JP2014202425A - Heat exchanger and heat exchanger manufacturing method - Google Patents

Heat exchanger and heat exchanger manufacturing method Download PDF

Info

Publication number
JP2014202425A
JP2014202425A JP2013079423A JP2013079423A JP2014202425A JP 2014202425 A JP2014202425 A JP 2014202425A JP 2013079423 A JP2013079423 A JP 2013079423A JP 2013079423 A JP2013079423 A JP 2013079423A JP 2014202425 A JP2014202425 A JP 2014202425A
Authority
JP
Japan
Prior art keywords
side tube
refrigerant
water
tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013079423A
Other languages
Japanese (ja)
Other versions
JP2014202425A5 (en
JP6056620B2 (en
Inventor
森本 正和
Masakazu Morimoto
正和 森本
新也 北川
Shinya Kitagawa
新也 北川
昭 柳田
Akira Yanagida
昭 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013079423A priority Critical patent/JP6056620B2/en
Priority to DE112014001840.6T priority patent/DE112014001840T5/en
Priority to PCT/JP2014/001489 priority patent/WO2014162669A1/en
Publication of JP2014202425A publication Critical patent/JP2014202425A/en
Publication of JP2014202425A5 publication Critical patent/JP2014202425A5/ja
Application granted granted Critical
Publication of JP6056620B2 publication Critical patent/JP6056620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger having a water-side tube including copper or copper alloy and a refrigerant-side tube including aluminum or aluminum alloy and a method of manufacturing the heat exchanger, capable of improving heat exchange performance between water and refrigerant.SOLUTION: A water-side tube 20 includes copper or copper alloy and a refrigerant-side tube 30 includes aluminum or aluminum alloy. The water-side tube 20 and the refrigerant-side tube 30 are wound spirally so as to turn around a virtual axis 100 in a state of contact between the water-side tube 20 and the refrigerant-side tube 30. The water-side tube 20 and the refrigerant-side tube 30 are brazed with an Al-Cu-Si-based or Al-Cu-Si-Zn-based brazing filler material 50.

Description

本発明は、水と冷媒との間で熱交換を行う熱交換器およびその製造方法に関するものである。   The present invention relates to a heat exchanger that performs heat exchange between water and a refrigerant, and a method for manufacturing the same.

一般的な水冷媒熱交換器は、水流路を内部に形成する水側チューブおよび冷媒流路を内部に形成する冷媒側チューブの構成材料として、水道水環境下において耐食性実績のある銅合金を採用している。しかし、銅合金は高価であるとともに、微細化加工が困難なため、例えば、微細多穴チューブを形成できず、水冷媒熱交換器の小型高性能化が困難である。   Common water-refrigerant heat exchangers use a copper alloy that has a proven track record of corrosion resistance in tap water environments as the constituent material of the water-side tube that forms the water channel and the refrigerant-side tube that forms the refrigerant channel. doing. However, since copper alloy is expensive and difficult to miniaturize, for example, a fine multi-hole tube cannot be formed, and it is difficult to improve the size and performance of the water refrigerant heat exchanger.

これに対して、特許文献1に開示されている水冷媒熱交換器は、水側チューブを銅合金で構成し、冷媒側チューブをアルミニウム合金で構成している。これによると、冷媒側チューブを銅合金よりも安価なアルミニウム合金で構成しているので、低コスト化が可能となる。さらに、アルミニウム合金は微細化加工が可能なため、押出加工による微細多穴チューブの製造が可能となり、冷媒チューブを微細多穴チューブで構成することで、水冷媒熱交換器の小型高性能化が可能となる。   On the other hand, the water refrigerant heat exchanger currently disclosed by patent document 1 comprises the water side tube with the copper alloy, and comprised the refrigerant side tube with the aluminum alloy. According to this, since the refrigerant | coolant side tube is comprised with the cheaper aluminum alloy than a copper alloy, cost reduction is attained. In addition, since the aluminum alloy can be refined, it is possible to manufacture micro multi-hole tubes by extrusion, and the refrigerant tube is made up of micro multi-hole tubes, thereby reducing the size and performance of the water refrigerant heat exchanger. It becomes possible.

特開2002−107069号公報JP 2002-107069 A

しかし、特許文献1に記載されている水冷媒熱交換器では、水側チューブと冷媒側チューブとを機械的に接触させているだけであるため、両者の間に隙間が存在する等の理由により、接触部での熱抵抗が大きく、熱交換性能が悪くなるという問題がある。   However, in the water-refrigerant heat exchanger described in Patent Document 1, since the water-side tube and the refrigerant-side tube are merely mechanically contacted, there is a gap between them. There is a problem that the heat resistance at the contact portion is large and the heat exchange performance is deteriorated.

本発明は上記点に鑑みて、水側チューブを銅または銅合金で構成し、冷媒側チューブをアルミニウムまたはアルミニウム合金で構成した熱交換器およびその製造方法において、水と冷媒との間での熱交換性能を向上させることを目的とする。   In view of the above points, the present invention provides a heat exchanger in which a water-side tube is made of copper or a copper alloy, and a refrigerant-side tube is made of aluminum or an aluminum alloy, and a method for manufacturing the same. The purpose is to improve the exchange performance.

上記目的を達成するため、請求項1に記載の発明では、水側チューブ(20)は、銅または銅合金製であり、冷媒側チューブ(30)は、アルミニウムまたはアルミニウム合金製であり、水側チューブ(20)と冷媒側チューブ(30)とが互いに接触した状態で、水側チューブ(20)および冷媒側チューブ(30)が仮想軸(100)の周囲を旋回するように螺旋状に巻かれており、水側チューブ(20)と冷媒側チューブ(30)とは、Al−Cu−Si系またはAl−Cu−Si−Zn系のろう材(50)にてろう付けされていることを特徴とする熱交換器。   In order to achieve the above object, according to the first aspect of the present invention, the water side tube (20) is made of copper or a copper alloy, the refrigerant side tube (30) is made of aluminum or an aluminum alloy, and the water side In a state in which the tube (20) and the refrigerant side tube (30) are in contact with each other, the water side tube (20) and the refrigerant side tube (30) are spirally wound so as to turn around the virtual axis (100). The water side tube (20) and the refrigerant side tube (30) are brazed with an Al—Cu—Si or Al—Cu—Si—Zn brazing material (50). Heat exchanger.

これによれば、水側チューブ(20)と冷媒側チューブ(30)とを、Al−Cu−Si系またはAl−Cu−Si−Zn系のろう材(50)にてろう付けすることで、ろう付けをアルミニウム合金(純アルミニウムを含む)と銅合金(純銅を含む)との共晶温度未満で行うことができる。このため、アルミニウム合金と銅合金の共晶融解を起こさせることなく、チューブ(20、30)の変形や強度低下を抑制したろう付けが可能となる。   According to this, by brazing the water side tube (20) and the refrigerant side tube (30) with the brazing material (50) of Al-Cu-Si system or Al-Cu-Si-Zn system, Brazing can be performed below the eutectic temperature of an aluminum alloy (including pure aluminum) and a copper alloy (including pure copper). For this reason, the brazing which suppressed the deformation | transformation and strength reduction of the tube (20, 30) is attained, without causing eutectic melting of an aluminum alloy and a copper alloy.

また、水側チューブ(20)と冷媒側チューブ(30)とが互いに接触した状態で、水側チューブ(20)および冷媒側チューブ(30)が仮想軸(100)の周囲を旋回するように螺旋状に巻くことで、螺旋状に巻かれた水側チューブ(20)および冷媒側チューブ(30)を、仮想軸(100)の軸方向一端側と他端側とから治具により圧縮するという簡易な方法で、水側チューブ(20)および冷媒側チューブ(30)間のクリアランスの大きさを制御することができる。このため、水側チューブ(20)と冷媒側チューブ(30)とを安定してろう付けすることができる。これにより、水側チューブ(20)と冷媒側チューブ(30)との熱伝達率が向上するため、水と冷媒との間での熱交換性能を向上させることが可能となる。   Further, in a state where the water side tube (20) and the refrigerant side tube (30) are in contact with each other, the water side tube (20) and the refrigerant side tube (30) are spirally wound around the virtual axis (100). The water-side tube (20) and the refrigerant-side tube (30) wound spirally are simply compressed by a jig from one end side and the other end side in the axial direction of the virtual shaft (100). In this way, the size of the clearance between the water side tube (20) and the refrigerant side tube (30) can be controlled. For this reason, a water side tube (20) and a refrigerant | coolant side tube (30) can be brazed stably. Thereby, since the heat transfer rate of a water side tube (20) and a refrigerant | coolant side tube (30) improves, it becomes possible to improve the heat exchange performance between water and a refrigerant | coolant.

また、請求項2に記載の発明では、請求項1に記載の熱交換器において、ろう材(50)は、粉末状にて供給される粉末ろう材であることを特徴とする。   In the invention according to claim 2, in the heat exchanger according to claim 1, the brazing material (50) is a powder brazing material supplied in powder form.

これによれば、ろう材(50)を粉末にて供給することで、水側チューブ(20)および冷媒側チューブ(30)間のクリアランスに粉末状のろう材(50)を容易に保持することができるので、水側チューブ(20)と冷媒側チューブ(30)とをより安定してろう付けすることができる。このため、水と冷媒との間での熱交換性能をより向上させることが可能となる。   According to this, by supplying the brazing material (50) in powder, the powdery brazing material (50) can be easily held in the clearance between the water side tube (20) and the refrigerant side tube (30). Therefore, the water side tube (20) and the refrigerant side tube (30) can be brazed more stably. For this reason, it becomes possible to improve the heat exchange performance between water and a refrigerant | coolant more.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態におけるヒートポンプ式給湯器の全体構成図を示す。The whole block diagram of the heat pump type water heater in 1st Embodiment is shown. 第1実施形態に係る水冷媒熱交換器を示す斜視図である。It is a perspective view which shows the water refrigerant | coolant heat exchanger which concerns on 1st Embodiment. 図2のIII−III断面図である。It is III-III sectional drawing of FIG. 図3のA部拡大図である。It is the A section enlarged view of FIG. 水側チューブの扁平率およびr/Dを変化させた際に、水側チューブに扁平加工および螺旋加工が成立するか否かを示すグラフである。It is a graph which shows whether flat processing and spiral processing are materialized for a water side tube, when the flatness ratio and r / D of a water side tube are changed. 水側チューブの本数と製造コストとの関係を示す特性図である。It is a characteristic view which shows the relationship between the number of water side tubes, and manufacturing cost. 第2実施形態における水側チューブを示す拡大斜視図である。It is an expansion perspective view which shows the water side tube in 2nd Embodiment. 第3実施形態における螺旋加工前の冷媒側チューブを示す断面図である。It is sectional drawing which shows the refrigerant | coolant side tube before the spiral process in 3rd Embodiment. 他の実施形態に係る水冷媒熱交換器を示す部分断面図である。It is a fragmentary sectional view showing the water refrigerant heat exchanger concerning other embodiments. 他の実施形態に係る水冷媒熱交換器を示す部分断面図である。It is a fragmentary sectional view showing the water refrigerant heat exchanger concerning other embodiments. 他の実施形態に係る水冷媒熱交換器を示す部分断面図である。It is a fragmentary sectional view showing the water refrigerant heat exchanger concerning other embodiments.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
本実施形態は、本発明に係る熱交換器をヒートポンプ式給湯器の水冷媒熱交換器に適用したものである。
(First embodiment)
In this embodiment, the heat exchanger according to the present invention is applied to a water-refrigerant heat exchanger of a heat pump type water heater.

図1に示すように、ヒートポンプ式給湯器は、給湯水を貯留する貯湯タンク10、貯湯タンク10内の給湯水を循環する水循環通路11、および、給湯水を加熱するためのヒートポンプサイクル装置12を備えている。   As shown in FIG. 1, the heat pump type hot water heater includes a hot water storage tank 10 for storing hot water, a water circulation passage 11 for circulating hot water in the hot water storage tank 10, and a heat pump cycle device 12 for heating the hot water. I have.

貯湯タンク10は、高温の給湯水を長時間保温することができる温水タンクである。貯湯タンク10に貯留された給湯水は、貯湯タンク10の上部に設けられた出湯口10aから出湯され、台所や風呂等に給湯される。貯湯タンク10内の下部に設けられた給水口10bから水道水が補給されるようになっている。   The hot water storage tank 10 is a hot water tank that can retain hot hot water for a long time. Hot water stored in the hot water storage tank 10 is discharged from a hot water outlet 10a provided in the upper part of the hot water storage tank 10 and supplied to a kitchen or a bath. Tap water is replenished from a water supply port 10 b provided in the lower part of the hot water storage tank 10.

水循環通路11には、給湯水を循環させる電動水ポンプ13が配置されており、給湯水は、貯湯タンク10下部の給湯水出口10c→電動水ポンプ13→水冷媒熱交換器15→貯湯タンク10上部の給湯水入口10dの順に流れる。   An electric water pump 13 that circulates hot water is disposed in the water circulation passage 11. The hot water is supplied from the hot water outlet 10 c at the lower part of the hot water tank 10 → the electric water pump 13 → the water refrigerant heat exchanger 15 → the hot water tank 10. It flows in the order of the upper hot water supply inlet 10d.

ヒートポンプサイクル装置12は、電動圧縮機14、水冷媒熱交換器15、膨張弁16、蒸発器17等を順次配管接続したものであり、周知の冷凍サイクルを構成している。   The heat pump cycle device 12 has an electric compressor 14, a water refrigerant heat exchanger 15, an expansion valve 16, an evaporator 17, and the like sequentially connected by piping, and constitutes a known refrigeration cycle.

水冷媒熱交換器15は、給湯水が流れる水流路15aと、電動圧縮機14吐出後の高温高圧の冷媒が流れる冷媒流路15bとを有し、給湯水と電動圧縮機14吐出後の高温冷媒との間で熱交換させて、給湯水を加熱する加熱用熱交換器である。   The water-refrigerant heat exchanger 15 has a water flow path 15a through which hot-water supply flows and a refrigerant flow path 15b through which high-temperature and high-pressure refrigerant flows after discharging the electric compressor 14, and high-temperature after discharging hot water and the electric compressor 14 This is a heating heat exchanger that heats hot water by causing heat exchange with a refrigerant.

次に、本実施形態の水冷媒熱交換器15の具体的構造について説明する。図2および図3に示すように、水冷媒熱交換器15は、水流路15aが内部に形成された水側チューブ20と、冷媒流路15bが内部に形成された冷媒側チューブ30とを備えている。   Next, a specific structure of the water refrigerant heat exchanger 15 of the present embodiment will be described. As shown in FIGS. 2 and 3, the water-refrigerant heat exchanger 15 includes a water-side tube 20 having a water flow path 15a formed therein, and a refrigerant-side tube 30 having a refrigerant flow path 15b formed therein. ing.

水冷媒熱交換器15は、2本または3本(本例では2本)の水側チューブ20が並列に配置された状態、かつ冷媒側チューブ30と各水側チューブ20とがそれぞれ互いに接触した状態で、冷媒側チューブ30および水側チューブ20が仮想軸100の周囲を旋回するように螺旋状に巻かれた形状になっている。   In the water-refrigerant heat exchanger 15, two or three (two in this example) water-side tubes 20 are arranged in parallel, and the refrigerant-side tube 30 and each water-side tube 20 are in contact with each other. In this state, the refrigerant side tube 30 and the water side tube 20 are spirally wound around the virtual axis 100.

水側チューブ20は、水道水環境下での耐食性が高い銅または銅合金製であり、冷媒側チューブ30はアルミニウムまたはアルミニウム合金製である。   The water side tube 20 is made of copper or copper alloy having high corrosion resistance in a tap water environment, and the refrigerant side tube 30 is made of aluminum or aluminum alloy.

具体的には、図3に示すように、水側チューブ20は、長手方向垂直が扁平形状であり、1つの水流路15aが内部に形成されている扁平チューブである。一方、冷媒側チューブ30は、長手方向垂直断面が扁平形状であるとともに、内部に複数の冷媒流路15bが並列に形成された多穴チューブである。この冷媒側チューブ30は、アルミニウムまたはアルミニウム合金材料の押出加工または引抜加工によって形成される。   Specifically, as shown in FIG. 3, the water-side tube 20 is a flat tube in which the vertical direction in the longitudinal direction is flat and one water flow path 15 a is formed inside. On the other hand, the refrigerant side tube 30 is a multi-hole tube in which the vertical cross section in the longitudinal direction has a flat shape and a plurality of refrigerant flow paths 15b are formed in parallel inside. The refrigerant side tube 30 is formed by extrusion or drawing of aluminum or an aluminum alloy material.

水側チューブ20と冷媒側チューブ30とは、ろう付けによって金属的に接合されている。すなわち、水側チューブ20と冷媒側チューブ30とが接触した状態で、接合部40によって両者が接合している。ろう材としては、Al−Cu−Si系またはAl−Cu−Si−Zn系のろう材を採用している。本実施形態では、図4に示すように、ろう材50は、粉末状にて供給される粉末ろう材である。   The water side tube 20 and the refrigerant side tube 30 are joined metallically by brazing. That is, in the state where the water side tube 20 and the refrigerant side tube 30 are in contact with each other, the two are joined by the joint portion 40. As the brazing material, an Al—Cu—Si based or Al—Cu—Si—Zn based brazing material is employed. In the present embodiment, as shown in FIG. 4, the brazing material 50 is a powder brazing material supplied in powder form.

水側チューブ20の両端部には、複数の水流路15aへ給湯水を分配させ、または、複数の水流路15aから流出した給湯水を集合させる水側ヘッダ(図示せず)が設けられている。同様に、冷媒側チューブ30の両端部には、複数の冷媒流路15bへ冷媒を分配させ、または、複数の冷媒流路15bから流出した冷媒を集合させる冷媒側ヘッダ(図示せず)が設けられている。   At both ends of the water-side tube 20, water-side headers (not shown) that distribute hot water to the plurality of water channels 15a or collect hot water that has flowed out from the plurality of water channels 15a are provided. . Similarly, a refrigerant side header (not shown) that distributes the refrigerant to the plurality of refrigerant flow paths 15b or collects the refrigerant flowing out from the plurality of refrigerant flow paths 15b is provided at both ends of the refrigerant side tube 30. It has been.

ところで、本実施形態の水側チューブ20は、長手方向垂直断面が円形状である丸管に扁平加工を施すことにより、長手方向垂直断面が扁平形状になるように形成されている。   By the way, the water side tube 20 of this embodiment is formed so that a longitudinal direction vertical cross section may become a flat shape by giving a flat process to the round tube whose longitudinal direction vertical cross section is circular.

ここで、水側チューブ20が構成する螺旋半径をr、水側チューブ20に扁平加工を施す前の丸管の外径をDとする。そして、水側チューブ20の扁平率およびr/Dを変化させた際に、水側チューブ20に扁平加工および螺旋加工が成立するか否かを図5に示す。   Here, the spiral radius formed by the water-side tube 20 is r, and the outer diameter of the round tube before flattening the water-side tube 20 is D. Then, FIG. 5 shows whether or not the flat processing and the spiral processing are established in the water side tube 20 when the flatness ratio and r / D of the water side tube 20 are changed.

図5において、水側チューブ20に扁平加工および螺旋加工を施した際に座屈やシワが発生しなかった場合(つまり、扁平加工および螺旋加工が成立した場合)を丸印で示し、水側チューブ20に扁平加工および螺旋加工を施した際に座屈やシワが発生した場合(つまり、扁平加工および螺旋加工が成立しなかった場合)をバツ印で示している。   In FIG. 5, the case where buckling or wrinkle does not occur when the water side tube 20 is flattened and spiraled (that is, the case where flattening and spiraling are established) is indicated by a circle. A case where buckling or wrinkle occurs when the tube 20 is flattened and spiraled (that is, when flattening and spiraling are not established) is indicated by cross marks.

なお、扁平率とは、水側チューブ20の長手方向垂直断面における短径方向の寸法をチューブ高さH、長径方向の寸法をチューブ幅Wとした場合の、チューブ幅Wに対するチューブ高さHの比率のことを意味しており、扁平率=H/W×100(パーセント)で表される。また、螺旋半径とは、水側チューブ20の長手方向垂直断面における中心部から螺旋の仮想軸100(図2参照)までの長さのことを意味している。   The flatness refers to the tube height H relative to the tube width W when the dimension in the minor axis direction in the vertical cross section in the longitudinal direction of the water side tube 20 is the tube height H and the dimension in the major axis direction is the tube width W. It means a ratio, and is expressed as flatness = H / W × 100 (percent). Further, the spiral radius means a length from the central portion in the vertical cross section in the longitudinal direction of the water side tube 20 to the virtual axis 100 of the spiral (see FIG. 2).

扁平率が大きい程、水側チューブ20を螺旋状に曲げる(以下、螺旋加工ともいう)ことが容易になる。また、r/Dが大きい程、水側チューブ20を螺旋加工することが容易になる。   As the flatness ratio increases, it becomes easier to bend the water-side tube 20 in a spiral shape (hereinafter also referred to as spiral processing). Moreover, it becomes easier to spirally process the water side tube 20 as r / D is larger.

図5から明らかなように、水側チューブ20の扁平率が40%以上、かつ、r/D≧2.2の関係を満たす場合には、扁平加工および螺旋加工を施した際に座屈やシワが発生せず、水側チューブ20を良好に形成できる。   As is clear from FIG. 5, when the flatness of the water-side tube 20 is 40% or more and the relationship r / D ≧ 2.2 is satisfied, buckling or Wrinkles are not generated and the water side tube 20 can be formed satisfactorily.

以上説明したように、水側チューブ20と冷媒側チューブ30とを、Al−Cu−Si系またはAl−Cu−Si−Zn系のろう材50にてろう付けすることで、ろう付けをアルミニウム合金と銅合金との共晶温度未満で行うことができる。このため、アルミニウム合金と銅合金の共晶融解を起こさせることなく、チューブ20、30の被接合部分の変形や強度低下を抑制したろう付けが可能となる。   As described above, the water side tube 20 and the refrigerant side tube 30 are brazed with an Al—Cu—Si or Al—Cu—Si—Zn brazing material 50, thereby brazing the aluminum alloy. And below the eutectic temperature of the copper alloy. For this reason, brazing which suppresses the deformation | transformation and strength reduction of the to-be-joined part of the tubes 20 and 30 is attained, without causing eutectic melting of an aluminum alloy and a copper alloy.

また、水側チューブ20と冷媒側チューブ30とが互いに接触した状態で、水側チューブ20および冷媒側チューブ30が仮想軸100の周囲を旋回するように螺旋状に巻くことで、螺旋状に巻かれた水側チューブ20および冷媒側チューブ30を、仮想軸100の軸方向一端側(図2の紙面上側)と他端側(図2の紙面下側)とから治具により圧縮するという簡易な方法で、水側チューブ20および冷媒側チューブ30間のクリアランスの大きさを制御することができる。このため、水側チューブ20と冷媒側チューブ30とを安定してろう付けすることが可能となる。   Further, in a state where the water side tube 20 and the refrigerant side tube 30 are in contact with each other, the water side tube 20 and the refrigerant side tube 30 are spirally wound so as to turn around the virtual axis 100, so that the spiral is wound. The water-side tube 20 and the refrigerant-side tube 30 are simply compressed by a jig from one end side in the axial direction of the virtual shaft 100 (upper side of the paper surface in FIG. 2) and the other end side (lower side of the paper surface in FIG. 2). By the method, the magnitude of the clearance between the water side tube 20 and the refrigerant side tube 30 can be controlled. For this reason, it becomes possible to braze the water side tube 20 and the refrigerant | coolant side tube 30 stably.

そして、水側チューブ20と冷媒側チューブ30とが安定してろう付け接合されることにより、水側チューブ20と冷媒側チューブ30との熱伝達率が向上するため、水冷媒熱交換器15の熱交換性能を向上させることができる。また、水側チューブ20と冷媒側チューブ30との熱伝達率が向上するので、水冷媒熱交換器15の小型化を図ることができる。   And since the heat transfer coefficient of the water side tube 20 and the refrigerant | coolant side tube 30 improves because the water side tube 20 and the refrigerant | coolant side tube 30 are stably brazed and joined, the water refrigerant | coolant heat exchanger 15 of Heat exchange performance can be improved. Further, since the heat transfer coefficient between the water side tube 20 and the refrigerant side tube 30 is improved, the water refrigerant heat exchanger 15 can be downsized.

さらに、本実施形態では、ろう材50は、粉末状にて供給される粉末ろう材であるので、水側チューブ20および冷媒側チューブ30間のクリアランスに粉末状のろう材50を容易に保持することができる。このため、水側チューブ20と冷媒側チューブ30とをより安定してろう付けすることが可能となる。また、本実施形態で採用しているAl−Cu−Si系またはAl−Cu−Si−Zn系のろう材50は、硬度の高い3〜4次元系のろう材であるため、粉末での供給に好適である。   Furthermore, in this embodiment, since the brazing material 50 is a powder brazing material supplied in powder form, the powder brazing material 50 is easily held in the clearance between the water side tube 20 and the refrigerant side tube 30. be able to. For this reason, it becomes possible to braze the water side tube 20 and the refrigerant | coolant side tube 30 more stably. Further, since the Al—Cu—Si or Al—Cu—Si—Zn brazing material 50 employed in this embodiment is a 3-4 dimensional brazing material having high hardness, it is supplied in powder form. It is suitable for.

また、本実施形態では、冷媒側チューブ30を、長手方向垂直断面が扁平形状であるとともに、内部に複数の冷媒流路15bが形成された多穴チューブで構成している。ここで、チューブ内に同じ冷媒流量を流す場合では、チューブ内に1つの冷媒流路15bが形成されているときよりも、複数の冷媒流路15bが形成されている方が、冷媒流路15bの流路断面積が小さくなるので、冷媒と水との間での熱交換性能が向上する。また、複数本のチューブを別体で形成するよりも、1つのチューブで形成した方が、チューブ全体のサイズを小さくできる。よって、冷媒側チューブ30を多穴チューブで構成することで、水冷媒熱交換器15の小型高性能化が可能となる。   Moreover, in this embodiment, the refrigerant | coolant side tube 30 is comprised with the multi-hole tube in which the longitudinal cross section was flat shape, and the some refrigerant | coolant flow path 15b was formed in the inside. Here, in the case where the same refrigerant flow rate is caused to flow in the tube, the refrigerant flow path 15b is formed with the plurality of refrigerant flow paths 15b, rather than when one refrigerant flow path 15b is formed in the tube. Therefore, the heat exchange performance between the refrigerant and water is improved. In addition, the size of the entire tube can be reduced by forming a single tube rather than forming a plurality of tubes separately. Therefore, by configuring the refrigerant side tube 30 with a multi-hole tube, the water refrigerant heat exchanger 15 can be reduced in size and performance.

ところで、本実施形態の水冷媒熱交換器15は、複数本の水側チューブ20を有している。ここで、水側チューブ20の水流路15aの総流路断面積を一定(例えば40mm2)とした場合における、水側チューブ20の本数と製造コストとの関係を図6に示す。具体的には、図6は、水側チューブ20を1本とした際の製造コストを1とした場合の、水側チューブ20の本数に対する製造コストを示す特性図である。 By the way, the water refrigerant heat exchanger 15 of the present embodiment has a plurality of water-side tubes 20. Here, FIG. 6 shows the relationship between the number of the water-side tubes 20 and the manufacturing cost when the total channel cross-sectional area of the water channel 15a of the water-side tube 20 is constant (for example, 40 mm 2 ). Specifically, FIG. 6 is a characteristic diagram showing the manufacturing cost with respect to the number of water-side tubes 20 when the manufacturing cost when the number of water-side tubes 20 is one is one.

図6から明らかなように、水側チューブ20の本数を2本または3本とすることで、水側チューブ20の本数が1本の場合に対して、製造コストを8割以下に抑制することができる。一方、水側チューブ20の本数を4本以上とすると、1本の水側チューブ20に形成される水流路15aが微細化するので、水側チューブ20を形成するために特殊加工を施すことが必要となる。このため、製造コストが上昇してしまう。したがって、水側チューブ20の本数を2本または3本とすることが望ましい。   As is apparent from FIG. 6, the number of water side tubes 20 is set to two or three, thereby suppressing the manufacturing cost to 80% or less compared to the case where the number of water side tubes 20 is one. Can do. On the other hand, if the number of the water side tubes 20 is four or more, the water flow path 15a formed in one water side tube 20 is miniaturized, and therefore special processing may be performed to form the water side tube 20. Necessary. For this reason, a manufacturing cost will rise. Therefore, it is desirable that the number of the water side tubes 20 be two or three.

(第2実施形態)
次に、本発明の第2実施形態について図7に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、水側チューブ20の構成が異なるものである。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is different from the first embodiment in the configuration of the water-side tube 20.

図7に示すように、水側チューブ20における、螺旋状の内方側端部を構成する部位以外の部位、つまり仮想軸100と対向しない部位には、水流路15aに向けて突出する突起部21が複数形成されている。ここで、水側チューブ20における、螺旋状の内方側端部を構成する部位以外の部位とは、具体的には、水側チューブ20における、螺旋状の外方側端部を構成する部位、および、扁平面を構成する部位(冷媒側チューブ30に対向する部位)のことを意味している。   As shown in FIG. 7, in the water-side tube 20, a protrusion that protrudes toward the water flow path 15 a at a portion other than the portion constituting the spiral inner end, that is, the portion that does not face the virtual axis 100. A plurality of 21 are formed. Here, in the water side tube 20, the site | parts other than the site | part which comprises the spiral inner side edge part specifically, the site | part which comprises the spiral outer side edge part in the water side tube 20. , And a part constituting the flat surface (a part facing the refrigerant side tube 30).

本実施形態によれば、水側チューブ20に突起部21を形成することで、伝熱面積を増大させて、冷媒と水との間での熱交換性能を向上させることができる。   According to this embodiment, by forming the protrusion 21 on the water side tube 20, the heat transfer area can be increased and the heat exchange performance between the refrigerant and water can be improved.

ところで、水側チューブ20における、螺旋状の内方側端部を構成する部位に突起部21を形成すると、水側チューブ20に螺旋加工を施した際に、座屈が発生するおそれがある。   By the way, if the projection 21 is formed at a portion of the water side tube 20 that forms the spiral inner side end, buckling may occur when the water side tube 20 is spirally processed.

これに対し、本実施形態では、突起部21を、水側チューブ20における、螺旋状の内方側端部を構成する部位には形成せず、螺旋状の内方側端部以外の部位に形成している。これにより、水側チューブ20に座屈が発生することを抑制しつつ、冷媒と水との間での熱交換性能を向上させることができる。つまり、加工性の向上および熱交換性能の向上の両立を図ることができる。   On the other hand, in the present embodiment, the protrusion 21 is not formed in the portion that constitutes the spiral inner side end portion of the water side tube 20, but is formed in a portion other than the spiral inner side end portion. Forming. Thereby, the heat exchange performance between the refrigerant and water can be improved while suppressing the occurrence of buckling in the water-side tube 20. That is, it is possible to achieve both improvement in workability and improvement in heat exchange performance.

(第3実施形態)
次に、本発明の第3実施形態について図8に基づいて説明する。本第3実施形態は、上記第1実施形態と比較して、水冷媒熱交換器15の製造方法が異なるものである。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment is different from the first embodiment in the method for manufacturing the water-refrigerant heat exchanger 15.

本実施形態における水冷媒熱交換器15の製造方法は、水側チューブ20を形成する水側チューブ形成工程と、冷媒側チューブ30を形成する冷媒側チューブ形成工程と、水側チューブ形成工程および冷媒側チューブ形成工程の後に実施される螺旋加工工程と、螺旋加工工程の後に実施されるろう付け工程を含んでいる。   The manufacturing method of the water refrigerant heat exchanger 15 in the present embodiment includes a water side tube forming step for forming the water side tube 20, a refrigerant side tube forming step for forming the refrigerant side tube 30, a water side tube forming step, and a refrigerant. A spiral machining process performed after the side tube forming process, and a brazing process performed after the spiral machining process.

水側チューブ形成工程では、まず、銅または銅合金材料に押出加工または引抜加工を施すことにより、長手方向垂直断面が円形状である丸管を形成する。続いて、この丸管に扁平加工を施すことにより、長手方向垂直断面が扁平形状の水側チューブ20が形成される。   In the water-side tube forming step, first, a round tube having a circular longitudinal cross section in the longitudinal direction is formed by subjecting copper or a copper alloy material to extrusion processing or drawing processing. Subsequently, by subjecting this round tube to a flattening process, the water-side tube 20 having a flat longitudinal cross section in the longitudinal direction is formed.

冷媒側チューブ形成工程では、アルミニウムまたはアルミニウム合金材料に押出加工または引抜加工を施すことにより、扁平多穴チューブである冷媒側チューブ30が形成される。この冷媒側チューブ形成工程の詳細は後述する。   In the refrigerant side tube forming step, the refrigerant side tube 30 which is a flat multi-hole tube is formed by subjecting aluminum or aluminum alloy material to extrusion or drawing. Details of the refrigerant side tube forming step will be described later.

螺旋加工工程は、水側チューブ20と冷媒側チューブ30とを互いに接触させた状態で、水側チューブ20および冷媒側チューブ30を、仮想軸100の周囲を旋回するように螺旋状に巻く工程である。その後、ろう付け工程では、螺旋状に巻かれた水側チューブ20および冷媒側チューブ30を、ろう材50によりろう付け接合することにより、水冷媒熱交換器15が形成される。   The spiral processing step is a step in which the water side tube 20 and the refrigerant side tube 30 are spirally wound around the virtual axis 100 in a state where the water side tube 20 and the refrigerant side tube 30 are in contact with each other. is there. Thereafter, in the brazing process, the water-side refrigerant heat exchanger 15 is formed by brazing the water-side tube 20 and the refrigerant-side tube 30 wound in a spiral manner with the brazing material 50.

ここで、冷媒側チューブ30の長手方向垂直断面における短径方向の寸法をチューブ高さとする。冷媒側チューブ形成工程では、図8に示すように、冷媒側チューブ30における、螺旋加工工程後に螺旋状の内方側端部を構成する部位31のチューブ高さH1が、螺旋加工工程後に螺旋状の外方側端部を構成する部位32のチューブ高さH2よりも短くなるように、冷媒側チューブ30を形成する。   Here, the dimension of the minor axis direction in the longitudinal cross section of the refrigerant side tube 30 is defined as the tube height. In the refrigerant side tube forming step, as shown in FIG. 8, the tube height H1 of the portion 31 constituting the spiral inner side end portion in the refrigerant side tube 30 after the spiral machining step is helical after the spiral machining step. The refrigerant side tube 30 is formed so as to be shorter than the tube height H <b> 2 of the portion 32 that constitutes the outer side end of the tube.

ところで、冷媒側チューブ形成工程において、冷媒側チューブ30における、螺旋加工工程後に螺旋状の内方側端部を構成する部位31のチューブ高さH1と、螺旋加工工程後に螺旋状の外方側端部を構成する部位32のチューブ高さH2とが等しくなるように、冷媒側チューブ30を形成した場合、螺旋加工工程において冷媒側チューブ30に螺旋加工を施すと、冷媒側チューブ30における螺旋状の内方側端部を構成する部位のチューブ高さが、螺旋状の外方側端部を構成する部位のチューブ高さよりも大きい、偏肉状になるおそれがある。   By the way, in the refrigerant | coolant side tube formation process, the tube height H1 of the site | part 31 which comprises the spiral inner side edge part in the refrigerant | coolant side tube 30 after a spiral process, and the spiral outer side end after a spiral process When the refrigerant side tube 30 is formed so that the tube height H2 of the part 32 constituting the portion is equal, if the refrigerant side tube 30 is subjected to helical processing in the helical processing step, the helical shape in the refrigerant side tube 30 is There is a possibility that the tube height of the portion constituting the inner side end portion is larger than the tube height of the portion constituting the spiral outer side end portion, resulting in uneven thickness.

このように、螺旋加工工程後に冷媒側チューブ30が偏肉状になると、冷媒側チューブ30における螺旋状の外方側端部と水側チューブ20との隙間が大きくなり、当該部分のろう付けが困難になる。   Thus, if the refrigerant | coolant side tube 30 becomes uneven thickness shape after a spiral process, the clearance gap between the helical outer side edge part in the refrigerant | coolant side tube 30 and the water side tube 20 will become large, and the brazing of the said part will be carried out. It becomes difficult.

これに対し、本実施形態では、冷媒側チューブ形成工程で、冷媒側チューブ30における、螺旋加工工程後に螺旋状の内方側端部を構成する部位31のチューブ高さH1が、螺旋加工工程後に螺旋状の外方側端部を構成する部位32のチューブ高さH2よりも短くなるように、冷媒側チューブ30を形成している。これによれば、螺旋加工工程において冷媒側チューブ30に螺旋加工を施した際に、冷媒側チューブ30における螺旋状の内方側端部を構成する部位のチューブ高さと、螺旋状の外方側端部を構成する部位のチューブ高さとの差が小さくなる。このため、水側チューブ20と冷媒側チューブ30とのろう付け性を向上させることができる。   On the other hand, in this embodiment, in the refrigerant side tube forming step, the tube height H1 of the portion 31 constituting the spiral inner side end portion in the refrigerant side tube 30 after the spiral processing step is set after the spiral processing step. The refrigerant side tube 30 is formed so as to be shorter than the tube height H2 of the portion 32 constituting the spiral outer side end portion. According to this, when the spiral processing is performed on the refrigerant side tube 30 in the spiral processing step, the tube height of the portion constituting the spiral inner side end portion of the refrigerant side tube 30 and the spiral outer side The difference with the tube height of the site | part which comprises an edge part becomes small. For this reason, the brazing property of the water side tube 20 and the refrigerant | coolant side tube 30 can be improved.

(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present invention.

(1)上述の各実施形態では、長手方向垂直断面が扁平形状の水側チューブ20を2本設けた例について説明したが、水側チューブ20の形状や本数はこれに限定されない。例えば、図9に示すように、長手方向垂直断面が扁平形状の水側チューブ20を3本設けてもよい。また、図10、図11に示すように、長手方向垂直断面が円形状の水側チューブを2本または3本設けてもよい。   (1) In each of the above-described embodiments, an example in which two water-side tubes 20 having a flat longitudinal cross section are provided has been described, but the shape and number of the water-side tubes 20 are not limited thereto. For example, as shown in FIG. 9, three water-side tubes 20 having a flat longitudinal section in the longitudinal direction may be provided. Moreover, as shown in FIGS. 10 and 11, two or three water-side tubes having a circular longitudinal cross section in the longitudinal direction may be provided.

(2)上述の各実施形態のように、水側チューブ20および冷媒側チューブ30は、流路を形成していれば、どのような形状にも変更可能である。   (2) Like each above-mentioned embodiment, if the water side tube 20 and the refrigerant | coolant side tube 30 form the flow path, they can be changed into any shape.

(3)上述の各実施形態では、ヒートポンプ式給湯器に用いられる水冷媒熱交換器に本発明を適用したが、他の用途に用いられる水冷媒熱交換器においても、本発明を適用できる。   (3) In each above-mentioned embodiment, although the present invention was applied to the water refrigerant heat exchanger used for a heat pump type hot water heater, the present invention can be applied also to the water refrigerant heat exchanger used for other uses.

15a 水流路
15b 冷媒流路
20 水側チューブ
30 冷媒側チューブ
50 ろう材
15a Water flow path 15b Refrigerant flow path 20 Water side tube 30 Refrigerant side tube 50 Brazing material

Claims (7)

水が流れる水流路(15a)が内部に形成された水側チューブ(20)と、冷媒が流れる冷媒流路(15b)が内部に形成された冷媒側チューブ(30)とを備え、前記水と前記冷媒との間で熱交換を行う熱交換器であって、
前記水側チューブ(20)は、銅または銅合金製であり、
前記冷媒側チューブ(30)は、アルミニウムまたはアルミニウム合金製であり、
前記水側チューブ(20)と前記冷媒側チューブ(30)とが互いに接触した状態で、前記水側チューブ(20)および前記冷媒側チューブ(30)が仮想軸(100)の周囲を旋回するように螺旋状に巻かれており、
前記水側チューブ(20)と前記冷媒側チューブ(30)とは、Al−Cu−Si系またはAl−Cu−Si−Zn系のろう材(50)にてろう付けされていることを特徴とする熱交換器。
A water-side tube (20) in which a water flow path (15a) through which water flows is formed; and a refrigerant-side tube (30) in which a refrigerant flow path (15b) through which a refrigerant flows is formed; A heat exchanger for exchanging heat with the refrigerant,
The water side tube (20) is made of copper or copper alloy,
The refrigerant side tube (30) is made of aluminum or an aluminum alloy,
The water side tube (20) and the refrigerant side tube (30) turn around the virtual axis (100) in a state where the water side tube (20) and the refrigerant side tube (30) are in contact with each other. It is wound in a spiral
The water-side tube (20) and the refrigerant-side tube (30) are brazed with an Al-Cu-Si-based or Al-Cu-Si-Zn-based brazing material (50). Heat exchanger.
前記ろう材(50)は、粉末状にて供給される粉末ろう材であることを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the brazing material (50) is a powder brazing material supplied in powder form. 前記冷媒側チューブ(30)は、長手方向垂直断面が扁平形状であるとともに、内部に複数の前記冷媒流路(15b)が形成された多穴チューブであることを特徴とする請求項1または2に記載の熱交換器。   The said refrigerant | coolant side tube (30) is a multi-hole tube in which the longitudinal cross section was flat shape, and the said some refrigerant | coolant flow path (15b) was formed in the inside. The heat exchanger as described in. 前記水側チューブ(20)における、前記螺旋状の内方側端部を構成する部位以外の部位には、前記水流路(15a)に向けて突出する突起部(21)が形成されていることを特徴とする請求項1ないし3のいずれか1つに記載の熱交換器。   A protrusion (21) protruding toward the water flow path (15a) is formed in a portion of the water side tube (20) other than the portion constituting the spiral inner end. The heat exchanger according to any one of claims 1 to 3, wherein 前記水側チューブ(20)は、長手方向垂直断面が円形状である丸管に扁平加工を施すことにより、長手方向垂直断面が扁平形状になるように形成されており、
前記水側チューブ(20)が構成する螺旋半径をr、前記丸管の外径をDとしたとき、
前記水側チューブ(20)は、扁平率が40%以上、かつ、r/D≧2.2の関係を満たすことを特徴とする請求項1ないし4のいずれか1つに記載の熱交換器。
The water side tube (20) is formed so that the vertical cross section in the longitudinal direction becomes a flat shape by subjecting the round tube having a circular shape in the longitudinal direction to a flat shape.
When the spiral radius formed by the water side tube (20) is r and the outer diameter of the round tube is D,
The heat exchanger according to any one of claims 1 to 4, wherein the water side tube (20) has a flatness ratio of 40% or more and satisfies a relationship of r / D≥2.2. .
前記水側チューブ(20)は、長手方向垂直断面が円形状または扁平形状であって、
2つまたは3つの前記水側チューブ(20)が並列に配置された状態、かつ、前記冷媒側チューブ(30)と各前記水側チューブ(20)とが互いに接触した状態で、前記冷媒側チューブ(30)および前記水側チューブ(20)が前記仮想軸(100)の周囲を旋回するように螺旋状に巻かれており、
前記各水側チューブ(20)と前記冷媒側チューブ(30)とが、それぞれ、前記ろう材(50)にてろう付けされていることを特徴とする請求項1ないし5のいずれか1つに記載の熱交換器。
The water-side tube (20) has a longitudinal or vertical cross section that is circular or flat,
In a state where two or three of the water side tubes (20) are arranged in parallel, and the refrigerant side tube (30) and each of the water side tubes (20) are in contact with each other, the refrigerant side tube (30) and the water side tube (20) are spirally wound so as to swivel around the virtual axis (100),
Each said water side tube (20) and said refrigerant | coolant side tube (30) are each brazed with the said brazing | wax material (50), The one of Claim 1 thru | or 5 characterized by the above-mentioned. The described heat exchanger.
請求項1ないし6のいずれか1つに記載の熱交換器の製造方法であって、
前記冷媒側チューブ(30)を、長手方向垂直断面が扁平形状となるように形成する冷媒側チューブ形成工程と、
前記冷媒側チューブ形成工程の後に、前記水側チューブ(20)と前記冷媒側チューブ(30)とを互いに接触させた状態で、前記水側チューブ(20)および前記冷媒側チューブ(30)を、前記仮想軸(100)の周囲を旋回するように螺旋状に巻く螺旋加工工程とを含んでおり、
前記冷媒側チューブ(30)の長手方向垂直断面における短径方向の寸法をチューブ高さとしたときに、
前記冷媒側チューブ形成工程では、前記冷媒側チューブ(30)における、前記螺旋加工工程後に前記螺旋状の内方側端部を構成する部位(31)の前記チューブ高さ(H1)が、前記螺旋加工工程後に前記螺旋状の外方側端部を構成する部位(32)の前記チューブ高さ(H2)よりも短くなるように、前記冷媒側チューブ(30)を形成することを特徴とする熱交換器の製造方法。
It is a manufacturing method of the heat exchanger as described in any one of Claim 1 thru | or 6, Comprising:
A refrigerant side tube forming step of forming the refrigerant side tube (30) such that a longitudinal vertical cross section thereof is a flat shape;
After the refrigerant side tube forming step, in a state where the water side tube (20) and the refrigerant side tube (30) are in contact with each other, the water side tube (20) and the refrigerant side tube (30) are A spiral processing step of spirally winding around the virtual axis (100),
When the dimension of the minor axis direction in the longitudinal vertical cross section of the refrigerant side tube (30) is the tube height,
In the refrigerant side tube forming step, the tube height (H1) of the portion (31) constituting the spiral inner side end portion after the spiral machining step in the refrigerant side tube (30) is the spiral. The refrigerant-side tube (30) is formed so as to be shorter than the tube height (H2) of the portion (32) constituting the spiral outer end portion after the processing step. Exchanger manufacturing method.
JP2013079423A 2013-04-05 2013-04-05 Heat exchanger and manufacturing method thereof Expired - Fee Related JP6056620B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013079423A JP6056620B2 (en) 2013-04-05 2013-04-05 Heat exchanger and manufacturing method thereof
DE112014001840.6T DE112014001840T5 (en) 2013-04-05 2014-03-17 Heat exchanger and process for its preparation
PCT/JP2014/001489 WO2014162669A1 (en) 2013-04-05 2014-03-17 Heat exchanger and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079423A JP6056620B2 (en) 2013-04-05 2013-04-05 Heat exchanger and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2014202425A true JP2014202425A (en) 2014-10-27
JP2014202425A5 JP2014202425A5 (en) 2015-07-30
JP6056620B2 JP6056620B2 (en) 2017-01-11

Family

ID=51657984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079423A Expired - Fee Related JP6056620B2 (en) 2013-04-05 2013-04-05 Heat exchanger and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6056620B2 (en)
DE (1) DE112014001840T5 (en)
WO (1) WO2014162669A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282490A (en) * 1987-05-13 1988-11-18 Showa Alum Corp Manufacture of heat exchanger
JPH07223090A (en) * 1994-02-15 1995-08-22 Nhk Spring Co Ltd Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JPH1085879A (en) * 1996-09-17 1998-04-07 Nippon Light Metal Co Ltd Bending method of fine-plate heat exchanger, and finned heat exchanger
JP2000117484A (en) * 1998-10-19 2000-04-25 Senko Kinzoku:Kk Seamless ring-shaped brazing material and manufacture thereof
JP2002107069A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Heat exchanger and heat pump water heater using the same
JP2004340455A (en) * 2003-05-15 2004-12-02 Taiheiyo Seiko Kk Heat exchanger
JP2008075898A (en) * 2006-09-19 2008-04-03 Sanyo Electric Co Ltd Heat exchanger for heat pump type water heater
US20120180991A1 (en) * 2011-01-13 2012-07-19 Viswanathan Aroon K Heat exchange tube and method of using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282490A (en) * 1987-05-13 1988-11-18 Showa Alum Corp Manufacture of heat exchanger
JPH07223090A (en) * 1994-02-15 1995-08-22 Nhk Spring Co Ltd Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JPH1085879A (en) * 1996-09-17 1998-04-07 Nippon Light Metal Co Ltd Bending method of fine-plate heat exchanger, and finned heat exchanger
JP2000117484A (en) * 1998-10-19 2000-04-25 Senko Kinzoku:Kk Seamless ring-shaped brazing material and manufacture thereof
JP2002107069A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Heat exchanger and heat pump water heater using the same
JP2004340455A (en) * 2003-05-15 2004-12-02 Taiheiyo Seiko Kk Heat exchanger
JP2008075898A (en) * 2006-09-19 2008-04-03 Sanyo Electric Co Ltd Heat exchanger for heat pump type water heater
US20120180991A1 (en) * 2011-01-13 2012-07-19 Viswanathan Aroon K Heat exchange tube and method of using the same

Also Published As

Publication number Publication date
WO2014162669A1 (en) 2014-10-09
DE112014001840T5 (en) 2016-01-28
JP6056620B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6172950B2 (en) Double tube for heat exchanger
JP5519205B2 (en) Heat exchanger and heat pump device using the same
JP2009079781A (en) Heat exchanger, heat pump water heater using the same, and heat pump air conditioner
JP2005133999A (en) Heat pump type hot-water supplier
JP2006046888A (en) Composite heat exchanger tube
EP2282140A1 (en) Heat exchanger and hot-water supply device using same
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP4572662B2 (en) Heat exchanger
JP2006189249A (en) Double pipe heat exchanger
JP3477531B1 (en) Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger
JP6056620B2 (en) Heat exchanger and manufacturing method thereof
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2007232338A (en) Double tube type heat exchanger
WO2013118762A1 (en) Fin tube-type heat exchanger
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP2014153006A (en) Heat exchanger and method of manufacturing the same
WO2012017777A1 (en) Double pipe for heat exchanger
JP2007271194A (en) Heat exchanger
JP2005061667A (en) Heat exchanger
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
JP2011099620A (en) Heat exchanger
JP2007032943A (en) Composite heat exchanger tube
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP5760105B2 (en) Heat exchanger for hot water supply

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R151 Written notification of patent or utility model registration

Ref document number: 6056620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees