JP2014206079A - 内燃機関の排気浄化装置およびその製造方法 - Google Patents
内燃機関の排気浄化装置およびその製造方法 Download PDFInfo
- Publication number
- JP2014206079A JP2014206079A JP2013083365A JP2013083365A JP2014206079A JP 2014206079 A JP2014206079 A JP 2014206079A JP 2013083365 A JP2013083365 A JP 2013083365A JP 2013083365 A JP2013083365 A JP 2013083365A JP 2014206079 A JP2014206079 A JP 2014206079A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- catalyst
- filter
- downstream end
- sealing member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
【課題】フィルタに選択還元触媒を担持させた場合に、NH3のスリップを効率的に抑制する。
【解決手段】エンジン1の排気管11に設けられ、上流端面33Aと下流端面33Bとを互い違いに目封じされ、上流端面33Aを目封じする第1目封じ部材33bと、下流端面33Bを目封じする第2目封じ部材33cと、を有する排気浄化フィルタ33と、排気浄化フィルタ33の上流端面33A側に担持され、NH3を貯蔵する機能とNH3によって排気中のNOxを還元する機能とを有したSCR触媒33dと、排気浄化フィルタ33の下流端面33B側に担持され、NH3を酸化させる機能を有したNH3酸化触媒33eと、を備え、第2目封じ部材33cは、排気浄化フィルタ33内に担持されたSCR触媒33dの下流側端X1または当該下流側端X1よりも上流側の位置X2まで配置された。
【選択図】図2
【解決手段】エンジン1の排気管11に設けられ、上流端面33Aと下流端面33Bとを互い違いに目封じされ、上流端面33Aを目封じする第1目封じ部材33bと、下流端面33Bを目封じする第2目封じ部材33cと、を有する排気浄化フィルタ33と、排気浄化フィルタ33の上流端面33A側に担持され、NH3を貯蔵する機能とNH3によって排気中のNOxを還元する機能とを有したSCR触媒33dと、排気浄化フィルタ33の下流端面33B側に担持され、NH3を酸化させる機能を有したNH3酸化触媒33eと、を備え、第2目封じ部材33cは、排気浄化フィルタ33内に担持されたSCR触媒33dの下流側端X1または当該下流側端X1よりも上流側の位置X2まで配置された。
【選択図】図2
Description
本発明は、内燃機関の排気浄化装置およびその製造方法に関する。
従来、排気中のNOxを浄化する排気浄化システムの1つとして、NH3により排気中のNOxを選択的に還元する選択還元触媒を排気管上に設けたものが提案されている。例えば、尿素添加式の排気浄化システムでは、選択還元触媒の上流側からNH3の前駆体である尿素水を供給し、この尿素水から排気の熱で熱分解または加水分解することでNH3を生成し、このNH3により排気中のNOxを選択的に還元する。このような尿素添加式のシステムの他、例えば、アンモニアカーバイトのようなNH3の化合物を加熱することでNH3を生成し、このNH3を直接添加するシステムも提案されている。以下、排気管上で選択還元触媒を設けるのに適した位置について検討する。
エンジンは、車両前方のエンジンルーム内に設けられる。排気管は、エンジンの排気ポートから延び、車両の床下を通って車両の後方端部に至る。したがって、排気管は、その構造上、エンジンルーム内のエンジン直下の区間と、エンジンルーム外の床下の区間とに分けられる。
エンジン直下の区間内は、エンジンからこの区間に至る排気管を流通する排気の放熱が小さく、また高温のエンジンまでの距離が短くエンジンの熱によって暖められることから、比較的高温に維持される。しかしながら、エンジンルーム内には、エンジンの他、吸気系や燃料噴射系の各種装置も設けられるため、排気系の各種装置(例えば、上記選択還元触媒や粒子状物質を捕集するフィルタなど)を全てエンジン直下の区間内に配置することは難しい。とりわけフィルタは、捕集した粒子状物質を燃焼除去する再生処理を適宜行う必要があるため、エネルギー効率が有利になるように、エンジン直下の区間内に優先的に設けられる。したがって、選択還元触媒は、配置の自由度が高い床下の区間内に設けられる場合が多い。
しかしながら、床下の区間内は、エンジン直下の区間からこの区間に至る排気管を流通する排気の放熱が大きく、またエンジンまでの距離が長くエンジンの熱によって暖められないことから、エンジン直下の区間よりも低温になる。このため、選択還元触媒の温度がNOxを還元するのに適した温度に達しない場合がある。そこで、特許文献1に記載の技術のようにフィルタに選択還元触媒を担持させた上、このフィルタをエンジン直下の区間内に設けることが考えられる。これにより、狭いエンジン直下の区間内を有効に利用しながら、選択還元触媒をNOxの還元に適した温度まで上昇させ、NOx浄化率を改善することができる。また、車両の床下に配置する排気系の各種装置が廃止され、コストを低減することができる。
選択還元触媒を担持させたフィルタをエンジン直下の区間内に配置する場合には、選択還元触媒に流入する排気の温度が選択還元触媒の活性温度域に早期に到達するため、NOx浄化率の改善が見込める。しかしながら、エンジン直下の区間内は、床下の区間内に比して排気の温度挙動が大きく、排気の温度が安定しない。選択還元触媒は、その温度が上昇する程NH3最大ストレージ量が低下する特性を有するため、排気の温度が安定しないことで選択還元触媒に貯蔵されたNH3がスリップすることが懸念される。このNH3のスリップに対してフィルタの下流にスリップしたNH3を酸化するNH3酸化触媒を追加する構成を採用することが考えられる。しかしながら、フィルタに選択還元触媒を担持させ、車両の床下に配置する排気系の各種装置を廃止し、コストを低減する本来の目的に逆行する。
また、フィルタに選択還元触媒を担持させた場合には、アッシュ成分がフィルタに堆積していくと、選択還元触媒の有効体積が減少し、NOx浄化率の低下が懸念される。このため、フィルタに担持させる選択還元触媒の総量は、フィルタに生涯堆積するアッシュ成分の生涯堆積量を想定して決定される。同様の理由により、特許文献1のようにフィルタ内の下流側にNH3を酸化するNH3酸化触媒をゾーンコートして担持させた場合にも、アッシュ成分がフィルタ内の下流側に堆積していくと、NH3酸化触媒の有効体積が減少し、その機能を発揮できなくなる。このため、フィルタ内の下流側にゾーンコートして担持させるNH3酸化触媒の総量も、フィルタに生涯堆積するアッシュ成分の生涯堆積量を想定して決定される。これにより、NH3酸化触媒が多量に必要となり、コストアップを招く。
本発明は、上記課題を解決するものであり、その目的は、NOx浄化をアッシュ成分の影響を受けずに実行するとともにコンパクト化を図ることにある。
本発明の内燃機関(例えば、後述のエンジン1)の排気浄化装置(例えば、後述の触媒浄化ユニット3)は、内燃機関の排気通路(例えば、後述の排気管11)に設けられ、上流端面(例えば、後述の上流端面33A)と下流端面(例えば、後述の下流端面33B)とを互い違いに目封じされ、前記上流端面を目封じする第1目封じ部材(例えば、後述の第1目封じ部材33b)と、前記下流端面を目封じする第2目封じ部材(例えば、後述の第2目封じ部材33c)と、を有するフィルタ(例えば、後述の排気浄化フィルタ33)と、前記フィルタの前記上流端面側に担持され、NH3を貯蔵する機能とNH3によって排気中のNOxを還元する機能とを有した選択還元触媒(例えば、後述のSCR触媒33d)と、前記フィルタの前記下流端面側に担持され、NH3を酸化させる機能を有したNH3酸化触媒(例えば、後述のNH3酸化触媒33e)と、を備え、前記第2目封じ部材は、前記選択還元触媒の下流側端(例えば、後述の下流側端X1)または当該下流側端よりも上流側位置(例えば、後述の位置X2)まで配置されたことを特徴とする。
本発明によると、第2目封じ部材が選択還元触媒の下流側端または当該下流側端よりも上流側位置まで配置される。これにより、排気流入側セルは、選択還元触媒だけを担持した状態である。また、排気流出側セルは、選択還元触媒とNH3酸化触媒とを担持した状態である。このため、選択還元触媒に貯蔵されたNH3がスリップしても、排気流出側セルにおいてNH3酸化触媒がスリップしたNH3を酸化させ、NH3がフィルタの下流へスリップしない。
そして、アッシュ成分は、フィルタの排気流入側セルに堆積し、排気流出側セルに堆積しない。そのため、排気流出側セルにおいて選択還元触媒の下流側に担持されたNH3酸化触媒は、フィルタの生涯にわたってNH3を酸化する機能を継続して発揮することができる。したがって、NOx浄化をアッシュ成分の影響を受けずに実行することができる。
また、NH3酸化触媒は、排気流出側セルにおいて選択還元触媒の下流側に担持される。そのため、NH3酸化触媒をフィルタの下流に追加する必要がなく、車両の床下に配置する排気系の各種装置が廃止される。したがって、コンパクト化を図ることができる。
さらに、NH3酸化触媒は、フィルタの生涯にわたってNH3を酸化する機能を継続して発揮し、NH3酸化触媒が多量に必要ではなく、コストを低減することができる。
また、第2目封じ部材が選択還元触媒の下流側端よりも下流側の位置までしか封入されない場合には、選択還元触媒の下流側端よりも下流側であって第2目封じ部材に目封じされていない領域が流路抵抗の少ない領域となり、多くの排気が選択還元触媒を迂回し、排気中のNOxが選択還元触媒に接触しない現象や供給されたNH3が選択還元触媒に貯蔵されず下流側のNH3酸化触媒によってNOxに直接酸化される現象が生じる。また、仮に選択還元触媒の下流側端よりも下流側であって第2目封じ部材に目封じされていない領域にNH3酸化触媒が担持されると、供給されたNH3がNH3酸化触媒によってNOxに直接酸化される現象が生じる。しかし、本発明であると、第2目封じ部材が選択還元触媒の下流側端または当該下流側端よりも上流側位置まで配置されるため、排気が選択還元触媒を迂回せず、排気中のNOxが選択還元触媒に接触しない現象や供給されたNH3がNH3酸化触媒によってNOxに直接酸化される現象を防止することができる。
そして、アッシュ成分は、フィルタの排気流入側セルに堆積し、排気流出側セルに堆積しない。そのため、排気流出側セルにおいて選択還元触媒の下流側に担持されたNH3酸化触媒は、フィルタの生涯にわたってNH3を酸化する機能を継続して発揮することができる。したがって、NOx浄化をアッシュ成分の影響を受けずに実行することができる。
また、NH3酸化触媒は、排気流出側セルにおいて選択還元触媒の下流側に担持される。そのため、NH3酸化触媒をフィルタの下流に追加する必要がなく、車両の床下に配置する排気系の各種装置が廃止される。したがって、コンパクト化を図ることができる。
さらに、NH3酸化触媒は、フィルタの生涯にわたってNH3を酸化する機能を継続して発揮し、NH3酸化触媒が多量に必要ではなく、コストを低減することができる。
また、第2目封じ部材が選択還元触媒の下流側端よりも下流側の位置までしか封入されない場合には、選択還元触媒の下流側端よりも下流側であって第2目封じ部材に目封じされていない領域が流路抵抗の少ない領域となり、多くの排気が選択還元触媒を迂回し、排気中のNOxが選択還元触媒に接触しない現象や供給されたNH3が選択還元触媒に貯蔵されず下流側のNH3酸化触媒によってNOxに直接酸化される現象が生じる。また、仮に選択還元触媒の下流側端よりも下流側であって第2目封じ部材に目封じされていない領域にNH3酸化触媒が担持されると、供給されたNH3がNH3酸化触媒によってNOxに直接酸化される現象が生じる。しかし、本発明であると、第2目封じ部材が選択還元触媒の下流側端または当該下流側端よりも上流側位置まで配置されるため、排気が選択還元触媒を迂回せず、排気中のNOxが選択還元触媒に接触しない現象や供給されたNH3がNH3酸化触媒によってNOxに直接酸化される現象を防止することができる。
前記NH3酸化触媒は、前記第1目封じ部材によって前記上流端面を目封じされたセルに表層担持されたことが好ましい。
本発明によると、第2目封じ部材が選択還元触媒の下流側端または当該下流側端よりも上流側位置まで配置されるため、NH3酸化触媒は、第1目封じ部材によって上流端面を目封じされた排気流出側セルにおいて選択還元触媒の下流側に表層担持される。そして、排気は、選択還元触媒が担持された領域において排気流入側セルから隔壁の細孔を通過し、排気流出側セルにおいて選択還元触媒の下流側に表層担持されたNH3酸化触媒に必ず接触する。このため、選択還元触媒に貯蔵されたNH3がスリップしても、排気流出側セルにおいて選択還元触媒の下流側に担持されたNH3酸化触媒がスリップしたNH3を酸化させ、NH3がフィルタの下流にスリップしない。また、排気は、選択還元触媒が担持された領域において排気流入側セルから隔壁の細孔を通過し、NH3酸化触媒がフィルタの隔壁全体に担持されてもその領域を通過しない。これに対し、NH3酸化触媒は、排気流出側セルにおいて選択還元触媒の下流側に表層担持されるため、無駄に担持されず効率的に配置され、コストを低減することができる。
前記フィルタは、前記機関の直下の区間内に設けられたことが好ましい。
本発明によると、フィルタが機関直下の区間内に配置され、選択還元触媒に流入する排気の温度が選択還元触媒の活性温度域に早期に到達するため、NOx浄化率を改善することができる。また、車両の床下に配置する排気系の各種装置が廃止され、コストを低減することができる。
前記NH3酸化触媒は、NH3を酸化させる機能を有した貴金属を含み、前記フィルタ内の前記選択還元触媒と前記NH3酸化触媒との間に間隔が空いていることが好ましい。
本発明によると、NH3酸化触媒が選択還元触媒に混入されず、選択還元触媒に混入されたNH3酸化触媒が選択還元触媒に貯蔵すべきNH3をNOxに酸化させることを防止できる。
本発明の内燃機関(例えば、後述のエンジン1)の排気浄化装置(例えば、後述の触媒浄化ユニット3)の製造方法は、内燃機関の排気通路(例えば、後述の排気管11)に設けられ、上流端面(例えば、後述の上流端面33A)と下流端面(例えば、後述の下流端面33B)とを互い違いに目封じされ、前記上流端面を目封じする第1目封じ部材(例えば、後述の第1目封じ部材33b)と、前記下流端面を目封じする第2目封じ部材(例えば、後述の第2目封じ部材33c)と、を有するフィルタ(例えば、後述の排気浄化フィルタ33)と、前記フィルタの前記上流端面側に担持され、NH3を貯蔵する機能とNH3によって排気中のNOxを還元する機能とを有した選択還元触媒(例えば、後述のSCR触媒33d)と、前記フィルタの前記下流端面側に担持され、NH3を酸化させる機能を有したNH3酸化触媒(例えば、後述のNH3酸化触媒33e)と、を備えた内燃機関の排気浄化装置の製造方法であって、前記第2目封じ部材を、前記選択還元触媒の下流側端(例えば、後述の下流側端X1)または当該下流側端よりも上流側位置(例えば、後述の位置X2)として予め設定された所定位置まで配置する工程(例えば、後述の第2目封じ工程S2)と、前記選択還元触媒を、前記フィルタの前記上流端面側に含浸させる工程(例えば、後述のSCR触媒含浸工程S3)と、前記NH3酸化触媒を、前記フィルタの前記下流端面側に付着させる工程(例えば、後述のNH3酸化触媒付着工程S4)と、を含むことを特徴とする。
本発明によると、第2目封じ部材が選択還元触媒の下流側端または当該下流側端よりも上流側位置まで配置された上記内燃機関の排気浄化装置を製造することができる。
本発明によれば、NOx浄化をアッシュ成分の影響を受けずに実行するとともにコンパクト化を図ることができる。
以下、本発明の一実施形態を、図面を参照して説明する。
図1は、本発明の一実施形態に係る内燃機関(以下、「エンジン」という)1およびその排気浄化システム2を示す模式図である。
エンジン1は、リーンバーン運転方式のガソリンエンジンまたはディーゼルエンジンであり、車両前方のエンジンルーム内に設けられている。
図1は、本発明の一実施形態に係る内燃機関(以下、「エンジン」という)1およびその排気浄化システム2を示す模式図である。
エンジン1は、リーンバーン運転方式のガソリンエンジンまたはディーゼルエンジンであり、車両前方のエンジンルーム内に設けられている。
排気浄化システム2は、エンジン1の排気管11の一部として設けられた排気浄化装置(以下、「触媒浄化ユニット」という)3と、触媒浄化ユニット3を制御する電子制御ユニット(以下、「ECU」という)4と、を含んで構成される。
排気管11は、エンジン1の図示しない排気ポートから延び、車両の床下を通って車両の後方端部に至る。排気管11は、図1に示すように、エンジンルーム内のエンジン直下の区間と、エンジンルーム外の床下の区間とに分けられる。
触媒浄化ユニット3は、エンジンルーム内、すなわちエンジン直下の区間内のエンジン1の側部に隣接して排気流れ方向を下方へ向けて設けられている。
排気管11は、エンジン1の図示しない排気ポートから延び、車両の床下を通って車両の後方端部に至る。排気管11は、図1に示すように、エンジンルーム内のエンジン直下の区間と、エンジンルーム外の床下の区間とに分けられる。
触媒浄化ユニット3は、エンジンルーム内、すなわちエンジン直下の区間内のエンジン1の側部に隣接して排気流れ方向を下方へ向けて設けられている。
ECU4には、排気浄化システム2の状態を検出するため、排気温度センサ51やNH3センサまたはNOxセンサ52などの様々なセンサが接続されている。
排気温度センサ51は、排気浄化フィルタ33の上流側の排気の温度を検出し、検出値に略比例した信号をECU4に送信する。排気浄化フィルタ33の温度は、排気温度センサ51の出力に基づいてECU4により図示しない処理によって算出される。NH3センサまたはNOxセンサ52は、排気浄化フィルタ33の下流側の排気のNH3濃度を検出するまたは排気浄化フィルタ33の下流側の排気のNOx濃度を検出し、検出値に略比例した信号をECU4に送信する。
排気温度センサ51は、排気浄化フィルタ33の上流側の排気の温度を検出し、検出値に略比例した信号をECU4に送信する。排気浄化フィルタ33の温度は、排気温度センサ51の出力に基づいてECU4により図示しない処理によって算出される。NH3センサまたはNOxセンサ52は、排気浄化フィルタ33の下流側の排気のNH3濃度を検出するまたは排気浄化フィルタ33の下流側の排気のNOx濃度を検出し、検出値に略比例した信号をECU4に送信する。
触媒浄化ユニット3は、円柱状であり、上流触媒コンバータ31と、尿素水噴射装置32と、排気浄化フィルタ33とを、一の円筒状のケーシング34内にこの順で直列に配置して構成される。
上流触媒コンバータ31は、円柱状であり、フロースルー型のハニカム構造体を基材として、この基材に酸化触媒を担持して構成される。エンジン1から排出された排気に含まれるHCやCOは、この上流触媒コンバータ31を通過する過程で酸化触媒の作用によって酸化される。また、排気に含まれるNOも、上流触媒コンバータ31を通過する過程でNO2に酸化される。エンジン直下の排気に含まれるNOxのうちほぼ全てはNOでありNO2はほとんど含まれていない(NO2/NOx比がほぼ0)。このため、上流触媒コンバータ31でNOを酸化しNO2を生成することにより、排気浄化フィルタ33に流入する排気のNO2/NOx比を、後述の選択還元触媒(以下、「SCR触媒」という)33dにおけるNOx浄化性能が最適化される約0.5まで上昇させることができる。
尿素水噴射装置32は、円筒空間内部に、尿素水を噴射するインジェクタと、噴射された尿素水を排気中に攪拌するミキサと、を備え、ケーシング34内のうち上流触媒コンバータ31と排気浄化フィルタ33との間に設けられる。尿素水噴射装置32は、尿素水噴射制御によって定められた量の尿素水溶液を、円柱状の排気浄化フィルタ33の上流端面へ向けて濃度の偏りなく噴射する。これにより、尿素水溶液から加水分解されて生成されたNH3が排気浄化フィルタ33に供給される。
排気浄化フィルタ33は、円柱状であり、多孔質壁で区画形成された複数のセルを有するウォールフロー型のハニカム構造体33aと、ハニカム構造体33aの上流端面33Aと下流端面33Bとを互い違いに目封じした第1目封じ部材33bおよび第2目封じ部材33cと、を備える(図2参照)。エンジン1から排出された排気に含まれる炭素を主成分とした粒子状物質(以下、「PM」という)は、排気浄化フィルタ33の多孔質壁の細孔を通過する過程で捕集される。PMが排気浄化フィルタ33に堆積すると、圧力降下が増大し、燃費が悪化するおそれがある。そこで、排気浄化フィルタ33のPM堆積量が所定量を超えると、排気浄化フィルタ33を約600℃程度まで昇温することで排気浄化フィルタ33に捕集されたPMを燃焼除去するフィルタ再生処理が適宜実行される。
ケーシング34に対して上流側の排気管11は、エンジン1の図示しない排気ポートから延びる排気マニホルドに接続される。ケーシング34に対して下流側の排気管11は、エンジンルーム内から車両の床下を通って車両の後方端部に至る。これにより、ケーシング34内は、エンジン1の排気管11の一部となる。
図2は、排気浄化フィルタ33を示す模式図である。
排気浄化フィルタ33のハニカム構造体33aは、軸方向に長い円柱形状であり、例えば、コージェライト、ムライト、シリコンカーバイド(SiC)などの多孔質体が用いられ、多孔質壁33a1で複数のセルが区画形成されている。また、ハニカム構造体33aは、アッシュ成分Aが堆積していっても、そのPM捕集機能を排気浄化フィルタ33の生涯にわたって発揮でき、後述のSCR触媒33dがその機能を同様に排気浄化フィルタ33の生涯にわたって発揮できる排気流れ方向の長さに設定される。
排気浄化フィルタ33のハニカム構造体33aは、軸方向に長い円柱形状であり、例えば、コージェライト、ムライト、シリコンカーバイド(SiC)などの多孔質体が用いられ、多孔質壁33a1で複数のセルが区画形成されている。また、ハニカム構造体33aは、アッシュ成分Aが堆積していっても、そのPM捕集機能を排気浄化フィルタ33の生涯にわたって発揮でき、後述のSCR触媒33dがその機能を同様に排気浄化フィルタ33の生涯にわたって発揮できる排気流れ方向の長さに設定される。
排気浄化フィルタ33のハニカム構造体33aは、上流端面33Aを目封じする第1目封じ部材33bを備える。第1目封じ部材33bによって上流端面33Aを目封じされたセルは、上流側端部が閉塞し、下流側端部が開口し、排気浄化フィルタ33の多孔質壁の細孔から流出した排気を下流へ流出させる排気流出側セルC1となる。
第1目封じ部材33bは、排気浄化フィルタ33のハニカム構造体33aの上流端面33Aから目封じ用セメントCMを封入することで配置される。
第1目封じ部材33bは、排気浄化フィルタ33のハニカム構造体33aの上流端面33Aから目封じ用セメントCMを封入することで配置される。
排気浄化フィルタ33のハニカム構造体33aは、下流端面33Bを目封じする第2目封じ部材33cを備える。第2目封じ部材33cによって下流端面33Bを目封じされたセルは、上流側端部が開口し、下流側端部が閉塞し、尿素水噴射装置32から流入する排気を排気浄化フィルタ33内部へ流入させる排気流入側セルC2となる。排気流出側セルC1と排気流入側セルC2とは、互いに格子状に隣接する。
第2目封じ部材33cは、排気浄化フィルタ33のハニカム構造体33aの下流端面33Bから目封じ用セメントCMを封入することで配置される。ここで、第2目封じ部材33cは、第1目封じ部材33bに用いられた目封じ用セメントCMの量よりも多くの量を用い、第1目封じ部材33bよりも軸方向長さが長い。
第2目封じ部材33cは、排気浄化フィルタ33のハニカム構造体33aの下流端面33Bから目封じ用セメントCMを封入することで配置される。ここで、第2目封じ部材33cは、第1目封じ部材33bに用いられた目封じ用セメントCMの量よりも多くの量を用い、第1目封じ部材33bよりも軸方向長さが長い。
図3は、排気浄化フィルタ33の一部を示す拡大図である。
第2目封じ部材33cは、排気流出側セルC1において、排気浄化フィルタ33のハニカム構造体33aに担持された後述のSCR触媒33dの下流側端X1よりも上流側の位置X2まで封入される。
なお、第2目封じ部材33cは、SCR触媒33dの下流側端X1のちょうどの位置まで封入されるものであってもよい。ただし、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも下流側の位置までしか封入されない場合には、SCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域が流路抵抗の少ない領域となり、多くの排気がSCR触媒33dを迂回し、排気中のNOxがSCR触媒33dに接触しない現象や供給されたNH3がSCR触媒33dに貯蔵されず下流側のNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。また、仮にSCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域にNH3酸化触媒33eが担持されると、供給されたNH3がNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。これらのような現象を防止するため、第2目封じ部材33cは、SCR触媒33dの下流側端X1または当該下流側端X1よりも上流側の位置X2まで封入される。
第2目封じ部材33cは、排気流出側セルC1において、排気浄化フィルタ33のハニカム構造体33aに担持された後述のSCR触媒33dの下流側端X1よりも上流側の位置X2まで封入される。
なお、第2目封じ部材33cは、SCR触媒33dの下流側端X1のちょうどの位置まで封入されるものであってもよい。ただし、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも下流側の位置までしか封入されない場合には、SCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域が流路抵抗の少ない領域となり、多くの排気がSCR触媒33dを迂回し、排気中のNOxがSCR触媒33dに接触しない現象や供給されたNH3がSCR触媒33dに貯蔵されず下流側のNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。また、仮にSCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域にNH3酸化触媒33eが担持されると、供給されたNH3がNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。これらのような現象を防止するため、第2目封じ部材33cは、SCR触媒33dの下流側端X1または当該下流側端X1よりも上流側の位置X2まで封入される。
排気浄化フィルタ33のハニカム構造体33aの上流端面33A側には、SCR触媒33dが担持されている。SCR触媒33dは、上流端面33Aから第2目封じ部材33cの先端の位置X2よりも下流の下流側端X1まで、排気浄化フィルタ33のハニカム構造体33aの多孔質壁33a1全体に含有担持されている。
SCR触媒33dとしては、ゼオライトを主成分として含むことが好ましい。ゼオライトの含有量は、ハニカム構造体の単位容量あたり10g/L〜300g/Lであることが好ましい。ゼオライトの含有量が10g/L未満であると、NH3を十分に保持することができないため、NOx浄化能が低下する。一方、ゼオライトの含有量が300g/Lを超えると、排気流路が十分に確保できず、排気の流速が早くなる結果、NOxが保持され難くなる上、ハニカム構造体33aに担持させ得る限界量を超えるため実用的ではない。
SCR触媒33dとしては、ゼオライトを主成分として含むことが好ましい。ゼオライトの含有量は、ハニカム構造体の単位容量あたり10g/L〜300g/Lであることが好ましい。ゼオライトの含有量が10g/L未満であると、NH3を十分に保持することができないため、NOx浄化能が低下する。一方、ゼオライトの含有量が300g/Lを超えると、排気流路が十分に確保できず、排気の流速が早くなる結果、NOxが保持され難くなる上、ハニカム構造体33aに担持させ得る限界量を超えるため実用的ではない。
ゼオライトとしては、β型ゼオライト、MFI型ゼオライト、Y型ゼオライト、モルデナイト型ゼオライト、フェリエライト型ゼオライトおよびSZR型ゼオライトからなる群より選択される少なくとも1種のゼオライトが好ましく用いられる。
また、ゼオライトは、Fe、Cu、AgおよびCeからなる群より選択される少なくとも1種のイオン交換種を含むことが好ましく、これらのイオンによりイオン交換されたゼオライトが好ましく用いられる。
また、ゼオライトは、Fe、Cu、AgおよびCeからなる群より選択される少なくとも1種のイオン交換種を含むことが好ましく、これらのイオンによりイオン交換されたゼオライトが好ましく用いられる。
SCR触媒33dは、NH3の存在する雰囲気下で排気中のNOxを選択的に還元する。具体的には、尿素水噴射装置32からNH3が供給されると、このNH3によって下記3種類の反応式に従い排気中のNOxを選択的に還元する。
NO+NO2+2NH3→2N2+3H2O
4NO+4NH3+O2→4N2+6H2O
6NO2+8NH3→7N2+12H2O
NO+NO2+2NH3→2N2+3H2O
4NO+4NH3+O2→4N2+6H2O
6NO2+8NH3→7N2+12H2O
また、SCR触媒33dは、NH3で排気中のNOxを還元するだけでなく、NH3を所定の量だけ貯蔵する。以下では、SCR触媒33dに貯蔵されたNH3の量をNH3ストレージ量といい、このNH3ストレージ量の限界を最大NH3ストレージ量という。このようにしてSCR触媒33dに貯蔵されたNH3は、尿素水噴射装置32から供給されたNH3と合わせて排気中のNOxの還元に適宜消費される。なお、SCR触媒33dに多くのNH3が存在すると、流入するNOxとの反応性が向上する。したがって、SCR触媒33dのNOx浄化率は、そのNH3ストレージ量が多くなるほど高くなる。また、NH3ストレージ量が最大NH3ストレージ量を超えると、NH3がSCR触媒33dの下流へスリップする。
ECU4は、エンジン1を停止した時点において、SCR触媒33dに所定量以上のNH3が貯蔵されるように、エンジン1の運転中における尿素水噴射装置32からの尿素水噴射量を制御する。より具体的には、ECU4は、エンジン1の運転中は、SCR触媒33dに最大NH3ストレージ量に近い量のNH3が貯蔵されているように、排気温度センサ51およびNH3センサまたはNOxセンサ52などを始めとするエンジン1に搭載される種々のセンサの出力に基づいて、排出されるNOx量および消費されるNOx量を算出して尿素水噴射量を制御する。
SCR触媒33dの最大NH3ストレージ量の特性は、SCR触媒33dの温度が低下する程大きくなる特性である(例えば、図4参照)。このため、エンジン1を停止した時点において、SCR触媒33dに貯蔵されていたNH3は、その後、再びエンジン1が始動されるまで、そのままSCR触媒33dに貯蔵される。したがって、エンジン1の運転中には、上述のような尿素水噴射制御を行うことにより、SCR触媒33dに所定量のNH3が貯蔵された状態でエンジン1を始動できる。
一方、図4に示された最大NH3ストレージ量の特性は、SCR触媒33dの温度が上昇する程小さくなる特性でもある。ここで、エンジン直下の区間内は、床下の区間内に比して排気の温度挙動が大きく、排気の温度が安定しない(例えば、図5参照)。このため、SCR触媒33dに貯蔵されたNH3がスリップすることがしばしば経験される。このNH3のスリップの対策として後述するNH3酸化触媒33eを用いる。
排気浄化フィルタ33のハニカム構造体33aの下流端面33B側には、NH3酸化触媒33eが担持される。NH3酸化触媒33eは、SCR触媒33dの下流側端X1に対して間隔を空けた上流側端X3から下流端面33Bまで、排気浄化フィルタ33のハニカム構造体33aの多孔質壁33a1に表層担持されている。NH3酸化触媒33eは、排気浄化フィルタ33のハニカム構造体33aの多孔質壁33a1内の中心部までは担持されていない。ここで、NH3酸化触媒33eの上流側端X3がSCR触媒33dの下流側端X1よりも下流であるため、NH3酸化触媒33eは、排気流出側セルC1にのみ配置される。
NH3酸化触媒33eとしては、ゼオライトと少量のPt系酸化触媒を含むことが好ましい。ゼオライトとしては、SCR触媒33dと同種のものが好ましく用いられる。Pt系酸化触媒としては、NH3を酸化させる機能を有した貴金属としてのPtを主成分として含むことが好ましく、Rh、Pdを併用してもよい。
NH3酸化触媒33eとしては、ゼオライトと少量のPt系酸化触媒を含むことが好ましい。ゼオライトとしては、SCR触媒33dと同種のものが好ましく用いられる。Pt系酸化触媒としては、NH3を酸化させる機能を有した貴金属としてのPtを主成分として含むことが好ましく、Rh、Pdを併用してもよい。
NH3酸化触媒33eは、NH3を酸化させる。これにより、SCR触媒33dからスリップしたNH3は、NH3酸化触媒33eを用いて排気浄化フィルタ33のハニカム構造体33a内部で酸化され、排気浄化フィルタ33の下流へ流出しない。
排気浄化フィルタ33のハニカム構造体33a内部では、SCR触媒33dとNH3酸化触媒33eとの間に間隔が空いている。具体的には、図3に示すように、排気流出側セルC1において、SCR触媒33dの下流側端X1とNH3酸化触媒33eの上流側端X3との間に、ハニカム構造体33aの多孔質壁33a1に触媒を担持させていない非触媒担持領域R1が形成される。
次に、排気浄化フィルタ33の製造方法を説明する。
図6、図7、図8は、排気浄化フィルタ33の製造方法を示す説明図であり、図6が第1目封じ工程S1および第2目封じ工程S2を示し、図7がSCR触媒含浸工程S3を示し、図8がNH3酸化触媒付着工程S4を示す。
排気浄化フィルタ33は、第1目封じ工程S1と、第2目封じ工程S2と、SCR触媒含浸工程S3と、NH3酸化触媒付着工程S4と、を含み、この順に工程を経ることで製造される。
図6、図7、図8は、排気浄化フィルタ33の製造方法を示す説明図であり、図6が第1目封じ工程S1および第2目封じ工程S2を示し、図7がSCR触媒含浸工程S3を示し、図8がNH3酸化触媒付着工程S4を示す。
排気浄化フィルタ33は、第1目封じ工程S1と、第2目封じ工程S2と、SCR触媒含浸工程S3と、NH3酸化触媒付着工程S4と、を含み、この順に工程を経ることで製造される。
第1目封じ工程S1は、第1目封じ部材33bを、排気浄化フィルタ33に区画形成された排気流出側セルC1に配置する。
具体的には、図6に示すように、排気浄化フィルタ33のハニカム構造体33aの上流端面33Aを第1目封じ部材33bとなる目封じ用セメントCMが格納されたセメント吐出容器60のセメント吐出端面61に押し付ける。セメント吐出端面61は、複数のセメント吐出口62を有し、複数の排気流出側セルC1とセメント吐出端面61の複数のセメント吐出口62とがそれぞれ一対一に対応する。そして、セメント吐出容器60内を図示矢印Aのように加圧し、複数のセメント吐出口62から目封じ用セメントCMを吐出させる。ここで、複数の排気流出側セルC1に進入させる目封じ用セメントCMの量は、目封じ用セメントCMが排気浄化フィルタ33のハニカム構造体33aの上流端面33Aから所定位置まで入り込む量に設定されている。これにより、排気流出側セルC1の上流側端部が第1目封じ部材33bによって目封じされて閉塞する。
具体的には、図6に示すように、排気浄化フィルタ33のハニカム構造体33aの上流端面33Aを第1目封じ部材33bとなる目封じ用セメントCMが格納されたセメント吐出容器60のセメント吐出端面61に押し付ける。セメント吐出端面61は、複数のセメント吐出口62を有し、複数の排気流出側セルC1とセメント吐出端面61の複数のセメント吐出口62とがそれぞれ一対一に対応する。そして、セメント吐出容器60内を図示矢印Aのように加圧し、複数のセメント吐出口62から目封じ用セメントCMを吐出させる。ここで、複数の排気流出側セルC1に進入させる目封じ用セメントCMの量は、目封じ用セメントCMが排気浄化フィルタ33のハニカム構造体33aの上流端面33Aから所定位置まで入り込む量に設定されている。これにより、排気流出側セルC1の上流側端部が第1目封じ部材33bによって目封じされて閉塞する。
第2目封じ工程S2は、第2目封じ部材33cを、排気浄化フィルタ33に区画形成された排気流入側セルC2に、SCR触媒33dの下流側端X1位置よりも上流側の位置X2として予め設定された位置まで配置する。
具体的には、第1目封じ工程S1と同様に図6に示すように、排気浄化フィルタ33のハニカム構造体33aの下流端面33Bを第2目封じ部材33cとなる目封じ用セメントCMが格納されたセメント吐出容器60のセメント吐出端面61に押し付ける。セメント吐出端面61は、複数のセメント吐出口62を有し、複数の排気流入側セルC2とセメント吐出端面61の複数のセメント吐出口62とがそれぞれ一対一に対応する。そして、セメント吐出容器60内を図示矢印Aのように加圧し、複数のセメント吐出口62から目封じ用セメントCMを吐出させる。ここで、複数の排気流入側セルC2に進入させる目封じ用セメントCMの量は、目封じ用セメントCMが排気浄化フィルタ33のハニカム構造体33aの下流端面33BからSCR触媒33dの下流側端X1位置よりも上流側の位置X2として予め設定された位置まで入り込む量に設定されている。これにより、排気流入側セルC2の下流側端部が第2目封じ部材33cによって目封じされて閉塞する。
具体的には、第1目封じ工程S1と同様に図6に示すように、排気浄化フィルタ33のハニカム構造体33aの下流端面33Bを第2目封じ部材33cとなる目封じ用セメントCMが格納されたセメント吐出容器60のセメント吐出端面61に押し付ける。セメント吐出端面61は、複数のセメント吐出口62を有し、複数の排気流入側セルC2とセメント吐出端面61の複数のセメント吐出口62とがそれぞれ一対一に対応する。そして、セメント吐出容器60内を図示矢印Aのように加圧し、複数のセメント吐出口62から目封じ用セメントCMを吐出させる。ここで、複数の排気流入側セルC2に進入させる目封じ用セメントCMの量は、目封じ用セメントCMが排気浄化フィルタ33のハニカム構造体33aの下流端面33BからSCR触媒33dの下流側端X1位置よりも上流側の位置X2として予め設定された位置まで入り込む量に設定されている。これにより、排気流入側セルC2の下流側端部が第2目封じ部材33cによって目封じされて閉塞する。
SCR触媒含浸工程S3は、SCR触媒33dを排気浄化フィルタ33のハニカム構造体33aの上流端面33A側に含浸させる。具体的には、図7(a)に示すように、上流端面33Aを下方に向けた状態で排気浄化フィルタ33のハニカム構造体33aをSCR触媒33dの含有された溶液70に浸し、排気浄化フィルタ33のハニカム構造体33aの上方に向いた下流端面33Bにシーリング71を被覆する。そして、図7(a),(b)に示すように、シーリング71の所定箇所から排気浄化フィルタ33のハニカム構造体33a内部の空気を図示矢印Bのように吸引する。これにより、図7(b),(c)に示すように、SCR触媒333dの含有された溶液70を図示矢印Cのように排気浄化フィルタ33のハニカム構造体33a内部の上流端面33A側に含浸させる。図7(b)に示すように、SCR触媒33dの含有された溶液70は、排気浄化フィルタ33のハニカム構造体33aの上流端面33A側からSCR触媒33dの下流側端X1と予め設定された位置まで含浸させられる。これにより、SCR触媒33dは、排気浄化フィルタ33のハニカム構造体33a内部の下流側端X1として予め設定された位置まで多孔質壁33a1全体に含有担持される。
NH3酸化触媒付着工程S4は、NH3酸化触媒33eを排気浄化フィルタ33のハニカム構造体33aの下流端面33B側に付着させる。具体的には、図8(a),(b)に示すように、下流端面33Bを下方に向けた状態で排気浄化フィルタ33のハニカム構造体33aをNH3酸化触媒33eの含有された溶液80に浸す。これにより、図8(c)に示すように、NH3酸化触媒33eの含有された溶液80を排気浄化フィルタ33のハニカム構造体33a内部の下流側の多孔質壁33a1表面に付着させる。ここで、図8(b)に示すように、NH3酸化触媒33eの含有された溶液80に浸される排気浄化フィルタ33のハニカム構造体33aの下流端面33B側の領域は、排気浄化フィルタ33のハニカム構造体33aの下流端面33BからSCR触媒33dの下流側端X1に対して非触媒担持領域R1になる所定距離を空けた下流側の位置(上流側端X3)までに設定される。そして、排気浄化フィルタ33のハニカム構造体33aがNH3酸化触媒33eの含有された溶液から引き上げられ、NH3酸化触媒33eが付着する。これにより、NH3酸化触媒33eは、排気浄化フィルタ33のハニカム構造体33a内部の下流端面33Bから位置(上流側端X3)まで多孔質壁33a1に表層担持される。ここで、NH3酸化触媒付着工程S4は、第2目封じ工程S2よりも後工程であり、排気流入側セルC2は既に目封じされているため、NH3酸化触媒33eは、排気流入側セルC2には表層担持されず、排気流出側セルC1に表層担持される。そしてこのとき、排気流出側セルC1において、SCR触媒33dの下流側端X1とNH3酸化触媒33eの上流側端X3との間に、ハニカム構造体33aの多孔質壁33a1に触媒を担持させていない非触媒担持領域R1が形成される。
以上の本実施形態に係る触媒浄化ユニット3によれば、以下の効果を奏する。
(1)本実施形態によると、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも上流側の位置X2まで配置されている。これにより、排気流入側セルC2は、SCR触媒33dだけを担持した状態である。また、排気流出側セルC1は、SCR触媒33dとNH3酸化触媒33eとを担持した状態である。このため、SCR触媒33dに貯蔵されたNH3がスリップしても、排気流出側セルC1においてNH3酸化触媒33eがスリップしたNH3を酸化させ、NH3が排気浄化フィルタ33の下流へスリップしない。
そして、アッシュ成分Aは、排気浄化フィルタ33の排気流入側セルC2に堆積し、排気流出側セルC1に堆積しない。そのため、排気流出側セルC1においてSCR触媒33dの下流側に担持されたNH3酸化触媒33eは、排気浄化フィルタ33の生涯にわたってNH3を酸化する機能を継続して発揮することができる。したがって、NOx浄化をアッシュ成分の影響を受けずに実行することができる。
また、NH3酸化触媒33eは、排気流出側セルC1においてSCR触媒33dの下流側に担持される。そのため、NH3酸化触媒33eを排気浄化フィルタ33の下流に追加する必要がなく、車両の床下に配置する排気系の各種装置が廃止される。したがって、コンパクト化を図ることができる。
さらに、NH3酸化触媒33eは、排気浄化フィルタ33の生涯にわたってNH3を酸化する機能を継続して発揮し、NH3酸化触媒が多量に必要ではなく、コストを低減することができる。
また、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも下流側の位置までしか封入されない場合には、SCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域が流路抵抗の少ない領域となり、多くの排気がSCR触媒33dを迂回し、排気中のNOxがSCR触媒33dに接触しない現象や供給されたNH3がSCR触媒33dに貯蔵されず下流側のNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。また、仮にSCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域にNH3酸化触媒33eが担持されると、供給されたNH3がNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。しかし、本実施形態であると、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも上流側の位置X2まで配置されるため、排気がSCR触媒33dを迂回せず、排気中のNOxがSCR触媒33dに接触しない現象や供給されたNH3がNH3酸化触媒33eによってNOxに直接酸化される現象を防止することができる。
そして、アッシュ成分Aは、排気浄化フィルタ33の排気流入側セルC2に堆積し、排気流出側セルC1に堆積しない。そのため、排気流出側セルC1においてSCR触媒33dの下流側に担持されたNH3酸化触媒33eは、排気浄化フィルタ33の生涯にわたってNH3を酸化する機能を継続して発揮することができる。したがって、NOx浄化をアッシュ成分の影響を受けずに実行することができる。
また、NH3酸化触媒33eは、排気流出側セルC1においてSCR触媒33dの下流側に担持される。そのため、NH3酸化触媒33eを排気浄化フィルタ33の下流に追加する必要がなく、車両の床下に配置する排気系の各種装置が廃止される。したがって、コンパクト化を図ることができる。
さらに、NH3酸化触媒33eは、排気浄化フィルタ33の生涯にわたってNH3を酸化する機能を継続して発揮し、NH3酸化触媒が多量に必要ではなく、コストを低減することができる。
また、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも下流側の位置までしか封入されない場合には、SCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域が流路抵抗の少ない領域となり、多くの排気がSCR触媒33dを迂回し、排気中のNOxがSCR触媒33dに接触しない現象や供給されたNH3がSCR触媒33dに貯蔵されず下流側のNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。また、仮にSCR触媒33dの下流側端X1よりも下流側であって第2目封じ部材33cに目封じされていない領域にNH3酸化触媒33eが担持されると、供給されたNH3がNH3酸化触媒33eによってNOxに直接酸化される現象が生じる。しかし、本実施形態であると、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも上流側の位置X2まで配置されるため、排気がSCR触媒33dを迂回せず、排気中のNOxがSCR触媒33dに接触しない現象や供給されたNH3がNH3酸化触媒33eによってNOxに直接酸化される現象を防止することができる。
(2)NH3酸化触媒33eは、排気浄化フィルタ33のハニカム構造体33aに区画形成された排気流出側セルC1に表層担持される。本実施形態によると、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも上流側の位置X2まで配置されているため、NH3酸化触媒33eは、第1目封じ部材33bによって上流端面33Aを目封じされた排気流出側セルC1においてSCR触媒33dの下流側に表層担持される。そして、排気浄化フィルタ33内を流通する排気は、SCR触媒33dが担持された領域において排気流入側セルC2から多孔質壁33a1の細孔を通過し、排気流出側セルC1においてSCR触媒33dの下流側に表層担持されたNH3酸化触媒33eに必ず接触する。このため、SCR触媒33dに貯蔵されたNH3がスリップしても、排気流出側セルC1においてSCR触媒33dの下流側に担持されたNH3酸化触媒33eがスリップしたNH3を酸化させ、NH3が排気浄化フィルタ33の下流にスリップしない。また排気は、SCR触媒33dが担持された領域において排気流入側セルC2から多孔質壁33a1の細孔を通過し、NH3酸化触媒33eが排気浄化フィルタ33の多孔質壁33a1全体に担持されてもその領域を通過しない。これに対し、NH3酸化触媒33eは、排気流出側セルC1においてSCR触媒33dの下流側に表層担持されるため、無駄に担持されず効率的に配置され、コストを低減することができる。
(3)排気浄化フィルタ33は、エンジン直下の区間内に設けられる。本実施形態によると、排気浄化フィルタ33がエンジン直下の区間に配置され、SCR触媒33dに流入する排気の温度がSCR触媒33dの活性温度域に早期に到達するため、NOx浄化率を改善することができる。また、車両の床下に配置する排気系の各種装置が廃止され、コストを低減することができる。
(4)NH3酸化触媒33eは、NH3を酸化させる機能を有した貴金属を含み、排気浄化フィルタ33内のSCR触媒33dとNH3酸化触媒33eとの間に間隔が空いている。本実施形態によると、NH3酸化触媒33eがSCR触媒33dに混入されず、SCR触媒33dに混入されたNH3酸化触媒33eがSCR触媒33dに貯蔵すべきNH3をNOxに酸化させることを防止できる。
(5)第2目封じ部材33cを、SCR触媒33dの下流側端X1よりも上流側の位置X2として予め設定された所定位置まで配置する第2目封じ工程S2と、SCR触媒33dを、排気浄化フィルタ33の上流端面33A側に含浸させるSCR触媒含浸工程S3と、NH3酸化触媒33eを、排気浄化フィルタ33の下流端面33B側に付着させるNH3酸化触媒付着工程S4と、を含む。本実施形態によると、第2目封じ部材33cがSCR触媒33dの下流側端X1よりも上流側の位置X2まで配置された触媒浄化ユニット3を製造することができる。
なお、本発明は上記実施形態に限定されず、本発明の目的を達成できる範囲で変形、改良などを行っても、本発明の範囲に包含される。
上記実施形態では、第2目封じ部材33cは、SCR触媒33dの下流側端X1よりも上流側の位置X2まで封入されるものであった。しかしながら、第2目封じ部材33cは、SCR触媒33dの下流側端X1まで封入されるものであってもよい。
上記実施形態では、第1目封じ工程S1は、第2目封じ工程S2の前工程であった。しかしながら、第1目封じ工程S1は、NH3酸化触媒付着工程S4の後工程であってもよい。
1…エンジン(内燃機関)
3…触媒浄化ユニット(排気浄化装置)
11…排気管(排気通路)
33…排気浄化フィルタ(フィルタ)
33A…上流端面
33B…下流端面
33b…第1目封じ部材
33c…第2目封じ部材
33d…SCR触媒(選択還元触媒)
33e…NH3酸化触媒
X1…下流側端
X2…位置(上流側位置)
S2…第2目封じ工程
S3…SCR触媒含浸工程
S4…NH3酸化触媒付着工程
3…触媒浄化ユニット(排気浄化装置)
11…排気管(排気通路)
33…排気浄化フィルタ(フィルタ)
33A…上流端面
33B…下流端面
33b…第1目封じ部材
33c…第2目封じ部材
33d…SCR触媒(選択還元触媒)
33e…NH3酸化触媒
X1…下流側端
X2…位置(上流側位置)
S2…第2目封じ工程
S3…SCR触媒含浸工程
S4…NH3酸化触媒付着工程
Claims (5)
- 内燃機関の排気通路に設けられ、上流端面と下流端面とを互い違いに目封じされ、前記上流端面を目封じする第1目封じ部材と、前記下流端面を目封じする第2目封じ部材と、を有するフィルタと、
前記フィルタの前記上流端面側に担持され、NH3を貯蔵する機能とNH3によって排気中のNOxを還元する機能とを有した選択還元触媒と、
前記フィルタの前記下流端面側に担持され、NH3を酸化させる機能を有したNH3酸化触媒と、を備え、
前記第2目封じ部材は、前記選択還元触媒の下流側端または当該下流側端よりも上流側位置まで配置されたことを特徴とする内燃機関の排気浄化装置。 - 前記NH3酸化触媒は、前記第1目封じ部材によって前記上流端面を目封じされたセルに表層担持されたことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
- 前記フィルタは、前記機関の直下の区間内に設けられたことを特徴とする請求項1または2に記載の内燃機関の排気浄化装置。
- 前記NH3酸化触媒は、NH3を酸化させる機能を有した貴金属を含み、
前記選択還元触媒と前記NH3酸化触媒との間に間隔が空いていることを特徴とする請求項1から3の何れかに記載の内燃機関の排気浄化装置。 - 内燃機関の排気通路に設けられ、上流端面と下流端面とを互い違いに目封じされ、前記上流端面を目封じする第1目封じ部材と、前記下流端面を目封じする第2目封じ部材と、を有するフィルタと、
前記フィルタの前記上流端面側に担持され、NH3を貯蔵する機能とNH3によって排気中のNOxを還元する機能とを有した選択還元触媒と、
前記フィルタの前記下流端面側に担持され、NH3を酸化させる機能を有したNH3酸化触媒と、を備えた内燃機関の排気浄化装置の製造方法であって、
前記第2目封じ部材を、前記選択還元触媒の下流側端または当該下流側端よりも上流側位置として予め設定された所定位置まで配置する工程と、
前記選択還元触媒を、前記フィルタの前記上流端面側に含浸させる工程と、
前記NH3酸化触媒を、前記フィルタの前記下流端面側に付着させる工程と、を含むことを特徴とする内燃機関の排気浄化装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013083365A JP2014206079A (ja) | 2013-04-11 | 2013-04-11 | 内燃機関の排気浄化装置およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013083365A JP2014206079A (ja) | 2013-04-11 | 2013-04-11 | 内燃機関の排気浄化装置およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014206079A true JP2014206079A (ja) | 2014-10-30 |
Family
ID=52119839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013083365A Pending JP2014206079A (ja) | 2013-04-11 | 2013-04-11 | 内燃機関の排気浄化装置およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014206079A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016089699A (ja) * | 2014-11-04 | 2016-05-23 | 本田技研工業株式会社 | 内燃機関の排気浄化装置 |
JP2017002768A (ja) * | 2015-06-08 | 2017-01-05 | トヨタ自動車株式会社 | 排気浄化装置の故障診断装置 |
JP2018518353A (ja) * | 2015-03-30 | 2018-07-12 | ビーエーエスエフ コーポレーション | リーンエンジン排気のための端部被覆を有する触媒式フィルタ |
-
2013
- 2013-04-11 JP JP2013083365A patent/JP2014206079A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016089699A (ja) * | 2014-11-04 | 2016-05-23 | 本田技研工業株式会社 | 内燃機関の排気浄化装置 |
JP2018518353A (ja) * | 2015-03-30 | 2018-07-12 | ビーエーエスエフ コーポレーション | リーンエンジン排気のための端部被覆を有する触媒式フィルタ |
JP2021087951A (ja) * | 2015-03-30 | 2021-06-10 | ビーエーエスエフ コーポレーション | リーンエンジン排気のための端部被覆を有する触媒式フィルタ |
JP7174088B2 (ja) | 2015-03-30 | 2022-11-17 | ビーエーエスエフ コーポレーション | リーンエンジン排気のための端部被覆を有する触媒式フィルタ |
JP2017002768A (ja) * | 2015-06-08 | 2017-01-05 | トヨタ自動車株式会社 | 排気浄化装置の故障診断装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4263711B2 (ja) | 内燃機関の排気浄化装置 | |
JP4270224B2 (ja) | 内燃機関の排気浄化装置 | |
CN109281737B (zh) | 控制和监测氧化催化剂装置的方法 | |
RU2651917C2 (ru) | Близко размещенная система scr | |
CN107002533B (zh) | 燃烧式发动机的排放气体的后处理装置 | |
US7207169B2 (en) | System and method for purifying an exhaust gas | |
JP6264261B2 (ja) | 排気ガス浄化システム | |
JP4866628B2 (ja) | 内燃機関の排気ガス浄化装置 | |
JP2006527815A (ja) | 還元体添加の制御方法 | |
US20150252706A1 (en) | Scr exhaust-gas aftertreatment device and motor vehicle with such an scr exhaust-gas aftertreatment device | |
JP2013503284A5 (ja) | ||
US20180038298A1 (en) | Method for controlling an exhaust gas treatment system | |
JP2006183507A (ja) | 内燃機関の排気浄化装置 | |
JP4887888B2 (ja) | 内燃機関の排気浄化装置 | |
JP4736724B2 (ja) | 内燃機関の排気浄化装置 | |
JP2006320854A (ja) | 選択還元型触媒及びそれを用いたエンジンの排ガス浄化装置 | |
KR20120095747A (ko) | 다기능성 배기가스 정화필터 및 이를 이용한 배기가스 정화장치 | |
JP2014206079A (ja) | 内燃機関の排気浄化装置およびその製造方法 | |
JP2007198315A (ja) | 内燃機関の排気浄化装置及び排気浄化方法 | |
CN109386357B (zh) | 用于监视和再生选择性催化还原过滤器装置的方法 | |
JP2011033001A (ja) | 排気ガス浄化装置 | |
US10138779B2 (en) | Selective catalytic reduction filter devices having NOx storage capabilities | |
JP6565997B2 (ja) | 排気ガス浄化方法 | |
JP7463126B2 (ja) | Scr用電気加熱式触媒装置およびこれを用いた排ガス浄化方法 | |
JP2013015087A (ja) | 排ガス浄化装置 |