JP2014202677A - 赤外吸収測定装置及び赤外吸収測定方法 - Google Patents

赤外吸収測定装置及び赤外吸収測定方法 Download PDF

Info

Publication number
JP2014202677A
JP2014202677A JP2013080692A JP2013080692A JP2014202677A JP 2014202677 A JP2014202677 A JP 2014202677A JP 2013080692 A JP2013080692 A JP 2013080692A JP 2013080692 A JP2013080692 A JP 2013080692A JP 2014202677 A JP2014202677 A JP 2014202677A
Authority
JP
Japan
Prior art keywords
infrared
sample
infrared absorption
displacement
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013080692A
Other languages
English (en)
Inventor
誠司 樋口
Seiji Higuchi
誠司 樋口
寿一郎 右近
Juichiro Ukon
寿一郎 右近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2013080692A priority Critical patent/JP2014202677A/ja
Publication of JP2014202677A publication Critical patent/JP2014202677A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】測定時間を長大化させずに良好なS/N比で測定結果を得ることができる赤外吸収測定装置及び赤外吸収測定方法を提供する。
【解決手段】赤外吸収測定装置は、赤外レーザ光(単波長の赤外ビーム)の試料5への照射と非照射とを繰り返し、赤外光を吸収して膨張する試料5の表面の照射時と非照射時との間の変位量を、AFM1を用いて検出する。赤外吸収測定装置は、赤外レーザ光の連続的な照射の持続時間を変化させながら検出を行い、変位量が所定の条件を満たすための持続時間を特定する。また、赤外吸収測定装置は、連続的な照射の持続時間を固定した上で、赤外レーザ光の波長を変化させながら試料5の変位量を検出することで、赤外吸収を測定する。連続的な照射の持続時間を、変位量が大きくなる適切な長さに定めることができ、測定時間が長大化せずにS/N比が良好になる。
【選択図】図1

Description

本発明は、物質中の微少部分の赤外吸収を測定する赤外吸収測定装置、及び赤外吸収測定方法に関する。
赤外吸収分析は、物質に赤外光を照射し、物質中の分子の振動又は回転に対応して物質に吸収された赤外光のスペクトルを求め、物質の化学構造を調べる手法である。従来、集積回路上の配線等、微少な対象に対しても赤外吸収分析を行う方法が開発されている。特許文献1には、波長を変更しながら単波長の赤外光を試料上の微少な部分へ照射し、照射された部分が赤外光を吸収して膨張する変化を検出する技術が開示されている。この技術では、赤外光の照射を断続的に行い、赤外光を照射して試料が膨張したときの試料表面の高さの変化を走査型プローブ顕微鏡を用いて検出している。赤外光として、赤外レーザが用いられることがあり、パルスレーザが用いられることもある。
特開平2−69643号公報
赤外光としてパルスレーザを用いた場合は、測定結果がインパルス応答になるので、ノイズが発生し易いという問題がある。また、試料に連続して赤外光を照射する時間が短い場合は、試料の膨張が小さく、測定結果のS/N比が悪い。逆に、赤外光を照射する時間が長い場合は、測定時間が長大化する。
本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、測定時間を長大化させずに良好なS/N比で測定結果を得ることができる赤外吸収測定装置及び赤外吸収測定方法を提供することにある。
本発明に係る赤外吸収測定装置は、単波長の赤外ビームを発生する赤外ビーム発生部と、試料への赤外ビームの照射及び非照射を繰り返し切り替える切り替え部とを備える赤外吸収測定装置において、赤外ビームを吸収して膨張する試料表面の非照射時に比べた変位量を検出する変位検出部と、前記切り替え部による連続的な照射の持続時間を調整する照射時間調整部とを備えることを特徴とする。
本発明に係る赤外吸収測定装置は、前記赤外ビーム発生部は、赤外ビームの波長を変更することが可能であり、前記赤外ビーム発生部に赤外ビームの波長を固定させた上で、前記照射時間調整部に前記持続時間を順次変化させながら前記変位検出部に前記変位量を検出させ、前記変位量が所定の条件を満たすための持続時間を特定する照射時間特定部と、前記照射時間調整部に、前記切り替え部による連続的な照射の持続時間を前記照射時間特定部が特定した持続時間に固定させた上で、前記赤外ビーム発生部に赤外ビームの波長を順次変化させながら前記変位検出部に前記変位量を検出させる赤外吸収測定部とを更に備えることを特徴とする。
本発明に係る赤外吸収測定装置は、前記照射時間特定部は、前記変位量が所定量以上になる持続時間の内で最短の持続時間を特定するように構成してあることを特徴とする。
本発明に係る赤外吸収測定装置は、前記切り替え部は、赤外ビームの光路を開閉するチョッパを用いて構成してあり、前記照射時間調整部は、前記チョッパが赤外ビームの光路を開閉する周波数を調整するように構成してあり、前記変位検出部は、試料の赤外ビームが照射される部分の変位に応じた信号を生成し、生成した信号から、前記周波数に基づいた同期検波により、前記変位量を示す信号を生成するように構成してあることを特徴とする。
本発明に係る赤外吸収測定装置は、前記照射時間調整部は、前記周波数を順次増大させることによって前記周波数を調整するように構成してあることを特徴とする。
本発明に係る赤外吸収測定装置は、前記変位検出部は走査型プローブ顕微鏡を含んでいることを特徴とする。
本発明に係る赤外吸収測定装置は、前記赤外ビーム発生部は、連続的に赤外レーザ光を発生するレーザ素子と、赤外レーザ光の波長を変更するための外部共振器とを有することを特徴とする。
本発明に係る赤外吸収測定装置は、試料の赤外ビームが照射される部分を変更しながら、赤外ビームの波長に対する前記変位量の関係を表したスペクトルを生成して、試料上の前記スペクトルの分布を生成するスペクトル分布生成部を更に備えることを特徴とする。
本発明に係る赤外吸収測定方法は、試料へ単波長の赤外ビームを断続的に照射し、試料の赤外吸収を測定する方法において、赤外ビームの連続的な照射の持続時間を調整し、赤外ビームを吸収して膨張する試料表面の非照射時に比べた変位量を検出することを特徴とする。
本発明においては、赤外吸収測定装置は、単波長の赤外ビームの試料への照射と非照射とを切り替えて試料表面の変位量を検出して赤外吸収を測定する際に、赤外ビームの連続的な照射の持続時間を調整しながら測定を行う。赤外ビームの連続的な照射の持続時間を適切な値に変更することが可能となる。
本発明においては、赤外吸収測定装置は、赤外ビームの連続的な照射の持続時間を変化させながら測定を行い、試料表面の変位量が所定の条件を満たすための持続時間を特定する。また、赤外吸収測定装置は、赤外ビームの連続的な照射の持続時間を特定した持続時間に固定した上で、赤外ビームの波長を変化させながら試料表面の変位量を検出する。赤外ビームの連続的な照射の持続時間を適切な値に定めることが可能となる。
また、本発明においては、赤外ビームの連続的な照射の持続時間を、試料の表面の変位量が所定量以上になる持続時間の内で最短の持続時間に特定する。これにより、試料の表面の変位量が適切となり、しかも長すぎない適切な持続時間に、持続時間を定めることが可能となる。
また、本発明においては、赤外吸収測定装置は、試料への赤外ビームの照射と非照射とを切り替えるために、チョッパで光路を開閉し、光路の開閉の周波数に基づいた同期検波により、試料の表面の変位量を示す信号を生成する。また、赤外吸収測定装置は、光路の開閉の周波数を調整することにより、赤外ビームの連続的な照射の持続時間を変化させる。これにより、赤外ビームの連続的な照射の持続時間を容易に調整することができる。
また、本発明においては、赤外吸収測定装置は、光路の開閉の周波数を順次増大させることによって、周波数を調整する。これにより、周波数の増大に応じた変位量の変化を容易に検出して、適切な周波数を容易に求めることができる。
また、本発明においては、赤外吸収測定装置は、走査型プローブ顕微鏡を利用することにより、試料の表面の変位量を高精度に検出する。
また、本発明においては、赤外吸収測定装置は、レーザ素子及び外部共振器を用いて、波長を変更することができる単波長の赤外ビームを発生させる。
また、本発明においては、赤外吸収測定装置は、赤外ビームの波長と試料表面の変位量との関係を表すスペクトルを生成し、試料上のスペクトルの分布を生成する。これにより、試料上の化学構造の分布を分析することが可能となる。
本発明にあっては、赤外ビームの連続的な照射の持続時間を適切に定めることが可能となるので、試料表面の変位量をある程度の大きさに保ちながら、赤外吸収の測定に必要な時間が短縮される。従って、測定時間を長大化させずに良好なS/N比で赤外吸収を測定することが可能となる等、本発明は優れた効果を奏する。
赤外吸収測定装置の構成を示すブロック図である。 赤外吸収測定装置が実行する処理の手順を示すフローチャートである。 試料5の表面の高さ変動の例を模式的に示す特性図である。 赤外レーザ光の光路が開閉される周波数と試料の高さ変動量との関係を模式的に示す特性図である。 試料の高さ変動量のスペクトルを模式的に示す特性図である。
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
図1は、赤外吸収測定装置の構成を示すブロック図である。赤外吸収測定装置は、試料5の微少部分へ赤外レーザを照射し、赤外光を吸収した試料5の微少部分の膨張をAFM(Atomic Force Microscope 、原子間力顕微鏡)を利用して検出する装置である。赤外吸収測定装置は、AFM1を備えており、AFM1は、試料5が載置される試料台15と、カンチレバー11と、レーザ光源12と、光センサ13と、AFM1の信号処理及び動作制御を行うAFM処理部14とを含んでいる。AFM1は、SPM(Scanning Probe Microscope 、走査型プローブ顕微鏡)の一種である。
カンチレバー11は、先端に設けられた探針を試料5の表面に近づける。レーザ光源12は、カンチレバー11の先端にレーザ光を照射し、光センサ13は、カンチレバー11の先端から反射したレーザ光を検出する。図1中には、レーザ光を破線で示している。試料5の表面が膨張してカンチレバー11の探針と試料5表面との距離が近くなった場合、原子間力によってカンチレバー11がたわみ、光センサ13でレーザ光を検出する位置がずれ、AFM処理部14はカンチレバー11のたわみを検出する。カンチレバー11のたわみ量の変化は、探針と試料5表面との距離の変化に対応し、膨張した試料5の表面の高さ変動に対応する。AFM処理部14は、カンチレバー11のたわみが一定になるように、試料台15又はカンチレバー11を上下に移動させる制御を行う。このとき、AFM処理部14は、試料台15又はカンチレバー11の上下移動に応じた信号を出力する。試料台15又はカンチレバー11の移動量は、試料5の表面の高さ変動に対応するので、AFM処理部14が出力する信号は、試料5の表面の高さ変動に応じた信号である。
赤外吸収測定装置は、赤外レーザ光を発生するレーザ素子21と、外部共振器22とを備えている。レーザ素子21は、連続的に赤外レーザ光を発生するように半導体を用いて構成されており、例えばQCL(Quantum Cascade Laser 、量子カスケードレーザ)である。外部共振器22は、内部に図示しないグレーティング及びミラーを含み、グレーティングの傾きを変更することで、レーザ素子21が発生する赤外レーザ光の波長を調整することが可能である。例えば、外部共振器22は、赤外レーザ光の波長を2μm〜25μmの範囲で調整する。赤外吸収測定装置では、外部共振器22から出射した赤外レーザ光を試料5へ照射する。図1中には、赤外レーザ光を一点鎖線で示している。レーザ素子21には、レーザ素子21を動作させるためのレーザドライバ23が接続されており、外部共振器22には、外部共振器22のグレーティングの動作を制御するグレーティング制御部24が接続されている。赤外吸収測定装置は、赤外線レーザ光を試料5へ照射するための図示しない光学系を備えており、光学系及びAFM1は、試料5の赤外レーザ光が照射された部分の高さ変動をAFM1が検出するように構成されている。レーザ素子21、外部共振器22、レーザドライバ23及びグレーティング制御部24は、本発明における赤外ビーム発生部に対応する。
赤外吸収測定装置は、外部共振器22から出射した赤外レーザ光の光路を開閉するチョッパ31を備えている。チョッパ31は、赤外レーザ光を遮断する材料で構成され、図示しないモータの回転軸に連結された複数の羽根を含む羽根車であり、モータの動作によって回転する。回転方向の羽根の間は隙間になっており、赤外レーザ光が通過する。チョッパ31は、回転する羽根が赤外レーザ光の光路の途中を通過する位置に配置されている。回転するチョッパ31の羽根が光路上にある瞬間は、光路が遮断され、赤外レーザ光は試料5へは照射されない。回転するチョッパ31の羽根が光路上に無い瞬間は、光路が開放され、赤外レーザ光は羽根の間の隙間を通過して試料5へ照射される。このようにして、試料5への赤外レーザ光の照射と非照射とが繰り返し切り替えられる。例えば、チョッパ31は、赤外レーザ光が試料5へ照射される時間と非照射の時間とが等しくなるように構成されている。なお、チョッパ31は何れか一方の時間がより長くなるように構成されていてもよい。また、チョッパ31は、羽根車ではなく、回転軸周りに赤外レーザ光を遮断する部材と赤外レーザ光を通過させる部材とを配した円板であってもよい。
チョッパ31には、チョッパ31の動作を制御するチョッパ制御部32が接続されている。また、チョッパ制御部32には、チョッパ制御部32がチョッパ31を回転させる周波数を制御する周波数制御部33が接続されている。チョッパ31は、本発明における切り替え部に対応し、チョッパ制御部32及び周波数制御部33は、本発明における照射時間調整部に対応する。
赤外吸収測定装置は、ロックインアンプ34を備えており、ロックインアンプ34にはAFM処理部14及び周波数制御部33が接続されている。ロックインアンプ34は、AFM処理部14が出力した信号を入力される。また、周波数制御部33は、チョッパ31が赤外レーザ光の光路を開閉する周波数を示す信号をロックインアンプ34へ入力する。赤外レーザ光の光路が開閉される周波数は、例えば、チョッパ31の回転の周波数の整数倍である。ロックインアンプ34は、周波数制御部33から入力された信号を参照信号とした同期検波を行うことにより、AFM処理部14から入力された信号から、赤外レーザ光の光路が開閉される周波数で変動する信号を選択し、選択した信号の振幅を示す信号を出力する。なお、周波数制御部33は、チョッパ31の回転の周波数を示す信号をロックインアンプ34へ入力し、ロックインアンプ34は、チョッパ31の回転の周波数から赤外レーザ光の光路が開閉される周波数を計算する処理を行ってもよい。
試料5の表面は、赤外レーザ光を照射されたときに赤外レーザ光を吸収して膨張し、非照射時に収縮する。このため、AFM1が検出する試料5の表面の高さ変動は、赤外レーザ光の光路が開閉される周波数で変動を繰り返し、AFM処理部14が出力する信号は、赤外レーザ光の光路が開閉される周波数で変動する。この信号の振幅は、赤外レーザ光の照射時の試料5の表面の高さと、非照射時の試料5の表面の高さとの間の変動量に対応する。以下、この変動量を試料5の高さ変動量と言う。従って、ロックインアンプ34が出力する信号は、試料5の表面の高さ変動量を示す信号である。AFM1及びロックインアンプ34は、本発明における変位検出部に対応する。
ロックインアンプ34には、ADC(Analog to Digital Converter 、アナログ−デジタル変換器)35が接続されており、ADC35は周波数制御部33に接続されている。ADC35は、ロックインアンプ34が出力した信号をデジタル信号に変換し、周波数制御部33へ入力する。周波数制御部33は、赤外吸収測定装置の全体を制御する制御部4に接続されている。制御部4は、演算部及び記憶部を含み、パーソナルコンピュータ等のコンピュータを用いて構成されており、情報の出力、使用者による操作の受け付け、赤外吸収測定装置の各部の制御、及び各種の信号処理を行うことができる。周波数制御部33は、ADC35から入力された信号を制御部4へ入力する。即ち、制御部4には、試料5の高さ変動量を示す信号が入力される。制御部4には、レーザドライバ23及びグレーティング制御部24が接続されており、制御部4はレーザドライバ23及びグレーティング制御部24の動作を制御する。また、制御部4には、試料台15を移動させるステッピングモータ等の駆動部25が接続されている。駆動部25は、試料台15を水平面方向に移動させる。制御部4は、駆動部34の動作を制御して、試料台15の水平面方向への移動を制御する。
図2は、赤外吸収測定装置が実行する処理の手順を示すフローチャートである。試料5が試料台15に載置された状態で、制御部4は、グレーティング制御部24の動作を制御して、外部共振器22が調整する赤外レーザ光の波長を固定する(S1)。固定される波長の値は、予め制御部4に記憶されている。又は、使用者が制御部4を操作して、固定される波長の値を定めてもよい。例えば、試料5の材質がある程度明らかであり、試料5で吸収される赤外光の波長がある程度判明している場合に、吸収されることが判明している赤外光の波長の値を使用してもよい。また例えば、試料5に対して予備的に赤外吸収分析を行っておき、吸収されることが判明した赤外光の波長の値を使用してもよい。
制御部4は、次に、周波数制御部33を制御して、チョッパ制御部32にチョッパ31を回転させると共に、チョッパ31の回転の周波数を順次変化させる。このとき、周波数制御部33は、回転の周波数を小さい周波数から大きい周波数へ順次変化させる。例えば、周波数を初期値から順次増大させる。制御部4は、同時に、レーザドライバ23にレーザ素子21を駆動させ、更にAFM1に試料5の表面の高さ変動を検出させる。赤外レーザ光は試料5へ断続的に照射され、連続的な照射の持続時間は順次変更される。AFM1が検出した試料5の表面の高さ変動に応じた信号はロックインアンプ34へ入力され、ロックインアンプ34は、そのときの赤外レーザ光の光路が開閉される周波数で同期検波を行って、試料5の高さ変動量を示す信号を出力する。ロックインアンプ34が出力した信号は、ADC35及び周波数制御部33を経由して制御部4へ入力される。このようにして、赤外吸収測定装置は、赤外レーザ光の光路が開閉される周波数を変化させながら、赤外レーザ光を照射された試料5の高さ変動量を検出する(S2)。
図3は、試料5の表面の高さ変動の例を模式的に示す特性図である。図中の横軸は経過時間を示し、縦軸は試料5の表面の高さを示す。赤外レーザ光が試料5へ照射されている時間と照射されていない非照射の時間とが交互に現れる。図3中には、照射の持続時間と非照射の持続時間とが同じ長さで変化しない例を示している。赤外レーザ光の照射が連続的に持続している間は、試料5が赤外光を吸収して膨張し、高さが増大する。逆に、非照射の間は、試料5は収縮し、高さは減少する。図3に示すように、試料5の表面の高さは、赤外レーザ光の光路が開閉される周波数で変動する。AFM1が出力する高さ変動に応じた信号も、同じ周波数で変動する。実際には、AFM1が出力した信号には、カンチレバー11を振動させる周波数で変動する信号又はノイズ等の種々の周波数で変動する信号が重畳されている。ロックインアンプ34は、赤外レーザ光の光路が開閉される周波数で変動する信号の振幅を検出する。赤外レーザ光の光路が開閉される周波数で変動する信号は、試料5の表面の高さ変動に応じた信号であり、信号の振幅は、試料5の高さ変動量に対応する。即ち、ロックインアンプ34が検出した信号の振幅は、高さ変動量に対応する。ロックインアンプ34は、検出した信号の振幅に対応する高さ変動量を示す信号を出力する。
図4は、赤外レーザ光の光路が開閉される周波数と試料5の高さ変動量との関係を模式的に示す特性図である。図中の横軸は赤外レーザ光の光路が開閉される周波数を示し、縦軸は試料5の高さ変動量を示す。周波数が低いほど、照射時に赤外レーザ光が連続的に試料5へ照射される持続時間が長くなり、周波数が高いほど、照射の持続時間が短くなる。連続的な照射の持続時間が長いほど、試料5は多くの赤外光を吸収して膨張し、試料5の高さ変動量は大きくなる。但し、連続的な照射の持続時間がある程度長い場合は、試料5の高さ変動量はほぼ飽和する。従って、図4に示すように、周波数が低い領域では試料5の高さ変動量はほぼ飽和し、周波数が高い領域では試料5の高さ変動量はゼロに近づく。赤外吸収測定装置は、例えば、10Hz〜10kHzの範囲で光路開閉の周波数を変化させる。
制御部4は、次に、光路開閉の周波数に対する試料5の高さ変動量の検出結果から、高さ変動量のスペクトルを生成するために使用する光路開閉の周波数を特定する(S3)。高さ変動量のスペクトルを良好なS/N比で生成するためには、試料5の高さ変動量は大きい方が望ましく、測定時間を短くするには、連続的な照射の持続時間は短い方が望ましい。従って、ステップS3では、制御部4は、試料5の高さ変動量の値がある程度以上大きくなる周波数の内で可及的に高い周波数を特定する。例えば、制御部4は、所定量以上の高さ変動量が得られる周波数の内で最大の周波数を特定する。高さ変動量の所定量としては、例えば、赤外レーザ光を試料5に連続的に照射する持続時間を最大にした場合に得られる高さ変動量の98%等の値を用いる。また例えば、制御部4は、周波数の増加に対する高さ変動量の傾きがゼロより小さい所定の値以下になる周波数を特定する。ステップS2で回転の周波数を小さい周波数から大きい周波数へ順次変化させるので、周波数が小さい状態では高さ変動量が大きくなるために高さ変動量の値又は傾きの変化を判定し易く、これらを検出して、容易に適切な周波数を求めることができる。このように周波数を特定することにより、スペクトルを生成するための連続的な照射の持続時間が、高さ変動量が所定量以上になる持続時間の内で最短の持続時間に特定される。
制御部4は、次に、周波数制御部33を制御して、チョッパ31の回転の周波数を固定させて、赤外レーザ光の光路が開閉される周波数をステップS3で特定した周波数に固定する(S4)。制御部4は、次に、固定した周波数でチョッパ31を回転させると共に、グレーティング制御部24の動作を制御して、外部共振器22が調整する赤外レーザ光の波長を順次変化させながら、レーザドライバ23にレーザ素子21を駆動させ、更にAFM1に試料5の表面の高さ変動を検出させる。連続的な照射の持続時間が固定された上で赤外レーザ光は試料5へ断続的に照射され、試料5の高さ変動量を示す信号が、AFM1が検出した試料5の表面の高さ変動に応じた信号から、固定された光路開閉の周波数で同期検波され、制御部4へ入力される。このようにして、赤外吸収測定装置は、赤外レーザ光の波長を変化させながら、赤外レーザ光を照射された試料5の高さ変動量を検出する(S5)。制御部4は、次に、入力された信号が示す試料5の高さ変動量と赤外レーザ光の波長とを対応づけて、試料5の表面の高さ変動量と赤外光の波長との関係を表したスペクトルを生成する(S6)。制御部4は、生成したスペクトルを示すデータを記憶する。
図5は、試料5の高さ変動量のスペクトルを模式的に示す特性図である。図中の横軸は赤外光の波長を示し、縦軸は試料5の高さ変動量を示す。試料5が赤外光を吸収する量は、波長によって異なり、赤外光の吸収量が大きいほど試料5の高さ変動量は大きくなる。このため、試料5の高さ変動量は、赤外レーザ光を照射された部分での各波長の赤外光の吸光度にほぼ対応する。従って、試料5の高さ変動量のスペクトルは、試料5の赤外レーザ光を照射された部分での赤外吸収スペクトルに相当する。なお、制御部4が生成するスペクトルは、横軸に波長を用いたスペクトルに限るものではなく、横軸にエネルギー、周波数又は波数を用いたスペクトルであってもよい。
制御部4は、次に、赤外レーザ光での試料5の走査が終了したか否かを判定する(S7)。走査が終了していない場合は(S7:NO)、制御部4は、駆動部25を制御して、試料台15を水平方向に移動させることにより、試料5を水平方向に移動させる(S8)。試料5が水平方向に移動することにより、試料5の赤外レーザ光を照射される部分の位置が変更される。制御部4は、次に、処理をステップS5へ戻し、試料5の別の部分での高さ変動量のスペクトルを生成する。
ステップS7で試料5の走査が終了している場合は(S7:YES)、制御部4は、生成したスペクトルと試料5上の各部分とを対応づけることによって、試料5上のスペクトル分布を生成する(S9)。生成したスペクトル分布は、高さ変動量のスペクトルの二次元分布であり、試料5上の赤外吸収スペクトルの分布に相当する。赤外吸収スペクトルは、物質の化学構造によって異なるので、スペクトル分布から化学構造の分布を調べることが可能となる。ステップS9が終了した後は、制御部4は、生成したスペクトル分布を示すデータを記憶し、処理を終了する。なお、制御部4は、必要に応じて、スペクトル分布を出力する処理を行ってもよい。
以上詳述した如く、赤外吸収測定装置は、試料5への赤外レーザ光の照射と非照射とを切り替えて試料5の高さ変動量を検出する際に、赤外レーザ光の連続的な照射の持続時間を変化させながら検出を行い、高さ変動量が所定の条件を満たすための持続時間を特定する。また、赤外吸収測定装置は、赤外レーザ光の連続的な照射の持続時間を特定した持続時間に固定した上で、赤外レーザ光の波長を変化させながら試料5の高さ変動量を検出する。赤外レーザ光の連続的な照射の持続時間として、試料5の高さ変動量がほぼ飽和するような持続時間を特定することにより、高さ変動量が可及的に大きくなり、測定される赤外吸収スペクトルのS/N比が良好となる。また、高さ変動量が大きい持続時間の内で可及的に短い持続時間を特定することにより、赤外吸収スペクトルの測定に必要な時間が短縮される。従って、赤外吸収測定装置は、測定時間を長大化させずに良好なS/N比で赤外吸収スペクトルを得ることが可能となる。
また、赤外吸収測定装置は、試料5への赤外レーザ光の照射と非照射とを切り替えるために、チョッパ31で赤外レーザ光の光路を開閉し、光路の開閉の周波数に基づいた同期検波により、試料5の高さ変動量を示す信号を生成する。チョッパ31の回転の周波数を調整することにより、光路の開閉の周波数を調整し、赤外レーザ光の連続的な照射の持続時間を容易に調整することができる。適切な周波数を特定することにより、赤外レーザ光の連続的な照射の持続時間を適切に特定することができる。また、光路の開閉の周波数に基づいた同期検波を行うことで、試料5の高さ変動量の大きさを高精度に測定することができる。
また、赤外吸収測定装置は、SPMの一種であるAFMを利用することにより、試料5の高さ変動量を高精度に検出することができる。また、赤外吸収測定装置は、レーザ素子21及び外部共振器22を用いて、波長を変更することができる赤外レーザ光を発生している。自由電子レーザ等の波長可変レーザ、又は波長の異なる複数のレーザを用いる場合に比べて、レーザ光源を小型・安価に構成することができる。レーザ素子21は連続的に赤外レーザ光を発生するので、パルスレーザを用いた場合に比べて、ノイズが減少し、測定結果のS/N比が改善される。また、赤外吸収測定装置は、試料5上の赤外吸収スペクトルの分布を生成する。赤外吸収スペクトルの分布に基づき、試料5上の化学構造の分布を分析することが可能となる。
なお、本実施の形態においては、チョッパ31の回転の周波数を変更することで赤外レーザ光の光路の開閉の周波数を変更する方法を示したが、赤外吸収測定装置は、その他の方法で光路の開閉の周波数を変更してもよい。例えば、羽根の数が異なるチョッパに交換することで光路の開閉の周波数を変更してもよい。また例えば、赤外レーザ光を通過させる部材の一周当たりの数を半径方向に変化させておき、赤外レーザ光が通過する位置と回転軸との距離を変更することにより、光路の開閉の周波数を変更してもよい。また、赤外吸収測定装置は、チョッパ31を用いる方法以外の方法で、試料5への赤外レーザ光の照射と非照射とを切り替える形態であってもよい。例えば、赤外吸収測定装置は、シャッタを用いて赤外レーザ光を遮断することによって照射と非照射とを切り替える形態であってもよく、また、レーザ素子21のオンとオフとを繰り返すことによって照射と非照射とを切り替える形態であってもよい。また、本実施の形態においては、赤外レーザ光の連続的な照射の持続時間を周期的に調整する形態を示したが、赤外吸収測定装置は、連続的な照射の持続時間を非周期的に調整する形態であってもよい。
また、赤外吸収測定装置は、半導体レーザ以外のレーザを用いた形態であってもよい。また、赤外吸収測定装置は、外部共振器22を用いた方法以外の方法で赤外レーザ光の波長を変更する形態であってもよい。例えば、赤外吸収測定装置は、自由電子レーザ又は光パラメトリック発振レーザ等の波長可変レーザを用いた形態であってもよく、また、波長の異なる複数のレーザを用いた形態であってもよい。また、本実施の形態においては、赤外レーザ光を上側から試料5へ照射する形態を示したが、赤外吸収測定装置は、下側から赤外レーザ光を試料5へ照射する形態であってもよい。また、赤外吸収測定装置は、レーザ光以外の単波長の赤外ビームを利用する形態であってもよい。例えば、赤外吸収測定装置は、白色ランプ光又はシンクロトロン放射光等の複数波長を含む光から分光器を用いて単波長光を分光した光を利用する形態であってもよい。また、赤外吸収測定装置は、波長にある程度の幅をもつ光を利用してもよい。
また、本実施の形態においては、単波長の赤外ビームの波長を変更しながら赤外吸収を測定する形態を示したが、赤外吸収測定装置は、波長を固定した単波長の赤外ビームを用いて赤外吸収を測定する形態であってもよい。この形態であっても、固定された単波長の赤外吸収を測定し、試料別に異なる赤外吸収に基づいて物質の分析を行うことができる。また、赤外吸収測定装置は、試料5の高さ変動に加えて、周期的な赤外ビームの照射に対して高さ変動の位相がずれる位相ずれをも検出する形態であってもよい。この位相ずれは、例えば、チョッパ31が赤外レーザ光の光路を開閉する周波数を示す信号と試料5の高さ変動に応じた信号とを制御部4で比較することによって検出される。検出された位相ずれに基づいて、複数の層を持つ試料の層別の分別、又は同じ波長の光を吸収する試料の分別等の分析を行うことが可能である。
また、本実施の形態においては、レーザ光を用いてカンチレバー11のたわみを検知することにより試料5の表面の高さ変動を検出する形態を示したが、AFM1は、自己検出プローブを用いた形態等、その他の方法で試料5の表面の高さ変動を検出する形態であってもよい。また、本実施の形態においては、試料5の表面の変位量として高さ変動量を検出する形態を示したが、赤外吸収測定装置は、試料5の表面の変位量として水平方向の変位量を検出する形態であってもよい。例えば、赤外吸収測定装置は、接触式のAFMを用いて、赤外ビームの照射時に膨張した試料5の表面の水平方向の変位を検出し、試料5の表面の照射時の水平方向の位置と非照射時の水平方向の位置との間の変位量を検出する形態であってもよい。また、赤外吸収測定装置は、STM(Scanning Tunneling Microscope 、走査型トンネル顕微鏡)又はSNOM(Scanning Near field Optical Microscope、走査型近接場光顕微鏡)等、AFM以外のSPMを用いた形態であってもよい。また、赤外吸収測定装置は、SPM以外の方法で試料5の表面の変位量を検出する形態であってもよい。例えば、赤外吸収測定装置は、共焦点レーザ顕微鏡を用いた形態であってもよい。
1 AFM
21 レーザ素子
22 外部共振器
23 レーザドライバ
24 グレーティング制御部
25 駆動部
31 チョッパ
32 チョッパ制御部
33 周波数制御部
34 ロックインアンプ
4 制御部

Claims (9)

  1. 単波長の赤外ビームを発生する赤外ビーム発生部と、試料への赤外ビームの照射及び非照射を繰り返し切り替える切り替え部とを備える赤外吸収測定装置において、
    赤外ビームを吸収して膨張する試料表面の非照射時に比べた変位量を検出する変位検出部と、
    前記切り替え部による連続的な照射の持続時間を調整する照射時間調整部と
    を備えることを特徴とする赤外吸収測定装置。
  2. 前記赤外ビーム発生部は、赤外ビームの波長を変更することが可能であり、
    前記赤外ビーム発生部に赤外ビームの波長を固定させた上で、前記照射時間調整部に前記持続時間を順次変化させながら前記変位検出部に前記変位量を検出させ、前記変位量が所定の条件を満たすための持続時間を特定する照射時間特定部と、
    前記照射時間調整部に、前記切り替え部による連続的な照射の持続時間を前記照射時間特定部が特定した持続時間に固定させた上で、前記赤外ビーム発生部に赤外ビームの波長を順次変化させながら前記変位検出部に前記変位量を検出させる赤外吸収測定部と
    を更に備えることを特徴とする請求項1に記載の赤外吸収測定装置。
  3. 前記照射時間特定部は、前記変位量が所定量以上になる持続時間の内で最短の持続時間を特定するように構成してあること
    を特徴とする請求項2に記載の赤外吸収測定装置。
  4. 前記切り替え部は、赤外ビームの光路を開閉するチョッパを用いて構成してあり、
    前記照射時間調整部は、前記チョッパが赤外ビームの光路を開閉する周波数を調整するように構成してあり、
    前記変位検出部は、試料の赤外ビームが照射される部分の変位に応じた信号を生成し、生成した信号から、前記周波数に基づいた同期検波により、前記変位量を示す信号を生成するように構成してあること
    を特徴とする請求項1乃至3の何れか一つに記載の赤外吸収測定装置。
  5. 前記照射時間調整部は、前記周波数を順次増大させることによって前記周波数を調整するように構成してあること
    を特徴とする請求項4に記載の赤外吸収測定装置。
  6. 前記変位検出部は走査型プローブ顕微鏡を含んでいること
    を特徴とする請求項1乃至5の何れか一つに記載の赤外吸収測定装置。
  7. 前記赤外ビーム発生部は、
    連続的に赤外レーザ光を発生するレーザ素子と、
    赤外レーザ光の波長を変更するための外部共振器と
    を有することを特徴とする請求項1乃至6の何れか一つに記載の赤外吸収測定装置。
  8. 試料の赤外ビームが照射される部分を変更しながら、赤外ビームの波長に対する前記変位量の関係を表したスペクトルを生成して、試料上の前記スペクトルの分布を生成するスペクトル分布生成部を更に備えること
    を特徴とする請求項1乃至7の何れか一つに記載の赤外吸収測定装置。
  9. 試料へ単波長の赤外ビームを断続的に照射し、試料の赤外吸収を測定する方法において、
    赤外ビームの連続的な照射の持続時間を調整し、
    赤外ビームを吸収して膨張する試料表面の非照射時に比べた変位量を検出すること
    を特徴とする赤外吸収測定方法。
JP2013080692A 2013-04-08 2013-04-08 赤外吸収測定装置及び赤外吸収測定方法 Pending JP2014202677A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080692A JP2014202677A (ja) 2013-04-08 2013-04-08 赤外吸収測定装置及び赤外吸収測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080692A JP2014202677A (ja) 2013-04-08 2013-04-08 赤外吸収測定装置及び赤外吸収測定方法

Publications (1)

Publication Number Publication Date
JP2014202677A true JP2014202677A (ja) 2014-10-27

Family

ID=52353218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080692A Pending JP2014202677A (ja) 2013-04-08 2013-04-08 赤外吸収測定装置及び赤外吸収測定方法

Country Status (1)

Country Link
JP (1) JP2014202677A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010487A1 (en) 2017-07-06 2019-01-10 Bruker Nano, Inc. INFRARED SPECTROSCOPY BASED ON SURFACE-SENSITIVE ATOMIC STRENGTH MICROSCOPE
JP2019534459A (ja) * 2016-10-29 2019-11-28 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 化学的撮像用の原子間力顕微鏡赤外線分光法及び装置
JP2020511646A (ja) * 2017-03-09 2020-04-16 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 光熱効果に基づく赤外線走査型近接場光学顕微鏡のための方法および装置
JP2021028582A (ja) * 2019-08-09 2021-02-25 株式会社日立ハイテク 分光測定装置及び空間エネルギー分布測定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269643A (ja) * 1988-09-06 1990-03-08 Toshiba Corp 表面分析装置
JPH03140842A (ja) * 1989-10-20 1991-06-14 Internatl Business Mach Corp <Ibm> 分光分析装置及び方法
JPH08254542A (ja) * 1995-01-09 1996-10-01 Texas Instr Inc <Ti> ナノメートルスケールで試料を同定し特性を確定するための方法および装置
JPH11337509A (ja) * 1998-05-28 1999-12-10 Shin Etsu Handotai Co Ltd 金属不純物評価方法
JP2001305037A (ja) * 2000-02-14 2001-10-31 Koji Maeda 走査型プローブ顕微鏡及びこれを用いた光吸収物質の検出方法並びに顕微分光方法
US20110203357A1 (en) * 2010-02-23 2011-08-25 Craig Prater Dynamic power control for nanoscale spectroscopy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269643A (ja) * 1988-09-06 1990-03-08 Toshiba Corp 表面分析装置
JPH03140842A (ja) * 1989-10-20 1991-06-14 Internatl Business Mach Corp <Ibm> 分光分析装置及び方法
JPH08254542A (ja) * 1995-01-09 1996-10-01 Texas Instr Inc <Ti> ナノメートルスケールで試料を同定し特性を確定するための方法および装置
JPH11337509A (ja) * 1998-05-28 1999-12-10 Shin Etsu Handotai Co Ltd 金属不純物評価方法
JP2001305037A (ja) * 2000-02-14 2001-10-31 Koji Maeda 走査型プローブ顕微鏡及びこれを用いた光吸収物質の検出方法並びに顕微分光方法
US20110203357A1 (en) * 2010-02-23 2011-08-25 Craig Prater Dynamic power control for nanoscale spectroscopy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019534459A (ja) * 2016-10-29 2019-11-28 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 化学的撮像用の原子間力顕微鏡赤外線分光法及び装置
JP2020112575A (ja) * 2016-10-29 2020-07-27 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 化学的撮像用の原子間力顕微鏡赤外線分光法及び装置
JP7013519B2 (ja) 2016-10-29 2022-01-31 ブルカー ナノ インコーポレイテッド 化学的撮像用の原子間力顕微鏡赤外線分光法及び装置
JP2020511646A (ja) * 2017-03-09 2020-04-16 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. 光熱効果に基づく赤外線走査型近接場光学顕微鏡のための方法および装置
WO2019010487A1 (en) 2017-07-06 2019-01-10 Bruker Nano, Inc. INFRARED SPECTROSCOPY BASED ON SURFACE-SENSITIVE ATOMIC STRENGTH MICROSCOPE
EP3649475A4 (en) * 2017-07-06 2021-04-14 Bruker Nano, Inc. AFRICATING FORCE MICROSCOPE BASED SURFACE SENSITIVE INFRARED SPECTROSCOPY
JP2021028582A (ja) * 2019-08-09 2021-02-25 株式会社日立ハイテク 分光測定装置及び空間エネルギー分布測定装置
JP7157715B2 (ja) 2019-08-09 2022-10-20 株式会社日立ハイテク 分光測定装置

Similar Documents

Publication Publication Date Title
JP7013519B2 (ja) 化学的撮像用の原子間力顕微鏡赤外線分光法及び装置
US8387443B2 (en) Microcantilever with reduced second harmonic while in contact with a surface and nano scale infrared spectrometer
KR20150091106A (ko) 호모다인 검출을 사용하는 근거리 적외선 산란으로부터 흡수 스펙트럼을 획득하는 방법
US8646319B2 (en) Dynamic power control for nanoscale spectroscopy
JP2014202677A (ja) 赤外吸収測定装置及び赤外吸収測定方法
US20130036521A1 (en) High Frequency Deflection Measurement of IR Absorption with a Modulated IR Source
US11846653B2 (en) Scanning probe microscope and method for resonance-enhanced detection using a range of modulation frequencies
WO2003046519A1 (en) Delay time modulation femtosecond time-resolved scanning probe microscope apparatus
JP3764917B2 (ja) 高周波微小振動測定装置
JP2007033321A (ja) 走査型プローブ顕微鏡の探針と試料表面との距離測定方法及び走査型プローブ顕微鏡
JP5743453B2 (ja) テラヘルツ波の測定装置及び測定方法
JP7129099B2 (ja) 走査プローブ顕微鏡、測定方法
JP2005072103A (ja) レーザー周波数安定化装置、及びレーザー周波数安定化方法
JP2015007612A (ja) 光源調整手段、光学計測装置、被検体情報取得システム、および波長調整プログラム
JP5882786B2 (ja) 電磁波応答測定装置
TW202346866A (zh) 掃描探針顯微鏡以及掃描探針顯微術中對準、聚焦和量測光束與探針尖端的相對強度之方法
JP2006242665A (ja) 走査型プローブ顕微鏡
JP2009281904A (ja) 走査型プローブ顕微鏡
JP2005083849A (ja) 光学装置及び試料測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170808