワイヤロッドを作製した。比較例8に係るワイヤロッドは、溶銅温度が低いことからワイヤロッドの表面の傷が多く製品としては適さなかった。これは、溶銅温度が低いことから、圧延時に傷が発生しやすいことに起因するからである。   In Comparative Example 8, the molten copper temperature was controlled to 1100 ° C., and the rolling temperature was controlled to a temperature range of 880 ° C. to 550 ° C. to produce a φ8 mm wire rod. The wire rod according to Comparative Example 8 was not suitable as a product because there were many scratches on the surface of the wire rod because the molten copper temperature was low. This is because, since the molten copper temperature is low, scratches are likely to occur during rolling.

比較例9においては、溶銅温度を1300℃に制御すると共に、圧延温度を950℃〜600℃の温度範囲に制御してφ8mmのワイヤロッドを作製した。比較例9に係るワイヤロッドは、熱間圧延工程における温度が高いことからワイヤロッドの表面の品質は良好であるものの、分散粒子サイズには大きいサイズが含まれ、総合評価は「×」になった。   In Comparative Example 9, the molten copper temperature was controlled to 1300 ° C. and the rolling temperature was controlled to a temperature range of 950 ° C. to 600 ° C. to produce a φ8 mm wire rod. The wire rod according to Comparative Example 9 has a high quality in the surface of the wire rod because the temperature in the hot rolling process is high, but the dispersed particle size includes a large size, and the overall evaluation is “x”. It was.

比較例10においては、溶銅温度を1350℃に制御すると共に、圧延温度を880℃〜550℃の温度範囲に制御してφ8mmのワイヤロッドを作製した。比較例10に係るワイヤロッドは、溶銅温度が高いことに起因して分散粒子サイズに大きなサイズが含まれ、総合評価は「×」になった。   In Comparative Example 10, the molten copper temperature was controlled to 1350 ° C., and the rolling temperature was controlled to a temperature range of 880 ° C. to 550 ° C. to produce a φ8 mm wire rod. The wire rod according to Comparative Example 10 had a large dispersed particle size due to the high molten copper temperature, and the overall evaluation was “x”.

(軟質希薄銅合金線の軟質特性)
表3は、無酸素銅線を用いた比較例11に係るワイヤロッドと、低酸素銅に13mass ppmのTiを含有させた軟質希薄銅合金線から作製した実施例5に係るワイヤロッドとについて、異なる焼鈍温度で1時間の焼鈍を施した後のビッカース硬さ(Hv)を測定した結果を示す。
(Soft characteristics of soft dilute copper alloy wire)
Table 3 shows the wire rod according to Comparative Example 11 using an oxygen-free copper wire, and the wire rod according to Example 5 made from a soft dilute copper alloy wire containing 13 mass ppm Ti in low oxygen copper. The result of having measured the Vickers hardness (Hv) after annealing for 1 hour at different annealing temperatures is shown.

実施例5に係るワイヤロッドは、表1の実施例1に記載した合金組成と同一の合金組成を有する。なお、試料としては、2.6mm径の試料を用いた。表3を参照すると、焼鈍温度が400℃の場合及び600℃の場合に、比較例11に係るワイヤロッドと実施例5に係るワイヤロッドとのビッカース硬さは同等レベルであることが示された。したがって、実施例5に係るワイヤロッドは十分な軟質特性を有すると共に、無酸素銅線との比較においても、特に焼鈍温度が400℃を超える温度範囲においては優れた軟質特性を発揮することが示された。   The wire rod according to Example 5 has the same alloy composition as the alloy composition described in Example 1 of Table 1. As a sample, a 2.6 mm diameter sample was used. Referring to Table 3, when the annealing temperature was 400 ° C. and 600 ° C., it was shown that the Vickers hardness of the wire rod according to Comparative Example 11 and the wire rod according to Example 5 was at the same level. . Therefore, the wire rod according to Example 5 has sufficient soft characteristics, and also shows excellent soft characteristics in the temperature range where the annealing temperature exceeds 400 ° C. in comparison with the oxygen-free copper wire. It was done.

(軟質希薄銅合金線の耐力、及び屈曲寿命についての検討)
表4は、無酸素銅線を用いた比較例12に係るワイヤロッドと、低酸素銅に13mass ppmのTiを含有させた軟質希薄銅合金線を用いて作製した実施例6に係るワイヤロッドとについて、異なる焼鈍温度で1時間の焼鈍を施した後の0.2%耐力値の推移を測定した結果を示す。なお、試料としては、2.6mm径の試料を用いた。また、実施例6に係るワイヤロッドは、表1の実施例1に記載した合金組成と同一の合金組成を有する。
(Examination of yield strength and bending life of soft dilute copper alloy wire)
Table 4 shows a wire rod according to Comparative Example 12 using an oxygen-free copper wire, and a wire rod according to Example 6 manufactured using a soft dilute copper alloy wire containing 13 mass ppm Ti in low oxygen copper. Shows the results of measuring the transition of 0.2% proof stress after annealing for 1 hour at different annealing temperatures. As a sample, a 2.6 mm diameter sample was used. Further, the wire rod according to Example 6 has the same alloy composition as the alloy composition described in Example 1 of Table 1.

表4を参照すると、焼鈍温度が400℃及び600℃の場合に、比較例12に係るワイヤロッドと実施例6に係るワイヤロッドとの0.2%耐力値が同等レベルであることが示された。   Referring to Table 4, when the annealing temperature is 400 ° C. and 600 ° C., it is shown that the 0.2% proof stress value of the wire rod according to Comparative Example 12 and the wire rod according to Example 6 is at the same level. It was.

図7は、屈曲疲労試験の概要を示し、図8は、400℃で1時間の焼鈍処理を施した後の、無酸素銅を用いた比較例13に係るワイヤロッドと、低酸素銅にTiを添加した軟質希薄銅合金線を用いて作製した実施例7に係るワイヤロッドとの屈曲寿命を測定した結果を示す。   FIG. 7 shows an outline of the bending fatigue test, and FIG. 8 shows a wire rod according to Comparative Example 13 using oxygen-free copper after annealing at 400 ° C. for 1 hour, and low oxygen copper with Ti. The result of having measured the bending life with the wire rod which concerns on Example 7 produced using the soft dilute copper alloy wire which added Si is shown.

試料としては、0.26mm径の線材に対して焼鈍温度400℃で1時間の焼鈍を施した試料を用い、比較例13に係るワイヤロッドは比較例11に係るワイヤロッドと同一の成分組成を有し、実施例7に係るワイヤロッドは実施例5に係るワイヤロッドと同一の成分組成を有する。   As a sample, a sample obtained by annealing a 0.26 mm diameter wire rod at an annealing temperature of 400 ° C. for 1 hour, the wire rod according to Comparative Example 13 has the same component composition as the wire rod according to Comparative Example 11. And the wire rod according to Example 7 has the same component composition as the wire rod according to Example 5.

屈曲寿命の測定は、屈曲疲労試験を用いて実施した。屈曲疲労試験は、試料に荷重を負荷し、試料表面に引張と圧縮との繰り返し曲げひずみを与える試験である。具体的には、まず、図7の(A)に示すように、屈曲ヘッド14が備えるクランプ12に試料20を固定すると共に曲げ冶具(つまり、リング10)の間に試料20をセットする。そして、試料20に対し、錘16により荷重を負荷する。次に、図7の(B)に示すようにリング10を90度回転させることにより試料20に曲げを与える。この操作で、リング10に接している試料20の表面には圧縮ひずみが発生し、圧縮ひずみが発生している表面の反対側の表面には引張ひずみが発生する。   The bending life was measured using a bending fatigue test. The bending fatigue test is a test in which a load is applied to a sample and repeated bending strains of tension and compression are applied to the sample surface. Specifically, first, as shown in FIG. 7A, the sample 20 is fixed to the clamp 12 included in the bending head 14, and the sample 20 is set between the bending jigs (that is, the ring 10). Then, a load is applied to the sample 20 by the weight 16. Next, the sample 20 is bent by rotating the ring 10 by 90 degrees as shown in FIG. By this operation, compressive strain is generated on the surface of the sample 20 in contact with the ring 10, and tensile strain is generated on the surface opposite to the surface where the compressive strain is generated.

その後、再び図7の(A)の状態(つまり、試料20に曲げが加えられていない状態)に試料20は戻る。続いて、図7の(C)に示すように、図7の(B)における場合と反対方向にリング10を90度回転させることにより試料20に曲げを与える。この操作で、リング10に接している試料20の表面には圧縮ひずみが発生し、圧縮ひずみが発生している表面の反対側の表面には引張ひずみが発生する。そして、再び図7の(A)の状態に試料20は戻る。この屈曲疲労の1サイクル(なお、図7の(A)の状態から(B)の状態になり、(B)の状態から(A)の状態に戻り、(A)の状態から(C)の状態になり、(C)の状態から(A)の状態に戻るサイクルを1サイクルとする。)に要する時間は4秒である。   Thereafter, the sample 20 returns to the state shown in FIG. 7A (that is, the sample 20 is not bent). Subsequently, as shown in FIG. 7C, the sample 20 is bent by rotating the ring 10 by 90 degrees in the opposite direction to that in FIG. 7B. By this operation, compressive strain is generated on the surface of the sample 20 in contact with the ring 10, and tensile strain is generated on the surface opposite to the surface where the compressive strain is generated. Then, the sample 20 returns to the state shown in FIG. One cycle of this bending fatigue (Note that the state of (A) in FIG. 7 is changed to the state of (B), the state of (B) is returned to the state of (A), and the state of (A) is changed to the state of (C). The time required to enter the state and return from the state (C) to the state (A) is defined as one cycle).

表面曲げひずみは、「表面曲げひずみ(%)=r/(R+r)×100(%)」から算出される。なお、「R」は、素線曲げ半径(30mm)であり、「r」は、素線半径である。   The surface bending strain is calculated from “surface bending strain (%) = r / (R + r) × 100 (%)”. “R” is the strand bending radius (30 mm), and “r” is the strand radius.

図8に示すように、実施例7に係るワイヤロッドは、比較例13に係るワイヤロッドに比べて高い屈曲寿命特性を示した。   As shown in FIG. 8, the wire rod according to Example 7 showed higher flex life characteristics than the wire rod according to Comparative Example 13.

図9は、600℃で1時間の焼鈍処理を施した後の、無酸素銅を用いた比較例14に係るワイヤロッドと、低酸素銅にTiを添加した軟質希薄銅合金線を用いて作製した実施例8に係るワイヤロッドとの屈曲寿命を測定した結果を示す。   FIG. 9 is produced using a wire rod according to Comparative Example 14 using oxygen-free copper after annealing at 600 ° C. for 1 hour and a soft dilute copper alloy wire obtained by adding Ti to low-oxygen copper. The result of having measured the bending life with the wire rod which concerns on Example 8 was shown.

試料としては、0.26mm径の線材に対して焼鈍温度600℃で1時間の焼鈍を施した試料を用い、比較例14に係るワイヤロッドは比較例11に係るワイヤロッドと同一の成分組成を有し、実施例8に係るワイヤロッドは実施例5に係るワイヤロッドと同一の成分組成を有する。また、屈曲寿命の測定は、図8に示す測定方法と同様に実施した。その結果、実施例8に係るワイヤロッドは、比較例14に係るワイヤロッドに比べて高い屈曲寿命特性を示した。   As a sample, a sample obtained by annealing a 0.26 mm diameter wire rod at an annealing temperature of 600 ° C. for 1 hour, the wire rod according to Comparative Example 14 has the same component composition as the wire rod according to Comparative Example 11. And the wire rod according to Example 8 has the same component composition as the wire rod according to Example 5. Further, the bending life was measured in the same manner as the measuring method shown in FIG. As a result, the wire rod according to Example 8 exhibited higher bending life characteristics than the wire rod according to Comparative Example 14.

実施例7、実施例8、比較例13、及び比較例14に係るワイヤロッドの屈曲寿命測定の結果は、いずれの焼鈍条件下においても実施例7及び実施例8に係るワイヤロッドの方が、比較例13及び比較例14に係るワイヤロッドに比べて0.2%耐力値が大きい値を示すことに起因と理解できる。   The results of the bending life measurement of the wire rods according to Example 7, Example 8, Comparative Example 13, and Comparative Example 14 are the results of the wire rods according to Example 7 and Example 8 under any annealing conditions. It can be understood that the 0.2% proof stress value is larger than that of the wire rods according to Comparative Example 13 and Comparative Example 14.

(軟質希薄銅合金線の結晶構造についての検討)
図11は、比較例14に係る試料の幅方向の断面組織を示し、図10は、実施例8に係る試料の幅方向の断面組織を示す。
(Examination on crystal structure of soft dilute copper alloy wire)
11 shows a cross-sectional structure in the width direction of the sample according to Comparative Example 14, and FIG. 10 shows a cross-sectional structure in the width direction of the sample according to Example 8.

図10を参照すると、比較例14の結晶構造は、表面部から中央部にかけて全体的に大きさの等しい結晶粒が均一に並んでいることが分かる。一方、実施例8の結晶構造は、全体的に結晶粒の大きさがまばらであり、試料の断面方向の表面付近に薄く形成されている層における結晶粒サイズが内部の結晶粒サイズに比べて極めて小さくなっている。   Referring to FIG. 10, it can be seen that in the crystal structure of Comparative Example 14, crystal grains having the same size are arranged uniformly from the surface portion to the center portion. On the other hand, in the crystal structure of Example 8, the size of the crystal grains is sparse as a whole, and the crystal grain size in the layer formed thin near the surface in the cross-sectional direction of the sample is smaller than the internal crystal grain size. It is extremely small.

本発明者は、比較例14には形成されていない表層に現れた微細結晶粒層が実施例8の屈曲特性の向上に寄与しているものと考えている。   The inventor believes that the fine crystal grain layer that appears in the surface layer that is not formed in Comparative Example 14 contributes to the improvement of the bending characteristics of Example 8.

通常、焼鈍温度600℃で1時間の焼鈍処理を実行すれば、比較例14のように再結晶により均一に粗大化した結晶粒が形成されると理解される。しかし、本実施例においては、焼鈍温度600℃で1時間の焼鈍処理を実行しても表層には微細結晶粒層が残存している。したがって、本実施例では、軟質銅材でありながら屈曲特性に優れた軟質希薄銅合金材料が得られたと考えられる。   Usually, it is understood that if an annealing process is performed at an annealing temperature of 600 ° C. for 1 hour, crystal grains uniformly coarsened by recrystallization as in Comparative Example 14 are formed. However, in this example, even if an annealing process is performed at an annealing temperature of 600 ° C. for 1 hour, a fine crystal grain layer remains on the surface layer. Therefore, in the present Example, it is thought that the soft dilute copper alloy material which was a soft copper material and was excellent in the bending characteristic was obtained.

また、図10及び図11に示す結晶構造の断面写真を基に、実施例8及び比較例14に係る試料の表層における平均結晶粒サイズを測定した。   In addition, based on the cross-sectional photographs of the crystal structure shown in FIGS. 10 and 11, the average crystal grain size in the surface layer of the samples according to Example 8 and Comparative Example 14 was measured.

図12は、表層における平均結晶粒サイズの測定方法の概要を示す。   FIG. 12 shows an outline of a method for measuring the average grain size in the surface layer.

図12に示すように、0.26mm径の幅方向断面の表面から深さ方向に10μm間隔で50μmの深さまでの長さ1mmの線上の範囲で、結晶粒サイズを測定した。そして、各測定値(実測値)から平均値を求め、この平均値を平均結晶粒サイズにした。   As shown in FIG. 12, the crystal grain size was measured in a range of 1 mm in length from the surface of the cross section in the width direction of 0.26 mm diameter to the depth of 50 μm at 10 μm intervals in the depth direction. And the average value was calculated | required from each measured value (actually measured value), and this average value was made into the average crystal grain size.

測定の結果、比較例14の表層における平均結晶粒サイズは、50μmであったのに対し、実施例8の表層における平均結晶粒サイズは、10μmであり、大きく異なっていた。表層の平均結晶粒サイズが細かいことにより、屈曲疲労試験による亀裂の進展が抑制され、屈曲疲労寿命が延びたと考えられる(なお、結晶粒サイズが大きいと、結晶粒界に沿って亀裂が進展する。しかし、結晶粒サイズが小さいと亀裂の進展方向が変わるので、進展が抑制される。)。このことが、上述のとおり、比較例と実施例との屈曲特性の面で大きな相違が生じた理由であると考えられる。   As a result of the measurement, the average crystal grain size in the surface layer of Comparative Example 14 was 50 μm, whereas the average crystal grain size in the surface layer of Example 8 was 10 μm, which was greatly different. It is thought that the growth of cracks in the bending fatigue test was suppressed due to the fine average grain size of the surface layer, and the bending fatigue life was extended (in addition, if the grain size is large, cracks propagate along the grain boundaries) However, if the crystal grain size is small, the direction of crack growth changes, so the growth is suppressed.) As described above, this is considered to be the reason for the great difference in the bending characteristics between the comparative example and the example.

また、2.6mm径である実施例6及び比較例12の表層における平均結晶粒サイズは、2.6mm径の幅方向断面の表面から深さ方向に50μmの深さのところの長さ10mmの範囲での結晶粒サイズを測定した。   The average crystal grain size in the surface layer of Example 6 and Comparative Example 12 having a diameter of 2.6 mm is 10 mm in length at a depth of 50 μm in the depth direction from the surface of the cross section in the width direction of 2.6 mm diameter. The grain size in the range was measured.

測定の結果、比較例12の表層における平均結晶粒サイズは100μmであったのに対し、実施例6の表層における平均結晶粒サイズは20μmであった。   As a result of the measurement, the average crystal grain size in the surface layer of Comparative Example 12 was 100 μm, whereas the average crystal grain size in the surface layer of Example 6 was 20 μm.

本実施例の効果を奏するには、表層の平均結晶粒サイズの上限値としては20μm以下が好ましい。また、製造上の限界値を考慮すると、5μm以上の平均結晶粒サイズであることが好ましい。   In order to achieve the effect of the present embodiment, the upper limit value of the average grain size of the surface layer is preferably 20 μm or less. In consideration of the manufacturing limit, the average grain size is preferably 5 μm or more.

(銅ボンディングワイヤの適用例)
表1に示す実施例1の上から3番目の素材(φ2.6mm)に300℃で1時間の焼鈍処理を施した後、φ0.025mmまで伸線加工を施し、400℃で10〜60秒の走行焼鈍を施した。この工程により、銅ボンディングワイヤを作製した。
(Application example of copper bonding wire)
The third material (φ2.6 mm) from the top of Example 1 shown in Table 1 was annealed at 300 ° C. for 1 hour, then drawn to φ0.025 mm, and at 400 ° C. for 10 to 60 seconds. Travel annealing was performed. By this step, a copper bonding wire was produced.

また、表1に示す実施例1の上から3番目の素材(φ2.6mm)をφ0.9mmまで伸線加工を施し、次に300℃で1時間の焼鈍処理を施した後、φ0.025mmまで更に伸線加工を施し、400℃で10〜60秒の走行焼鈍を施した。この工程により、銅ボンディングワイヤを作製した。   Further, the third material (φ2.6 mm) from the top in Example 1 shown in Table 1 was drawn to φ0.9 mm, and then annealed at 300 ° C. for 1 hour, and then φ0.025 mm. The wire was further drawn until it was annealed at 400 ° C. for 10 to 60 seconds. By this step, a copper bonding wire was produced.

なお、これら銅ボンディングワイヤの製造方法において素材は、溶銅温度1320℃、かつ、圧延温度880℃〜550℃でφ8mmのワイヤロッドを作製し、このワイヤロッドに伸線加工を施してφ2.6mmの伸線材を用いたものである。   In addition, in the manufacturing method of these copper bonding wires, the raw material is made into a φ8 mm wire rod at a molten copper temperature of 1320 ° C. and a rolling temperature of 880 ° C. to 550 ° C. The wire drawing material is used.

(銅ボンディングワイヤの半導体装置への適用例)
接続材料を介してフレーム(ダイ)上に半導体素子を実装し、実施例に係る銅のボンディングワイヤを用いて半導体素子の電極をインナーリードに接続した後、これら半導体素子、フレーム、インナーリード、及びワイヤをレジンで樹脂封止して半導体装置を製造した。
(Application example of copper bonding wire to semiconductor devices)
After mounting the semiconductor element on the frame (die) through the connecting material and connecting the electrode of the semiconductor element to the inner lead using the copper bonding wire according to the embodiment, the semiconductor element, the frame, the inner lead, and The wire was resin-sealed with resin to manufacture a semiconductor device.

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

10 リング
12 クランプ
14 屈曲ヘッド
16 錘
20 試料
10 Ring 12 Clamp 14 Bending head 16 Weight 20 Sample

Claims (8)

銅とTi、Mg、Zr、Nb、Ca、V、Ni、Mn、及びCrからなる群から選択された添加元素とを含み、残部が不可避的不純物である銅ボンディングワイヤであって、
前記銅ボンディングワイヤは、加工前の結晶組織がその表面から内部に向けて50μmの深さまでの平均結晶粒サイズが20μm以下である表層を有する銅ボンディングワイヤ。
A copper bonding wire comprising copper and an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr, the balance being inevitable impurities,
The said copper bonding wire is a copper bonding wire which has the surface layer whose average crystal grain size to the depth of 50 micrometers is 50 micrometers or less from the surface to the inside in the crystal structure before a process.
2mass ppm以上12mass ppm以下の硫黄と、2mass ppmを超え30mass ppm以下の酸素と、4mass ppm以上55mass ppm以下のチタンとを含む請求項1に記載の銅ボンディングワイヤ。   The copper bonding wire of Claim 1 containing 2 mass ppm or more and 12 mass ppm or less sulfur, 2 mass ppm or more and 30 mass ppm or less oxygen, and 4 mass ppm or more and 55 mass ppm or less titanium. 導電率が98%IACS以上である請求項2に記載の銅ボンディングワイヤ。   The copper bonding wire according to claim 2, wherein the electrical conductivity is 98% IACS or more. 前記硫黄(S)及び前記チタン(Ti)が、TiO、TiO、TiS、若しくはTi−O−S結合を有する化合物又は前記TiO、前記TiO、前記TiS、若しくは前記Ti−O−S結合を有する化合物の凝集物として含まれ、残部のTi及びSが固溶体として含まれる請求項3に記載の銅ボンディングワイヤ。 The sulfur (S) and the titanium (Ti) are TiO, TiO 2 , TiS, or a compound having a Ti—O—S bond, or the TiO, the TiO 2 , the TiS, or the Ti—O—S bond. The copper bonding wire according to claim 3, wherein the copper bonding wire is contained as an agglomerate of a compound having the remaining Ti and S as a solid solution. 前記TiO、前記TiO、前記TiS、前記Ti−O−Sの形の化合物又は凝集物が結晶粒内に分布しており、
前記TiOが、200nm以下のサイズを有し、
前記TiOが、1000nm以下のサイズを有し、
前記TiSが、200nm以下のサイズを有し、
前記Ti−O−Sの形の化合物又は凝集物が、300nm以下のサイズを有し、
500nm以下の粒子が90%以上である請求項4に記載の銅ボンディングワイヤ。
The TiO, the TiO 2 , the TiS, the compound of Ti—O—S or the aggregates are distributed in the crystal grains,
The TiO has a size of 200 nm or less;
The TiO 2 has a size of 1000 nm or less;
The TiS has a size of 200 nm or less;
The compound or aggregate in the form of Ti-O-S has a size of 300 nm or less,
The copper bonding wire according to claim 4, wherein the particle size of 500 nm or less is 90% or more.
Ti、Mg、Zr、Nb、Ca、V、Ni、Mn、及びCrからなる群から選択された添加元素を含む軟質希薄銅合金材料を1100℃以上1320℃以下の溶銅温度で溶湯にする溶湯製造工程と、
前記溶湯からワイヤロッドを作製するワイヤロッド作製工程と、
前記ワイヤロッドに880℃以下550℃以上の温度で熱間圧延を施す熱間圧延工程と、
前記熱間圧延工程を経た前記ワイヤロッドに伸線加工を施す伸線加工工程と
を備える銅ボンディングワイヤの製造方法。
Molten metal that melts a soft dilute copper alloy material containing an additive element selected from the group consisting of Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr at a molten copper temperature of 1100 ° C. or higher and 1320 ° C. or lower. Manufacturing process,
A wire rod production step of producing a wire rod from the molten metal;
A hot rolling step of hot rolling the wire rod at a temperature of 880 ° C. or lower and 550 ° C. or higher;
A method for producing a copper bonding wire, comprising: a wire drawing process for drawing the wire rod that has undergone the hot rolling process.
前記添加元素がTiであり、前記軟質希薄銅合金材料が、2mass ppm以上12mass ppm以下の硫黄と、2mass ppmを超えて30mass ppm以下の酸素と、4mass ppm以上55mass ppm以下のチタンとを含む請求項6に記載の銅ボンディングワイヤの製造方法。   The additive element is Ti, and the soft dilute copper alloy material includes sulfur of 2 mass ppm to 12 mass ppm, oxygen of more than 2 mass ppm to 30 mass ppm and titanium, and titanium of 4 mass ppm to 55 mass ppm. Item 7. A method for producing a copper bonding wire according to Item 6. 前記軟質希薄銅合金材料の軟化温度が、φ2.6mmのサイズで130℃以上148℃以下である請求項7に記載の銅ボンディングワイヤの製造方法。   The method for producing a copper bonding wire according to claim 7, wherein a softening temperature of the soft dilute copper alloy material is 130 ° C. or more and 148 ° C. or less in a size of φ2.6 mm.
JP2010235263A 2010-10-20 2010-10-20 Copper bonding wire Expired - Fee Related JP5556577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235263A JP5556577B2 (en) 2010-10-20 2010-10-20 Copper bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235263A JP5556577B2 (en) 2010-10-20 2010-10-20 Copper bonding wire

Publications (2)

Publication Number Publication Date
JP2012089685A true JP2012089685A (en) 2012-05-10
JP5556577B2 JP5556577B2 (en) 2014-07-23

Family

ID=46260982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235263A Expired - Fee Related JP5556577B2 (en) 2010-10-20 2010-10-20 Copper bonding wire

Country Status (1)

Country Link
JP (1) JP5556577B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159341A (en) * 2015-06-11 2015-09-03 日立金属株式会社 copper bonding wire
JP5912008B1 (en) * 2015-06-15 2016-04-27 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
TWI562167B (en) * 2015-06-15 2016-12-11 Nippon Micrometal Corp
CN107962313A (en) * 2015-06-15 2018-04-27 日铁住金新材料股份有限公司 Bonding wire for semiconductor device
KR20190105574A (en) * 2017-01-10 2019-09-17 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for resistance materials and manufacturing method thereof, and resistor
CN110257662A (en) * 2019-07-04 2019-09-20 广西大学行健文理学院 A kind of copper-graphite alkene composite material and preparation method
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS643903A (en) * 1987-06-25 1989-01-09 Furukawa Electric Co Ltd Thin copper wire for electronic devices and manufacture thereof
JPH0786325A (en) * 1993-09-14 1995-03-31 Hitachi Cable Ltd Copper wire for electronic device
JPH0790430A (en) * 1993-09-14 1995-04-04 Hitachi Cable Ltd Copper wire for extra fine wire and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS643903A (en) * 1987-06-25 1989-01-09 Furukawa Electric Co Ltd Thin copper wire for electronic devices and manufacture thereof
JPH0786325A (en) * 1993-09-14 1995-03-31 Hitachi Cable Ltd Copper wire for electronic device
JPH0790430A (en) * 1993-09-14 1995-04-04 Hitachi Cable Ltd Copper wire for extra fine wire and its production

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159341A (en) * 2015-06-11 2015-09-03 日立金属株式会社 copper bonding wire
TWI638366B (en) * 2015-06-15 2018-10-11 日鐵住金新材料股份有限公司 Bonding wire for semiconductor device
TWI562167B (en) * 2015-06-15 2016-12-11 Nippon Micrometal Corp
KR101925236B1 (en) 2015-06-15 2018-12-04 닛데쓰스미킹 마이크로 메탈 가부시키가이샤 Bonding wire for semiconductor device
US10414002B2 (en) 2015-06-15 2019-09-17 Nippon Micrometal Corporation Bonding wire for semiconductor device
JP2017005256A (en) * 2015-06-15 2017-01-05 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
KR101777995B1 (en) 2015-06-15 2017-09-12 닛데쓰스미킹 마이크로 메탈 가부시키가이샤 Bonding wire for semiconductor device
CN107962313A (en) * 2015-06-15 2018-04-27 日铁住金新材料股份有限公司 Bonding wire for semiconductor device
JP5912008B1 (en) * 2015-06-15 2016-04-27 日鉄住金マイクロメタル株式会社 Bonding wires for semiconductor devices
CN107962313B (en) * 2015-06-15 2024-03-08 日铁新材料股份有限公司 Bonding wire for semiconductor device
KR101670209B1 (en) * 2015-06-15 2016-10-27 닛데쓰스미킹 마이크로 메탈 가부시키가이샤 Bonding wire for semiconductor device
WO2016203659A1 (en) * 2015-06-15 2016-12-22 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
US10137534B2 (en) 2015-06-15 2018-11-27 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10737356B2 (en) 2015-06-15 2020-08-11 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10610976B2 (en) 2015-06-15 2020-04-07 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device
KR102463644B1 (en) 2017-01-10 2022-11-07 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for resistance material, manufacturing method thereof, and resistor
KR20190105574A (en) * 2017-01-10 2019-09-17 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for resistance materials and manufacturing method thereof, and resistor
CN110257662A (en) * 2019-07-04 2019-09-20 广西大学行健文理学院 A kind of copper-graphite alkene composite material and preparation method

Also Published As

Publication number Publication date
JP5556577B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US9899118B2 (en) Aluminum alloy wire rod, alluminum alloy stranded wire, coated wire, wire harness, method of manufacturing aluminum alloy wire rod, and method of measuring aluminum alloy wire rod
JP6019547B2 (en) Copper bonding wire
JP5760544B2 (en) Soft dilute copper alloy wire, soft dilute copper alloy stranded wire, insulated wire, coaxial cable and composite cable using them
JP5589753B2 (en) Welded member and manufacturing method thereof
JP5556577B2 (en) Copper bonding wire
JP5077416B2 (en) Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these
JP5589756B2 (en) Flexible flat cable and manufacturing method thereof
JP5569330B2 (en) Cable for music / video
JP5772338B2 (en) Soft dilute copper alloy wire, soft dilute copper alloy sheet and soft dilute copper alloy stranded wire
US20130042949A1 (en) Method of manufacturing soft-dilute-copper-alloy-material
JP5589754B2 (en) Dilute copper alloy material and method for producing diluted copper alloy material excellent in hydrogen embrittlement resistance
JP5732809B2 (en) Extruded product and manufacturing method thereof
JP5499330B2 (en) Solar cell bus bar
JP5652369B2 (en) Solar cell conductor
JP5609564B2 (en) Manufacturing method of molten solder plating wire
JP5672939B2 (en) Cable for movable part and manufacturing method thereof
JP2012087366A (en) Rolled copper foil and method for manufacturing the same
JP5621502B2 (en) Electrode plate and method for manufacturing electrode plate
JP2012089686A (en) Three-dimentional wiring body and method for manufacturing three-dimentional wiring body
JP5088449B2 (en) Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cable using them
JP5565262B2 (en) Clad material with excellent workability and manufacturing method thereof
JP5601147B2 (en) Micro speaker voice coil winding and method of manufacturing the same
JP2014102996A (en) Method of joining soft dilute copper alloy wire to connection terminal
JP5783478B2 (en) Cable for music / video
JP2013040384A (en) Wiring material and plate material using soft dilute copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees