JP2014216333A - 熱電変換素子 - Google Patents

熱電変換素子 Download PDF

Info

Publication number
JP2014216333A
JP2014216333A JP2013089414A JP2013089414A JP2014216333A JP 2014216333 A JP2014216333 A JP 2014216333A JP 2013089414 A JP2013089414 A JP 2013089414A JP 2013089414 A JP2013089414 A JP 2013089414A JP 2014216333 A JP2014216333 A JP 2014216333A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
metal layer
ferromagnetic layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013089414A
Other languages
English (en)
Inventor
湯浅 裕美
Hiromi Yuasa
裕美 湯浅
裕三 上口
Yuzo Kamiguchi
裕三 上口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013089414A priority Critical patent/JP2014216333A/ja
Priority to US14/198,794 priority patent/US20140311542A1/en
Publication of JP2014216333A publication Critical patent/JP2014216333A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

【課題】本発明の実施形態によれば、高い発電効率を有する熱電変換素子を提供することができる。【解決手段】熱電変換素子は、基板と、非磁性金属層と、前記基板と前記非磁性金属層との間に設けられ、磁化が一方向に固定された絶縁強磁性層と、前記絶縁強磁性層と前記非磁性金属層との間に設けられた金属強磁性層と、を備える。【選択図】図1

Description

本発明の実施形態は、熱電変換素子に関する。
熱電変換素子の一つとして、スピンゼーベック効果を用いたものが知られている。しかし、スピンゼーベック効果を用いた熱電変換素子は発電効率が低い。
米国特許公報2010/026770
Nature 455, 778 (2008). Appl. Phys. Lett. 97, 172505 (2010). Science 336, 555 (2012).
そこで、本発明の実施形態は、高い発電効率を有する熱電変換素子を提供することを目的とする。
本発明の実施形態に係る熱電変換素子は、基板と、非磁性金属層と、前記基板と前記非磁性金属層との間に設けられ、磁化が一方向に固定された絶縁強磁性層と、前記絶縁強磁性層と前記非磁性金属層との間に設けられた金属強磁性層と、を備える。
本発明の実施形態に係る熱電変換素子を示す図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。 実施形態を説明するための図。
以下図面を参照して、本発明の各実施形態を説明する。同じ符号が付されているものは同様のものを示す。なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合もある。
(実施形態)
図1は、熱電変換素子100を示す図である。熱電変換素子100は、基板10上に絶縁強磁性層20、金属強磁性層30、非磁性金属層40がこの順で設けられている。これらを積層体と定義しても良い。更に非磁性金属層40上には端子50、60が設けられている。
熱電変換素子100の動作原理について説明する。熱電変換素子100はスピンゼーベック効果を利用することで発電することができる。
基板10と非磁性金属層40との間で絶縁強磁性層20および金属強磁性層30に温度勾配ΔTを付与すると、絶縁強磁性層20および金属強磁性層30内のアップスピン電子の分布とダウンスピン電子の分布に差が生じる。この現象をスピンゼーベック効果といい、このとき生じるアップスピン電子の分布とダウンスピン電子の分布の差はスピン圧と呼ばれる。
ここで、金属強磁性層30に隣接して非磁性金属層40が存在する。このため、絶縁強磁性層20および金属強磁性層30内で生じたスピン圧がスピン流として金属強磁性層30を介して非磁性金属層40に伝搬する。スピン流はアップスピン電子の分布とダウンスピン電子の分布との差によって生じる流れであり、電荷の流れではない。スピン流が非磁性金属層40内に伝搬すると、逆スピンホール効果によって、スピン流及び絶縁強磁性層20の磁化25と直交する方向に電荷の流れである電流が流れ起電力が生じる。これにより、熱電変換素子100は発電する。絶縁強磁性層20、金属強磁性層30、及び非磁性金属層40はそれぞれが接していることが好ましい。このように、それぞれの層が接していることで、スピン流を漏れなく非磁性金属層40に伝搬させることができる。
図2は、従来の熱電変換素子の構成を示す図である。図2を用いて、スピンゼーベック効果と逆スピンホール効果で生じる起電力について説明する。従来の熱電変換素子は、基板10上に絶縁強磁性層20、非磁性金属層40がこの順で設けられている。更に非磁性金属層40上には端子50、60が設けられている。スピンゼーベック効果および逆スピンホール効果により非磁性金属層40に生じる起電力EISHEは、下記の式(1)、式(2)で表される。
Figure 2014216333
Figure 2014216333
ISHEは非磁性金属層40で生じる逆スピンホール効果電圧、θSHは非磁性金属層40中のスピンホール角、ρは非磁性金属層40中の電気抵抗率、Jspinは絶縁強磁性層20から非磁性金属層40に向かって流れるスピン流、σは非磁性金属層40中のスピン分極ベクトル、eは非磁性金属層40中の電荷、Aは非磁性金属層40と金属強磁性層30との接合面積、γは絶縁強磁性層20のジャイロマグネティク定数、gは金属強磁性層30と非磁性金属層40との界面ミキシング抵抗、4πMsは絶縁強磁性層20の飽和磁化、Vは絶縁強磁性体20のマグネティックコヒーレンス長の3乗、ΔTは非磁性金属層40から絶縁強磁性層20との間における温度勾配である。
式(1)、(2)を用いて、起電力EISHEとスピン流Jspinについて説明する。
式(1)から、非磁性金属層40中のスピンホール角θSHが高いほど起電力EISHEが上がることが分かる。スピンホール角θSHは、非磁性金属層40中に流れるスピン流が電流に変換される変換効率を示す。スピン軌道相互作用が大きな材料を非磁性金属層40に用いれば、スピンホール角θSHは大きくなる。
式(2)によれば、絶縁強磁性層20と非磁性金属層40との界面ミキシング抵抗gが大きくなると、スピン流Jspinは大きくなる。よって、式(1)から起電力EISHEが大きくなることが分かる。例えば、PtとYFe12との界面ミキシング抵抗の値は、1015〜1016−2であるのに対し、PtとNiFeとの界面ミキシング抵抗の値は1017〜1018−2である。界面ミキシング抵抗gの大きさの観点では、PtとYFe12の界面よりも、PtとNiFeの界面の方が望ましい。一般的にも、非磁性金属層40と絶縁強磁性層20の界面よりも、非磁性金属層40と金属強磁性層30の界面の方が、高い界面ミキシング抵抗をもつ。しかしながら、金属強磁性層30と非磁性金属層40の積層体では、非磁性金属層40で得られる電流が金属強磁性層30にも分流して、起電力を得ることが出来ない。そこで、非磁性金属層40と絶縁強磁性層20との間に金属強磁性層30を挿入すれば、熱電変換素子100に対して大きな起電力が期待できる。しかし、金属強磁性層30は金属性を有するので、非磁性金属層40で生じた電流が金属強磁性層30へ漏れ、起電力を損失することが問題である。この問題を解決するためには、金属強磁性層30の厚さを最適な範囲に定めることが必要となる。これは、PtをTaに置き換えた場合でも同様である。
基板10には、あらゆる発熱面を利用して比較的大きな面積で発電するためにフレキシブル基板を用いる。基板10はヤング率が10以下の柔軟性を有することが良い。基板10には、ポリイミド、ポリプロピレン、ナイロン、ポリエステル、パリレン、ゴム、2軸延伸ポリエチレン2,6−ナフタレート、又は変性ポリアミドを用いることができる。
絶縁強磁性層20は、磁化が一方向に固定されている。絶縁強磁性層20の磁化は絶縁強磁性層20の面内方向に向いている。これは、熱電変換素子100を構成する積層体の積層方向に温度勾配が生じ、その温度勾配に対して絶縁強磁性層20の磁化は直交しなければならないからである。絶縁強磁性層20にはガーネットフェライト(YFe12)、スピネルフェライト、又は六方晶フェライトを用いることができる。絶縁強磁性層20ではスピン流が発生するのでスピン流発生層とも呼ぶ。
金属強磁性層30には、NiFeを用いることができる。金属強磁性層30の膜厚が厚すぎると非磁性金属層40で発生する電流が金属強磁性層30へ漏れてしまう。このため、金属強磁性層30の膜厚は1原子層以上10原子層以下が好ましい。また、CoFe、CoNiもYFe12との界面ミキシング抵抗が大きいため、金属強磁性層30にCoFe、CoNiを用いることができる。Fe、Co、又はNi、若しくはFe、Co、及びNiから選択される少なくとも2つの元素を含む合金も金属強磁性層30に用いることができる。これらの材料は非磁性金属層40との界面において界面ミキシング抵抗gが大きいという性質を有するので、CoFe、CoNi、又はNiFeと同様に金属強磁性層30に用いることができる。
非磁性金属層40には、Ta、Wを用いる。従来、非磁性金属層にはPtを用いていた。しかし、Ptは、スピンホール角の値が0.0037〜0.07である。一方Taはスピンホール角の値が0.12〜0.15であるので、発電効率がPtと比べて向上する。これらのスピンホール角の値はFMR(Ferromagnetic Resonance)という評価方法によって得ることができる。Taは結晶構造として、アモルファス、立方晶、正方晶を有する。いずれの結晶構造でもPtを用いるよりも起電力が向上するが、立方晶とするのが好ましい。これは立方晶Taの電気抵抗率がアモルファスよりも低いからである。また、Taは正方晶とするのが更に好ましい。これはスピンホール角が大きいからである。正方晶のTaはβ−Taと呼ばれる。非磁性金属層40にWを用いる場合も同様で、正方晶のβ−Wが望ましい。Taを含む非磁性金属層40に対して、Hf、W、Ir、Pt、Au、Pb、及びBiから選択される少なくとも1つの元素を添加すると起電力が更に向上する。同様に、Wを含む非磁性金属層40に、Hf、Ta、Ir、Pt、Au、Pb、及びBiから選択される少なくとも1つの元素を添加すると起電力が更に向上する。これらの元素は3at%以上30at%以下非磁性金属層40に添加される。これらの元素は、非磁性金属層40中のスピン軌道相互作用を増大させ、スピンホール角θSHを増加する働きを有する。このため、熱電変換素子100の発電効率が向上する。
また、Ta又はWを含む非磁性金属層40に対して、Fe、Co、Ni、Mn、及びCrから選択される少なくとも1つの元素を添加しても良い。これらの元素は1at%以下非磁性金属層40に添加される。上記で説明したHf、W、Ta、Ir、Pt、Au、Pb、及びBiの元素と一緒に添加しても良い。これらの元素は、微量であるため、非磁性金属層40は全体としては非磁性のままである。これらの元素は、非磁性金属層40中で局在するため、スピン軌道相互作用を増大させ、スピンホール角θSHを増加する働きを有する。このため、熱電変換素子100の発電効率が向上する。非磁性金属層40はスピン流を検知するのでスピン流検知層とも呼ぶ。
ここで、発電効率は、単位面積あたりの発生する電力(W/m)で定義されるものである。
図3に示すように、絶縁強磁性層20と基板10との間に反強磁性層15を設けても良い。絶縁強磁性層20、金属強磁性層30、非磁性金属層40の積層体に反強磁性層15を含めて積層体と定義しても良い。反強磁性層15を用いると、絶縁強磁性層20の磁化を一方向に向けることができるので非磁性金属層40で生じる起電力を安定化することができる。これは、非磁性金属層40で発生する逆スピンホール効果によって生じる電流の向きが、絶縁強磁性層20から非磁性金属層40へ向かって流れるスピン流の方向と絶縁強磁性層20の磁化との外積方向を向くために、非磁性金属層40中に流れる電流の向きを揃えるには絶縁強磁性層20の磁化の向きを一方向に固定する必要があるためである。
反強磁性層15には、IrMn又はFeを用いることができる。反強磁性層15を用いることで、反強磁性層15と絶縁強磁性層20との間で交換結合が生じるために、絶縁強磁性層20の磁化を一方向に固定できる。
(実施例1)
ポリイミド(基板10に相当)上に、Ni−Znフェライト(厚さは100nm、絶縁強磁性層20に相当)、Ta(厚さは10nm、非磁性金属層40に相当)を積層し、Ta上にCuからなる端子を2つ設けて熱電変換素子を作製した。素子の形状は長方形で、幅が5mm、起電力の生じる端子間が3cmである。更に、ポリイミドの面を皮膚(34℃程度)に設置し、2端子間に発生する起電力を測定した。このときの起電力は、10μVであった。
(実施例1−2)
ポリイミド(基板10に相当)上に、Ni−Znフェライト(厚さは100nm、絶縁強磁性層20に相当)、W(厚さは10nm、非磁性金属層40に相当)を積層し、Ta上にCuからなる端子を2つ設けて熱電変換素子を作製した。素子の形状は長方形で、幅が5mm、起電力の生じる端子間が3cmである。更に、ポリイミドの面を皮膚(34℃程度)に設置し、2端子間に発生する起電力を測定した。このときの起電力は、20μVであった。
(実施例2)
ポリイミド(基板10に相当)上に、Ni−Znフェライト(厚さは100nm、絶縁強磁性層20に相当)、NiFe(0.2nm、金属強磁性層30に相当)、Ta(厚さは10nm、非磁性金属層40に相当)を積層し、Ta上にCuからなる端子を2つ設けて熱電変換素子100を作製した。更に、ポリイミドの面を皮膚(34℃程度)に設置し、2端子間に流れる電流を測定した。このときの起電力は、100μVであった。
(実施例2−2)
ポリイミド(基板10に相当)上に、Ni−Znフェライト(厚さは100nm、絶縁強磁性層20に相当)、NiFe(2nm、金属強磁性層30に相当)、Ta(厚さは10nm、非磁性金属層40に相当)を積層し、Ta上にCuからなる端子を2つ設けて熱電変換素子100を作製した。更に、ポリイミドの面を皮膚(34℃程度)に設置し、2端子間に流れる電流を測定した。このときの起電力は、50μVであった。
(比較例1)
ポリイミド(基板10に相当)上に、Ni−Znフェライト(厚さは100nm、絶縁強磁性層20に相当)、Pt(厚さは10nm、非磁性金属層40に相当)を積層し、Ta上にCuからなる端子を2つ設けて熱電変換素子を作製した。更に、ポリイミドの面を皮膚(34℃程度)に設置し、2端子間に流れる電流を測定した。このときの起電力は、1μVであった。
(比較例2)
ポリイミド(基板10に相当)上に、Ni−Znフェライト(厚さは100nm、絶縁強磁性層20に相当)、NiFe(10nm、金属強磁性層30に相当)、Ta(厚さは10nm、非磁性金属層40に相当)を積層し、Ta上にCuからなる端子を2つ設けて熱電変換素子100を作製した。更に、ポリイミドの面を皮膚(34℃程度)に設置し、2端子間に流れる電流を測定した。このときの起電力は、0.1μVであった。
実施例1、実施例1−2と比較例1から、大きな起電力を得るにはTa、Wを非磁性金属層40に用いることが有利であることがわかった。また、実施例2と比較例2から大きな起電力を得るには、更に非磁性金属層40と絶縁強磁性層20との間に薄めの金属強磁性層30を挿入することが有利であることがわかった。これは、TaとYFe12との間にNiFeを挿入することで、NiFeとYFe12の界面ミキシング抵抗の向上が寄与するからである。また、金属強磁性層30の膜厚は薄いため、非磁性金属層40に流れる電流が金属強磁性層30に漏れにくい。実施例比較例2、実施例2−2、比較例2の比較から、このときの金属強磁性層30の膜厚は、1原子層以上10原子層以下が好ましい。
図4に示すように、フレキシブルシート70上にいくつか熱電変換素子100を設けてもよい。また、図5Aのように、熱電変換素子100を長手形状の細線型とすると起電力を上げることが出来る。細線の太さは1μm以上1cm以下である。細線型とすると、フレキシブルシート70との接触面積が大きくなるからである。このとき、端子50、60は、熱電変換素子100を構成する積層体の両端に設ける。また、図5Bに示すように、細線型の熱電変換素子を並べ、フレキシブル基板上における熱電変換素子100の被覆率を上げると、発電効率を向上させることが出来る。図6に示すように複数の細線型の熱電変換素子100をフレキシブルシート70に設けた場合には、端子50、60の代わりに細線型の熱電変換素子100の両端に電極55、65を電気的に接続する。端子50、60と電極55、65の材料は、端子50、60の材料を使うことができる。細線型の形状に依存して起電力を上げると電流は減少するが、熱電変換素子で発生する電力は変化しない。しかしながら、同じ電力であっても、電圧を上げる意味があることを、以下で説明する。
負荷回路に対して発電素子の電圧が高過ぎたり低過ぎたりすると、その後のレギュレータ回路によって、降圧あるいは昇圧をする必要がある。その際、電力は80%程度に落ち、20%程度はエネルギー損失となる。もし、負荷回路と発電素子の電圧が同程度であれば、調整の必要がなくなるため、損失を減らすことが出来る。調整が必要な場合でも、調整量が少ない方がエネルギー損失を少なくすることが出来る。ここで、熱電変換素子の発電量は一般的に負荷回路に対して小さいとされるため、昇圧の回路が必要であった。これに対し、予め細線型にして電圧を上げておくと、調整が不要あるいは微小になってエネルギー損失が無くすか少なくすることが出来る。以上のように、同じ電力であれば、回路の設計に合わせ、同じ電力に対して電圧を調整できることがメリットである。細線型は、マスクを用いたパターニングやフォトリソグラフィや、印刷によって作成できる。
また、図7のように、熱電変換素子100が設けられたフレキスブルシートを複数重ねて用いても良い。このとき、フレキスブルシート70内には配線が張り巡らされており、そこから電力を得る。例えば、図8に示すようにフレキスブルシート70の中に熱電変換素子100の端子50、60を埋め込み、端子50、60からそれぞれ配線90、80を取り出すように構成する。さらに、図9のように絶縁層を介して熱電変換素子100を複数積層し、上段の熱電変換素子ほど熱電変換素子の積層体の面内方向に面積を小さくすると、ボトムアップで熱電変換素子100を重ね、端子50、60を一括成膜で作成できる。これは、マスクを用いたスパッタ等の成膜やフォトリソグラフィ、印刷の技術を用いて作成する。このような複数の熱電変換素子を重ねる構成は、温度差を有効利用できる。たとえば、人体の体表面と外気の温度差は5℃以上であることが多い。しかしながら絶縁強磁性層20の厚さは薄いため、絶縁強磁性層20/金属強磁性体30の上面と下面との温度差は0.1℃以下となることが多い。もし上面と下面の温度差が0.1℃であった場合、図7に示すような熱電変換素子100が設けられたフレキシブルシート70を数枚(図7では4枚を示している)積層した構成を用いることで、各熱電変換素子で0.1℃ずつの温度差を得るため、実効的に温度差0.4℃分を利用できる。すなわち、同じ面積であっても4倍の発電電力を得ることが出来、単位面積あたりの発電量である発電効率は4倍になる。このようにして、熱電変換素子を積層することによって、人体の体表面と外気の温度差を有効活用し、発電効率を増大することができる。
図10は、熱電変換素子100を用いた回路構成の一例を示す図である。熱電変換素子100で発電された電力は、キャパシタに合わせてレギュレータ(DC/DCコンバータ)で昇圧又は降圧することでキャパシタに蓄電する。負荷が動作する場合には、キャパシタと熱電変換素子100のうち、電圧が高い方から電力が負荷に供給される。また、負荷の駆動電圧に合わせてレギュレータで電圧が調整される。このようにして負荷に対して安定した電力が供給することができる。
図11に示すように、別の発電素子を負荷に対して更に接続して、発電方式の異なる複数の発電素子を併用しても良い。これをハイブリッド型と呼ぶ。例えば、昼間のような太陽が照りつけているところでは別の発電素子にソーラーパネルによる発電を行い、夜間は体温や地熱等の熱源を利用して熱電変換素子100による発電を行う。図11では、熱電変換素子100と別の発電素子を並列に接続し、電圧の高い方から負荷へ電力が供給されるような構成になっている。これにより、さらに負荷に対して安定した電力を供給することができる。
負荷は、例えばセンサ、回路、発信子、位置モニターがある。例えば緊急連絡用の発振子に用いる場合、電源喪失のリスクが無いというメリットがある。この時、人体の体温を利用して発電する。位置モニターに用いる場合にも電源喪失のリスクが無いので、児童などの見守りが必要なケースに用いることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10・・・基板、15・・・反強磁性層、20・・・絶縁強磁性層、
25・・・磁化、30・・・金属強磁性層、40・・・非磁性金属層、
50、60・・・端子、70、80・・・配線、100・・・熱電変換素子
米国特許公報2010/0276770

Claims (13)

  1. 基板と、
    非磁性金属層と、
    前記基板と前記非磁性金属層との間に設けられ、磁化が一方向に固定された絶縁強磁性層と、
    前記絶縁強磁性層と前記非磁性金属層との間に設けられた金属強磁性層と、
    を備える熱電変換素子。
  2. 前記非磁性金属層がTaを含む請求項1に記載の熱電変換素子。
  3. 前記非磁性金属層がβ−Ta又はβ−Wを含む請求項1に記載の熱電変換素子。
  4. 前記非磁性金属層がHf、W、Ta、Ir、Pt、Au、Pb、及びBiから選択される少なくとも一つの元素をさらに含む請求項2又は請求項3に記載の熱電変換素子。
  5. 前記非磁性金属層がFe、Co、Ni、Mn、及びCrから選択される少なくとも一つの元素をさらに含む請求項2又は請求項3に記載の熱電変換素子。
  6. 前記非磁性金属層と前記金属強磁性層は接している請求項1乃至請求項5の何れか1項に記載の熱電変換素子。
  7. 前記非磁性金属上に離れて設けられた第1端子と第2端子とをさらに備える請求項1乃至請求項6の何れか1項に記載の熱電変換素子。
  8. 前記基板と前記非磁性金属層との間で温度勾配が発生すると、前記非磁性金属層の前記第1端子と前記第2端子との間に起電力が生じる請求項7に記載の熱電変換素子。
  9. 前記金属強磁性層がFe、Co、及びNiから選択される少なくとも一つの元素を含む請求項1乃至請求項8の何れか1項に記載の熱電変換素子。
  10. 前記絶縁強磁性層がガーネットフェライト、スピネルフェライト、又は六方晶フェライトを含む請求項1乃至請求項9の何れか1項に記載の熱電変換素子。
  11. 前記基板と前記絶縁強磁性層との間にさらに反強磁性層を備える請求項1
    乃至請求項10の何れか1項に記載の熱電変換素子。
  12. 前記基板のヤング率は10以下である請求項1乃至請求項11の何れか1項に記載の熱電変換素子。
  13. 前記基板はポリイミド、ポリプロピレン、ナイロン、ポリエステル、パリレン、ゴム、2軸延伸ポリエチレン2,6−ナフタレート、又は変性ポリアミドである請求項1乃至請求項12の何れか1項に記載の熱電変換素子。
JP2013089414A 2013-04-22 2013-04-22 熱電変換素子 Pending JP2014216333A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013089414A JP2014216333A (ja) 2013-04-22 2013-04-22 熱電変換素子
US14/198,794 US20140311542A1 (en) 2013-04-22 2014-03-06 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089414A JP2014216333A (ja) 2013-04-22 2013-04-22 熱電変換素子

Publications (1)

Publication Number Publication Date
JP2014216333A true JP2014216333A (ja) 2014-11-17

Family

ID=51728082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089414A Pending JP2014216333A (ja) 2013-04-22 2013-04-22 熱電変換素子

Country Status (2)

Country Link
US (1) US20140311542A1 (ja)
JP (1) JP2014216333A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142048A (ja) * 2014-01-29 2015-08-03 日本電気株式会社 熱電変換素子およびその製造方法
JP2016103535A (ja) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 熱電体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076493A (ja) * 2013-10-08 2015-04-20 株式会社東芝 熱電変換細線及びそれを用いた熱電変換布
WO2017166102A1 (zh) * 2016-03-30 2017-10-05 博立多媒体控股有限公司 热能利用系统
CN110275077A (zh) * 2019-06-28 2019-09-24 南京大学 一种宽温区强磁场中热电效应的电学测量方法
US11600769B2 (en) * 2021-01-08 2023-03-07 Integrated Silicon Solution, (Cayman) Inc. High density spin orbit torque magnetic random access memory
US20230292524A1 (en) * 2022-02-02 2023-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Ferroelectric memory device with relaxation layers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647193B2 (en) * 2011-10-28 2017-05-09 Tohoku Technoarch Co., Ltd. Thermoelectric conversion element and thermoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142048A (ja) * 2014-01-29 2015-08-03 日本電気株式会社 熱電変換素子およびその製造方法
JP2016103535A (ja) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 熱電体

Also Published As

Publication number Publication date
US20140311542A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP2014216333A (ja) 熱電変換素子
JP7035147B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
JP6572513B2 (ja) 磁気メモリ素子
JP5590488B2 (ja) 電流−スピン流変換素子
JP6415813B2 (ja) 電流センサ、電流測定モジュール及びスマートメータ
US20150236071A1 (en) Magnetic memory device using in-plane current and electric field
JP6496098B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ
Wang et al. Spintronic memristor temperature sensor
JP2018073934A (ja) スピン軌道トルク型磁化反転素子及び磁気メモリ
JP5398921B2 (ja) スピンデバイス、その動作方法およびその製造方法
JP6462960B1 (ja) データの書き込み方法及び磁気メモリ
KR20160134598A (ko) 자기 메모리 소자
Prudnikov et al. Monte Carlo simulation of multilayer magnetic structures and calculation of the magnetoresistance coefficient
JP6233320B2 (ja) 熱電変換素子及びその製造方法
WO2013153949A1 (ja) 磁界測定装置及び磁界測定方法
KR101829452B1 (ko) 자기 메모리 소자
US20150263258A1 (en) Thermoelectric conversion element
US20150270469A1 (en) Thermoelectric Converting Element
JP6565689B2 (ja) 熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法
Li et al. Enhancement of magnetoelectric coupling and anisotropy by Galfenol/PZT/Galfenol magnetoelectric sandwich device
WO2018146713A1 (ja) 熱電変換素子およびその製造方法
JP2017053723A (ja) センサ、情報端末、マイクロフォン、血圧センサ及びタッチパネル
US20150096605A1 (en) Thermoelectric converting thin line, and thermoelectric converting cloth formed using the same
WO2023054583A1 (ja) 熱電体、熱電発電素子、多層熱電体、多層熱電発電素子、熱電発電機、及び熱流センサ
JP6661096B2 (ja) 磁気抵抗素子、当該磁気抵抗素子を用いた磁気ヘッド及び磁気再生装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218