JPS60198851A - High corrosion resistant high hardness aluminum alloy wire for semiconductor - Google Patents

High corrosion resistant high hardness aluminum alloy wire for semiconductor

Info

Publication number
JPS60198851A
JPS60198851A JP59055709A JP5570984A JPS60198851A JP S60198851 A JPS60198851 A JP S60198851A JP 59055709 A JP59055709 A JP 59055709A JP 5570984 A JP5570984 A JP 5570984A JP S60198851 A JPS60198851 A JP S60198851A
Authority
JP
Japan
Prior art keywords
wire
ball
corrosion
hardness
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59055709A
Other languages
Japanese (ja)
Other versions
JPH0412621B2 (en
Inventor
Masatoshi Tsuchiya
土屋 正利
Masateru Suwa
正輝 諏訪
Hitoshi Onuki
仁 大貫
Kazuo Taguchi
田口 和夫
Tomio Iizuka
飯塚 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59055709A priority Critical patent/JPS60198851A/en
Publication of JPS60198851A publication Critical patent/JPS60198851A/en
Publication of JPH0412621B2 publication Critical patent/JPH0412621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To obtain an aluminum alloy wire having high bonding strength and high corrosion-resisting property by a method wherein the second noble element having no solubility for Al and the third element having solubility for Al are contained in Al. CONSTITUTION:In order to improve the corrosion-resisting property of a corrosion-resisting Al alloy wire, the second noble element having no substantial solubility for Al is contained in Al. The second element consists of one or two kinds selected from the group of Au, Ni and Pd. Also, the third element having solubility for Al is added for the purpose of increasing the degree of hardness of a ball without impairing the corrosion-resisting property of the corrosion- resisting Al alloy wire. Said third element is the element which is selected from the group of Cu, Mg, Ti and Zr. As a result, the corrosion-resisting Al alloy wire having the hardness of Hv30 or above in the ball hardness in normal temperature can be obtained. Accordingly, high bonding strength and a high corrosion-resisting property can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体用高耐食高硬度アルミニウム合金ワイ
ヤに係シ、特に、半導体素子上の配線膜に高いボンディ
ング強度で接続することができる半導体用高耐食高硬度
アルミニウム合金ワイヤおよびその製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a highly corrosion-resistant, high-hardness aluminum alloy wire for semiconductors, particularly for semiconductors that can be connected to a wiring film on a semiconductor element with high bonding strength. The present invention relates to a highly corrosion-resistant and highly hard aluminum alloy wire and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

従来、半導体素子上に形成されたAt蒸着膜からなる配
線膜と外部リードとの接続はAu細線が用いられ、その
ボールボンディング法による熱圧着又は超音波接合が行
われている。近年、Au線の代りに安価なAt細線を使
用する検討が行われている。しかし、エポキシ樹脂等の
合成樹脂によって封止される半導体装置では、At細線
に腐食が生じることが問題となり、半導体用耐食ht細
線の検討が行われている。耐食At細線としては、At
−Au、At−Pd合金およびAt−Ni合金が知られ
ている。
Conventionally, thin Au wires have been used to connect a wiring film made of an At vapor-deposited film formed on a semiconductor element and an external lead, and thermocompression bonding or ultrasonic bonding using the ball bonding method is performed. In recent years, studies have been conducted to use inexpensive At thin wires instead of Au wires. However, in semiconductor devices sealed with synthetic resins such as epoxy resins, corrosion of At thin wires is a problem, and corrosion-resistant H thin wires for semiconductors are being investigated. As the corrosion-resistant At thin wire, At
-Au, At-Pd alloys and At-Ni alloys are known.

しかしながら、これらのアルミニウム合金ワイヤは、A
u線に比べてボールボンディング強度が低いという欠点
がある。さらに、ワイヤの先端に形成するボールが軟い
ため、ボールボンディングする際に、ボールがつぶれ過
ぎてパッドのはみ出しを生ずる。そのため、はみ出した
パッドが周辺のA/=配線膜と接触して破壊させ、断線
不良を起すという問題があった。
However, these aluminum alloy wires
It has the disadvantage of having lower ball bonding strength than U-line. Furthermore, since the ball formed at the tip of the wire is soft, the ball is crushed too much during ball bonding, causing the pad to protrude. Therefore, there was a problem in that the protruding pad came into contact with the surrounding A/= wiring film and broke it, causing a disconnection defect.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐食性を低めることなくボールボンデ
インク強度のすぐれたアルミニウム合金ワイヤとその製
法を提供することにある。
An object of the present invention is to provide an aluminum alloy wire with excellent ball bonding strength without reducing corrosion resistance, and a method for manufacturing the same.

〔発明の概要〕 本発明は、レジンモールド半導体用コネクタワイヤとし
て開発した耐食アルミニウム合金であって、耐食性と、
高いボンディング強度を備えたAu線代替材として非常
に有効であるアルミニウム合金ワイヤである。
[Summary of the Invention] The present invention is a corrosion-resistant aluminum alloy developed as a connector wire for resin-molded semiconductors, which has corrosion resistance,
This is an aluminum alloy wire that has high bonding strength and is very effective as a substitute for Au wire.

本発明者らは、耐食アルミニウム合金のボンディング強
度について詳しく検討した結果、ボンディング強度はボ
ール硬さに依存していることを見い出した。
The present inventors conducted a detailed study on the bonding strength of corrosion-resistant aluminum alloys and found that the bonding strength depends on the hardness of the ball.

第1図は、直径50μmのAu線におけるボール硬さと
せん断強度との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between ball hardness and shear strength in an Au wire with a diameter of 50 μm.

ボールのひずみは0.5〜0.9がよいことが経験的に
知られている。このボールのひずみは次の式からめられ
る。
It is empirically known that a ball strain of 0.5 to 0.9 is good. The strain of this ball can be calculated from the following equation.

ボールのひずみ=2Ln (Dt/Do ) ”・1な
お、Doはボンディング前のボール径、Dlはボンディ
ング後のボール径である。
Strain of ball=2Ln (Dt/Do)''·1 Note that Do is the ball diameter before bonding, and Dl is the ball diameter after bonding.

Au線のボールのひずみが0.6で、せん断強度を14
0g以上にするには、ボールの硬さは30HV以上必要
である。
The strain of the Au wire ball is 0.6, and the shear strength is 14.
In order to have a ball hardness of 0g or more, the hardness of the ball needs to be 30HV or more.

すなわち、耐食アルミ合金のボール硬さを増加すれば、
ボールボンディング強度を向上することができることが
わかった。
In other words, if the ball hardness of the corrosion-resistant aluminum alloy is increased,
It was found that ball bonding strength can be improved.

そこで、発明者らは耐食アルミ合金ワイヤの耐食性を損
うことなくポール硬度を増すためには固溶体強化が有効
と考え、Atに対して溶解度を有するC u+ M g
 e T を及びZrの添加効、果について検討した。
Therefore, the inventors thought that solid solution strengthening would be effective in increasing the pole hardness without impairing the corrosion resistance of the corrosion-resistant aluminum alloy wire, and thought that solid solution strengthening would be effective in increasing the pole hardness without impairing the corrosion resistance of the corrosion-resistant aluminum alloy wire.
e T and the effect of adding Zr were investigated.

その結果、これらの元素の添加はボール硬度を増すのに
極めて有効であることがわかった。
As a result, it was found that the addition of these elements is extremely effective in increasing ball hardness.

ポール形成はワイヤ先端をアーク放電又は火花放電等の
加熱溶解によってボールを短時間で形成させるため、合
金元素が固溶すると結晶格子がひずみ、そのために転位
の運動を妨害して硬化するものと考えられる。合金元素
の固溶の影響として見のがせないものに加工硬化能が大
きくなることである。本発明のAt合金は極細線として
用いるため、特に塑性加工性の高いことが重要となる。
In pole formation, a ball is formed in a short time by heating and melting the wire tip using arc discharge or spark discharge, so it is thought that when alloying elements are dissolved in solid solution, the crystal lattice is distorted, which obstructs the movement of dislocations and hardens the wire. It will be done. One of the effects of the solid solution of alloying elements that cannot be ignored is that the work hardening ability increases. Since the At alloy of the present invention is used as an ultrafine wire, it is particularly important that it has high plastic workability.

したがって硬化元素であるCu9Mg、TI。Therefore, Cu9Mg, TI, which is a hardening element.

7、rの11が多いと塑性加工性が著しく悪化し細線加
工が困難になり、しかも耐食性も悪くなる。ボール硬さ
くHv)30以上と良い塑性加工性を得るにはCu、M
g、Zr、Tiの量を1種又は2種以上の総量で0.3
〜3重量%がよい。0.3%以下では、ボールの硬さが
不足し、高いボンディング強度が得られない反面、3重
量%を越えると、アルミニウム基地中に単体又は常温時
効にょシ化合物が析出し、塑性加工性を著しく劣化し極
細線加工ができない。従って、良好な塑性加工性、十分
なボール硬さおよび耐食性を得るには、Cu。
7. If there is too much 11 in r, the plastic workability will be markedly deteriorated, making thin wire processing difficult, and corrosion resistance will also deteriorate. To obtain ball hardness Hv) 30 or higher and good plastic workability, Cu, M
The total amount of one or more of g, Zr, and Ti is 0.3
~3% by weight is good. If it is less than 0.3%, the hardness of the ball will be insufficient and high bonding strength will not be obtained. On the other hand, if it exceeds 3% by weight, single or room-temperature aging compounds will precipitate in the aluminum base, impairing plastic workability. It deteriorates significantly and cannot be processed into ultra-fine wires. Therefore, in order to obtain good plastic workability, sufficient ball hardness and corrosion resistance, Cu.

Mg、TI、および7.rの群から選ばれた1種又は2
種以上の総量は、0.5〜zO重景%の範囲が最適であ
る。
Mg, TI, and 7. One or two selected from the group r
The optimum total amount of seeds and above is in the range of 0.5 to zO weight percent.

本発明は、さらに耐食性を改善するため、アルミニウム
に対して実質的に溶解度を有しない貴の第2元素として
、Au、Niおよびpdの群から選ばれた1種又は2種
以上であって、総量で0.1〜5重量%含有されている
。0.1重量%以下では、腐食を防止する効果が少ない
一方、5重量%を越えると、アルミ基地中に不均一に分
散し、かえって耐食性の向上が得られないばかりでなく
、塑性加工が困難になるので、0.1〜5重量%の添加
が必要であって、特に高い耐食性と良好な塑性加工性を
得るには、総量で0.1〜3重量%の範囲が好ましい。
In order to further improve corrosion resistance, the present invention uses one or more selected from the group of Au, Ni and PD as a noble second element that has substantially no solubility in aluminum, The total content is 0.1 to 5% by weight. If it is less than 0.1% by weight, it will have little effect in preventing corrosion, while if it exceeds 5% by weight, it will be dispersed unevenly in the aluminum base, and not only will corrosion resistance not be improved, but plastic working will be difficult. Therefore, it is necessary to add 0.1 to 5% by weight, and in order to obtain particularly high corrosion resistance and good plastic workability, the total amount is preferably in the range of 0.1 to 3% by weight.

なお、高い耐食性と良好な塑性加工性及び十分なボンデ
ィング強度を得るだめのボール硬さを確保するためには
第2元素と第3元素の総量を0.5〜6重量%の範囲と
するのが最適である。
In addition, in order to ensure ball hardness that provides high corrosion resistance, good plastic workability, and sufficient bonding strength, the total amount of the second and third elements should be in the range of 0.5 to 6% by weight. is optimal.

本発明のアルミニウム合金はそれ自身の不動態化とこれ
を促進する元素を含むので、硬化元素と合せて強い不動
態皮膜を形成し、すぐれた耐食性を有しボンディング強
度はAu線と同程度が確保でき、信頼性の高いアルミニ
ウムボールボンディングが得られる。
Since the aluminum alloy of the present invention contains its own passivation and elements that promote this passivation, it forms a strong passive film in combination with hardening elements, has excellent corrosion resistance, and has a bonding strength comparable to that of Au wire. It is possible to obtain highly reliable aluminum ball bonding.

本発明のアルミニウム合金からなる極細線はその先端に
ボールを形成し、そのボールを半導体素子上に形成され
た配線膜に固相接合し、他端を外部リード端子に同相接
合するボールボンディング用ワイヤに最適である。極細
線の直径は合金の種類によっても異なるが20〜100
μmが好ましく、特に直径30〜70μmが好ましい。
The ultrafine wire made of the aluminum alloy of the present invention forms a ball at its tip, and the ball is solid-phase bonded to a wiring film formed on a semiconductor element, and the other end is in-phase bonded to an external lead terminal. Ideal for The diameter of the ultra-fine wire varies depending on the type of alloy, but is between 20 and 100.
A diameter of 30 to 70 μm is preferred, and a diameter of 30 to 70 μm is particularly preferred.

この中で比抵抗等を考慮してワイヤ径が選定される。Among these, the wire diameter is selected in consideration of specific resistance and the like.

ワイヤは前述のような合金元素を含むので、焼純された
ものがよい。焼鈍温度は加工歪の除去が行なえる温度以
上で再結晶温度以下の温度がよい。
Since the wire contains the above-mentioned alloying elements, it is preferable that the wire be sintered and purified. The annealing temperature is preferably higher than the temperature at which processing strain can be removed and lower than the recrystallization temperature.

特にボールボンディング等の取扱時に塑性変形しない程
度に軟かくするには、最終冷間加工後に100〜350
Cで焼鈍され、焼なまし状態で室温の伸びが60%以下
であることを特徴とするポールボンディング用ワイヤに
ある。これによってワイヤ全体が軟かくなシ、局部的な
変形がなく断線等の問題が解消される。
In particular, in order to make it soft enough to prevent plastic deformation during handling such as ball bonding, it is necessary to
The wire for pole bonding is annealed with C and has an elongation at room temperature of 60% or less in the annealed state. As a result, the entire wire is soft and there is no local deformation, eliminating problems such as wire breakage.

ワイヤは前述のように非常に細径で軟かいのでこれを保
護するため半導体素子とワイヤ及び外部端子の一部を合
成樹脂又はセラミックスで被うことが行われる。合成樹
脂は注型(キャスティング)又は成形(モールド)し硬
化させ、セラミックスは通常の方法でキャップシール接
合される。
As mentioned above, the wire is very thin and soft, so in order to protect it, the semiconductor element, the wire, and a portion of the external terminal are covered with synthetic resin or ceramics. The synthetic resin is cast or molded and cured, and the ceramic is cap-sealed using a conventional method.

〔発明の実施例〕[Embodiments of the invention]

純度99.999%の純Atおよび純度99.9〜99
.99%のAu、Ni、Pdを用いて各元素の含有量を
Or 0.5+ L L 5t 10X量%の二元合金
を溶製すると共に、各2元合金に純度99.9%のCC
U、Mg、Tiおよびzrをそれぞれ単独に0゜2.0
.5,1,3.5重量%を添加した3元合金を溶製した
。この溶製に際しては、Ar雰囲気中の水冷銅鋳型でア
ーク溶解し、次いで、合金を均一に固溶させるため、5
80CX24hrソーキング処理を施した後急冷し、室
温でスェージング後、580CX2)(rの焼鈍と線引
を繰シ返すことによって直径aoIJmと50μmのワ
イヤを製造した。なお、合金元素の総量が10重世%以
上を含む合金はスェージング加工及び線引加工が、これ
よ多少ないものに比べ困難でおった。合金元素の総量が
8重量%以下の合金の塑性加工性は良好で線引加工が容
易であった。
Pure At with purity 99.999% and purity 99.9-99
.. Using 99% Au, Ni, and Pd, a binary alloy with a content of each element of Or 0.5 + L L 5t 10X mass % was produced, and each binary alloy was injected with CC with a purity of 99.9%.
U, Mg, Ti and zr each individually at 0°2.0
.. Ternary alloys containing 5, 1, and 3.5% by weight were produced. During this melting process, arc melting is performed in a water-cooled copper mold in an Ar atmosphere, and then, in order to uniformly dissolve the alloy,
A wire with a diameter of aoIJm and 50μm was manufactured by repeating the annealing and drawing of 580CX2) (r) after soaking for 24 hours, quenching at room temperature, and swaging at room temperature. Alloys containing more than 8% by weight of alloying elements were more difficult to swag and wire-draw than those containing less than 8% by weight.Alloys containing less than 8% by weight of alloying elements had good plastic workability and were easy to wire-draw. there were.

以上のように製造した各ワイヤを不活性ガス中で200
〜400CX1hr加熱による焼ガまし処理を施したも
のについて、ワイヤ先端にボールを形成し、各合金につ
いても10個のビッカース硬さを測定した。
Each wire produced as described above was heated for 200 minutes in an inert gas.
A ball was formed at the tip of the wire for those that had been tempered by heating at ~400 CX for 1 hr, and the Vickers hardness of each alloy was measured for 10 pieces.

第2図はアーク放電によりワイヤ先端にボールを形成す
る装置を示す断面図である。
FIG. 2 is a sectional view showing an apparatus for forming a ball at the tip of a wire by arc discharge.

この装置は、密封チャンバー1内にW電極2とキャピラ
リ3とが離間して列設されており、このキャピラリ3に
ワイヤ4が支持され、W電極2とワイヤ4との間に電源
が接続されている。
In this device, a W electrode 2 and a capillary 3 are arranged in a row at a distance in a sealed chamber 1, a wire 4 is supported by the capillary 3, and a power source is connected between the W electrode 2 and the wire 4. ing.

放電は、真空排気後、7体積%のH2を含むArガス雰
囲気中で電圧1000 V、電流1〜10Aで放電時間
はW電極2の移動速度及びパルスの周波数によってコン
トロールした。ボール5は表面に光沢があシ、真球に近
い良好な形状のものが得られた。
After evacuation, the discharge was performed in an Ar gas atmosphere containing 7% by volume of H2 at a voltage of 1000 V and a current of 1 to 10 A, and the discharge time was controlled by the moving speed of the W electrode 2 and the pulse frequency. Ball 5 had a glossy surface and a good shape close to a true sphere.

第3図〜第5図は各アルミ合金ワイヤにおけるボールの
硬さくHV)と添加元素(%)との関係を示す線図であ
る。
FIGS. 3 to 5 are diagrams showing the relationship between ball hardness HV) and additive elements (%) in each aluminum alloy wire.

とれらの図から明らかなように、耐食アルミ合金にCu
、Mg、Zr及びT1の添加はポール硬度の増加に有効
であることが判明した。しかし、これらの元素の添加量
が0.2重量%以下では硬化が不十分で)(v : 3
0以上を得るには0.3重量%以上を添加する必要があ
る。特にCu、Mgの添加がボールの高硬度化に有効で
おることが確認できた。なお、前記合金元素を複合添加
しても前記と同じ効果が得られる。
As is clear from these figures, Cu is added to the corrosion-resistant aluminum alloy.
, Mg, Zr and T1 were found to be effective in increasing the pole hardness. However, if the amount of these elements added is less than 0.2% by weight, curing is insufficient) (v: 3
To obtain 0 or more, it is necessary to add 0.3% by weight or more. In particular, it was confirmed that the addition of Cu and Mg was effective in increasing the hardness of the ball. Note that the same effect as described above can be obtained even if the alloying elements are added in combination.

実施例2 実施例1で製作した直径30μmのワイヤをArW囲気
中で150〜350C,1時間加熱して焼なましたもの
について、120C,2気圧の水蒸気中で200時間放
置するプレシャクツカ−テスト(PCT)試験し、ワイ
ヤ自身の腐食性を測定した。試験後、走査屋電子顕微鏡
によシワイヤ表面の状態を観察した。第6図に観察結果
の一例を示す。第6図(a)は粒界から優先的に腐食が
進行して著しく腐食されている場合である。これに対し
本発明合金は第6図(b)に示すA t −lPd−2
Cu合金と同じくほとんど腐食されていないことが観察
された。
Example 2 The wire with a diameter of 30 μm produced in Example 1 was annealed by heating at 150 to 350 C for 1 hour in an ArW atmosphere, and was then left in water vapor at 120 C and 2 atm for 200 hours to perform a pre-Shakutska test ( PCT) to measure the corrosivity of the wire itself. After the test, the condition of the shear surface was observed using a scanning electron microscope. Figure 6 shows an example of the observation results. FIG. 6(a) shows a case where corrosion progresses preferentially from grain boundaries and is severely corroded. On the other hand, the alloy of the present invention has the At-lPd-2 shown in FIG. 6(b).
Similar to the Cu alloy, it was observed that there was almost no corrosion.

第1表はボール硬さと耐食性に及ばず添加元素の影響を
示す線図である。耐食アルミ合金にCuM g + T
 iおよび7.rを添加しても耐食性は同等おるいは耐
食性が改善される傾向にオシ、これらの硬化元素を添加
しても耐食性を悪化させないことがわかる。さらに、ボ
ール硬さと耐食性の評価からCI、Mgの添加がすぐれ
ていることが確認できた。
Table 1 is a diagram showing the influence of additive elements on ball hardness and corrosion resistance. CuM g + T on corrosion-resistant aluminum alloy
i and 7. It can be seen that even if r is added, the corrosion resistance tends to be the same or improved, but the addition of these hardening elements does not deteriorate the corrosion resistance. Furthermore, evaluation of ball hardness and corrosion resistance confirmed that the addition of CI and Mg was excellent.

第 1 表 実施例3 実施例1で製作した直径50μmのAt−IPdAA−
IPd−2Cu、At−lAu、人り−lAu−lMg
、AA−0,5Nl、At−0,5N轟−2Mg合金ワ
イヤを用いてN2中でasOc。
Table 1 Example 3 At-IPdAA- with a diameter of 50 μm manufactured in Example 1
IPd-2Cu, At-lAu, At-lAu-lMg
, AA-0,5Nl, At-0,5N Todoroki-2Mg alloy wire asOc in N2.

1時間焼なまし処理を施したものについて第2図に示す
方法でワイヤ先端にボールを形成し、半導体素子上に設
けたAt配線膜にボールボンディングを行なった。その
後、テンションゲージヲ用いてせん断強度を測定した。
After annealing for 1 hour, a ball was formed at the tip of the wire by the method shown in FIG. 2, and ball bonding was performed to the At wiring film provided on the semiconductor element. Thereafter, the shear strength was measured using a tension gauge.

せん断強度の測定結果は第2表に示す通りである。The measurement results of shear strength are shown in Table 2.

第 2 表 表から明らかなように、本発明合金はせん断強度が20
0g以上であって、高いボンディング強度が得られるこ
とが確認できた。
As is clear from Table 2, the alloy of the present invention has a shear strength of 20
It was confirmed that the bonding strength was 0 g or more, and that high bonding strength was obtained.

実施例4 第7図は、実施例1で製作した直径50μmのAt−2
Pd−ICu、kl−o、sNi−IMg。
Example 4 Figure 7 shows At-2 with a diameter of 50 μm manufactured in Example 1.
Pd-ICu, kl-o, sNi-IMg.

At−lAu−3Zr合金ワイヤを用いた代表的なレジ
ンモールド型半導体装置の断面図である。
1 is a cross-sectional view of a typical resin molded semiconductor device using At-lAu-3Zr alloy wire.

このレジンモールド型半導体装置を各ワイヤについて5
0個製作した。各ワイヤはボール形成前に150〜35
0℃、1時間焼なましたものを用いた。各ワイヤはA4
蒸着膜6が設けられた半導体素子7にボールボンディン
グされ、Agめっき層8が設けられたリードフレーム9
にウェッジボンディングされる。ボンディングされた後
、5ICh等の保護皮膜10が設けられ、その後型を使
って液状のエポキシ樹脂を流し込み、硬化させることに
より、半導体装置が形成される。リードフレーム9には
At+Cu又はFe−42%N!合金が用いられる。
This resin molded semiconductor device is
0 pieces were produced. Each wire is 150~35cm before ball formation
The material was annealed at 0°C for 1 hour. Each wire is A4
A lead frame 9 is ball-bonded to a semiconductor element 7 provided with a vapor deposited film 6 and provided with an Ag plating layer 8.
will be wedge bonded. After bonding, a protective film 10 such as 5ICh is provided, and then a semiconductor device is formed by pouring liquid epoxy resin using a mold and hardening it. Lead frame 9 is made of At+Cu or Fe-42%N! Alloys are used.

ボールの形成は第2図に示す方法で行なった。The balls were formed by the method shown in FIG.

真空排気後、7体積%の水素を含むAtガス雰囲気中で
、100OV、3〜5Aの放電条件でワイヤ4と電極2
との間に1ミリ秒以下の短時間放電させ、ワイヤ4の先
端に真球のボール5を形成した。得られたボールは第8
図に示すようにキャピラリー3によって半導体素子上に
形成されたAt蒸着膜6にワイヤ4と蒸着膜6との摩擦
によって行なう超音波接合によってボールボンディング
を行かい、次いで、他端を同じくキャピラリー3によっ
てリードフレーム8のAgめつ西層に同じく超音波接合
によってウェッジボンディングを行なった。この超音波
による本発明合金のボンディング性はきわめてよく、図
に示すようにきれいなループ状のボンディングが得られ
ることが確認された。また、ウェッジボンディング後の
ワイヤの切断はキャピラリー3を持ち上げて引張ること
によつ−て行われるが、この切断もワイヤが軟いためき
わめて容易でその引張シによってボンディング部分を剥
離することも全く起らなかった。
After evacuation, wire 4 and electrode 2 were discharged at 100 OV and 3 to 5 A in an At gas atmosphere containing 7% by volume of hydrogen.
A short time period of 1 millisecond or less was caused to discharge between the wires 4 and 5 to form a true spherical ball 5 at the tip of the wire 4. The resulting ball is the 8th ball.
As shown in the figure, ball bonding is performed using a capillary 3 to the At vapor deposited film 6 formed on the semiconductor element by ultrasonic bonding performed by friction between the wire 4 and the vapor deposited film 6, and then the other end is also bonded using the capillary 3. Wedge bonding was also performed on the Ag layer of the lead frame 8 by ultrasonic bonding. It was confirmed that the bonding property of the alloy of the present invention using this ultrasonic wave was extremely good, and that a clean loop-shaped bonding could be obtained as shown in the figure. Furthermore, the wire is cut after wedge bonding by lifting and pulling the capillary 3, but this cutting is also extremely easy because the wire is soft, and the tension does not cause the bonded part to peel off at all. There wasn't.

以上のようにして製作したレジンモールド型半導体装置
を各50個製作し、そのPCT試験を200時間実施し
た。その結果リード線の腐食断線、素子の誤動作等によ
る不良は全くなく、きわめて優れた耐食性を有すること
がわかった。
Fifty resin-molded semiconductor devices were each manufactured as described above, and a PCT test was conducted on them for 200 hours. As a result, it was found that there were no defects due to corrosion of lead wires, breakage of leads, malfunction of elements, etc., and that the product had extremely excellent corrosion resistance.

実施例5 実施例1で製作した直径50μmのワイヤを用いて焼鈍
温度による硬さを測定し最終冷間加工後の熱処理条件を
検討した。測定結果の一例を第9図に示す。各温度で3
0分焼鈍後にマイクロビッカース硬さ計を用いて室温で
測定した。冷間線引後に400Cで焼鈍されると完全再
結晶を生じ著しく軟化してしまう。ワイヤは前述したよ
うに取扱時に塑性変形しない程度に軟かくする必要がら
り、再結晶温度以上での焼鈍は不適当であり350C以
下でシー6鈍するのがよい。また、焼鈍温度が余り低い
と加工歪の除去が不十分ヤワイヤがカールして取扱が不
便であり加工歪の除去には最低100C以上で焼鈍する
必要があることがわかった。他の合金組成についても詳
しく再結晶温度を測定し7ζが第9図とほぼ同じ傾向を
示すことがわかった。
Example 5 Using the wire with a diameter of 50 μm produced in Example 1, the hardness depending on the annealing temperature was measured, and the heat treatment conditions after final cold working were investigated. An example of the measurement results is shown in FIG. 3 at each temperature
After annealing for 0 minutes, the hardness was measured at room temperature using a micro Vickers hardness meter. When annealed at 400C after cold drawing, complete recrystallization occurs and the material becomes significantly softened. As mentioned above, the wire needs to be soft to the extent that it does not undergo plastic deformation during handling, and annealing at a temperature above the recrystallization temperature is inappropriate, so it is preferable to anneal the wire at a temperature below 350C. It was also found that if the annealing temperature is too low, the removal of processing strain is insufficient and the wire curls, making handling inconvenient, and that it is necessary to anneal at a temperature of at least 100 C or higher to remove processing strain. The recrystallization temperatures of other alloy compositions were also measured in detail, and it was found that 7ζ showed almost the same tendency as in FIG. 9.

ワイヤを4000で再結晶させて引張試験を行なったと
ころ伸びが65%〜85%の値が得られた。
When the wire was recrystallized at 4000° C. and subjected to a tensile test, elongation values of 65% to 85% were obtained.

このことは第9図の硬さ測定結果とを合わせて考えると
最終冷間加工後の伸びは60%以下である必要がある。
Considering this together with the hardness measurement results shown in FIG. 9, the elongation after final cold working must be 60% or less.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、高い
ボンディング強度と高い耐食性が得られ、特に、レジン
モールド型半導体装置のボールボンディング用ワイヤと
して優れた効果を発揮する。
As is clear from the above description, according to the present invention, high bonding strength and high corrosion resistance can be obtained, and the present invention exhibits particularly excellent effects as a wire for ball bonding of resin molded semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAu細線のボール硬さとせん断強度との関係を
示す線図、第2図はアーク放電によるボール形成装置の
一例を示す概略説明図、化3図〜第5図はボール硬さに
及ぼす添加元素量との関係を示す線図、第6図(A) 
(H)はPCT試験後のワイヤの外観図、第7図は代表
的なレジンモールド型半導体装置の断面図、第8図はボ
ールボンディングされた状態を示す半導体装置の部分蘭
面図、第9図はワイヤの焼鈍温度と硬さとの関係を示す
線図である。 1・・・密閉チャンバー、2・・・W電極、3・・・キ
ャピラリー、4・・・ワイヤ、訃・・ボール、6・・・
At蒸着膜、7・・・Si素子、8・・・Agメッキ層
、9・・・リードフレーム。 代理人 弁理士 鵜沼辰之 芋 1 図 26 25 、?θ J5 ノフ(7−ンレーー硬之 (H〆2 茅 2 固 第3 目 添即7c余 (恒 茅 4 目 添 力rt ;yc yT、 (シ一ジ茅5 目 第 6 目 to、it餓 10 第1頁の続き ■発明者飯塚 富雄 日立市幸町3丁目1番1号 株式会社日立製作所日立研
究所内
Figure 1 is a diagram showing the relationship between ball hardness and shear strength of Au thin wire, Figure 2 is a schematic explanatory diagram showing an example of a ball forming device using arc discharge, and Figures 3 to 5 are diagrams showing the relationship between ball hardness and shear strength. Diagram showing the relationship between the amount of added elements and the amount of added elements, Figure 6 (A)
(H) is an external view of the wire after the PCT test, FIG. 7 is a cross-sectional view of a typical resin molded semiconductor device, FIG. 8 is a partial oriental view of the semiconductor device in a ball-bonded state, and FIG. 9 The figure is a diagram showing the relationship between wire annealing temperature and hardness. DESCRIPTION OF SYMBOLS 1... Sealed chamber, 2... W electrode, 3... Capillary, 4... Wire, Death... Ball, 6...
At vapor deposition film, 7...Si element, 8...Ag plating layer, 9...lead frame. Agent Patent attorney Tatsunoimo Unuma 1 Figure 26 25 ? θ J5 Nofu (7-nle hardy (H〆2 茅 2 hard 3rd Mesoe 7c more) (Kou 4 Mesoe power rt; yc yT, (Shiichi 茅 5th 6th to, it starvation 10 Continued from page 1 ■Inventor Tomio Iizuka 3-1-1 Saiwaimachi, Hitachi City Hitachi Research Laboratory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、半導体素子上にボールボンデインク法によシ接続さ
れるアルミニウム合金ワイヤにおいて、アルミニウムを
主成分とし、アルミニウムに対して実質的に溶解度を有
しない貴の第2元素と、アルミニウム基地に実質的に固
溶する第3元素を含み、常温におけるボールの硬さがH
V30以上の硬度を有することを特徴とする半導体用高
耐食高硬度アルミニウム合金ワイヤ。 2、特許請求の範囲第1項において、責の第2元素はA
u、Ni、pdの群から選ばれる1種又は2種以上であ
り、第3元素はCu、Mg+ Ti+7、rの群から選
ばれる元素を含有することを特徴とする半導体用高耐食
高硬度アルミニウム合金ワイヤ。 3、特許請求の範囲第1項および第2項において、責の
第2元素は、トータル重量比で0.1〜5%を含有し、
第3元素はトータル重量比で0.3〜3%を含有するこ
とを特徴とする半導体用高耐食高硬度アルミニウム合金
ワイヤ。 4、貴の第2元素と第3元素の含有総量が6重量%以下
であることを特徴とする特許請求の範囲第1項〜第3項
記載の半導体用高耐食高硬度アルミニウム合金ワイヤ。
[Claims] 1. An aluminum alloy wire that is connected to a semiconductor element by a ball bonding ink method, the main component of which is aluminum and a noble second element that has substantially no solubility in aluminum. , contains a third element that is substantially dissolved in the aluminum base, and the hardness of the ball at room temperature is H.
A highly corrosion-resistant and highly hard aluminum alloy wire for semiconductors, characterized by having a hardness of V30 or more. 2. In claim 1, the second element responsible is A.
A highly corrosion-resistant, high-hardness aluminum for semiconductors, characterized in that it contains one or more elements selected from the group of u, Ni, and pd, and the third element is an element selected from the group of Cu, Mg+Ti+7, and r. Alloy wire. 3. In claims 1 and 2, the responsible second element contains 0.1 to 5% in total weight ratio,
A highly corrosion-resistant and highly hard aluminum alloy wire for semiconductors, characterized in that the third element is contained in a total weight ratio of 0.3 to 3%. 4. The highly corrosion-resistant and highly hard aluminum alloy wire for semiconductors according to claims 1 to 3, wherein the total content of the noble second element and the third element is 6% by weight or less.
JP59055709A 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor Granted JPS60198851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055709A JPS60198851A (en) 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055709A JPS60198851A (en) 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor

Publications (2)

Publication Number Publication Date
JPS60198851A true JPS60198851A (en) 1985-10-08
JPH0412621B2 JPH0412621B2 (en) 1992-03-05

Family

ID=13006406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055709A Granted JPS60198851A (en) 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor

Country Status (1)

Country Link
JP (1) JPS60198851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224283A (en) * 2013-05-15 2014-12-04 田中電子工業株式会社 Corrosion resistant aluminum alloy bonding wire
US10454475B2 (en) 2010-01-20 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812720A (en) * 1982-06-16 1983-01-24 Mitsubishi Plastics Ind Ltd Lining method for metallic tube
JPS5961939A (en) * 1982-09-30 1984-04-09 Tanaka Denshi Kogyo Kk Aluminum lead for bonding of semiconductor element
JPS6095950A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095954A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095955A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812720A (en) * 1982-06-16 1983-01-24 Mitsubishi Plastics Ind Ltd Lining method for metallic tube
JPS5961939A (en) * 1982-09-30 1984-04-09 Tanaka Denshi Kogyo Kk Aluminum lead for bonding of semiconductor element
JPS6095950A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095954A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095955A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10454475B2 (en) 2010-01-20 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014224283A (en) * 2013-05-15 2014-12-04 田中電子工業株式会社 Corrosion resistant aluminum alloy bonding wire

Also Published As

Publication number Publication date
JPH0412621B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
KR910003574B1 (en) Corrosion resistant aluminum electronic material
JP2013026475A (en) Copper bonding wire
US20180076167A1 (en) Metallic ribbon for power module packaging
JP2542370B2 (en) Copper alloy for semiconductor leads
KR930008979B1 (en) Semiconductor device
JP2714560B2 (en) Copper alloy with good direct bonding properties
US4726859A (en) Wire for bonding a semiconductor device
JPS60198851A (en) High corrosion resistant high hardness aluminum alloy wire for semiconductor
JP2993660B2 (en) Bonding wire
JP2656236B2 (en) Semiconductor device
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
KR930001265B1 (en) Bonding wir for semiconductor elements
JPS6365748B2 (en)
JPS6026640A (en) Corrosion resistant electronic aluminum material
JPH0254667B2 (en)
JP2779683B2 (en) Bonding wire for semiconductor device
JPS62130249A (en) Copper fine wire for bonding
JPH02170935A (en) Copper alloy having superior direct bonding property
JPH02170936A (en) Copper alloy having superior direct bonding property
JP2656237B2 (en) Semiconductor device
JPH02173228A (en) Copper alloy having good direct bonding properties
JPS61136653A (en) Hyperfine aluminum wire
JP2002241875A (en) Wire rod for lead pin, lead pin for pga and pga package
JP2002237564A (en) Wire material for lead pin, lead pin for pga, and pga package
JPH06168974A (en) Bonding wire