JP2014207478A - エピタキシャル成長用テンプレート及びその作製方法 - Google Patents

エピタキシャル成長用テンプレート及びその作製方法 Download PDF

Info

Publication number
JP2014207478A
JP2014207478A JP2014146781A JP2014146781A JP2014207478A JP 2014207478 A JP2014207478 A JP 2014207478A JP 2014146781 A JP2014146781 A JP 2014146781A JP 2014146781 A JP2014146781 A JP 2014146781A JP 2014207478 A JP2014207478 A JP 2014207478A
Authority
JP
Japan
Prior art keywords
layer
aln layer
growth
initial
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014146781A
Other languages
English (en)
Other versions
JP5869064B2 (ja
Inventor
天野 浩
Hiroshi Amano
浩 天野
上山 智
Satoshi Kamiyama
智 上山
明姫 金
Meiki Kin
明姫 金
シリル ペルノ
Silyl Perno
シリル ペルノ
平野 光
Hikari Hirano
光 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UV Craftory Co Ltd
Original Assignee
UV Craftory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UV Craftory Co Ltd filed Critical UV Craftory Co Ltd
Priority to JP2014146781A priority Critical patent/JP5869064B2/ja
Publication of JP2014207478A publication Critical patent/JP2014207478A/ja
Application granted granted Critical
Publication of JP5869064B2 publication Critical patent/JP5869064B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】 溝構造等の凹凸加工されたサファイア(0001)基板の表面に、緻密で平坦な表面のAlN層またはAlGaN層を横方向成長法により作製する。
【解決手段】
サファイア(0001)基板の表面を、凸部頂部が平坦で所定の平面視パターンとなるように凹凸加工し、前記凹凸加工した基板面に、前記凸部頂部のエッジ部を除く平坦面上にC+軸配向したAlN層が成長するようにC軸配向制御を行って、前記凹凸加工で形成された凹部を完全に充填せず、且つ、前記凹部の開口を閉塞しない膜厚の初期AlN層を成長させ、前記初期AlN層上に、横方向成長法を用いてAlGaN(0001)層(1≧x>0,x+y=1)をエピタキシャル成長させることにより、前記凹部の上方を、前記凸部頂部の上方から横方向成長した前記AlGaN(0001)層で覆い、緻密で平坦な表面の低貫通転位密度化されたエピタキシャル成長用テンプレートを作製する。
【選択図】 図1

Description

本発明は、GaN系化合物半導体層(一般式:AlGaIn1−x−yN)をエピタキシャル成長させる下地となるエピタキシャル成長用テンプレート、及び、その作製方法に関する。
従来から、発光ダイオードや半導体レーザ等のGaN系窒化物半導体装置は、エピタキシャル成長用テンプレート上に多層構造のGaN系化合物半導体層を成長させることにより作製されている(例えば、非特許文献1参照)。図13に、典型的な従来のGaN系発光ダイオードの結晶層構造を示す。図13に示す発光ダイオードは、サファイア基板101上に、AlNからなる下地層102を形成し、周期的な溝構造をフォトリソグラフィと反応性イオンエッチングで形成した後に、ELO−AlN層103を形成し、当該ELO−AlN層103上に、膜厚2μmのn型AlGaNのn型クラッド層104、AlGaN/GaN多重量子井戸活性層105、Al組成比が多重量子井戸活性層105より高い膜厚が20nmのp型AlGaNの電子ブロック層106、膜厚が50nmのp型AlGaNのp型クラッド層107、膜厚が20nmのp型GaNのコンタクト層108を順番に積層した積層構造を有している。多重量子井戸活性層105は、膜厚2nmのGaN井戸層を膜厚8nmのAlGaNバリア層で挟んだ構造を5層積層した構造を有している。結晶成長後、n型クラッド層104の一部表面が露出するまで、その上の多重量子井戸活性層105、電子ブロック層106、p型クラッド層107、及び、コンタクト層108をエッチング除去し、コンタクト層108の表面に、例えば、Ni/Auのp−電極109が、露出したn型クラッド層104の表面に、例えば、Ti/Al/Ti/Auのn−電極110が夫々形成されている。GaN井戸層をAlGaN井戸層として、Al組成比や膜厚を変化させることにより発光波長の短波長化を行い、或いは、Inを添加することで発光波長の長波長化を行い、波長200nmから400nm程度の紫外領域の発光ダイオードが作製できる。半導体レーザについても類似の構成で作製可能である。図13に示す結晶層構造では、サファイア基板101とAlN下地層102とELO−AlN層103によって、エピタキシャル成長用テンプレートが形成されている。
当該テンプレート表面の結晶品質は、その上層に形成されるGaN系化合物半導体層の結晶品質に直接影響を与え、結果として形成される発光素子等の特性に大きく影響する。特に、紫外線域の発光ダイオードや半導体レーザの作製においては、貫通転位密度が10/cm以下、好ましくは10/cm程度に低減されたテンプレートを使用することが望まれる。図13に示すように、周期的な溝構造を有するAlN下地層102上に、横方向成長(ELO:Epitaxial Lateral Overgrowth)法を用いてELO−AlN層103をエピタキシャル成長させると、溝と溝の間の凸部平坦面から成長したAlN層が溝上方を覆うように横方向に成長するとともに、当該平坦面から成長する貫通転位も横方向成長によって溝上方に集約されるため、貫通転位密度が大幅に低減される。
しかし、図13に示すサファイア基板とAlN下地層とELO−AlN層からなるテンプレートでは、AlN下地層を成長させた後、一旦、試料(基板)をエピタキシャル成長用の反応室内から取り出して、AlN下地層の表面に周期的な溝構造をフォトリソグラフィと反応性イオンエッチングで形成する必要がある。このため、AlN下地層とELO−AlN層を連続的に成長させることができず、製造工程の煩雑化及びスループットの低下を招き、製造コスト高騰の要因となる。
他方、結晶成長工程間のエッチング加工を省略して製造工程の煩雑化及びスループットの低下を回避するために、サファイア基板の表面に直接に周期的な溝構造をフォトリソグラフィと反応性イオンエッチング等で形成し、そのサファイア基板上に直接ELO−AlN層を形成してエピタキシャル成長用テンプレートとする方法が提案されている(例えば、特許文献1、非特許文献2、非特許文献3参照)。溝構造の基板表面にELO−AlN層を成長させるには、溝底部から成長するAlN層と、溝と溝の間の凸部平坦面から横方向成長するAlN層とが分離している必要から、サファイア基板表面に形成される溝は深い方が好ましいが、サファイア基板は、エッチングレートが低く加工が困難なため、浅い溝構造において、低貫通転位密度のELO−AlN層を成長させる必要がある。
特許第3455512号公報
Kentaro Nagamatsu,et al.,"High−efficiency AlGaN−based UV light−emitting diode on laterally overgrown AlN",Journal of Crystal Growth,310,pp.2326−2329,2008 N.Nakano,et al.,"Epitaxial lateral overgrowth of ALN layers on patterned sapphire substrates",phys.stat.sol.(a)203,No.7, pp.1632−1635,2006 J.Mei,et al.,"Dislocation generation at the coalescence of aluminum nitride lateral epitaxy on shallow−grooved sapphire substrates",Applied Physics Letters 90, 221909,2007
上記非特許文献2によれば、〈10−10〉方位に沿って形成された溝構造のサファイア(0001)基板の表面に、ELO−AlN層を直接成長させた場合、その成長温度は、サファイア(0001)基板にAlNをエピタキシャル成長させる場合において一般的に使用される1100℃では、溝上方を覆うように横方向成長するものの、成長したELO−AlN表面が極めて粗いのに対して、1300℃の場合には、成長したELO−AlN表面は原子レベルで平坦であることが分かる。つまり、溝構造のサファイア(0001)基板の表面に、ELO−AlN層を直接成長させる場合には、1300℃以上の高温下での成長が必要である。また、上記特許文献1では、具体的なAlNの成長温度は開示されていないものの、極めて速い成長速度(1μm/分)で成長させている点から、成長温度が、1350℃以上或いは1400℃以上と推察される。
上述のように、従来は、サファイア(0001)基板の表面に、ELO−AlN層を直接成長させる場合、緻密で平坦なELO−AlN層表面を得るためには、1300℃以上の高温処理が必要であった。しかし、斯かる1300℃以上の成長温度では、加熱に使用するヒータの寿命が1300℃未満の場合と比較して著しく短くなり、更に、安定した歩留りで製品を作製するのが困難となるため、ELO−AlN層を溝構造のサファイア(0001)基板の表面に、1300℃未満の成長温度で安定して成長できることが好ましい。
本発明は、上述の問題点に鑑みてなされたものであり、その目的は、溝構造等の凹凸加工されたサファイア(0001)基板の表面に、1300℃未満の成長温度でも、緻密で平坦な表面のAlN層またはAlGaN層を横方向成長法によりエピタキシャル成長可能なエピタキシャル成長用テンプレートの作製方法を提供すること、及び、低貫通転位密度化されたエピタキシャル成長用テンプレートを提供することにある。
本願発明者等は、溝構造等の凹凸加工されたサファイア(0001)基板の凸部頂部の平坦面に、C+軸配向するように、つまりウルツ鉱型結晶構造においてAl原子が成長結晶の最外表面に現出するようにC軸配向制御(極性制御)された初期AlN層を先ずエピタキシャル成長させた後、横方向成長法を用いて凹部の上方を覆うようにAlN層またはAlGaN層をエピタキシャル成長させることで、1300℃未満の成長温度でも、緻密で平坦な表面の横方向成長法によりエピタキシャル成長したAlN層またはAlGaN層を得られること、また、その結果として低貫通転位密度化されたエピタキシャル成長用テンプレートを提供できることを見出した。一般にウルツ鉱型結晶構造の3族窒化物結晶では、C軸方向に対して3族原子と窒素原子の何れの極性の向きに成長するかは、基板の種類や成長初期過程の成長条件に依存する。サファイア(0001)基板表面にAlNを成長させる場合、積極的にAl極性制御を行わないと、N極性面が成長結晶の最外表面に現出する場合がある。
即ち、上記目的を達成するために、本発明は、サファイア(0001)基板の表面を、凸部頂部が平坦で所定の平面視パターンとなるように凹凸加工し、
前記凹凸加工した前記サファイア(0001)基板面に、前記凸部頂部のエッジ部を除く平坦面上にC+軸配向したAlN層が成長するようにC軸配向制御を行って、前記凹凸加工で形成された凹部に堆積するAlN層によって前記凹部に新たな凹部が形成されるように初期AlN層をエピタキシャル成長させ、
前記初期AlN層上に、前記初期AlN層の成長条件とは異なる成長条件による横方向成長法を用いてAlGaN(0001)層(1≧x>0,x+y=1)をエピタキシャル成長させ、
前記新たな凹部の上方が、前記凸部頂部の上方から横方向成長した前記AlGaN(0001)層で覆われることを特徴とするエピタキシャル成長用テンプレートの作製方法を提供する。
更に、上記特徴のエピタキシャル成長用テンプレートの作製方法は、前記サファイア(0001)基板の表面に形成する前記凹部の深さが1.0μm以下であることを第2の特徴とする。
更に、上記特徴のエピタキシャル成長用テンプレートの作製方法は、前記初期AlN層の成長時において、前記凹凸加工で形成された段差部近傍では、C+軸配向していないAlN層が成長することを第3の特徴とする。
更に、上記特徴のエピタキシャル成長用テンプレートの作製方法は、前記AlGaN(0001)層がAlN(0001)層であることを第4の特徴とする。
更に、上記目的を達成するために、本発明は、凸部頂部が平坦で所定の平面視パターンとなるように表面を凹凸加工したサファイア(0001)基板と、前記凹凸加工した前記サファイア(0001)基板面にエピタキシャル成長した初期AlN層と、前記初期AlN層上に、前記初期AlN層の成長条件とは異なる成長条件による横方向成長法を用いてエピタキシャル成長したAlGaN(0001)層(1≧x>0,x+y=1)と、を備え、
前記初期AlN層は、前記凸部頂部のエッジ部を除く平坦面上に成長したAlN層がC+軸配向しており、前記凹凸加工で形成された凹部に堆積したAlN層によって前記凹部に新たな凹部が形成され、前記新たな凹部の上方が、前記凸部頂部の上方から横方向成長した前記AlGaN(0001)層で覆われていることを特徴とするエピタキシャル成長用テンプレートを提供する。
更に、上記特徴のエピタキシャル成長用テンプレートは、前記サファイア(0001)基板の表面に形成された前記凹部の深さが1.0μm以下であることを第2の特徴とする。
更に、上記特徴のエピタキシャル成長用テンプレートは、前記初期AlN層は、前記凹凸加工で形成された段差部近傍では、C+軸配向していないAlN層を含むことを第3の特徴とする。
更に、上記特徴のエピタキシャル成長用テンプレートは、前記AlGaN(0001)層がAlN(0001)層であることを第4の特徴とする。
上記特徴のエピタキシャル成長用テンプレートの作製方法またはエピタキシャル成長用テンプレートによれば、表面に凹凸加工を施したサファイア(0001)基板を用いて、1300℃未満の従来と比較して低い成長温度で、横方向成長法によりエピタキシャル成長した緻密で平坦な表面の低貫通転位密度化されたAlN層またはAlGaN層が得られる。つまり、横方向成長法によりAlN層またはAlGaN層をその上にエピタキシャル成長させる下地層となる初期AlN層の凸部頂部の平坦面からエピタキシャル成長した部分が、C+軸配向しているため、即ち、当該初期AlN層の表面がAl極性面に均一化されているため、1300℃未満の成長温度でも、その上方から横方向成長法によりエピタキシャル成長するAlN層またはAlGaN層として、緻密で平坦な表面の低貫通転位密度化された層が得られる。この結果、製造コストの高騰を招くことなく、その上層に形成されるGaN系窒化物半導体層として高結晶品質のものが安定して得られ、当該GaN系窒化物半導体層で構成される半導体素子の高性能化が図れる。
本発明に係るエピタキシャル成長用テンプレートの作製方法の工程を模式的に示す工程断面図である。 本発明に係るエピタキシャル成長用テンプレートの実施例1を示すSEM写真(断面図及び俯瞰図)である。 本発明に係るエピタキシャル成長用テンプレートの実施例2を示すSEM写真(断面図及び俯瞰図)である。 エピタキシャル成長用テンプレートの比較例1におけるAlN層を横方向成長法により成膜した後の状態と、KOHアルカリ液でエッチング処理した後の状態を示すSEM写真(俯瞰図)である。 図3に示す実施例2をKOHアルカリ液でエッチング処理した後の状態を示すSEM写真(俯瞰図)である。 本発明に係るエピタキシャル成長用テンプレートの実施例3における初期AlN層を成膜した後の状態を示すSEM写真(断面図及び俯瞰図)である。 エピタキシャル成長用テンプレートの比較例2における初期AlN層を成膜した後の状態を示すSEM写真(断面図及び俯瞰図)である。 エピタキシャル成長用テンプレートの比較例3におけるAlN層を横方向成長法により成膜した後の状態を示すSEM写真(断面図及び俯瞰図)である。 本発明に係るエピタキシャル成長用テンプレートの実施例4を示すSEM写真(断面図及び俯瞰図)である。 本発明に係るエピタキシャル成長用テンプレートの実施例5を示す断面TEM写真である。 本発明に係るエピタキシャル成長用テンプレートの実施例5の転位密度の評価結果を示す図である。 本発明に係るエピタキシャル成長用テンプレートの実施例6〜実施例8の表面解析結果を示す図 典型的な従来のGaN系発光ダイオードの結晶層構造を模式的に示す断面図
本発明に係るエピタキシャル成長用テンプレートの作製方法(以下、適宜「本作製方法」と称す。)及び本発明に係るエピタキシャル成長用テンプレート(以下、適宜「本テンプレート」と称す。)の実施の形態につき、図面に基づいて説明する。
図1(a)〜(d)は、本作製方法の工程を模式的に示す工程断面図であり、夫々、本テンプレートの作製途中と作製後の断面構造を示す。尚、図1において、説明の理解の容易のため要部を強調して表示しており、図中の各部の寸法比は必ずしも実際のものと一致しない。図1(d)に示すように、本テンプレート1は、基板表面を凹凸加工したサファイア(0001)基板2と、凹凸加工されたサファイア(0001)基板面にエピタキシャル成長した初期AlN層3と、初期AlN層3上に、横方向成長法を用いてエピタキシャル成長したAlGaN(0001)層4(1≧x>0,x+y=1)を備えて構成される。以下、本テンプレート1の一実施形態に係る作製方法を、図1を参照して詳細に説明する。尚、以下の説明では、基板2の表面の凹凸は、〈11−20〉方向に延伸する複数本の溝6によって形成され、溝内部が凹部で、溝と溝の間が凸部となっている。また、横方向成長法を用いてエピタキシャル成長させるAlGaN(0001)層4として、AlN層4(x=1、y=0に相当)を使用する。
先ず、サファイア(0001)基板2を用意して、その基板表面にストライプ状にパターニングされたNiマスク5を形成する(図1(a)参照)。次に、RIE(Reactive Ion Etching)等の周知の異方性エッチング法を用いて基板表面をエッチング加工して、〈11−20〉方向に延伸する複数本の溝6を形成する(図1(b)参照)。溝6と溝6の間の凸部頂部7は、平坦な(0001)結晶面である。本実施形態では、溝6の寸法の好適例として、深さが0.3〜1.0μm程度、幅が1.0〜5.0μm程度、溝と溝の間隔が1.0〜5.0μm程度のものを想定している。尚、本実施形態では、溝の平面視パターンとして、ストライプ状を想定しているが、〈11−20〉方向と等価な方向は3方向存在するので、溝と溝に挟まれた凸部頂部7の平面視パターンとしては、ストライプ状以外に、正三角形状、正六角形状、菱形状のもの等が想定される。
次に、表面が凹凸加工されたサファイア基板2を、周知の有機金属化合物気相成長(MOVPE)の反応室内(図示せず)に収容し、当該サファイア基板2上に、初期AlN層3をMOVPE法によりエピタキシャル成長させる(図1(c)参照)。初期AlN層3の膜厚は、0.2〜1.5μm程度で、初期AlN層3の堆積後においても、基板2に形成された溝6に沿って新たな凹部8が形成される限りにおいて、溝6の深さ以下であっても以上であっても構わない。初期AlN層3は、成長が進行するにつれて成長膜の表面が均一なC+軸配向となっていくので、一旦C+軸配向化すれば、それ以降も同様に均一なC+軸配向が維持されるため、初期AlN層3を更に成長させる必要はない。
初期AlN層3の成長温度は、1300℃未満で、一般的なAlGaN層のエピタキシャル成長の成長温度(結晶化温度以上の1100℃〜1200℃)より高温(一例として、1250℃)に設定する。圧力は、50Torr以下程度(一例として、約25Torr)に設定する。本実施形態では、初期AlN層3は、サファイア基板2の凸部頂部7からの成長膜が、C+軸配向となるように、つまり当該成長膜の表面(凸部表面9)がAl極性面となるように、C軸配向制御(極性制御)を行う。当該C軸配向制御は、上記温度条件及び圧力条件下において、Al及びNの原料(前駆体)であるTMA(トリメチルアルミニウム)とNH(アンモニア)の流量比(NH/TMA)を調整して行う。本実施形態では、当該C軸配向制御条件として、圧力は、上述のように、テンプレート用AlN層の成長用としては比較的低圧状態(50Torr以下程度)とし、成長速度は、初期AlN層3の上層に横方向成長法でエピタキシャル成長するAlN層4よりも遅く設定した上で、当該流量比を例えば148に設定する。
初期AlN層3において、凸部頂部7からの成長膜の表面(凸部表面9)がAl極性面であれば十分であって、溝6の凹部底部からの成長膜は必ずしもC+軸配向となっている必要はない。また、溝6の凹部側壁面から成長するAlN層は、C+軸配向とはならず半極性面或いは無極性面が成長する。従って、凸部表面9のエッジ部分は、溝6の凹部側壁面から成長膜が存在するためAl極性面となっていない。凸部表面9(エッジ部分を除く)がAl極性面であれば十分であるということは、初期AlN層3の上層に横方向成長法でエピタキシャル成長するAlN層4が、最終的には凸部表面9からの横方向成長膜によって凹部8の上方が閉ざされ、凹部8からの膜成長が停止するため、凸部表面9からの成長膜に対する影響だけを考慮すれば良いことを意味する。
引き続き、サファイア基板2に形成された溝6に沿って形成された凹凸構造(凹部8、凸部表面9)を表面に有する初期AlN層3上に、周知の横方向成長法によってAlN層4を成長させる(図1(d)参照)。AlN層4も初期AlN層3と同様に、MOVPE法によりエピタキシャル成長させる。AlN層4の成長温度は、初期AlN層3と同様に、1300℃未満で、一般的なAlGaN層のエピタキシャル成長の成長温度(結晶化温度以上の1100℃〜1200℃)より高温(一例として、1250℃)に設定する。一例として、成長温度及び圧力の各条件は、初期AlN層3と同じであり、初期AlN層3とAlN層4は同じ反応室内で連続して成長させることができる。ここで、TMAとNHの流量比(NH/TMA)は、上記温度条件及び圧力条件下において、C軸方向の所定の成長膜厚範囲(例えば、3〜10μm程度)内で、凹部8の両側から成長した横方向成長膜がその上方で合体して、その上部を閉ざすのに十分な横方向成長が誘起されるように調整される。通常、その流量比(NH/TMA)は、温度条件及び圧力条件が初期AlN層3の成長時と同じであれば、初期AlN層3の成長時より小さめに設定される。本実施形態では、AlN層4は凹部8の上方がAlN層4によって閉塞した後も成長を続けるため、凹部8の上方が閉塞する前後で成長条件(TMAとNHの流量比)を変更するようにしても構わない。尚、図1(d)に示すように、凹部8の上方がAlN層4によって閉塞された部分には、楔形の空洞(ボイド)10が形成されている。
以上の要領で、サファイア基板2に対して、凹凸構造を形成し、初期AlN層3とAlN層4を続けて成長させることで、表面が緻密且つ平坦で、低貫通転位密度化されたエピタキシャル成長用テンプレート(本テンプレート1)が作製される。
以下、上記の本作製方法で作製した本テンプレート1の実施例(実施例1〜8)と、本作製方法に依らずに作製した比較例(比較例1〜3)について、図面を参照して説明する。尚、以下の説明で示すSEM写真は、何れも、紙面(断面)に垂直な方向が溝6の延伸方向である〈11−20〉方向で、紙面(断面)及びサファイア基板2の表面に平行な方向がサファイア基板2の〈1−100〉方向である。また、以下の各実施例及び各比較例において、初期AlN層3及びAlN層4の成長温度は、何れも1250℃であり、AlN層4の成長条件は同じである。また、以下の各実施例において、初期AlN層3の成長条件は同じである。また、以下の説明では、比較例1〜3に対しても、初期AlN層(比較例1及び2)と横方向成長法を用いてエピタキシャル成長させたAlN層に、実施例1〜8と同様の符号を付して、初期AlN層3、AlN層4と表記して相互に対応していることを明確にしている。また、以下のSEM写真及びTEM写真は、国際出願用に階調を2値化処理して表示しているため、実際の写真画像より不鮮明となっている。
〈実施例1及び実施例2〉
図2及び図3に、実施例1及び実施例2のSEM写真(断面図(a)と俯瞰図(b))を示す。実施例1は、サファイア基板2の表面に形成された溝6の幅及び間隔が夫々3μm、深さが1μmであり、初期AlN層3及びAlN層4の膜厚は夫々1.0μmと9.8μmである。実施例2は、サファイア基板2の表面に形成された溝6の幅及び間隔が夫々2μm、深さが0.5μmであり、初期AlN層3及びAlN層4の膜厚は夫々1.0μmと6.2μmである。
図2及び図3より、サファイア基板2の表面の凹凸構造の寸法に違いがあるものの、何れもC+軸配向した初期AlN層3を有するため、その上層に形成されたAlN層4は、緻密で平坦な表面が得られることが分かる。
〈比較例1及び実施例2〉
図4及び図5に、比較例1及び実施例2のSEM写真を示す。図4は、比較例1のAlN層4を成膜した後(a)とKOHアルカリ液でエッチング処理した後(b)の俯瞰図であり、図5は、図3に示した実施例2をKOHアルカリ液でエッチング処理した後の俯瞰図である。
比較例1は、C+軸配向した初期AlN層3に代えて、C−軸配向した初期AlN層3を成膜した後に、AlN層4を、実施例1,2と同じ成長条件で横方向成長法を用いてエピタキシャル成長させた場合の比較例である。つまり、比較例1と実施例1,2では、初期AlN層3のC軸配向制御の極性が異なる。比較例1は、サファイア基板2の表面に形成された溝6の幅及び間隔が夫々2μm、深さが0.5μmであり、初期AlN層3及びAlN層4の膜厚は夫々0.5μmと4μmである。また、比較例1のC−軸配向した初期AlN層3の成長条件は、成長温度及び圧力は実施例1,2と同じであり、TMAとNHの流量比(NH/TMA)が実施例1,2と異なる。TMAとNHの流量比(NH/TMA)は、実施例1,2では、148であるのに対して、比較例1では、1154と高めに設定している。
図4(a)の比較例1と図2及び図3の実施例1,2を比較すると、AlN層4の成膜後において、結晶表面の粗さにおいて顕著な差が生じていることが分かり、実施例1,2の方が比較例1より、AlN層4の表面が緻密且つ平坦であることが分かる。更に、C+軸配向したAl極性面とC−軸配向したN極性面では、KOHアルカリ液に対するエッチング速度が異なり、N極性面の方がエッチングされ易いため、成膜後のAlN層4の配向状態がKOHアルカリ液でエッチング処理することで目視確認できる。図4(b)と図5に示すエッチング処理後の比較例1と実施例2を比較すると、実施例2のAlN層4は、C+軸配向した初期AlN層3上に形成されるため、同様に均質にC+軸配向していることが確認できる。これに対して、比較例2では、初期AlN層3がC+軸配向となるように制御されていないため、その上層に成長したAlN層4のC軸配向の極性が混在して、つまり、Al極性面とN極性面の両方が現れて成長していることが分かる。以上の実施例1,2と比較例1の比較結果より、C+軸配向した初期AlN層3を設けることにより、表面が緻密且つ平坦なAlN層4が得られることが明らかとなった。
〈実施例3及び比較例2〉
図6及び図7に、実施例3と比較例2のSEM写真を示す。図6は、実施例3の初期AlN層3を成膜した後の断面図(a)と俯瞰図(b)であり、図7は、比較例2の初期AlN層3を成膜した後の断面図(a)と俯瞰図(b)である。比較例2の初期AlN層3は、比較例1のC−軸配向した初期AlN層3と同じ成長条件で成膜されている。実施例3及び比較例2は、何れも、サファイア基板2の表面に形成された溝6の幅及び間隔が夫々3μm、深さが0.5μmである。実施例3の初期AlN層3の膜厚は0.7μmであり、比較例2のC−軸配向した初期AlN層3の膜厚は0.5μmである。
図6と図7を比較すると、初期AlN層3の成膜後において、凸部頂部7からの成長膜の表面(凸部表面9)の表面の粗さにおいて既に差が生じていることが分かり、実施例3の方が比較例2より、凸部表面9が緻密であることが分かる。この結果、上述の実施例1,2と比較例1の比較結果のように、AlN層4の成膜後において、結晶表面の粗さにおいて顕著な差が生じていることが分かる。以上の実施例1〜3と比較例1,2の比較結果より、初期AlN層3をC+軸配向とすることにより、表面が緻密且つ平坦なAlN層4が得られることが、更に明らかとなった。
〈比較例3〉
図8に、比較例3のSEM写真を示す。図8は、比較例3のAlN層4を成膜した後の断面図(a)と俯瞰図(b)である。
比較例3は、C+軸配向した初期AlN層3を成膜せずに、表面に溝6が形成されたサファイア基板2上に直接AlN層4を、実施例1,2と同じ成長条件で横方向成長法を用いてエピタキシャル成長させた場合の比較例である。つまり、比較例3と実施例1,2では、初期AlN層3の有無が異なる。比較例3は、サファイア基板2の表面に形成された溝6の幅及び間隔が夫々3μm、深さが0.5μmであり、AlN層4の膜厚は10μmである。
図8に示すように、比較例3では、C+軸配向した初期AlN層3を設けた場合と比較して、AlN層4の表面が緻密且つ平坦でないことが分かる。更に、比較例3と同様に、C+軸配向した初期AlN層3を成膜せずに、表面に溝6が形成されたサファイア基板2上に直接AlN層4を、実施例1,2と同じ成長温度と圧力条件下で、但し異なるTMAとNHの流量比(NH/TMA)で、横方向成長法を用いてエピタキシャル成長させた場合の他の比較例においても、SEM写真は図示しないが、C+軸配向した初期AlN層3を設けた場合と比較して、AlN層4の表面が緻密且つ平坦でないことが分かる。これより、表面に溝6が形成されたサファイア基板2上に直接AlN層4を、横方向成長法を用いてエピタキシャル成長させることは、1250℃の成長温度では困難であると分かる。
図8の比較例3と図2及び図3の実施例1,2を比較すると、AlN層4の成膜後において、結晶表面の粗さにおいて顕著な差が生じていることが分かり、実施例1,2の方が比較例3より、AlN層4の表面が緻密且つ平坦であることが分かる。以上の実施例1,2と比較例1〜3の比較結果より、C−軸配向した初期AlN層3を設けた場合、C+軸配向した初期AlN層3を設けない場合の何れと比較しても、C+軸配向した初期AlN層3を設けることにより、1250℃の成長温度において、つまり、1300℃未満の成長温度領域内で、表面が緻密且つ平坦なAlN層4が得られることが明らかとなった。
〈実施例4〉
図9に、実施例4のSEM写真を示す。図9は、実施例4のAlN層4を成膜した後に、その上層にMOVPE法によりAl0.8Ga0.2N層を連続して成長させた後の断面図(a)と俯瞰図(b)である。尚、Al0.8Ga0.2N層の成長温度は1160℃であり、TMA、TMG(トリメチルガリウム)、NHの流量比(NH/MO)は899である。実施例5は、サファイア基板2の表面に形成された溝6の幅が5μm、溝6の間隔が5μm、深さが0.3μmであり、初期AlN層3、AlN層4、Al0.8Ga0.2N層の各膜厚は夫々1.3μm、5.8μm、1.8μmである。
図9より、初期AlN層3をC+軸配向とすることにより、AlN層4に形成したAl0.8Ga0.2N層も、AlN層4と同様に、緻密且つ平坦な表面が得られ、本テンプレート1上に高結晶品質のAlGaN層が形成されることが明らかとなった。尚、実施例4のAl0.8Ga0.2N層の表面解析を、X線ロッキングカーブ(XRC)法で実施した結果、平均半値幅FWHM(arcsec)は、293(ωモード:チルト分布)と625(ψモード:ツイスト分布)であり、良好な結果を示している。
〈実施例5〉
図10に、実施例5のAlN層4を成膜した後の断面TEM写真(明視野図)を示す。実施例5は、サファイア基板2の表面に形成された溝6の幅及び間隔が2μm、深さが0.5μmであり、初期AlN層3、AlN層4の膜厚は夫々1.0μm、6.5μmである。
図11に、図10に示す断面TEM写真を用いて、実施例5の貫通転位密度を評価した結果を示す。図11(a)は、3つの領域A〜Cにおける刃状転位密度を白丸○で、螺旋転位密度を黒丸●で夫々示し、図11(b)は、3つの領域A〜Cにおける平均の貫通転位密度を示している。3つの領域A〜Cは、領域Aが、凸部表面9の上方の初期AlN層3とAlN層4の初期成長層(上下位置が空洞10の中央より下方)の領域を表し、領域Bが、凸部表面9の上方のAlN層4の後期成長層(上下位置が空洞10の先端より上方)の領域を表し、領域Cが、凹部8の上方のAlN層4の後期成長層(上下位置が空洞10の先端より上方)の領域を表している。図11より、領域Aと比較して、領域B及び領域Cにおいて、低貫通転位密度化が達成されていることが分かる。尚、X線回折(XRD)法による解析結果から推定した転位密度として、約10/cmと良好な値が得られている。
〈実施例6〜実施例8〉
図12に、実施例6〜実施例8のAlN層4の表面解析を、XRC法で実施した結果を示す。実施例6〜実施例8は、サファイア基板2の表面に形成された溝6の幅が3μm、間隔が5μm、深さが1μm、0.5μm、0.3μmの3種類であり、初期AlN層3及びAlN層4の膜厚は、±0.3μm程度の誤差範囲内で何れも1.3μmと5μmである。実施例6〜実施例8は、溝6の深さが異なるだけで、後の条件は全く同じである。図12は、実施例6〜実施例8の各半値幅FWHM(arcsec)を示している。尚、図12において、白丸○がチルト分布の平均の半値幅を、黒丸●がツイスト分布の平均の半値幅を夫々示している。
表面を凹凸加工したサファイア基板上に横方向成長法によりAlN層等を直接エピタキシャル成長させる場合において、サファイア基板表面に形成される溝の深さは、一般に深い方が好ましいとされていた(例えば、上記非特許文献3参照)。つまり、溝が浅いと、溝と溝の間の凸部から成長する層と、溝の内部から成長する層を効果的に分離できず、横方向成長による効果が得られないからである。しかしながら、本作製方法によれば、サファイア基板表面に形成される溝の深さが0.3μm〜1μmと比較的浅い場合でも、良好な結果が得られることが確認できた。また、XRC法での解析結果では溝の深さの依存性は顕著に現れていないが、表面のピット観察から、溝の深さは、0.3μm〜0.5μm程度に浅い方が好ましい。本作製方法においては、溝の深さが0.5μm程度以下であると、溝形成のためのエッチング処理によってサファイア基板2が受けるダメージが軽減されるため、より高品質の初期AlN層3が得られ、更に、溝形成に要するコストも低減できるため、より好ましいと考えられる。
以上の本テンプレート1の実施例(実施例1〜8)と、本作製方法に依らずに作製した比較例(比較例1及び2)の説明より、初期AlN層3をC+軸配向とすることにより、表面が緻密且つ平坦な低貫通転位密度化されたAlN層4が得られることが明らかとなった。また、発光ダイオードや半導体レーザ等のGaN系窒化物半導体装置を構成するGaN系窒化物半導体層(AlGaNIn層)を、本テンプレート1のAlN層4上に形成することで、高結晶品質のGaN系窒化物半導体層が得られることも明らかとなった。この結果、本テンプレート1を使用することにより、GaN系窒化物半導体装置の高性能化が図れる。
以上、本作製方法及び本テンプレートについて詳細に説明したが、本発明の特徴は、C+軸配向した初期AlN層3を備える点にあり、上記説明に用いた方法や条件等は、説明のための一例であり、これらの条件等は、本発明が上記特徴を備えることを限度として、適宜変更可能である。
上記実施形態では、初期AlN層3の上に横方向成長法を用いてAlN層4をエピタキシャル成長させる場合を説明したが、初期AlN層3の上に横方向成長法を用いてエピタキシャル成長させる半導体層としては、AlN層以外に、AlGaN層であっても良い。上記実施形態では、実施例による説明は省略したが、Gaが分解し易いことから、AlGaN層の方がAlN層より横方向成長し易い性質を有していること、更に、表面を凹凸加工したサファイア基板上に横方向成長法によりAlN層等を直接エピタキシャル成長させる従来例として、AlN層以外にAlGaN層やGaN層を成長させる事例は、例えば上記特許文献1に開示されているように公知である点を鑑みれば、本発明は、当然にAlGaN層を横方向成長させる場合にも適応可能である。
また、上記実施形態では、本発明の特徴であるC+軸配向した初期AlN層3を得るためのC軸配向制御方法として、流量比(NH/TMA)を調整する場合を説明したが、C軸配向制御方法としては、流量比の調整以外に、反応ガスに依存した制御や、成長初期において、TMAを先に供給する等の方法が考えられる。また、上記説明では、初期AlN層3及びAlN層4の成長方法として、有機金属化合物気相成長(MOVPE)を使用する場合を説明したが、当該成長方法としては、MOVPE以外に、ハイドライドVPE法を用いても良い。更に、上記実施形態では、サファイア(0001)基板2の表面の凹凸加工を、フォトリソグラフィと異方性エッチング法を用いて行う場合を説明したが、当該凹凸加工は、平坦な凸部頂部が確保できる限りにおいて、上記異方性エッチング以外の加工法を用いても構わない。
本発明に係るエピタキシャル成長用テンプレート及びその作製方法は、発光ダイオードや半導体レーザ等のGaN系窒化物半導体装置の作製に利用可能である。
1: 本発明に係るエピタキシャル成長用テンプレート
2: サファイア(0001)基板
3: 初期AlN層
4: AlGaN(0001)層
5: Niマスク
6: サファイア基板表面に加工された溝
7: 凸部頂部
8: 初期AlN層の凹部
9: 初期AlN層の凸部表面
10: 空洞(ボイド)

Claims (12)

  1. サファイア(0001)基板の表面を、凸部頂部が平坦で所定の平面視パターンとなるように凹凸加工し、
    前記凹凸加工した前記サファイア(0001)基板面に、前記凸部頂部のエッジ部を除く平坦面上にC+軸配向したAlN層が成長するようにC軸配向制御を行って、前記凹凸加工で形成された凹部に堆積するAlN層によって前記凹部に新たな凹部が形成されるように初期AlN層をエピタキシャル成長させ、
    前記初期AlN層上に、前記初期AlN層の成長条件とは異なる成長条件による横方向成長法を用いてAlGaN(0001)層(1≧x>0,x+y=1)をエピタキシャル成長させ、
    前記新たな凹部の上方が、前記凸部頂部の上方から横方向成長した前記AlGaN(0001)層で覆われることを特徴とするエピタキシャル成長用テンプレートの作製方法。
  2. 前記初期AlN層を、前記サファイア(0001)基板に形成された前記凸部頂部と前記凹部の側壁面及び底面を覆うように形成することを特徴とする請求項1に記載のエピタキシャル成長用テンプレートの作製方法。
  3. 前記初期AlN層の成長速度が、前記AlGaN(0001)層の成長速度より遅いことを特徴とする請求項1または2に記載のエピタキシャル成長用テンプレートの作製方法。
  4. 前記サファイア(0001)基板の表面に形成する前記凹部の深さが1.0μm以下であることを特徴とする請求項1〜3の何れか1項に記載のエピタキシャル成長用テンプレートの作製方法。
  5. 前記初期AlN層の成長時において、前記凹凸加工で形成された段差部近傍では、C+軸配向していないAlN層が成長することを特徴とする請求項1〜4の何れか1項に記載のエピタキシャル成長用テンプレートの作製方法。
  6. 前記AlGaN(0001)層がAlN(0001)層であることを特徴とする請求項1〜5の何れか1項に記載のエピタキシャル成長用テンプレートの作製方法。
  7. 凸部頂部が平坦で所定の平面視パターンとなるように表面を凹凸加工したサファイア(0001)基板と、
    前記凹凸加工した前記サファイア(0001)基板面にエピタキシャル成長した初期AlN層と、
    前記初期AlN層上に、前記初期AlN層の成長条件とは異なる成長条件による横方向成長法を用いてエピタキシャル成長したAlGaN(0001)層(1≧x>0,x+y=1)と、を備え、
    前記初期AlN層は、前記凸部頂部のエッジ部を除く平坦面上に成長したAlN層がC+軸配向しており、前記凹凸加工で形成された凹部に堆積したAlN層によって前記凹部に新たな凹部が形成され、
    前記新たな凹部の上方が、前記凸部頂部の上方から横方向成長した前記AlGaN(0001)層で覆われていることを特徴とするエピタキシャル成長用テンプレート。
  8. 前記初期AlN層が、前記サファイア(0001)基板に形成された前記凸部頂部と前記凹部の側壁面及び底面を覆っていることを特徴とする請求項7に記載のエピタキシャル成長用テンプレート。
  9. 前記初期AlN層が、前記AlGaN(0001)層より遅い成長速度で形成されていることを特徴とする請求項7または8に記載のエピタキシャル成長用テンプレート。
  10. 前記サファイア(0001)基板の表面に形成された前記凹部の深さが1.0μm以下であることを特徴とする請求項7〜9の何れか1項に記載のエピタキシャル成長用テンプレート。
  11. 前記初期AlN層は、前記凹凸加工で形成された段差部近傍では、C+軸配向していないAlN層を含むことを特徴とする請求項7〜10の何れか1項に記載のエピタキシャル成長用テンプレート。
  12. 前記AlGaN(0001)層がAlN(0001)層であることを特徴とする請求項7〜11の何れか1項に記載のエピタキシャル成長用テンプレート。
JP2014146781A 2014-07-17 2014-07-17 エピタキシャル成長用テンプレート及びその作製方法 Active JP5869064B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146781A JP5869064B2 (ja) 2014-07-17 2014-07-17 エピタキシャル成長用テンプレート及びその作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146781A JP5869064B2 (ja) 2014-07-17 2014-07-17 エピタキシャル成長用テンプレート及びその作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011547154A Division JP5635013B2 (ja) 2009-12-25 2009-12-25 エピタキシャル成長用テンプレート及びその作製方法

Publications (2)

Publication Number Publication Date
JP2014207478A true JP2014207478A (ja) 2014-10-30
JP5869064B2 JP5869064B2 (ja) 2016-02-24

Family

ID=52120750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146781A Active JP5869064B2 (ja) 2014-07-17 2014-07-17 エピタキシャル成長用テンプレート及びその作製方法

Country Status (1)

Country Link
JP (1) JP5869064B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267242A (ja) * 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
JP3455512B2 (ja) * 1999-11-17 2003-10-14 日本碍子株式会社 エピタキシャル成長用基板およびその製造方法
JP5635013B2 (ja) * 2009-12-25 2014-12-03 創光科学株式会社 エピタキシャル成長用テンプレート及びその作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455512B2 (ja) * 1999-11-17 2003-10-14 日本碍子株式会社 エピタキシャル成長用基板およびその製造方法
JP2001267242A (ja) * 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
JP5635013B2 (ja) * 2009-12-25 2014-12-03 創光科学株式会社 エピタキシャル成長用テンプレート及びその作製方法

Also Published As

Publication number Publication date
JP5869064B2 (ja) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5635013B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
JP5406985B2 (ja) エピタキシャル成長用テンプレートの作製方法及び窒化物半導体装置
JP4903189B2 (ja) 半極性窒化物単結晶薄膜の成長方法及びこれを用いた窒化物半導体発光素子の製造方法
WO2012121154A1 (ja) 下地基板、窒化ガリウム結晶積層基板及びその製造方法
JP2007184503A (ja) 半導体部材及びその製造方法
JP7260089B2 (ja) 窒化物半導体
TWI534861B (zh) A template for epitaxial growth and a method for producing the same, and a nitride semiconductor device
JP2007134741A (ja) 窒化物半導体構造とその製造方法および発光素子
JP5869064B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
KR101271723B1 (ko) 적층결함이 제거된 ⅲ족 질화물 기판의 제조방법
JP2009224704A (ja) 窒化物系半導体発光素子、エピタキシャルウエハ、及び窒化物系半導体発光素子を作製する方法
JP2011171394A (ja) 窒化物半導体薄膜および窒化物半導体規則混晶ならびにその成長方法
JP7284983B2 (ja) 半導体基板の製造方法及びそれに用いる下地基板
KR101581169B1 (ko) 에피택셜 성장용 템플릿 및 그 제조 방법, 그리고 질화물 반도체 장치
JP5313976B2 (ja) 窒化物半導体薄膜およびその成長方法
JP2006324694A (ja) 窒化物半導体構造とその製造方法および発光素子
JP2012171816A (ja) 窒化物半導体薄膜およびその成長方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5869064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250