JPH03148841A - Corrosion resistant aluminum electronic device - Google Patents

Corrosion resistant aluminum electronic device

Info

Publication number
JPH03148841A
JPH03148841A JP2279043A JP27904390A JPH03148841A JP H03148841 A JPH03148841 A JP H03148841A JP 2279043 A JP2279043 A JP 2279043A JP 27904390 A JP27904390 A JP 27904390A JP H03148841 A JPH03148841 A JP H03148841A
Authority
JP
Japan
Prior art keywords
alloy
wire
resin
bonding
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2279043A
Other languages
Japanese (ja)
Other versions
JPH0465533B2 (en
Inventor
Hitoshi Onuki
仁 大貫
Masateru Suwa
正輝 諏訪
Masahiro Koizumi
小泉 正博
Osamu Asai
治 浅井
Katsumi Suzuki
勝美 鈴木
Makoto Hiraga
平賀 良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2279043A priority Critical patent/JPH03148841A/en
Publication of JPH03148841A publication Critical patent/JPH03148841A/en
Publication of JPH0465533B2 publication Critical patent/JPH0465533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To improve corrosion resistance for synthetic resin by forming a bonding wire and a wiring film sealed with the resin of aluminum alloy containing specific amounts of noble metal such as palladium, platinum, ruthenium. CONSTITUTION:A bonding wire 1 and a wiring film 8 of a semiconductor device sealed with synthetic resin 12 are formed of aluminum alloy containing noble metal in aluminum. As the noble metal, one type of palladium, platinum, ruthenium, etc., having smaller hydrogen overvoltage than Al is employed. Its content amount is totally 0.05-3wt.% to enhance plastic workability and bondability at an eutectic point or lower containing initial crystallized Al. Such Al alloy is used to prevent corrosion of the alloy due to an inactive film for corrosive substance such as chlorine ions, amine, generated by the reaction of the resin with moisture in the atmosphere.

Description

【発明の詳細な説明】 〔発明の対象〕 本発明は新規なアルミニウム合金からなる電子材料及び
それを用いた半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to an electronic material made of a novel aluminum alloy and a semiconductor device using the same.

〔従来の技術〕[Conventional technology]

従来、半導体素子上に形成されたAJ蒸着膜からなる配
線膜と外部リードとの接続はAu細線が用いられ、その
ポールボンデング法による熱圧着によって行われている
。近年、Au線の代りに安価なAm細線を使用する検討
が行われている。しかし、エポキシ樹脂等の合成樹脂に
よって封止される半導体装置では、Am細線やAJ蒸着
膜に腐食が生じることが問題となっていた。また、AQ
蒸着膜も同様の問題が生じることが懸念される。
Conventionally, the connection between a wiring film made of an AJ vapor-deposited film formed on a semiconductor element and an external lead is performed by thermocompression using a pole bonding method using Au thin wires. In recent years, studies have been conducted to use inexpensive Am wires instead of Au wires. However, in semiconductor devices sealed with synthetic resins such as epoxy resins, there has been a problem that corrosion occurs in Am thin wires and AJ vapor deposited films. Also, AQ
There is concern that similar problems may occur with vapor deposited films.

即ち、合成樹脂とA1細線及びAjl蒸着膜との界面を
通して水分が侵入するため、合成樹脂中に含まれる塩素
イオンやアミンが遊離し、これらがAffi細線及びA
m蒸着膜の腐食を促進するものと考えられる。
That is, since moisture enters through the interface between the synthetic resin and the A1 thin wire and the Ajl vapor deposited film, chlorine ions and amines contained in the synthetic resin are liberated, and these
It is thought that this promotes corrosion of the deposited film.

改良されたAll細線として、Cu3〜5重量%を含む
A n−Cu合金が特開昭5ロー16647号公報で知
られているが、Allに対するCuの添加によっても合
成樹脂に対する耐食性の向上は得られない。
As an improved All thin wire, an An-Cu alloy containing 3 to 5% by weight of Cu is known from Japanese Patent Application Laid-open No. 16647, but the addition of Cu to All can also improve the corrosion resistance of synthetic resins. I can't do it.

また、改良されたAm蒸着膜として、Mn0.05〜6
重量%を含むAa合金が特開昭51−142988号公
報で知られているが、Mnを添加したAll蒸着膜では
、MnはAnより比較的活性な卑な金属であるため、表
面が厚い酸化膜で被すれ、Allワイヤとの接合性(ボ
ンダビリティ)が悪くなるという問題がある。
In addition, as an improved Am vapor deposition film, Mn0.05-6
% by weight is known from Japanese Patent Application Laid-open No. 142988/1988, however, in the case of an Al vapor-deposited film containing Mn, since Mn is a base metal that is relatively more active than An, the surface becomes thick with oxidation. There is a problem that the bonding property (bondability) with the All wire is deteriorated due to being covered with a film.

(発明の要点〕 (1)発明の目的 本発明の目的はボンダビリティを低めることなく耐食性
のより優れたアルミニウム電子材料を提供するにある。
(Summary of the Invention) (1) Purpose of the Invention The purpose of the present invention is to provide an aluminum electronic material with superior corrosion resistance without reducing bondability.

更に、本発明の目的は樹脂に対する耐食性がより優れた
Al1合金を用いた半導体装置を提供するにある。
A further object of the present invention is to provide a semiconductor device using an Al1 alloy that has better corrosion resistance against resin.

(2)発明の説明 本発明は、アルミニウムを主成分とし、これに貴金属を
含む合金からなり、前記貴金属の含有量が初晶アルミニ
ウムを有する共晶点以下であることを特徴とする耐食性
アルミニウム電子材料にある。
(2) Description of the Invention The present invention provides a corrosion-resistant aluminum electronic comprising an alloy containing aluminum as a main component and a noble metal therein, the content of the noble metal being below the eutectic point with primary crystal aluminum. It's in the material.

アルミニウムは大気中では安定な不動態皮膜が形成され
易く、一般には耐食性が良好な金属である。しかし、A
nは樹脂でパッケージされている半導体装置のように樹
脂に接触している場合には。
Aluminum is a metal that tends to form a stable passive film in the atmosphere and generally has good corrosion resistance. However, A
n is in contact with resin, such as in a semiconductor device packaged with resin.

樹脂中に含まれる塩素イオンやアミンにより不動態皮膜
が破壊され、腐食を受ける。そこで本発明者等はA、m
lの腐食原因について検討した結果、Aaに、AJlよ
りもきわめて水素過電圧が小さい貴金属を含有させるこ
とにより腐食を防止できることを見い出した。Alより
水素過電圧がきbめて小さい貴金属とAmとの合金は、
最初AJが溶解したとしても、水素過電圧の小さい貴金
属が電気化学的に責であるため表面部に濃縮される。従
って合金の溶解が進むにつれて合金自体の水素過電圧が
漸次小さくなり、合金の電位が貴になるので合金自体の
不動態化が起るものと考えら九る。
The passive film is destroyed by the chlorine ions and amines contained in the resin, causing corrosion. Therefore, the present inventors A, m
As a result of studying the causes of corrosion in AJl, it was found that corrosion can be prevented by incorporating a noble metal in Aa, which has a much lower hydrogen overvoltage than AJl. The alloy of noble metal and Am has much lower hydrogen overvoltage than Al.
Even if AJ is initially dissolved, it is concentrated on the surface because the noble metal with a small hydrogen overvoltage is electrochemically responsible. Therefore, as the alloy melts, the hydrogen overvoltage of the alloy itself gradually decreases, and the potential of the alloy becomes nobler, so it is thought that the alloy itself becomes passivated.

本発明のAJ合金はそれ自体酸化皮膜を形成しにくい責
な金属を含むので、固相接合におけるボンダビリティが
AJのそれと同程度のものが得られる。
Since the AJ alloy of the present invention itself contains a metal that is difficult to form an oxide film, it is possible to obtain bondability in solid phase bonding comparable to that of AJ.

(3)貴金属 Allより水素過電圧がきわめて小さい貴金属として、
白金(Pt)、パラジウム(Pd)、ロジウム(Rh)
、イリジウム(Ir)、オスミウム(Ox)、ルテニウ
ム(Ru)、金−(A u )及び銀(Ag)があり、
これらの1種以上を含むことができる。これらの貴金属
は、その他の金属に比らべて水素過電圧がきわめて小さ
く、それ自体きbめて優れた耐食性を有するので、AJ
合金表面への不動態皮膜の形成が促進され、耐食性を顕
著に向上させる。特に、Pd、Pt、Ruが優れ。
(3) As a noble metal with extremely lower hydrogen overvoltage than noble metal All,
Platinum (Pt), Palladium (Pd), Rhodium (Rh)
, iridium (Ir), osmium (Ox), ruthenium (Ru), gold (Au) and silver (Ag),
It can contain one or more of these. These precious metals have extremely low hydrogen overvoltage compared to other metals and have extremely excellent corrosion resistance, so AJ
Formation of a passive film on the alloy surface is promoted, significantly improving corrosion resistance. In particular, Pd, Pt, and Ru are excellent.

Pdが最も良い。Pd is the best.

2規定の硫酸溶液中における水素過電圧を小さい順から
並べると以下のとおりである。Pd。
The hydrogen overpotentials in a 2N sulfuric acid solution are listed in descending order as follows. Pd.

Pt、Ru、Os、I r、Rh、Au、AgeNi、
W、Mo、Fe、Cr、Cu、Si、Ti。
Pt, Ru, Os, Ir, Rh, Au, AgeNi,
W, Mo, Fe, Cr, Cu, Si, Ti.

Al、Mn。Al, Mn.

(4)含有量 Allより水素過電圧が小さい貴金属の含有量は。(4) Content What is the content of noble metals that have a lower hydrogen overvoltage than All?

初晶Alを有する共晶点以下でなければならない。It must be below the eutectic point with primary crystal Al.

水素過電圧の小さい貴金属とAllとの化合物が初晶と
して晶出すると粗大なものになり、その後の塑性加工で
は晶出物は細かくなりにくい、AJ基地は軟いので硬い
金属は塑性加工で分断されにくいためである。そのため
、水素過電圧の小さい貴金属は初晶Ajlを含む共晶点
以下であれば共晶として細かく晶出し、塑性加工性の高
いものが得られ、更に固相接合における高い接合性が得
られる。
When a compound of All alloy and a noble metal with a small hydrogen overvoltage crystallizes as a primary crystal, it becomes coarse, and the crystallized material is difficult to become fine in subsequent plastic working.Since the AJ base is soft, hard metals are divided by plastic working. This is because it is difficult. Therefore, if a noble metal with a small hydrogen overvoltage is below the eutectic point including the primary crystal Ajl, it will crystallize finely as a eutectic, resulting in a material with high plastic workability, and furthermore, high bondability in solid phase bonding.

特に、塑性加工性及び接合性の高いものを得るには1種
又は2種以上の総量で0.01〜10重量%が好ましく
、高い耐食性、塑性加工性及び固相で接合するボンダビ
リティを有するAJ合金を得るには1種又は2種以上の
総量で0.05〜3重量%が好ましい、各二元合金の共
晶点は、重量でPd25%、Pt9.0%、Au5.0
%yAg70.5%である。
In particular, in order to obtain a product with high plastic workability and bondability, the total amount of one or more types is preferably 0.01 to 10% by weight, and has high corrosion resistance, plastic workability, and bondability for solid phase bonding. To obtain an AJ alloy, the total amount of one or more types is preferably 0.05 to 3% by weight.The eutectic point of each binary alloy is Pd 25%, Pt 9.0%, Au 5.0% by weight.
%yAg is 70.5%.

(5)合成樹脂 本発明のAll合金は合成樹脂に接触して使用さ−れる
ものに好適である。合成樹脂は大気中の水分と反応して
塩素イオン、アミン等の腐食性物質を遊離し、金属を腐
食する。本発明のAI合金は合成樹脂で封止されるレジ
ンモールド型半導体装置のポールボンデング用ワイヤ及
び配線膜に好適である。
(5) Synthetic resin The All alloy of the present invention is suitable for use in contact with synthetic resins. Synthetic resins react with moisture in the atmosphere and liberate corrosive substances such as chlorine ions and amines, which corrode metals. The AI alloy of the present invention is suitable for pole bonding wires and wiring films of resin-molded semiconductor devices sealed with synthetic resin.

との種の半導体装置には、エポキシ樹脂、フエノール樹
脂、メラミン樹脂、尿素樹脂、ジアリルフタレート樹脂
、不飽和ポリエステル樹脂、ウレタン樹脂、付加型ポリ
イミド樹脂、シリコーン樹脂、ポリバラビニルフェノー
ル樹脂などの熱可塑性樹脂、フツ素樹脂、ポリフエニレ
ンスルフイド。
Thermoplastics such as epoxy resins, phenolic resins, melamine resins, urea resins, diallyl phthalate resins, unsaturated polyester resins, urethane resins, addition-type polyimide resins, silicone resins, and polyvinylphenol resins are used for semiconductor devices of various types. Resin, fluororesin, polyphenylene sulfide.

ポリエチレン、ポリスチレン、ポリアミド、ポリエーテ
ル、ポリエステル、ポリアミドエーテル。
Polyethylene, polystyrene, polyamide, polyether, polyester, polyamide ether.

ポリアミドエステルなどの熱可塑性樹脂が用いられる。A thermoplastic resin such as polyamide ester is used.

半導体装置用封止材料としてはエポキシ樹脂が特に好ま
しい。
Epoxy resin is particularly preferred as the sealing material for semiconductor devices.

(6)ポールボンデング用ワイヤ 本発明のAm合金からなる極細線はその先端にボールを
形成し、そのボールを半導体素子上に形成された配線膜
に固相接合し、他端を外部リード端子に固相接合するポ
ールボンデング用ワイヤに有効である。
(6) Wire for pole bonding The ultrafine wire made of the Am alloy of the present invention has a ball formed at its tip, the ball is solid-phase bonded to a wiring film formed on a semiconductor element, and the other end is connected to an external lead terminal. It is effective for pole bonding wires that are solid phase bonded to wires.

極細線は直径10〜100μmが好ましい、合金中の金
属間化合物は直径1iLm以下が好ましく。
The ultrafine wire preferably has a diameter of 10 to 100 μm, and the intermetallic compound in the alloy preferably has a diameter of 1 iLm or less.

特に、サブミクロンとなるようにするのが好ましい、こ
のような極細線においては、金属間化合物が大きな塊り
として存在すると同じ添加量でも耐食性の向上に対する
効果が小さい。
Particularly in such ultra-fine wires, which are preferably submicron in size, if the intermetallic compound is present as a large lump, the effect of improving corrosion resistance will be small even if the amount added is the same.

サブミクロンの微細な金属間化合物を形成させるには溶
解後の塑性加工によって行うことができるが、特にその
化合物の大きさ・は溶解後の溶湯の冷却速度によって大
きな影響を受けるので、溶湯からの急冷によって微細な
金属間化合物とすることができる。溶湯からの冷却速度
は20℃/秒以上が好ましい、冷却手段は水冷鋼鋳型を
使用する方法、溶湯を水冷鋳型で凝固し、その直後水冷
して連続鋳造する方法等によって行うことができる。
Forming submicron fine intermetallic compounds can be done by plastic working after melting, but the size of the compound is greatly affected by the cooling rate of the molten metal after melting, so it is difficult to form fine intermetallic compounds from the molten metal. A fine intermetallic compound can be formed by rapid cooling. The cooling rate from the molten metal is preferably 20° C./sec or more. The cooling method may be a method using a water-cooled steel mold, a method in which the molten metal is solidified in a water-cooled mold, immediately thereafter cooled with water, and continuously cast, or the like.

ワイヤの太さは、添加する合金元素の種類によって異な
るが、特に直径20〜70μmが好ましい、この中で特
に比抵抗等を考慮してワイヤ径が選定される。
Although the thickness of the wire varies depending on the type of alloying element to be added, a diameter of 20 to 70 μm is particularly preferable. Among these, the wire diameter is selected with particular consideration to specific resistance and the like.

ワイヤは前述のように合金元素を含むので、焼なましさ
れたものが好ましい、焼なまし温度は。
Since the wire contains alloying elements as mentioned above, it is preferably annealed, and the annealing temperature is.

再結晶温度以上であることが好ましく、特に弾性変形し
ない程度に焼なましするのが好ましい、ワイヤは局部的
に硬さが異なるとボンデングにおいて局部的な変形を生
じるので、ボール形成において局部的な加熱を受け、局
部的な軟化が生じないように全体に同じ硬さを有するよ
うに軟化していることが好ましい、焼なまし温度は、1
50〜600℃が好ましい、焼なましは非酸化性雰囲気
中で行うのが好ましい、最終焼なましは150〜300
℃が好ましい。
It is preferable to anneal the temperature at or above the recrystallization temperature, and in particular, it is preferable to anneal to a degree that does not cause elastic deformation.If the wire has locally different hardness, local deformation will occur during bonding. It is preferable that the annealing temperature is 1, which is preferably softened to have the same hardness throughout to prevent local softening when heated.
50-600°C is preferred, annealing is preferably carried out in a non-oxidizing atmosphere, final annealing is 150-300°C
°C is preferred.

ワイヤは加工したままのものを回路素子に接合するとき
に焼なましすることができるが、予め焼なましされたも
のをボンデングする方がはるかに能率的である。
Although the wire can be annealed as-made when bonding to circuit elements, it is much more efficient to bond the wire pre-annealed.

ワイヤは、室温の比抵抗が15μΩ・1以下のものが好
ましい。
The wire preferably has a specific resistance of 15 μΩ·1 or less at room temperature.

(7)ボール形成 ポールボンデングにおけるボールは、キャピラリーに保
持されたワイヤ先端を放電、水素火災。
(7) In ball-forming pole bonding, the ball discharges the wire tip held in the capillary, causing a hydrogen fire.

プラズマ、アーク、レーザービーム等の加熱手段によっ
て溶融し、自らの表面張力によって形成される。特に、
ワイヤ自体と他の電極との間に真空又は不活性ガス雰囲
気中で、アーク放電又は火花放電を起させる方法によれ
ばボールを短時間で形成させ、酸化膜の形成を防止でき
るので、好ましい、このアーク放電又は火花放電はワイ
ヤをマイナスとして行うことによりその表面に酸化膜の
ない清浄なボールができ、かつ偏心のないボールが形成
される。また。アーク放電又は火花放電において正及び
負の少なくとも一方のパルス電流を流すこともでき、こ
のパルス電流によってボール形成に必要な適正なアーク
又は火花発生時間をコントロールすることができる。正
負の電流を流す場合には、ワイヤ表面のクリーニングに
必要な時間とボール形成に必要な時間と正負の時間比を
変えることによってコントロールすることができる。
It is melted by heating means such as plasma, arc, laser beam, etc. and is formed by its own surface tension. especially,
A method in which arc discharge or spark discharge is caused between the wire itself and another electrode in a vacuum or an inert gas atmosphere is preferable because the ball can be formed in a short time and the formation of an oxide film can be prevented. By performing this arc discharge or spark discharge with a negative wire, a clean ball with no oxide film on its surface is formed, and a ball with no eccentricity is formed. Also. At least one of positive and negative pulsed currents can also be applied in the arc discharge or spark discharge, and the appropriate arc or spark generation time required for ball formation can be controlled by this pulsed current. When applying positive and negative currents, this can be controlled by changing the ratio of the time required for cleaning the wire surface and the time required for ball formation to the positive and negative times.

クリーニングに必要な時間は全放電時間の10〜30%
が好ましい。
The time required for cleaning is 10-30% of the total discharge time.
is preferred.

ボール形成における加熱溶融雰囲気は非酸化性雰囲気が
好ましい、特に、不活性ガス中に少量。
The heating melting atmosphere in ball formation is preferably a non-oxidizing atmosphere, especially a small amount in an inert gas.

好ましくは5〜15体積%の還元性ガス(例えば水素ガ
ス)を含むものが好ましい、特に、水素ガスを5〜15
体積%を含むアルゴン、ヘリウムなどの不活性ガスが好
ましい、− ボール径はワイヤ径の1.5〜4倍が好ましく。
Preferably, those containing 5 to 15% by volume of reducing gas (e.g. hydrogen gas) are preferred, particularly those containing 5 to 15% by volume of hydrogen gas.
An inert gas such as argon or helium containing vol% is preferred; - The ball diameter is preferably 1.5 to 4 times the wire diameter.

特に2.5〜3.5倍が好ましい。In particular, 2.5 to 3.5 times is preferable.

(8)ボンデング ボンデングには、ボールボンデング及びウェッジボンデ
ングがあり、超音波接合又は熱圧着によって行われるが
、回路素子が半導体素子である場合は、接合間隔に制限
があるので、ポールボンデングが好ましく、外部端子の
場合は、高能率のウェッジボンデングが好ましい。
(8) Bonding There are two types of bonding: ball bonding and wedge bonding, which are performed by ultrasonic bonding or thermocompression bonding. However, when the circuit element is a semiconductor element, there is a limit to the bonding interval, so Bonding is preferred, and in the case of external terminals, high efficiency wedge bonding is preferred.

回路素子に接合後のワイヤはキャピラリーに保持さ九た
形で引?張ることによって回路素子の接合部近傍で切断
される。
After bonding to the circuit element, the wire is held in a capillary and pulled in a rectangular shape? By stretching, the circuit elements are cut near the joints.

ワイヤは前述のように細径なので、これを保護するため
に半導体素子とワイヤと外部端子の一部を樹脂の他にセ
ラミックスで被うことが行われる。
As mentioned above, the wire has a small diameter, so in order to protect it, the semiconductor element, the wire, and part of the external terminal are covered with ceramics in addition to resin.

樹脂は液体を注型(キャスティング)又は成形(モール
ド)し硬化させ、セラミックスは通常の方法でキャップ
シール接合される。
The resin is made by casting or molding a liquid and hardening, and the ceramic is cap-sealed using a conventional method.

(9)配線膜 本発明のAl1合金からなる薄膜は半導体素子の外部リ
ードへの接続端子とする配線膜に特に有効である。薄膜
の形成には蒸着、スパッタリング等の従来方法が用いら
れる。配線膜は幅約数〜数十μm、厚さ数μmを有する
(9) Wiring film The thin film made of the Al1 alloy of the present invention is particularly effective as a wiring film used as connection terminals to external leads of semiconductor elements. Conventional methods such as vapor deposition and sputtering are used to form the thin film. The wiring film has a width of about several to several tens of μm and a thickness of several μm.

実施例1 純度99.99 %の純AJ及び純度99.9%のPd
を用い、Pd含有量0,0.01,0.1 。
Example 1 Pure AJ with a purity of 99.99% and Pd with a purity of 99.9%
using Pd content of 0, 0.01, 0.1.

0.5,1,5,7.10重量%のAJ合金を。0.5, 1, 5, 7.10% by weight of AJ alloy.

水冷鋼鋳型を用い、Ar雰囲気中でアーク溶解によって
溶解した。次いで合金中のPdを合金中に均一に固溶さ
せるため580℃で24時間加熱するソーキング処理を
施した後急冷し、580℃で2時間加熱する焼鈍を間に
入札て室温で圧延又はスェージングにより厚さ1■の板
及び直径1閣の線を各々製造した。加工後、いずれも2
00℃で最終焼鈍を施した。なお、7%及び10%のP
dを含むAl1合金は前述の圧延及びスェージング加工
がPd量のより少ないものに比らべ困難であった。
Melting was carried out by arc melting in an Ar atmosphere using a water-cooled steel mold. Next, in order to uniformly dissolve Pd in the alloy, the alloy is subjected to a soaking treatment in which it is heated at 580°C for 24 hours, then rapidly cooled, and then annealed at 580°C for 2 hours, followed by rolling or swaging at room temperature. A board with a thickness of 1 cm and a wire with a diameter of 1 inch were each produced. After processing, both are 2
Final annealing was performed at 00°C. In addition, 7% and 10% P
The above-mentioned rolling and swaging process of the Al1 alloy containing Pd was more difficult than that of the Al1 alloy containing Pd.

5%以下のPdを含むAl1合金の加工性はいずれも純
AJよりもわずかに劣る程度で、容易に加工することが
できる。
The workability of all Al1 alloys containing 5% or less Pd is slightly inferior to that of pure AJ, and they can be easily worked.

第1図はA悲−1%Pd合金の倍率20.Gooの顕微
鏡写真の型式図である。組織の中の白い部分がAl−P
d金属間化合物であり、その大きさは大きいものが直径
約1μm、小さいものが直径約0.2 μmであり、き
わめて微細で、マトリックス中に均一に分散しているこ
とがわかる。
Figure 1 shows A-1% Pd alloy at a magnification of 20. It is a type|mold diagram of the micrograph of Goo. The white part in the tissue is Al-P
It can be seen that these are intermetallic compounds, the largest being about 1 μm in diameter and the smallest being about 0.2 μm in diameter, and are extremely fine and uniformly dispersed in the matrix.

第2図は、100ppmの塩素イオンを含むpH3の硫
酸溶液(20℃)中で測定したA1−1%Pd合金と純
AJの分極曲線である。純AJは電圧が高くなる程電流
密度が増大し腐食量が増加するのに対し、本発明のAJ
−1%Pd合金は電圧が増加しても電流密度が増大せず
逆に減少する領域すなわち不動態領域(斜線部分)が存
在することがわかる。この領域は合金表面に不動態皮膜
が形成されることを意味する。
FIG. 2 shows polarization curves of A1-1% Pd alloy and pure AJ measured in a pH 3 sulfuric acid solution (20° C.) containing 100 ppm chloride ions. With pure AJ, as the voltage increases, the current density increases and the amount of corrosion increases, whereas the AJ of the present invention
It can be seen that in the -1% Pd alloy, there is a region where the current density does not increase but on the contrary decreases even when the voltage increases, that is, a passive region (shaded region) exists. This region means that a passive film is formed on the alloy surface.

同様に、0.01 ,0.1 ,0.5 ,5.7及び
lO%のPdを含む合金の場合も不動態領域が存在する
ことが認められ、更にPd量が多いほど不動態領域が広
がることがわかった。
Similarly, in the case of alloys containing Pd of 0.01, 0.1, 0.5, 5.7 and 10%, it is recognized that a passive region exists, and the larger the amount of Pd, the larger the passive region. It turns out that it spreads.

第2wIに示す分極曲線から計算した腐食速度は純A息
(99,99%以上)が約0.005m/年、及び1%
Pd合金がO,OO1m/年であり、本発明合金の腐食
速度は純Alの5分の1で、きbめて腐食量が少ないこ
とがわかる。
The corrosion rate calculated from the polarization curve shown in the second wI is approximately 0.005 m/year for pure A breath (99.99% or more), and 1%
It can be seen that the Pd alloy has a corrosion rate of 1 m/year of O, OO, and the corrosion rate of the alloy of the present invention is one-fifth that of pure Al, and the amount of corrosion is extremely small.

前述と同様に、重量で1%Si、1%Ni及び1%M、
を含むAj合金の板を製造し、これらの合金についても
分極曲線を求めた。各分極曲線はいずれも純Allと同
様の曲線を示し、それらの曲線から年間腐食量を求めた
結果、それずれo、oos■/年、0.OQ4 ■/年
及び0.00 フ膳/年であった。分極曲線は、面積1
dを有する試料を塩素イオン100ppmを含むpH3
の硫酸溶液中(25℃)で測定したものである。
As before, 1% Si, 1% Ni and 1% M by weight,
Aj alloy plates were manufactured, and polarization curves were determined for these alloys as well. Each polarization curve shows a curve similar to that of pure All, and as a result of calculating the annual corrosion amount from these curves, the deviations are o, oos/year, 0. OQ4 ■/year and 0.00 fuzen/year. The polarization curve has an area of 1
d at pH 3 containing 100 ppm of chloride ions.
This was measured in a sulfuric acid solution (25°C).

実施例2 いずれも1重量%のSi、Pt、Pd、Rh。Example 2 All 1% by weight of Si, Pt, Pd, Rh.

Ru、Os及びAuを含むAl1合金を実施例1と同様
にアーク溶解し、実施例1と同様にしてスェージング加
工後、線引き焼鈍をくり返すことによリ直径50μmの
ワイヤを製造した。合金元素としていずれも99.99
  %以上の純度を有するものを用いた。&3〜9は本
発明合金及びNa 2のA1−1%51合金は比較のも
のである。
An Al1 alloy containing Ru, Os, and Au was arc melted in the same manner as in Example 1, and after swaging in the same manner as in Example 1, wire drawing and annealing was repeated to produce a wire with a diameter of 50 μm. All alloying elements are 99.99
% or higher purity was used. &3 to 9 are the alloys of the present invention and the Na2 A1-1%51 alloy is for comparison.

表は、各ワイヤについて、85℃及び湿度90%の雰囲
気中で1000時間保持による高温多湿試験後の引張試
験による伸び率及びその試験前の伸び率を示すものであ
る。
The table shows the elongation rate of each wire in a tensile test after a high temperature and high humidity test held in an atmosphere of 85° C. and 90% humidity for 1000 hours, and the elongation rate before the test.

表 11し115  l   0.5  1121A慮−1
%sil   4 1  0.5  1131A慮−1
%pdlsl   4  1141A巴−1%ptl 
  s  l   4   1151A患−1%Rhl
   s   l   2   1161AQ−1%R
uI   s  l   2   117し]−1%A
ul   s  l   4   1IslAm−1%
081  3  1  2   1表に示すように、本
発明の翫3〜8の/1合金の純Al及び1%51合金に
比らべ試験後の伸び率がいずれも高いことがわかる。
Table 11 115 l 0.5 1121A consideration-1
%sil 4 1 0.5 1131A consideration-1
%pdlsl 4 1141A Tomoe-1%ptl
s l 4 1151A patient-1%Rhl
s l 2 1161AQ-1%R
uI s l 2 117] -1% A
ul s l 4 1IslAm-1%
As shown in Table 081 3 1 2 1, it can be seen that the elongation percentages of the /1 alloys 3 to 8 of the present invention after the test are higher than that of pure Al and 1% 51 alloy.

同様に+ pt、Pd、Rh、Ru、Os及びAuの含
有量を各々0.1 ,0.5 .5%にしたAjl合金
からなる直径50μmのワイヤについて試験した結果、
いずれも1%含有AQ合金と同程度の伸び率であった。
Similarly, the contents of +pt, Pd, Rh, Ru, Os, and Au were set to 0.1, 0.5, respectively. As a result of testing on a wire with a diameter of 50 μm made of Ajl alloy with a concentration of 5%,
In both cases, the elongation rate was comparable to that of the 1%-containing AQ alloy.

実施例3 第3図は、実施例2で製作した直径50μmの純AI 
Afi−1%Si及びAQ−1%Pd合金からなるワイ
ヤを用いた代表的なレジンモールド型半導体装置の断面
図である。このレジンモールド型半導体装置を各ワイヤ
について50個製作した。各ワイヤをボール形成前にい
ずれも200〜300℃で最終焼鈍した不完全焼鈍した
ものを用いた。
Example 3 Figure 3 shows pure AI with a diameter of 50 μm manufactured in Example 2.
FIG. 2 is a cross-sectional view of a typical resin molded semiconductor device using wires made of Afi-1% Si and AQ-1% Pd alloys. Fifty resin-molded semiconductor devices were manufactured for each wire. Each wire was incompletely annealed by final annealing at 200 to 300° C. before forming the ball.

各Allワイヤ1はAQ蒸着膜8が設けられた半導体素
子3にボールボンデングされ、Agめつき層10が設け
られたリードフレーム4にウェッジボンデングされる。
Each All wire 1 is ball-bonded to a semiconductor element 3 provided with an AQ deposited film 8, and wedge-bonded to a lead frame 4 provided with an Ag plating layer 10.

ボールボンデングされた後、Sin、等の保護皮膜13
が設けられ、その後型を使って液状のエポキシ樹脂を流
し込み、硬化させることにより図の半導体装置が形成さ
れる。リードフレームにはCu又はFe−42%N1合
金が用いられる。
After ball bonding, a protective film 13 such as Sin, etc.
is provided, and then a mold is used to pour liquid epoxy resin and harden it to form the semiconductor device shown in the figure. Cu or Fe-42%N1 alloy is used for the lead frame.

ボンデングのためのボールフの形成は第4図に示すよう
にキャピラリー2にAiワイヤを押し出し、火花放電に
よる方法によって行われる。前述の各AMワイヤを、真
空排気した後、7%(体積)の水素を含むArガス雰囲
気で置換した雰囲気中で、100OV、1〜5Aの放電
条件でワイヤ1と電極5との間に1ミリ秒以下の短時間
放電させて、その先端に真球のボールを形成させた。放
電は、Wからなる電極5とワイヤとの間で行われる。
Formation of a ball for bonding is performed by extruding an Ai wire into a capillary 2 and using spark discharge, as shown in FIG. After each of the above-mentioned AM wires was evacuated, a voltage of 1.1 mm was applied between the wire 1 and the electrode 5 under the discharge conditions of 100 OV and 1 to 5 A in an atmosphere replaced with an Ar gas atmosphere containing 7% (by volume) hydrogen. A short time period of less than a millisecond caused a discharge to form a true spherical ball at its tip. The discharge occurs between the electrode 5 made of W and the wire.

放電は得られたボールは第5図に示すようにキャピラリ
ー2によって半導体素子上に形成されたAa蒸着膜8に
ワイヤと蒸着膜との摩擦によって行う超音波接合によっ
てポールボンデングを行い、次いで、他端を同じくキャ
ピラリー2によってリードフレーム4のAgめつき層に
同じく超音波接合によってウェッジボンデングを行った
。この超音波接合による本発明合金の接合性は各AMワ
イヤと同程度であり、優れていた。
As shown in FIG. 5, the obtained ball is pole-bonded to the Aa vapor deposited film 8 formed on the semiconductor element by the capillary 2 by ultrasonic bonding performed by friction between the wire and the vapor deposited film, and then, as shown in FIG. The other end was wedge-bonded to the Ag plating layer of the lead frame 4 using the same capillary 2 by ultrasonic bonding. The bondability of the alloy of the present invention by this ultrasonic bonding was comparable to that of each AM wire, and was excellent.

−この方法によって得られた本発明合金からなるボール
はわずかにワイヤ軸方向に長いたまご形のものが形成さ
れたが、良好な真球に近いものであった。本発明合金の
ボールは表面に光沢があり。
- The balls made of the alloy of the present invention obtained by this method were egg-shaped, slightly elongated in the axial direction of the wire, but were close to perfect spheres. The ball made of the alloy of the present invention has a glossy surface.

更にきわめて滑らかで、ワイヤ自体の硬さとほぼ等しく
、図に示すようにきれいなループ状のボンデングが得ら
れることが確認された。また、ウェッジボンデング後の
ワイヤの切断はキャピラリー2を持ち上げて引張ること
によって行われるが。
Furthermore, it was confirmed that the bonding was extremely smooth and had a hardness almost equal to that of the wire itself, and that a clean loop-shaped bonding as shown in the figure could be obtained. Furthermore, the wire is cut after wedge bonding by lifting and pulling the capillary 2.

その切断もワイヤが軟いためきわめて容易で、更にその
引張りによってボンデング部分を剥離するようなことも
全く起こらなかった。
Since the wire was soft, the wire was very easy to cut, and furthermore, the bonded portion did not peel off due to the tension.

以上のようにして製作した各50個のレジンモールド型
半導体装置を、120℃、2気圧の水蒸気中に160時
間放置するプレッシャクツカーテスト(PCT)試験し
、リード線の腐食断線、素子の誤動作等による不良率を
測定した。その結果を第6図に示す、図より純A11及
びAΩ−1%Si合金からなるものはいずれも5〜10
%の不良率が生じたのに対し、本発明のAQ−1%Pd
合金からなるものは0.2 %程度の不良率であり、著
しく耐食性が優れていた。
Each of the 50 resin-molded semiconductor devices manufactured as described above was subjected to a pressure test (PCT) test in which they were left in water vapor at 120°C and 2 atm for 160 hours. The defective rate was measured based on the following methods. The results are shown in Figure 6. From the figure, both pure A11 and AΩ-1% Si alloys have a
% defective rate occurred, whereas AQ-1%Pd of the present invention
Those made of alloy had a defective rate of about 0.2%, and had significantly superior corrosion resistance.

実施例4 実施例3の第3図で示したAfi蒸着膜8の代りに、実
施例1で製造した厚さ1■のA1−1%Pd合金及び実
施例3で示したAfi−1%Si合金の厚さ1■の板を
各々蒸着源として使用し、厚さ1μmの蒸着膜をSi半
導体素子上に形成し。
Example 4 Instead of the Afi deposited film 8 shown in FIG. 3 of Example 3, the A1-1% Pd alloy with a thickness of 1 inch manufactured in Example 1 and the Afi-1% Si shown in Example 3 were used. A 1-inch thick plate of the alloy was used as a vapor deposition source, and a 1 μm thick vapor deposition film was formed on the Si semiconductor element.

実施例2と同様のPCT試験を500時間行った。A PCT test similar to Example 2 was conducted for 500 hours.

蒸着条件は、いずれも基板温度200℃、真空度2〜2
0X10−.トル、蒸着速度200人/秒である。試験
後、走査型電子顕微鏡により蒸着膜の表面状態を調べた
結果、AQ−1%Si合金は粒界から優先的に腐食が進
行していたのに対し、本発明のAjl−1%Pd合金は
ほとんど腐食されていなかった。なお、蒸着膜の組成は
ほぼ合金組成と同じであった。
The deposition conditions were a substrate temperature of 200°C and a degree of vacuum of 2 to 2.
0X10-. torr, and the deposition rate was 200 persons/second. After the test, the surface condition of the deposited film was examined using a scanning electron microscope. The results showed that corrosion progressed preferentially from the grain boundaries in the AQ-1%Si alloy, whereas corrosion progressed preferentially from the grain boundaries in the AJL-1%Pd alloy of the present invention. was hardly corroded. Note that the composition of the deposited film was almost the same as the alloy composition.

実施例5 実施例3の第3図で示したAI蒸着膜の代りに実施例4
に示したと同様に1μmの厚さのAJ−1%Pd蒸着膜
を形成するとともに、第3図のワイヤ1として実施例2
で得た直径50pmのA1−1%Pd合金線を用い、実
施例3に示したのと同様にポールボンデング及びウェッ
ジボンデング−を行い、更に実施例3と同様にエポキシ
樹脂で封止したレジンモールド型半導体装置を50個製
作し、そのPCT試験を160時間実施した。その結果
、不良となったものは全くなく、きわめて優れた耐食性
を有することがわかった。
Example 5 Example 4 was used instead of the AI deposited film shown in FIG. 3 of Example 3.
A 1 μm thick AJ-1% Pd vapor deposited film was formed in the same manner as shown in FIG.
Using the A1-1% Pd alloy wire with a diameter of 50 pm obtained in Example 3, pole bonding and wedge bonding were performed in the same manner as in Example 3, and the wire was further sealed with epoxy resin in the same manner as in Example 3. Fifty resin-molded semiconductor devices were manufactured and subjected to a PCT test for 160 hours. As a result, there were no defects at all, and it was found that they had extremely excellent corrosion resistance.

〔本発明の効果〕[Effects of the present invention]

以上の如く、本発明のAJ合金によれば塩素イオンに対
する高い耐食性が得ら九る。特に、本発明はレジンモー
ルド型半導体装置のポールボンデング用ワイヤ及び配線
膜として優九た効果が得られる。
As described above, the AJ alloy of the present invention provides high corrosion resistance against chlorine ions. In particular, the present invention provides excellent effects as a wire and wiring film for pole bonding of resin molded semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のA1合金の顕微鏡写真の模式図一第2
図は分極曲線を示す線図、第3図は代表的なレジンモー
ルド型半導体装置の断面図、第4図はアーク放電による
ボール形成装置のボール形成部分断面図、第5図はボー
ルボンデングされた状況を示す半導体装置の部分断面図
、第6図はPCT試験の不良率を示す線図である。 1・・・ワイヤ、2・・・キャピラリ、3・・・Si素
子、4・・・リードフレーム、5・・・W電極、ローは
んだ、フー・−ボール、8−・Am蒸着膜、9・・・低
融点ガラス。 10−・・Agめつき層、11・・・W電極の移動方向
、12・−・樹脂。 ! 第1図 AJ!−1%Pd//// ■こ→フー 10  1G”   1G   1G@1G電流密度(
NA/J) 第3図 第4図 二        土 第6図 凌  10 iI#81%Si 什 o               ao       
      to。 時間(h)
Figure 1 is a schematic diagram of a micrograph of the A1 alloy of the present invention.
The figure is a diagram showing a polarization curve, Figure 3 is a cross-sectional view of a typical resin molded semiconductor device, Figure 4 is a partial cross-sectional view of a ball forming device using an arc discharge ball forming device, and Figure 5 is a cross-sectional view of a ball forming device using ball bonding. FIG. 6 is a partial cross-sectional view of a semiconductor device showing the situation in which the semiconductor device was used, and is a diagram showing the failure rate of the PCT test. DESCRIPTION OF SYMBOLS 1... Wire, 2... Capillary, 3... Si element, 4... Lead frame, 5... W electrode, low solder, foo-ball, 8-... Am vapor deposition film, 9... ...Low melting point glass. 10--Ag plating layer, 11--W electrode moving direction, 12--Resin. ! Figure 1 AJ! -1%Pd//// ■ko→fu10 1G” 1G 1G@1G current density (
NA/J) Figure 3 Figure 4 Figure 2 Sat Figure 6 Ling 10 iI#81%Si 什ao ao
to. time (h)

Claims (1)

【特許請求の範囲】[Claims] 1、回路素子と該回路素子に電気信号を出入力する配線
膜とを有する耐食性アルミニウム電子装置において、前
記配線膜が、白金、パラジウム、ロジウム、イリジウム
、オスミウム、ルテニウム、金、銀の1種以上からなる
貴金属0.05〜3重量%を含み、残部が実質的にアル
ミニウムである合金からなることを特徴とする耐食性ア
ルミニウム電子装置。
1. A corrosion-resistant aluminum electronic device having a circuit element and a wiring film for inputting and outputting electrical signals to the circuit element, wherein the wiring film is made of one or more of platinum, palladium, rhodium, iridium, osmium, ruthenium, gold, and silver. 1. A corrosion-resistant aluminum electronic device comprising an alloy containing 0.05 to 3% by weight of a noble metal, the balance being substantially aluminum.
JP2279043A 1990-10-19 1990-10-19 Corrosion resistant aluminum electronic device Granted JPH03148841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2279043A JPH03148841A (en) 1990-10-19 1990-10-19 Corrosion resistant aluminum electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279043A JPH03148841A (en) 1990-10-19 1990-10-19 Corrosion resistant aluminum electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57138608A Division JPS5928553A (en) 1982-08-11 1982-08-11 Corrosion resistant aluminum electronic material

Publications (2)

Publication Number Publication Date
JPH03148841A true JPH03148841A (en) 1991-06-25
JPH0465533B2 JPH0465533B2 (en) 1992-10-20

Family

ID=17605605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279043A Granted JPH03148841A (en) 1990-10-19 1990-10-19 Corrosion resistant aluminum electronic device

Country Status (1)

Country Link
JP (1) JPH03148841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044034A (en) * 2010-08-20 2012-03-01 Stanley Electric Co Ltd Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method
CN104164591A (en) * 2013-05-15 2014-11-26 田中电子工业株式会社 Anti-corrosion aluminum connection wire
CN113584354A (en) * 2021-08-03 2021-11-02 上杭县紫金佳博电子新材料科技有限公司 Bonding aluminum alloy wire and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044034A (en) * 2010-08-20 2012-03-01 Stanley Electric Co Ltd Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method
CN104164591A (en) * 2013-05-15 2014-11-26 田中电子工业株式会社 Anti-corrosion aluminum connection wire
CN113584354A (en) * 2021-08-03 2021-11-02 上杭县紫金佳博电子新材料科技有限公司 Bonding aluminum alloy wire and preparation method thereof

Also Published As

Publication number Publication date
JPH0465533B2 (en) 1992-10-20

Similar Documents

Publication Publication Date Title
KR910003574B1 (en) Corrosion resistant aluminum electronic material
US7820913B2 (en) Bonding wire for semiconductor device
TWI437650B (en) Copper-platinum alloy wire used for connecting semiconductor equippments
US20050151253A1 (en) Bonding wire and an integrated circuit device using the same
US11289442B2 (en) Gold-coated silver bonding wire and manufacturing method thereof, and semiconductor device and manufacturing method thereof
US6395583B1 (en) Semiconductor device with a coating of Pb-free Sn-base solder and manufacturing method therefor
JP2873770B2 (en) Palladium fine wire for wire bonding of semiconductor devices
JPS58154241A (en) Electric apparatus and preparation thereof and bonding wire used thereto and preparation thereof
JP2000307051A (en) Copper and copper alloy and manufacture thereof
JPH03148841A (en) Corrosion resistant aluminum electronic device
JPS6026640A (en) Corrosion resistant electronic aluminum material
JP2010040944A (en) Copper insulation bonding wire, and manufacturing method thereof
Oyamada et al. High-performance silver alloy bonding wire for memory devices
JP4345075B2 (en) Copper and copper-based alloy excellent in wire bonding property and die bonding property and manufacturing method thereof
JPS61201762A (en) Manufacture of bar material for electronic equipment part
JPH02170934A (en) Copper alloy having superior direct bonding property
JPH0464121B2 (en)
JPS63235442A (en) Fine copper wire and its production
JP5293728B2 (en) Bonding wire
JPS6132444A (en) Ic device
JPS59139661A (en) Semiconductor device
JP3454667B2 (en) LOC type lead frame
JPH02170936A (en) Copper alloy having superior direct bonding property
JPH02170935A (en) Copper alloy having superior direct bonding property
JPH08153843A (en) Lead frame for semiconductor chip mounting