JP2014222872A - クロック・データ・リカバリ回路で受信データ信号をトラッキングするためのシステム及び方法 - Google Patents

クロック・データ・リカバリ回路で受信データ信号をトラッキングするためのシステム及び方法 Download PDF

Info

Publication number
JP2014222872A
JP2014222872A JP2014099904A JP2014099904A JP2014222872A JP 2014222872 A JP2014222872 A JP 2014222872A JP 2014099904 A JP2014099904 A JP 2014099904A JP 2014099904 A JP2014099904 A JP 2014099904A JP 2014222872 A JP2014222872 A JP 2014222872A
Authority
JP
Japan
Prior art keywords
phase
sample
received data
clock
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014099904A
Other languages
English (en)
Inventor
ラキス イスマイル
Lakkis Ismail
ラキス イスマイル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeptence LLC
Original Assignee
Adeptence LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeptence LLC filed Critical Adeptence LLC
Publication of JP2014222872A publication Critical patent/JP2014222872A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0337Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/07Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop using several loops, e.g. for redundant clock signal generation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0807Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • H03L7/0996Selecting a signal among the plurality of phase-shifted signals produced by the ring oscillator

Abstract

【課題】通信システムにおいてクロック・データ・リカバリ回路で受信データをトラッキングするためのシステム及び方法を提供する。
【解決手段】クロック・データ・リカバリ回路(CDR)は、シリアル入力信号からのデータを再生するように動作する。CDRは、シリアル入力信号を複数の位相でサンプリングするのにオーバーサンプリングを用いる。シリアル入力信号のデータ転送速度にロックされない基準クロックから複数の位相が生成される。一度に最大2つの位相が用いられる。結果的に得られるCDRは、低い電力消費でありながら高い性能を提供する。
【選択図】なし

Description

本明細書で説明される実施形態は、クロック・データ・リカバリ回路に関する。
例えば通信用途では、処理回路は、しばしばデータをパラレルに処理するが、データは、しばしばポイント間でシリアルに通信される。データは、回路基板トレース、バックプレーン、又は光ファイバケーブルなどのチャネル上でシリアルに伝送されることがある。シリアル通信用の送信器は、データ信号の遷移のタイミングによって暗黙的にシグナル化されたクロッキング情報と共にデータ信号でデータを伝送することができる。受信器は、伝送されたデータと対応するクロック信号との両方を再生(recover)する。こうした動作を行う受信器の回路は、しばしばクロック・データ・リカバリ回路又はより一般にはCDRと呼ばれる。
多くのクロック・データ・リカバリ回路は、電圧制御発振器、位相周波数検出器、チャージポンプ、及びフィルタなどの重要な(critical)アナログ回路又は準アナログ回路を用いて動作する。こうした回路は、開発及び製造するのが難しいことがある。加えて、より高い速度並びに低減されたコスト及び電力への要望は、CDRを開発及び製造する際の難しさを増加させる。
従来のCDRに伴う1つの問題は、受信器の動作を送信器の動作と整合することの難しさである。この問題は、送信器及び受信器のクロック回路は製造公差に起因して全く同じ周波数で動作しないという事実によって生じる。さらに、送信器及び受信器のクロックのそれぞれは、時間と共に異なるレートでドリフトするであろう。したがって、受信器及び送信器の動作を互いにロックされた状態に保つのは非常に難しく、双方を確実にロックされたままにするのに通常何らかの能動的動作が必要とされる。
従来の技術は、受信器クロックの複数の位相を用いて受信器で受信データ信号をオーバーサンプリングするものである。これは、受信器の制御回路が受信データ信号を「マップ」し、受信信号をサンプリングする最適なポイント及び対応する位相を判定することを可能にする。慣例的に、このようなオーバーサンプリング方式では1ビットにつき少なくとも3つの位相が用いられなければならないが、これは、受信器の複雑さ、サイズ、及びコストを増加させることが理解されるであろう。
通信システムにおいてデータ及びクロック信号を検出及び再生するためのシステム及び方法が本明細書で説明される。
一態様では、データリカバリ回路は、第1のサンプル信号による信号送出時にシリアル入力信号の値を格納するように構成された第1のフリップフロップと、第2のサンプル信号による信号送出時にシリアル入力信号の値を格納するように構成された第2のフリップフロップと、第1のサンプル信号及び第2のサンプル信号を生成するように構成され、第1のサンプル信号及び第2のサンプル信号がシリアル入力信号の期待されるデータ転送速度と整合する周波数で発振し且つ選択されたオフセットを伴う位相を有する、位相選択モジュールと、第1のフリップフロップからの値及び第2のフリップフロップからの値のみから出力データ信号を生成し、シリアル入力信号からデータを再生するために第1のサンプル信号及び第2のサンプル信号を生成するべく位相選択モジュールを制御するように構成された制御モジュールと、を備える。
別の態様では、データリカバリ回路は、第1のサンプル信号のエッジでのシリアル入力信号の値を格納することによって第1のデータサンプル信号を生成するように構成された第1のフリップフロップと、第2のサンプル信号のエッジでのシリアル入力信号の値を格納することによって第2のデータサンプル信号を生成するように構成された第2のフリップフロップと、第1の位相制御信号に従って複数の位相信号のうちの1つを選択することによって第1のサンプル信号を生成し、且つ第2の位相制御信号に従って複数の位相信号のうちの1つを選択することによって第2のサンプル信号を生成するように構成され、複数の位相信号のそれぞれが位相オフセットし、且つシリアル入力信号のデータ転送速度に対応する周波数で発振する、位相選択モジュールと、第1のデータサンプル信号の値と第2のデータサンプル信号の値との間の不一致のカウントを累算するように構成された累算モジュールと、データ選択制御信号に従って第1のデータサンプル信号又は第2のデータサンプル信号を選択することによって出力データ信号を生成するように構成されたデータセレクタと、出力データ信号がシリアル入力信号から再生されたデータをシグナル化するように、累算された不一致のカウントを用いて第1の位相制御信号、第2の位相制御信号、及びデータ選択制御信号を生成するように構成された制御モジュールと、を備え、第1のフリップフロップ及び第2のフリップフロップだけがシリアル入力信号の値を格納する。
本発明の他の特徴及び利点は、本発明の態様を単なる例として示す以下の説明から明らかとなるであろう。
本発明の詳細は、その構造及び動作の両方に関して、同様の参照符号が同様の部分を指す付属の図面を見ることである程度得られるであろう。
本発明の態様に係るクロック・データ・リカバリ回路のブロック図である。 本発明の態様に係るクロック・データ・リカバリ回路の動作を示すタイミング図である。 本発明の態様に係るクロック・データ・リカバリ回路のブロック図である。 本発明の態様に係る通信システムのブロック図である。 シリアル通信信号を生成するための例示的な回路を示すブロック図である。 一実施形態に係る図1のシステムで用いることができる例示的なPLL回路を示すブロック図である。 図6のPLL回路で用いることができる単純なインバータを備える基礎的なリング発振器を示す図である。 複数のインバータを備えるリング発振器を示す図である。 図7Bのマルチインバータリング発振器の種々の段の出力を示す図である。 図6のPLL回路で用いることができる典型的なLC発振器を示す図である。 一実施形態に係る複数の通信チャネルを配置する例示的な通信システムを示す図である。 一実施形態に係る図9のシステムで用いることができる例示的なPLL回路を示すブロック図である。
図5は、シリアル通信信号を生成するための例示的な回路を示すブロック図である。分かるように、データは、パラレルデータバス500上のパラレルデータとして出発する。例えば、シリアルデータバス500は、16ビットのパラレルデータバスとすることができる。パラレルデータは、例えばエンコーダ502で、例えば20ビットのパラレルデータにエンコードすることができる。この例えば20ビットのパラレルデータは、次いで、例えばマルチプレクサ、すなわちMUXを備えることができるシリアライザ504によってシリアルデータ信号に変換することができる。シリアルデータは、次いで、伝送のためにシリアルデータバス506に送ることができる。
この例では、シリアルデータバス506上のシリアルデータは、5GHzのデータ転送速度を有することができる。したがって、シリアライザ504は、位相同期ループ(Phase Locked Loop:PLL)508によって生成される5GHzのクロック信号で制御することができる。エンコーダ502は、256MHz(5GHz/20ビット)で動作することになる。したがって、分周器512は、エンコーダ502の動作を制御できるクロック信号を生成するために、5GHzのクロック信号を256MHzに分周するように構成することができる。
PLL動作が以下でより詳細に論じられるが、PLL508に関する基準信号を生成するのに水晶510が必要とされることが理解されるであろう。こうした水晶は、例えば24MHzの基準周波数を生成するように構成することができるが、こうした水晶はまた、例えば500ppmの製造公差を有するであろう。したがって、所与の水晶は、通常、正確に24MHzで発振しないであろう。
対応する受信器は逆に動作するであろう、例えば、伝送されたシリアル信号が受信され、デシリアライズされ、及びデコードされるであろう。したがって、これらの動作を行うべくクロック信号を生成するために受信器にPLL回路が必要となるであろう。しかし、受信器のPLL回路は、上記のように製造公差に起因して且つまたドリフトに起因して、おそらく送信器の周波数と正確に同じ周波数でクロック信号を生成しないであろう。結果として、受信器の動作を送信器の動作と同期させ、この同期を維持するために、何らかの形態のクロック・データ・リカバー(CDR)回路が必要となる。
従来のCDR回路では、受信信号のオーバーサンプリングがしばしば用いられる。これは、データ信号の立ち上りエッジ及び立ち下りエッジを明確に識別するために複数のポイントでの受信信号のサンプリングに関係する。しかし、従来のオーバーサンプリング回路は、通常、1ビットにつき少なくとも3サンプルを必要とし、これはCDR回路の複雑さを増加させる。
本明細書で説明されるシステム及び方法に従って構成されたCDR回路が以下で詳細に論じられる。しかし最初に、図6は、例示的なPLL回路508をより詳細に示すブロック図である。PLLは、その位相が入力「基準」信号の位相に関係付けられる出力信号を生成する制御システムである。したがって、これは可変周波数発振器と位相検出器からなる電子回路である。回路は、入力基準信号の位相をその出力発振器から導出された信号の位相と比較し、位相を整合された状態に保つためにその発振器の周波数を調整する。位相検出器からの信号は、発振器をフィードバックループで制御するのに用いられる。
周波数は位相の時間微分である。入力位相及び出力位相をロックステップに保つことは、入力周波数及び出力周波数をロックステップに保つことを意味する。その結果、位相同期ループは、入力周波数をトラックすることができ、又はこれは、入力周波数の逓倍の周波数を生成することができる。
図6で分かるように、この場合40MHzである基準電圧とフィードバック信号が位相−周波数−検出器(Phase−Frequency Detector:PFD)回路602に提供される。PFD602は、基準信号とフィードバック信号との間の誤差を検出する。次いで、PFD602の出力が、フィードバック動作を制御するのに用いられ、チャージポンプ604に提供される。次いで、チャージポンプ604の出力が、ローパスフィルタ(LPF)606に提供され、これは、チャージポンプ606からの信号を平均し、平均した信号を、所望の周波数、例えば5GHzでクロック信号を生成するように構成される電圧制御発振器(Voltage Controlled Oscillator:VCO)608に入力として提供する。したがって、この例では、PLL508は、基準信号の逓倍のクロック信号を生成するのに用いられる。
このクロック信号は、次いで、分周回路610によって、例えば40MHzに分周される。加えて、VCO608は、複数の位相のクロック信号、例えば、CLK1、CLK2、...、CLK(n−1)を生成するように構成することができ、これは、後述の実施形態に従って2つのクロック信号CLKA及びCLKBを生成するのに用いることができる。
VCO608は、例えば、リング発振器か又はLC発振器のいずれかを用いることができる。図7Aは、単純なインバータ702を備える基礎的なリング発振器を示す図である。リング発振器は、その出力が2つの電圧レベル間で発振する奇数のインバータゲートからなるデバイスである。したがって、図7Aの回路は示された出力信号を生成するであろう。述べたように、典型的なリング発振器は、複数の位相を生成するのに用いることができる複数のインバータを備えるであろう。インバータは、チェーン状に取り付けられ、最後のインバータの出力は、図7Bで示されるように最初のインバータにフィードバックされる。各インバータに関連する遅延時間は、入力に対して後続のインバータ出力を遅延させ、したがって図7Cで示されるように異なる位相を生じるであろう。
図8は、典型的なLC発振器を示す図である。共振回路、タンク回路、又は同調回路とも呼ばれるLC回路は、英字Lで表されるインダクタ及び英字Cで表されるキャパシタからなる。一緒に接続されるときに、それらは、回路の共振周波数で発振するエネルギーを蓄える音叉の電気的アナログである電気共振器として作用することができる。LC回路は、特定の周波数で信号を生成すること又はより複雑な信号から特定の周波数で信号を取り出すことのいずれかのために用いられる。分周回路804a〜804fを用いて複数の位相を生成することができる。
以上を踏まえて、図1は、本発明の態様に係るCDRのブロック図である。回路は、データビットの一連のストリームを搬送するシリアル入力信号DINを受信し、それから出力データ信号DOUTが生成される。回路は、出力データ信号における値がシリアル入力信号を生成するのに用いられる送信器によって送信された値と実質的に整合するように出力データ信号を生成するように動作する。回路はまた、出力データ信号と同期される関連する出力クロック信号CLKOUTを生成してもよい。回路の動作がシリアル入力信号と同期されるときに、ロックされると言われる。回路は、その動作をデータが受信されるレートと整合するように調整する。データ転送速度は、時間と共に徐々に変化し、例えば数十ppm変化することがあり、回路がロックされるときには、こうしたタイミングの変化に追随する。回路のブロックは、一般に半導体素子と共に実装され、例えばCMOS集積回路として提供されてもよい。
クロック・データ・リカバリ回路は、第1の入力フリップフロップ111及び第2の入力フリップフロップ112を含む。第1の入力フリップフロップ111は、第1のデータサンプル信号DATAAを生成するために第1のサンプルクロック信号CLKAの立ち上りエッジ上のシリアル入力信号の値を格納する。第2の入力フリップフロップ112は、第2のデータサンプル信号DATABを生成するために第2のサンプルクロック信号CLKBの立ち上りエッジ上のシリアル入力信号の値を格納する。アナログサンプル保持回路の用語への類推によって、入力フリップフロップは、関連するサンプルクロック信号によってトリガされる時点でシリアル入力信号をサンプリングし、サンプリング時点間でサンプリングされた値を保持すると考えられてもよい。
サンプルクロック信号は、位相選択モジュール120によって生成される。位相選択モジュール120は、同じ周波数で発振するが異なる相対位相を有する位相0〜位相7の位相信号を受信する。位相信号は、多段リング発振器の種々の段からの信号をバッファリングすることによって生成されてもよい。例えば、5GHzで発振する45°離間された8つの位相信号が存在してもよい。位相選択モジュール120は、第1の位相制御信号SELAに基づいて第1のサンプルクロック信号として出力するために位相信号のうちの1つを選択する。位相選択モジュール120は、第2の位相制御信号SELBに基づいて第2のサンプルクロック信号として出力するために位相信号のうちの1つを選択する。実施形態に応じてより多くの又は少ない位相信号を用いることができることが理解されるであろう。
位相信号は、位相同期ループ122によって供給される。位相同期ループ122は、基準クロック信号CLKREFを受信する。基準クロック信号は、シリアル入力信号の期待されるデータに対応する周波数で発振する。基準クロック信号の周波数は、データ転送速度の約数(sub−multiple)であってもよい。例えば、名目上のデータ転送速度が5Gbpsであるとき、基準クロック信号の周波数は250MHzである場合がある。位相信号は、期待されるデータ転送速度と名目上整合する周波数で発振するが、位相信号は、データ転送速度にロックされる必要はなく、位相信号の周波数は、期待されるデータ転送速度から変化することがある。周波数の変化は、基準クロック信号を生成するのに用いられる水晶の例えば100ppmの公差に起因することがある。加えて、実際の受信データ転送速度は、送信器での周波数公差に起因して期待されるデータ転送速度から変化することがある。
制御モジュール140は、位相制御信号を生成するためにデータサンプル信号を受信及び解析する。制御モジュール140は、データサンプル信号のうちの1つを選択することによって出力データ信号を生成する。図1に示された実施形態では、制御モジュール140はまた、出力クロック信号を生成する。制御モジュールは、選択されたデータサンプル信号に対応するサンプルクロック信号のうちの1つを選択することによって出力クロック信号を生成してもよい。
クロック・データ・リカバリ回路の動作のさらなる理解は、クロック・データ・リカバリ回路の動作を示すタイミング図である図2を参照することで得られるであろう。例示的なシリアル入力信号233の7つのビットインターバル201〜207が示される。8つの位相221〜228のそれぞれに対応するサンプル値も示される。重ね合わされた異なるビットインターバルに関する複数の波形を示すアイダイアグラムを参照することでシリアルデータ信号を説明するのが一般的である。図2は、例示的なアイダイアグラム287を示す。例示的なアイダイアグラム287及び例示的なシリアル入力信号233から、アイの中央付近及びエッジ又は信号遷移から遠くでのシリアル入力信号のサンプリングは正しいデータ値を生成する可能性を高めることが分かる。
シリアル入力信号はレベル間の瞬間的遷移を伴うバイナリ信号として始まることがあるが、これは、その通信チャネル及びその送信器の限界によって歪むことになる。例えば、チャネル及び送信器の限られた帯域幅が符号間干渉を引き起こすことがある。加えて、シリアルデータ信号はノイズ及びジッタによって歪むことがある。
CDRは、信頼できるデータリカバリを提供するシリアル入力信号をサンプリングするためにクロック位相を判定する。位相と周波数は一体的に関連するので、サンプリング位相の更新はサンプリング周波数の変化を引き起こすことがある。制御モジュール140は、一般に、第1の入力フリップフロップ111がシリアル入力信号をデータアイの中央でサンプリングするように第1のサンプルクロック信号を制御するように動作する。制御モジュール140の動作は、データサンプル信号を比較することと、どのくらいの頻度でデータサンプル信号が異なる位相に関して一致するかに基づいて位相制御信号を設定することを含む。制御モジュール140の動作は、取得ステージ及びトラッキングステージを含む。
制御モジュール140は、図1のクロック・データ・リカバリ回路において、位相信号の連続した対を選択するために位相制御信号を設定することによって良好なサンプル位相を探してもよい。例えば、第1のサンプルクロック信号と第2のサンプルクロック信号は、以下の表に列挙された組み合わせのうちの1つに設定されてもよい。
Figure 2014222872
サンプルクロック信号の双方がデータアイの中央付近にあるとき、データサンプル信号は同じ値を有することが期待される。同様に、サンプルクロック信号がデータアイのエッジの両側にあるとき、データサンプル信号は高頻度で異なる値を有することが期待される。例えば、図2の例示的な信号に関して、第1のサンプルクロック信号が第3の位相信号と整合し、第2のサンプルクロック信号が第4の位相信号と整合するときに、第1のデータサンプル信号及び第2のデータサンプル信号は各ビット時間で同じである。対照的に、第1のサンプルクロック信号が第8の位相信号と整合し、第2のサンプルクロック信号が第1の位相信号と整合するときに、第1のデータサンプル信号及び第2のデータサンプル信号は連続したビットインターバルが異なるデータ値を有するときに異なる。
制御モジュール140は、データサンプル信号が位相の種々の組み合わせに関してどのくらいの頻度で異なるかを測定することによって取得ステージを行ってもよい。制御モジュール140は、次いで、収集した測定値をクロック・データ・リカバリ回路の動作のための所望の位相を判定するのに用いることができる。取得ステージは、位相選択信号を連続した対の組み合わせのうちの最初の1つに設定し、第1のデータサンプル信号及び第2のデータサンプル信号が多数のビット時間にわたって異なる回数を累算することによって開始することができる。例えば、制御モジュール140は、64ビット時間にわたる不一致の数を累算しながら、最初にシリアル入力信号を第1の位相及び第2の位相でサンプリングさせてもよい。制御モジュール140は、次いで、位相の各組み合わせに関する不一致の累算を繰り返してもよい。
制御モジュール140は、どの位相がデータアイのエッジにあるかを判定し、データリカバリに用いるためにエッジから1/2ビット時間の位相オフセットを選択してもよい。代替的に、制御モジュール140は、どの位相がデータアイの中央にあるかを判定し、データリカバリに用いるために対応する位相を選択してもよい。アイのエッジ又は中央に関連する位相を判定するのに種々の統計的手段が用いられてもよい。例えば、アイのエッジは、測定された不一致の数が最大である位相としてとられてもよい。代替的に、アイのエッジは、測定された不一致の数が大きい位相の範囲の中央での位相としてとられてもよい。大きい不一致の数は、シリアル入力信号におけるデータ遷移の確率と関連づけることができる。アイの中央の位相を見つけるのに対応する技術が用いられてもよい。
以下の位相及び不一致の例示的な表に関して、アイのエッジは、大きい値の最大(第2の位相と第3の位相との間)又は中央(第3の位相と第4の位相との間)でとられてもよい。同様に、アイの中央は、ゼロの(又は少量の)不一致を有する位相の中央(第7の位相と第8の位相との間)としてとられてもよい。したがって、データリカバリのために第7の位相が選択されてもよい。
Figure 2014222872
クロック・データ・リカバリ回路は、取得ステージで判定された位相を用いてデータの再生を開始する。位相信号に対するシリアル入力信号のタイミングは、例えば、位相信号を生成するのに用いられる基準クロックにデータを伝送するのに用いられるクロック間の遅延の変化又はより一般には周波数の差異に起因して時間と共に変化することがある。例えば、周波数が100ppmだけ異なり、8つのサンプル位相が存在するとき、シリアル入力信号は1250ビット時間で1位相だけシフトするであろう。制御モジュール140は、サンプルクロック信号をシリアル入力信号のタイミングに調整するのにトラッキングステージを用いる。
制御モジュール140は、トラッキングステージにおいてデータサンプル信号の種々の比較を用いることができる。制御モジュール140は、データリカバリのために第1のサンプルクロック信号を用いるときに、第2のサンプルクロック信号を第1のサンプルクロック信号の位相からビットインターバルの1/2オフセットの位相に設定してもよい。次いで、データリカバリに用いられる位相信号がもはや適切でなくなるのに十分なだけ大きくPLL122がドリフトされたときを検出するのに、制御モジュール140による監視及び制御のために第2のクロック信号、例えばCLKBを用いることができる。
代替的に、制御モジュール140は、第2のサンプルクロック信号(データリカバリのために第1のサンプルクロック信号を用いるとき)を第1のサンプルクロック信号の位相からビットインターバルの1/2未満の位相オフセットに設定し、結果的に得られるデータサンプル信号の不一致を累算してもよい。例えば、制御モジュール140は、第2のサンプルクロック信号を第1のサンプルクロック信号の位相からビットインターバルの4分の1進んだ位相又は遅れた位相に交互に設定してもよい。
したがって、例えば、位相信号が選択され及びデータリカバリのためにCLKAが設定され、第2の位相が選択され及び監視のためにCLKBが設定されると、結果的に得られるサンプル信号DATAA及びDATABを比較することができる。例えば、サンプル信号は、排他的論理和の適用を受ける(Exlcusive−ORed:XORed)ことができ、結果が累算される。XOR演算の結果が「1」である限りすべてうまくいくが、結果が「0」を含み始めると、制御モジュール140は、PLL122の位相がスリップしていることを検出し、データリカバリ及び監視のために新しい位相信号を選択するプロセスを開始するように構成することができる。
例えば、制御モジュールは、PLL122の位相がどちらにスリップしているかを検出し、どのような位相信号がデータリカバリに用いられるべきかを判定するために、CLKBの位相をどちらかにシフトするように構成することができる。新しい正しい位相信号が判定されればこれを用いることができるが、制御モジュール140がCLKAの位相信号を単純に切り換えるとしたら、結果的に生じる切り換え時間及び回復時間によってデータが失われる可能性がある。言い換えれば、切り換え時間及び回復時間は長すぎる。この問題に対処するために、制御モジュール140は、データリカバリのために依然としてCLKAを用いながら、CLKBをデータリカバリのための最適な位相に切り換えるように構成することができる。CLKBが整定されると、制御モジュール140は、上述のようにデータリカバリのためにCLKBの使用を開始し、CLKAを監視のための適切な位相に切り換えるように構成することができる。このようにして、データリカバリは影響を受けず、データリカバリのための最適な位相が維持され、2つだけの位相信号が用いられる。
図3は、本発明の態様に係るクロック・データ・リカバリ回路のブロック図である。図3のクロック・データ・リカバリ回路は、図1のクロック・データ・リカバリ回路と類似している。図3のクロック・データ・リカバリ回路は、図1のクロック・データ・リカバリ回路を実装するのに用いられてもよい。
図3のクロック・データ・リカバリ回路は、基準クロック信号から第1のサンプルクロック信号及び第2のサンプルクロック信号を生成するために位相選択モジュール320及び位相同期ループ322を含む。一部の実施形態では、位相選択モジュール320及び位相同期ループ322は、図1の位相選択モジュール120及び位相同期ループ122と類似している又は同じである。
図3のクロック・データ・リカバリ回路は、サンプルクロック信号のエッジ上のシリアル入力信号の値を格納し、第1のデータサンプル信号及び第2のデータサンプル信号を生成するために、第1の入力フリップフロップ311及び第2の入力フリップフロップ312を含む。一部の実施形態では、第1の入力フリップフロップ311及び第2の入力フリップフロップ312は、図1の第1の入力フリップフロップ111及び第2の入力フリップフロップ112と類似している又は同じである。
図3のクロック・データ・リカバリ回路は、クロック・データ・リカバリ回路においてどの位相信号が用いられるかを制御する、制御モジュール341を含む。制御モジュール341はまた、クロック・データ・リカバリ回路によってどのような出力データ信号及び出力クロック信号が生成されるかを制御する。
排他的論理和ゲート342において第1のデータサンプル信号と第2のデータサンプル信号が比較される。データサンプル信号が等しいときは論理0であり、データサンプル信号が異なるときは論理1である、排他的論理和ゲート342の出力が、累算モジュール344で累算される。累算モジュール344からの累算値が、サンプルクロック信号の位相を設定するのに用いるために制御モジュール341に供給される。
クロック・データ・リカバリ回路は、第1のデータサンプル信号及び第2のデータサンプル信号を受信する第1のセレクタ348を含む。第1のセレクタ348は、データサンプル信号のうちの1つを出力データ信号として出力するために選択する。選択は、制御モジュール341からの制御信号によって決定される。
クロック・データ・リカバリ回路はまた、第1のサンプルクロック信号及び第2のサンプルクロック信号を受信する第2のセレクタ347を含む。第2のセレクタ347は、サンプルクロック信号のうちの1つを出力クロック信号として出力するために選択する。制御モジュール341からの制御信号によって選択が決定される。第2のセレクタ347による選択は、通常は、第1のセレクタ348による選択と整合する。
制御モジュール341は、図1のクロック・データ・リカバリ回路の制御モジュール140の技術と同じ又は類似の技術を用いてクロック・データ・リカバリ回路の動作を制御することができる。図3のクロック・データ・リカバリ回路の制御モジュール341は、継続した動作中に位相を調整するためにクロックリカバリ及びトラッキングステージに用いる位相を見つけるのに取得ステージを用いることができる。
示されたクロック・データ・リカバリ回路の多くの変形が可能である。例えば、クロック・データ・リカバリ回路の実装は異なる数の位相を有することができる。加えて、CDR実装は種々の周波数で動作してもよい。CDR実装は、第1の入力フリップフロップ及び第2の入力フリップフロップ、第1のデータサンプル信号及び第2のデータサンプル信号、並びに第1のデータサンプル信号及び第2のデータサンプル信号の使用をスワップしてもよい。使用は動的にスワップされてもよい。クロック・データ・リカバリ回路は、クロック信号の立ち上りエッジによってトリガされるイベントを有するものとして説明されているが、CDR実装は、立ち下りエッジ又は立ち上りエッジと立ち下りエッジとの組合せでの信号遷移を有してもよい。さらに、説明したモジュール及び機能間の境界は、一部の機能がモジュールにわたって分散される又は1つのモジュールに組み合わされる状態で修正されてもよい。同様に、一部の回路は複数のモジュール及び機能間で共有されてもよい。
示されたクロック・データ・リカバリ回路は、説明を明瞭にするために簡略化される。多くのCDR実装、特に高周波数で動作する実装では、CDRの一部の信号は、示された各信号に関して一対の差動信号線を用いる。信号タイミングを容易にするためにCDR実装に付加的なデバイスが含まれてもよい。例えば、第1のデータサンプル信号及び第2のデータサンプル信号を共通のクロックエッジに時刻変更するのに付加的なフリップフロップが用いられてもよい。例えば、より高周波数の動作を可能にするために又はメタスタビリティ問題を低減させるために、種々のモジュール間にパイプラインステージとして付加的なフリップフロップが付加されてもよい。所望の動作を提供するタイミング特徴を有する種々の信号を導出するためにバッファ回路が含まれてもよい。
位相信号の生成はまた、示された実施形態とは異なっていてもよい。種々のタイプの周波数制御発振器が用いられてもよい。例えば、位相同期ループの代わりに又はこれと組み合わせて、遅延ロックループが用いられてもよい。位相選択モジュールはまた、位相信号のエッジ間のサブ位相を生成するために位相補間器を含んでもよい。
一部の実施形態では、サンプルクロック信号を修正できる速度が制限されることがあり、又はサンプルクロック信号は位相が修正されるときに短い間不定であることがある。制御モジュールの動作は適宜修正されてもよい。例えば、データリカバリに用いられる位相がトラッキング中に修正されるべきであるとき、制御モジュールは、現在用いられるサンプルクロック信号のタイミングを直接切り換えるのではなくどのサンプルクロック信号が用いられるかを切り換えてもよい。例えば、データリカバリのために第1のサンプルクロック信号が用いられており、位相が新しい位相に変化するときに、第2のサンプルクロック信号が新しい位相に設定されてもよく、データリカバリが確実に動作していた後の第2のサンプルクロック信号に切り換えられてもよい。
制御モジュールはまた、取得位相において異なる技術を用いてもよい。例えば、すべての位相を通してスイープするのではなくバイナリサーチが用いられてもよい。加えて、サーチは、粗く、次いで位相選択を洗練するために細かく、段階的に行われてもよい。累算されたサンプルの数もまた動的に変化することがある。
示されたクロック・データ・リカバリ回路は、データ転送速度で発振するクロックと共に動作する。代替的な実装は、データ転送速度の約数で発振するクロックを用いてもよい。例えば、CDR実装は、出力データ信号を生成するために組み合わされたサンプルクロック信号及びデータサンプル信号の2つの組を用いる回路と共に、1/2のデータ転送速度で発振するクロックを用いてもよい。
図4は、本発明の態様に係る通信システムのブロック図である。伝送のためのパラレルデータが、伝送デバイスのシリアライザ510に供給される。シリアライザ510は、パラレルデータを通信リンク513上で通信されるシリアルデータストリームに変換する。受信デバイスのクロック・データ・リカバリ回路520が、シリアル入力信号としてシリアルデータストリームを受信する。クロック・データ・リカバリ回路520は、図1又は図3のクロック・データ・リカバリ回路であってもよい。クロック・データ・リカバリ回路520は、シリアル入力信号からのデータを再生する。再生されたデータは、再生されたデータをパラレル形式に変換するデシリアライザ525に供給される。クロック・データ・リカバリ回路520がロックされるときに、デシリアライザ525からのパラレルデータがシリアライザ510に供給されるパラレルデータと整合する。
図4の実施形態では、伝送デバイスと受信デバイスとの間に単一のチャネル又はレーンが接続される。特定の実施形態では、しかしながら、図9で示されるようにデバイス間に複数のチャネル又はレーンを接続することができる。PLLによって生成される複数(multiple)を、上述のように用いられる複数のクロック位相の対を生成するのに用いることができる。これは図10の実施形態で示される。図10で分かるように、クロック位相CLKA及びCLKBの複数の対を生成し、ちょうど上述したように複数のレーンのそれぞれに関して用いることができる。他の実施形態では、特定のクロック位相信号CLKA及びCLKBを複数のレーンに関して用いることができる。例えば、CLKB1を複数のレーンに関して用いることができる。
本明細書で開示される実施形態と組み合わせて説明される種々の例示的なブロック及びモジュールは、種々の形態で実装することができる。いくつかのブロック及びモジュールが、概してそれらの機能性に関して上記で説明されている。こうした機能性がどのようにして実装されるかは、システム全体に課される設計上の制約に依存する。当業者は、説明された機能性を各特定の用途のために様々な方法で実施することができるが、こうした実装の決定は、本発明の範囲からの逸脱をもたらすと解釈されるべきではない。加えて、モジュール、ブロック、又はステップ内の機能のグループ分けは、説明を簡単にするためである。特定の機能又はステップを、本発明から逸脱することなく1つのモジュール又はブロックから移動することができる。
本明細書で開示される実施形態と組み合わせて説明される種々の例示的なブロック及びモジュールは、本明細書で説明される機能を果たすように設計された汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、又は他のプログラム可能論理デバイス、ディスクリートゲート又はトランジスタ論理、ディスクリートハードウェアコンポーネント、又はこれらの任意の組み合わせにおいて又はこれらと共に実装することができる。汎用プロセッサはマイクロプロセッサとすることができるが、代替的に、プロセッサは、任意のプロセッサ、コントローラ、マイクロコントローラ、又は状態マシンとすることができる。プロセッサはまた、コンピューティングデバイスの組合せ、例えば、DSPとマイクロプロセッサ、複数のマイクロプロセッサ、DSPコアと併せた1つ以上のマイクロプロセッサとの組合せ、又は任意の他のこうした構成として実装することができる。
開示される実施形態の上記の説明は、どの当業者も本発明を作製又は使用できるようにするために提供される。これらの実施形態への種々の修正が当業者にはすぐに分かるであろう。本明細書で説明される一般的な原理は本発明の精神又は範囲から逸脱することなく他の実施形態に適用することができる。したがって、本明細書で提示された説明及び図面は、本発明の現在のところ好ましい実施形態を表し、したがって、本発明によって広く考慮される主題を代表するものであることが理解される。本発明の範囲は当業者には明らかとなり得る他の実施形態を十分に包含することと、したがって本発明の範囲は添付の請求項以外によって制限されないことがさらに理解される。

Claims (41)

  1. データリカバリ回路であって、
    複数のクロック位相信号を生成するように構成された位相同期ループ(PLL)と、
    前記複数のクロック位相信号から第1のクロック信号及び第2のクロック信号を生成するように構成された位相選択モジュールであり、前記第1のクロック信号及び前記第2のクロック信号が受信データ信号を取得及びトラッキングするのに用いられる、位相選択モジュールと、
    前記第1のクロック信号の制御の下で前記受信データ信号の第1のサンプルを生成するように構成された第1のサンプル生成ブロックと、
    前記第2のクロック信号の制御の下で前記受信データ信号の第2のサンプルを生成するように構成された第2のサンプル生成ブロックと、
    前記第1のサンプル生成ブロック及び前記第2のサンプル生成ブロック並びに前記位相選択モジュールと結合され、前記複数のクロック位相信号の対から前記第1のクロック信号及び前記第2のクロック信号を繰り返し生成するように前記位相選択モジュールを制御し、前記受信データ信号を取得するために前記第1のサンプルと前記第2のサンプルとを比較し、前記受信データ信号を再生するのに用いるために前記複数のクロック位相信号のうちの1つをサンプリング位相として選択し、前記受信データ信号をトラッキングするのに用いるために前記複数のクロック位相信号のうちの別の1つをトラッキング位相として選択するように構成された制御モジュールと、
    を備える、データリカバリ回路。
  2. 前記第1のサンプル生成ブロックが、前記サンプリング位相の制御の下で前記受信データ信号の第1のサンプルを生成するように構成され、前記第2のサンプル生成ブロックが、前記トラッキング位相の制御の下で前記受信データ信号の第2のサンプルを生成するように構成される、請求項1に記載のデータリカバー回路。
  3. 前記制御モジュールが、前記第1のサンプル生成ブロック及び前記第2のサンプル生成ブロックと結合される累算器をさらに備え、前記累算器が、前記第1のサンプルと前記第2のサンプルとの比較の結果を累算するように構成される、請求項1に記載のデータリカバリ回路。
  4. 前記累算器が、前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算するように構成される、請求項2に記載のデータリカバリ回路。
  5. 前記累算器が、前記サンプリング位相及び前記トラッキング位相が隣接するクロック位相信号に設定される状態で前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算するように構成される、請求項3に記載のデータリカバリ回路。
  6. 前記制御モジュールが、前記受信データ信号のゼロ交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記判定された位相からデータインターバルの1/2オフセットの位相に対応するように設定するようにさらに構成される、請求項3に記載のデータリカバリ回路。
  7. 前記制御モジュールが、前記受信データ信号の最大交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記最大交差に対応するように設定するようにさらに構成される、請求項3に記載のデータリカバリ回路。
  8. 前記制御モジュールが、前記トラッキング位相を前記サンプリング位相からオフセットされる位相に設定し、前記第1のサンプルと前記第2のサンプルとの間の不一致を累算し、前記累算された不一致に基づいて前記サンプリング位相を調整するようにさらに構成される、請求項3に記載のデータリカバリ回路。
  9. 前記サンプリング位相を調整することが、新しいサンプリング位相を判定すること、前記トラッキング位相を前記新しいサンプリング位相に調整すること、整定時間にわたって待つこと、次いで、前記受信データ信号を再生するのに用いるために続けて前記新しいサンプリング位相を用いることを含む、請求項8に記載のデータリカバリ回路。
  10. 前記サンプリング位相を調整することが、新しいトラッキング位相を選択すること、前記サンプリング位相を前記新しいトラッキング位相に調整すること、次いで前記整定時間後に前記受信データ信号をトラックするのに前記新しいトラッキング位相を用いることをさらに含む、請求項9に記載のデータリカバリ回路。
  11. 前記第1のサンプル生成ブロック及び前記第2のサンプル生成ブロックが、それぞれ第1のゲート及び第2のゲートを備える、請求項1に記載のデータリカバリ回路。
  12. データリカバリのための方法であって、
    位相同期ループ(PLL)で複数のクロック位相信号を生成すること、
    前記複数のクロック位相信号から、受信データ信号を取得及びトラッキングするのに用いるための第1のクロック信号及び第2のクロック信号を生成すること、
    前記第1のクロック信号の制御の下で前記受信データ信号の第1のサンプルを生成すること、
    前記第2のクロック信号の制御の下で前記受信データ信号の第2のサンプルを生成すること、及び
    制御モジュールにおいて、前記複数のクロック位相信号の対から前記第1のクロック信号及び前記第2のクロック信号を繰り返し生成するように前記位相選択モジュールを制御し、前記受信データ信号を取得するために前記第1のサンプルと前記第2のサンプルを比較し、前記受信データ信号を再生するのに用いるために前記複数のクロック位相信号のうちの1つをサンプリング位相として選択し、前記受信データ信号をトラッキングするのに用いるために前記複数のクロック位相信号のうちの別の1つをトラッキング位相として選択すること、
    を含む、方法。
  13. 前記サンプリング位相の制御の下で前記受信データ信号の第1のサンプルを生成すること及び前記トラッキング位相の制御の下で前記受信データ信号の第2のサンプルを生成することをさらに含む、請求項12に記載の方法。
  14. 前記第1のサンプルと前記第2のサンプルとの比較の結果を累算することをさらに含む、請求項12に記載の方法。
  15. 前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算することをさらに含む、請求項13に記載の方法。
  16. 前記サンプリング位相及び前記トラッキング位相が隣接するクロック位相信号に設定される状態で前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算することをさらに含む、請求項14に記載の方法。
  17. 前記受信データ信号のゼロ交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記判定された位相からデータインターバルの1/2オフセットの位相に対応するように設定することをさらに含む、請求項14に記載の方法。
  18. 前記受信データ信号の最大交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記最大交差に対応するように設定することをさらに含む、請求項14に記載のデータリカバリ回路。
  19. 前記サンプリング位相を調整することが、前記トラッキング位相を前記サンプリング位相からオフセットされる位相に設定し、前記第1のサンプルと前記第2のサンプルとの間の不一致を累算し、前記累算された不一致に基づいて前記サンプリング位相を調整することをさらに含む、請求項14に記載のデータリカバリ回路。
  20. 前記サンプリング位相を調整することが、新しいサンプリング位相を判定すること、前記トラッキング位相を前記新しいサンプリング位相に調整すること、整定時間にわたって待つこと、次いで、前記受信データ信号を再生するのに用いるために続けて前記新しいサンプリング位相を用いることを含む、請求項19に記載のデータリカバリ回路。
  21. 前記サンプリング位相を調整することが、新しいトラッキング位相を選択すること、前記サンプリング位相を前記新しいトラッキング位相に調整すること、次いで前記整定時間後に前記受信データ信号をトラックするのに前記新しいトラッキング位相を用いることをさらに含む、請求項20に記載のデータリカバリ回路。
  22. データリカバリ回路であって、
    複数のクロック位相信号を生成するように構成された位相同期ループ(PLL)と、
    前記複数のクロック位相信号から第1のクロック信号及び第2のクロック信号の複数の対を生成するように構成され、前記第1のクロック信号及び前記第2のクロック信号の各対が、複数の受信データ信号を取得及びトラッキングするのに用いられる、位相選択モジュールと、
    前記第1のクロック信号の制御の下で対応する前記受信データ信号の第1のサンプルを生成するようにそれぞれ構成された第1のサンプル生成ブロックの複数の対と、前記第2のクロック信号の制御の下で対応する前記受信データ信号の第2のサンプルを生成するようにそれぞれ構成された第2のサンプル生成回路の複数の対と、
    前記第1のサンプル生成ブロック及び前記第2のサンプル生成ブロックの複数の対並びに前記位相選択モジュールと結合され、前記複数のクロック位相信号から前記第1のクロック信号及び前記第2のクロック信号の複数の対を繰り返し生成するように前記位相選択モジュールを制御し、対応する前記受信データ信号を取得するために対応する前記第1のサンプル及び前記第2のサンプルを比較し、各受信データ信号並びに第1のクロック信号及び第2のクロック信号の対応する対に関して、対応する前記受信データ信号を再生するのに用いるために前記複数のクロック位相信号のうちの1つをサンプリング位相として選択し、前記受信データ信号をトラッキングするのに用いるために前記複数のクロック位相信号のうちの別の1つをトラッキング位相として選択するように構成された制御モジュールと、
    を備える、データリカバリ回路。
  23. 前記第1のサンプル生成ブロック及び前記第2のサンプル生成ブロックの複数の対のそれぞれに関して、前記第1のサンプル生成ブロックが、前記サンプリング位相の制御の下で前記受信データ信号の第1のサンプルを生成するように構成され、前記第2のサンプル生成ブロックが、前記トラッキング位相の制御の下で前記受信データ信号の第2のサンプルを生成するように構成される、請求項22に記載のデータリカバー回路。
  24. 前記制御モジュールが、前記第1のサンプル生成ブロック及び前記第2のサンプル生成ブロックの複数の対のそれぞれに結合された累算器をさらに備え、前記累算器が、対応する前記第1のサンプル及び前記第2のサンプルの比較の結果を累算するように構成される、請求項22に記載のデータリカバリ回路。
  25. 前記累算器が、対応する前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算するように構成される、請求項24に記載のデータリカバリ回路。
  26. 前記累算器が、前記サンプリング位相及び前記トラッキング位相が隣接するクロック位相信号に設定される状態で前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算するように構成される、請求項24に記載のデータリカバリ回路。
  27. 前記制御モジュールが、対応する前記受信データ信号のゼロ交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記判定された位相からデータインターバルの1/2オフセットの位相に対応するように設定するようにさらに構成される、請求項24に記載のデータリカバリ回路。
  28. 前記制御モジュールが、対応する前記受信データ信号の最大交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記最大交差に対応するように設定するようにさらに構成される、請求項24に記載のデータリカバリ回路。
  29. 前記制御モジュールが、前記複数の受信データ信号のそれぞれに関して、対応する前記トラッキング位相を対応する前記サンプリング位相からオフセットされる位相に設定し、前記第1のサンプルと前記第2のサンプルとの間の不一致を累算し、前記累算された不一致に基づいて前記サンプリング位相を調整するようにさらに構成される、請求項24に記載のデータリカバリ回路。
  30. 前記サンプリング位相を調整することが、新しいサンプリング位相を判定すること、前記トラッキング位相を前記新しいサンプリング位相に調整すること、整定時間にわたって待つこと、次いで、前記受信データ信号を再生するのに用いるために続けて前記新しいサンプリング位相を用いることを含む、請求項29に記載のデータリカバリ回路。
  31. 前記サンプリング位相を調整することが、新しいトラッキング位相を選択すること、前記サンプリング位相を前記新しいトラッキング位相に調整すること、次いで前記整定時間後に前記受信データ信号をトラックするのに前記新しいトラッキング位相を用いることをさらに含む、請求項30に記載のデータリカバリ回路。
  32. データリカバリのための方法であって、
    位相同期ループ(PLL)で複数のクロック位相信号を生成すること、
    前記複数のクロック位相信号から、受信データ信号を取得及びトラッキングするのに用いるための第1のクロック信号及び第2のクロック信号を生成すること、
    前記第1のクロック信号の制御の下で前記受信データ信号の第1のサンプルを生成すること、
    前記第2のクロック信号の制御の下で前記受信データ信号の第2のサンプルを生成すること、及び
    制御モジュールにおいて、前記複数のクロック位相信号の対から前記第1のクロック信号及び前記第2のクロック信号を繰り返し生成するように前記位相選択モジュールを制御し、前記受信データ信号を取得するために前記第1のサンプルと前記第2のサンプルを比較し、前記受信データ信号を再生するのに用いるために前記複数のクロック位相信号のうちの1つをサンプリング位相として選択し、前記受信データ信号をトラッキングするのに用いるために前記複数のクロック位相信号のうちの別の1つをトラッキング位相として選択すること、
    を含む、方法。
  33. 前記サンプリング位相の制御の下で前記受信データ信号の第1のサンプルを生成すること、及び前記トラッキング位相の制御の下で前記受信データ信号の第2のサンプルを生成することをさらに含む、請求項32に記載の方法。
  34. 前記第1のサンプルと前記第2のサンプルとの比較の結果を累算することをさらに含む、請求項32に記載の方法。
  35. 前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算することをさらに含む、請求項33に記載の方法。
  36. 前記サンプリング位相及び前記トラッキング位相が隣接するクロック位相信号に設定される状態で前記第1のサンプルからの値と前記第2のサンプルからの値との間の不一致を累算することをさらに含む、請求項34に記載の方法。
  37. 前記受信データ信号のゼロ交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記判定された位相からデータインターバルの1/2オフセットの位相に対応するように設定することをさらに含む、請求項34に記載の方法。
  38. 前記受信データ信号の最大交差に対応する位相を判定するために前記累算された不一致を解析し、前記サンプリング位相を前記最大交差に対応するように設定することをさらに含む、請求項33に記載のデータリカバリ回路。
  39. 前記サンプリング位相を調整することが、前記トラッキング位相を前記サンプリング位相からオフセットされる位相に設定し、前記第1のサンプルと前記第2のサンプルとの間の不一致を累算し、前記累算された不一致に基づいて前記サンプリング位相を調整することをさらに含む、請求項33に記載のデータリカバリ回路。
  40. 前記サンプリング位相を調整することが、新しいサンプリング位相を判定すること、前記トラッキング位相を前記新しいサンプリング位相に調整すること、整定時間にわたって待つこと、次いで、前記受信データ信号を再生するのに用いるために続けて前記新しいサンプリング位相を用いることを含む、請求項39に記載のデータリカバリ回路。
  41. 前記サンプリング位相を調整することが、新しいトラッキング位相を選択すること、前記サンプリング位相を前記新しいトラッキング位相に調整すること、次いで前記整定時間後に前記受信データ信号をトラックするのに前記新しいトラッキング位相を用いることをさらに含む、請求項40に記載のデータリカバリ回路。
JP2014099904A 2013-05-13 2014-05-13 クロック・データ・リカバリ回路で受信データ信号をトラッキングするためのシステム及び方法 Pending JP2014222872A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/893,275 2013-05-13
US13/893,275 US20140334584A1 (en) 2013-05-13 2013-05-13 Systems and methods for tracking a received data signal in a clock and data recovery circuit

Publications (1)

Publication Number Publication Date
JP2014222872A true JP2014222872A (ja) 2014-11-27

Family

ID=50771415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099904A Pending JP2014222872A (ja) 2013-05-13 2014-05-13 クロック・データ・リカバリ回路で受信データ信号をトラッキングするためのシステム及び方法

Country Status (5)

Country Link
US (1) US20140334584A1 (ja)
EP (1) EP2804322A1 (ja)
JP (1) JP2014222872A (ja)
KR (1) KR20140135113A (ja)
CA (1) CA2851843A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI519119B (zh) * 2014-04-17 2016-01-21 創意電子股份有限公司 時脈資料回復電路與方法
JP6203121B2 (ja) * 2014-05-28 2017-09-27 株式会社東芝 信号変換装置および方法、信号復元装置および方法、ならびに情報処理装置
US9356775B1 (en) * 2015-07-09 2016-05-31 Xilinx, Inc. Clock data recovery (CDR) phase walk scheme in a phase-interpolater-based transceiver system
DE102018200395A1 (de) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Radarsystem mit in einer zentralen Steuereinheit integriertem Taktgeber
KR20210115278A (ko) * 2020-03-12 2021-09-27 주식회사 실리콘웍스 디스플레이장치에서의 데이터 통신 방법
US11546127B2 (en) 2021-03-18 2023-01-03 Samsung Display Co., Ltd. Systems and methods for symbol-spaced pattern-adaptable dual loop clock recovery for high speed serial links

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038510B2 (en) * 2004-07-02 2006-05-02 Broadcom Corporation Phase adjustment method and circuit for DLL-based serial data link transceivers
JP2007184847A (ja) * 2006-01-10 2007-07-19 Nec Electronics Corp クロックアンドデータリカバリ回路及びserdes回路
GB201006023D0 (en) * 2010-04-12 2010-05-26 Texas Instruments Ltd Improvements in or relating to clock recovery
US8634509B2 (en) * 2011-02-15 2014-01-21 Cavium, Inc. Synchronized clock phase interpolator
JP5716609B2 (ja) * 2011-08-25 2015-05-13 日本電気株式会社 多相クロック発生回路、及び多相クロック発生方法
JPWO2013065208A1 (ja) * 2011-11-04 2015-04-02 パナソニックIpマネジメント株式会社 タイミングリカバリ回路およびそれを備えたレシーバ回路

Also Published As

Publication number Publication date
KR20140135113A (ko) 2014-11-25
CA2851843A1 (en) 2014-11-13
EP2804322A1 (en) 2014-11-19
US20140334584A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US10355852B2 (en) Lock detector for phase lock loop
KR102599904B1 (ko) 다상 클록 듀티 사이클 및 스큐 측정 및 보정
CN105703767B (zh) 一种高能效低抖动的单环路时钟数据恢复电路
US8320770B2 (en) Clock and data recovery for differential quadrature phase shift keying
US7756232B2 (en) Clock and data recovery circuit
JP2014222872A (ja) クロック・データ・リカバリ回路で受信データ信号をトラッキングするためのシステム及び方法
US8798223B2 (en) Clock and data recovery unit without an external reference clock
US8315349B2 (en) Bang-bang phase detector with sub-rate clock
US7599457B2 (en) Clock-and-data-recovery system having a multi-phase clock generator for one or more channel circuits
EP2617135A1 (en) Techniques for varying a periodic signal based on changes in a data rate
US8023605B2 (en) Oversampling circuit and oversampling method
US6937685B2 (en) Apparatus and method for counting high-speed early/late pulses from a high speed phase detector using a pulse accumulator
JP5086014B2 (ja) データリカバリ方法およびデータリカバリ回路
JP2014225874A (ja) クロック・データ・リカバリ回路で受信データ信号を取得するためのシステム及び方法
JP3973149B2 (ja) データリカバリ回路とデータリカバリ方法
JP6160322B2 (ja) 受信回路および半導体集積回路装置
US20200119739A1 (en) Integrated circuit detecting frequency and phase of clock signal and clock and data recovery circuit including the integrated circuit
JP2010016545A (ja) 多相クロック生成回路、オーバーサンプリング回路及び位相シフト回路
KR100844313B1 (ko) 데이터 속도의 1/4 주파수 클럭을 사용하는 고속의 클럭 및데이터 복원 회로 및 방법
JP2015100017A (ja) 位相比較回路およびクロックデータリカバリ回路