JP2014200165A - 調停装置、調停方法およびプログラム - Google Patents

調停装置、調停方法およびプログラム Download PDF

Info

Publication number
JP2014200165A
JP2014200165A JP2013258367A JP2013258367A JP2014200165A JP 2014200165 A JP2014200165 A JP 2014200165A JP 2013258367 A JP2013258367 A JP 2013258367A JP 2013258367 A JP2013258367 A JP 2013258367A JP 2014200165 A JP2014200165 A JP 2014200165A
Authority
JP
Japan
Prior art keywords
power
priority
control
electrical devices
server device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013258367A
Other languages
English (en)
Inventor
由貴男 藤原
Yukio Fujiwara
由貴男 藤原
亀山 健司
Kenji Kameyama
健司 亀山
英紀 友野
Hidenori Tomono
英紀 友野
塚本 武雄
Takeo Tsukamoto
武雄 塚本
吉澤 史男
Fumio Yoshizawa
史男 吉澤
啓佑 小西
Keisuke Konishi
啓佑 小西
孝則 稲留
Takanori Inatome
孝則 稲留
英章 荒谷
Hideaki Araya
英章 荒谷
重太 今
Shigeta Kon
重太 今
宏宇 新田
Hirotaka Nitta
宏宇 新田
利貴 鈴木
Toshitaka Suzuki
利貴 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013258367A priority Critical patent/JP2014200165A/ja
Priority to EP20140156713 priority patent/EP2778835A3/en
Priority to US14/196,153 priority patent/US9500683B2/en
Priority to CN201410190505.9A priority patent/CN104052149B/zh
Publication of JP2014200165A publication Critical patent/JP2014200165A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Human Computer Interaction (AREA)
  • Navigation (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Telephonic Communication Services (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

【課題】機器に対する電力供給を効率的に制御できるようにする。
【解決手段】調停装置(調停サーバ装置800)は、決定部(決定部802)と算出部(算出部803)とを備える。決定部は、制御対象領域内の人間の位置および動作状況の少なくとも一方に応じて、複数の電気機器それぞれの優先度を決定する。算出部は、複数の電気機器に割り当てる電力の合計が制限値以内となり、かつ、優先度が高い電気機器を優先して電力を割り当てるように、電気機器それぞれに対して割り当てる電力を算出する。
【選択図】図18

Description

本発明は、調停装置、調停方法およびプログラムに関する。
例えばオフィス等には、ユーザが使用するPC(パーソナルコンピュータ)などの電気機器とともに、空調機および照明などの、業務環境に影響する機器が設置されている。オフィス等では、業務環境をより快適にすることにより生産性を向上させることが望まれる。このため、例えば省エネルギー化のために夏季の空調機の設定温度を上げるよりも、業務環境を快適にするために設定温度を適切に維持することが望ましい場合がある。
特許文献1および非特許文献1は、生活の質を落とすことなく省エネルギー化を実現するため、電気機器に対する電力の供給を制御する電力制御システムを開示している。例えば、非特許文献1では、機器の特性および時間帯に応じて変化させた優先度を用いて、優先度の高い機器に電力を供給する技術が提案されている。
しかしながら、これらの方法では、機器単体の機能に応じて決定される優先度を用いるため、本当に必要な機器に電力を供給することができなかった。例えば、PCの電源をオンにしたまま当該PCのユーザが離席した場合には、優先度が変化しないため、PCへの電力供給が継続される。このように、不要な機器に電力が供給され、業務環境を快適にするための機器等に対して効率的に電力を供給できない場合があった。
また、執務者が複数存在するオフィス空間においては、執務者の行動がそれぞれ時間によって異なるため、機器に対する優先度や、機器に対する時間を考慮した優先度を用いた従来の方法では、効率的な電力供給を実現することが難しい。
本発明は、上記に鑑みてなされたものであって、機器に対する電力供給を効率的に制御できる調停装置、調停方法およびプログラムを提供することを主な目的とする。
上述した課題を解決し、目的を達成するために、本発明は、制御対象領域内の人間の位置および動作状況の少なくとも一方に応じて、複数の電気機器それぞれの優先度を決定する決定部と、複数の前記電気機器に割り当てる電力の合計が制限値以内となり、かつ、前記優先度が高い前記電気機器を優先して電力を割り当てるように、前記電気機器それぞれに対して割り当てる電力を算出する算出部と、を備えることを特徴とする。
本発明によれば、機器に対する電力供給を効率的に制御できるという効果を奏する。
図1は、本実施形態の機器制御システムのネットワーク構成図である。 図2は、スマートフォン、センサの装着状態及び方向を定義した図である。 図3は、人間の動作を検知できる情報機器をスマートフォンと別個に装着した例を示す図である。 図4は、各センサが検知する方向を示す図である。 図5は、監視カメラの設置状態の一例を示す図である。 図6は、LED照明機器、タップ、空調機の設置状態の一例を示す図である。 図7は、測位サーバ装置の機能的構成を示すブロック図である。 図8は、着座動作と起立動作のそれぞれを行った場合における鉛直方向の加速度成分の波形を示す図である。 図9は、しゃがむ動作と起立動作をそれぞれ行った場合における水平方向の角速度成分の波形を示す図である。 図10は、静止状態で向きを変える動作をおこなった際の鉛直方向の角速度成分の波形を示す図である。 図11は、着座状態でディスプレイから上方向に目線を外した場合の頭部の水平方向の角速度成分の波形を示す図である。 図12は、着座状態でディスプレイから下方向に目線を外した場合の頭部の水平方向角速度成分の波形を示す図である。 図13は、本実施形態の制御サーバ装置の機能的構成を示すブロック図である。 図14は、本実施形態の測位サーバ装置による検出処理の手順を示すフローチャートである。 図15は、本実施形態の機器制御処理の手順を示すフローチャートである。 図16は、電力調停処理の概要を示す図である。 図17は、時間経過に伴う電力量の変化の一例を示す図である。 図18は、調停サーバ装置の機能的構成を示すブロック図である。 図19は、優先度テーブルのデータ構造の一例を示す図である。 図20は、本実施形態の調停サーバ装置による電力調停処理の手順を示すフローチャートである。 図21は、電力調停処理の具体例を説明するための図である。 図22は、電力調停処理の具体例を説明するための図である。 図23は、電力調停処理の具体例を説明するための図である。 図24は、本実施形態にかかる装置のハードウェア構成例を示す説明図である。
以下に添付図面を参照して、調停装置、調停方法およびプログラムの実施形態を詳細に説明する。
本実施形態の調停装置は、ユーザの位置および動作状況(姿勢など)の少なくとも一方に応じて、PC、照明(照明の照度)、および、空調機(空調機の温度)などに優先順位をつける。そして、優先順位が高い電気機器(電気機器の動作モード)を優先し、かつ、各電気機器に割り当てる電力の合計が制限値以内となるように、各電気機器に電力を割り当てる。これにより、機器に対する電力供給を効率的に制御可能となる。例えば、離席したユーザが使用していたPCへの電力供給を停止し、停止した分の電力を、業務環境を快適にするために用いられる空調機等に対して供給することができる。従って、省エネルギー化とともに、例えばオフィス環境での生産性の向上を実現することができる。
以下では、本実施形態の調停装置を、ユーザの位置等に応じて機器の電力を制御する機器制御システムの一部の装置として実現する例を説明する。適用可能なシステムはこのような機器制御システムに限られるものではない。
図1は、本実施形態の機器制御システムのネットワーク構成図である。本実施形態の機器制御システムは、図1に示すように、複数のスマートフォン300と、撮像装置としての複数の監視カメラ400と、測位サーバ装置100と、制御サーバ装置200と、制御対象の機器としての複数のLED照明機器500、複数のタップ600および複数の空調機700と、調停装置としての調停サーバ装置800と、を備えている。
以下では制御サーバ装置200と調停サーバ装置800とを別の装置として実現する例を説明するが、装置の構成はこれに限られるものではない。例えば、両者の機能を1のサーバ装置内に備えるように構成してもよい。すなわち、測位サーバ装置100、制御サーバ装置200、および、調停サーバ装置800の各機能は、1以上のサーバ装置に任意に分散させてもよい。
複数のスマートフォン300および複数の監視カメラ400と、測位サーバ装置100とは、例えば、Wi−Fi(Wireless Fidelity)等の無線通信ネットワークで接続されている。なお、無線通信の方式は、Wi−Fiに限定されるものではない。また、監視カメラ400と測位サーバ装置100とは有線で接続されていてもよい。
測位サーバ装置100と制御サーバ装置200とは、インターネットやLAN(Local Area Network)等のネットワークに接続されている。
また、制御サーバ装置200と、複数のLED(Light Emitting Diode)照明機器500、複数のタップ600および複数の空調機700とは、例えば、Wi−Fi等の無線通信ネットワークで接続されている。
なお、制御サーバ装置200と、複数のLED照明機器500、複数のタップ600および複数の空調機700との通信方式はWi−Fiに限定されるものではなく、その他の無線通信方式を利用しても良い他、Ethernet(登録商標)ケーブルやPLC(Power Line Communications)等の有線通信方式を利用することもできる。
スマートフォン300は、人間に所持されて、人間の動作を検知する情報機器である。図2は、スマートフォン300の装着状態を示す図である。スマートフォン300は、人間が手等で所持する他、図2に示すように、人間の腰に装着されてもよい。
図1に戻り、スマートフォン300のそれぞれには、加速度センサ、角速度センサおよび地磁気センサが搭載されており、1秒等の一定時間ごとに、各センサでの検知データを測位サーバ装置100に送信している。ここで、加速度センサの検知データは、加速度ベクトルである。角速度センサの検知データは、角速度ベクトルである。地磁気センサの検知データは、磁気方位ベクトルである。
なお、本実施形態では、人間の動作を検知する情報機器としてスマートフォン300を用いているが、加速度センサ、角速度センサおよび地磁気センサを備えて人間の動作を検知できる情報機器であれば、スマートフォン300等の携帯端末に限定されるものではない。
また、加速度センサ、角速度センサおよび地磁気センサ等の人間の動作を検知する情報機器をスマートフォン300に備えるとともに、スマートフォン300とは別個に人間の動作を検知する情報機器を装着するように構成してもよい。
例えば、図3は、人間の動作を検知できる情報機器をスマートフォン300と別個に装着した例を示す図である。図3に示すように、スマートフォン300とは別個に、加速度センサ、角速度センサ、地磁気センサを備えた小型のヘッドセットタイプのセンサ群301を頭部に装着することができる。この場合、センサ群301で検知した検知データは、センサ群301が直接、測位サーバ装置100に送信する他、スマートフォン300経由で測位サーバ装置100に送信することができる。このように、人間の頭部にスマートフォン300の各センサとは別個にセンサ群301を装着することにより、種々の姿勢検出を行うことが可能となる。
図4は、各センサが検知する方向を示す図である。図4(a)は、加速度センサ、地磁気センサが検知する方向を示している。図4(a)に示すように、加速度センサ、地磁気センサにより、進行方向、鉛直方向、水平方向の加速度成分、地磁気方位成分のそれぞれの検知が可能となる。また、図4(b)は、角速度センサにより検知される角速度ベクトルAを示している。ここで、矢印Bが、角速度の正方向を示している。本実施形態では、角速度ベクトルAの、図4(a)に示す進行方向、鉛直方向、水平方向への射影を考え、それぞれ、進行方向の角速度成分、鉛直方向の角速度成分、水平方向の角速度成分という。
図1に戻り、監視カメラ400は、制御対象領域である室内を撮像するものであり、制御対象領域である室の上部付近等に設置される。図5は、監視カメラ400の設置状態の一例を示す図である。図5の例では、室内の扉付近の2か所に設置されているが、これに限定されるものではない。監視カメラ400は、制御対象領域である室内を撮像して、その撮像画像(撮像映像)を、測位サーバ装置100に送信する。
図1に戻り、本実施形態では、照明系システム、タップ系システム、空調系システムを電力制御の対象としている。照明系システムとして複数のLED照明機器500、タップ系システムとして複数のタップ600、空調系システムとして複数の空調機700を電力制御の対象としている。
複数のLED照明機器500、複数のタップ600、複数の空調機700は、制御対象領域である室内に設置されている。図6は、LED照明機器500、タップ600、空調機700の設置状態の一例を示す図である。
図6に示すように、室内には、6個の机で一つのグループが形成され、3つのグループが設けられている。そして、LED照明機器500とタップ600は、一つの机に対してそれぞれ一つが設けられている。一方、空調機700は、2つのグループの間に1つずつ設けられている。なお、このようなLED照明機器500、タップ600、空調機700の配置は一例であり、図6に示す例に限定されるものではない。
なお、図6には図示されていないが、室外に設置された系統電力計測機器により、本実施形態の室内の全電力の総和情報を把握できるようになっている。
室内では、18名のユーザが特定の業務活動を実施しており、室外への出入りは、2つの扉で行われる。本実施形態では、レイアウトや機器類やユーザ数等を限定しているが、より多種多様なレイアウト並びに機器類へ適用することができる。さらに、空間規模やユーザ数のスケーラビリティにおける任意性や、個人単位もしくは集団単位で見た場合のユーザ属性や携わる業務種のバリエーションにおける任意性に対しても、幅広く拡張して適用することができる。また、図5、6に示すような屋内空間に限らず、屋外等で本実施形態を適用してもよい。
なお、本実施形態の測位サーバ装置100、制御サーバ装置200、および、調停サーバ装置800は、図5、6に示す室の外部に設置されている。測位サーバ装置100、制御サーバ装置200、および、調停サーバ装置800を、制御対象領域の室内に設け、電力制御の対象とすることも可能である。
また、本実施形態では、通信ネットワーク系を構成するWi−Fiアクセスポイントやスイッチングハブやルータなどのネットワーク機器類に関しては、電力制御の対象外としたが、電力制御の対象とすることも可能である。
尚、これらネットワーク機器類が消費する電力量は、LED照明機器500と空調機700とタップ600における電力総和を、上記系統電力総和から除した電力量として算出することができる。
複数のLED照明機器500、複数のタップ600、複数の空調機700のそれぞれは、制御サーバ装置200により、ネットワークを介して遠隔制御される。
すなわち、LED照明機器500は、照明範囲と照度が、制御サーバ装置200により遠隔制御される。具体的には、LED照明機器500は、個別に遠隔制御可能なオン/オフスイッチが設置されており、オン/オフ制御はWi−Fiによる無線制御方式で制御サーバ装置200により行われる。LED照明機器500は、低消費電力性を考慮して調光機能付きのLED灯を利用し、且つ調光機能に関してもWi−Fi経由での遠隔制御が可能な構成としている。
なお、照明系システムとしては、LED照明機器500に限定されるものではなく、例えば、白熱灯や蛍光灯などを用いることができる。
空調機700は、その電源のオンオフが制御サーバ装置200により遠隔制御される。すなわち、空調機700は、個別に遠隔制御が可能な構成となっており、制御対象は空調機700のオン/オフに加えて、風向き、送風強度となっている。本実施形態では、送風する温度や湿度について制御を行っていないが、これに限定されるものではなく、温度や湿度を制御対象とすることもできる。
タップ600は、複数のタップ口を備えたものであり、各タップ口は電源供給のオンオフが制御サーバ装置200により遠隔制御される。すなわち、タップ600は、タップ口単位に個別に遠隔制御可能なオン/オフスイッチが設けられている。オン/オフ制御はWi−Fiによる無線制御方式で制御サーバ装置200により行われる。一つのタップ600に含まれるタップ口は任意の数とすることができるが、一例として4口のタップ口で一つのタップを構成したものを用いることができる。
タップ600は、図6に示すように、各机に一つずつ設置されている。タップ600には、不図示の電気機器、具体的には、デスクトップ型PCやディスプレイ装置のほか、ノートブック型PC、プリンタ装置、充電器類が接続可能である。
本実施形態では、タップ600のタップ口に、人間との正対関係が重要となる機器であるディスプレイ装置の電源が接続されている。ディスプレイ装置は、制御サーバ装置200によって、タップ口へ供給する電力のオン/オフによる制御が可能な機器である。
なお、デスクトップ型PC本体やプリンタ装置をタップ600に接続した場合でも、装置の構成上、制御サーバ装置200によって、タップ口へ供給する電力のオン/オフによる制御ができない。このため、デスクトップ型PC本体に関しては、ネットワーク経由で省電力モードもしくはシャットダウンに移行できるような制御ソフトウェアをインストールしておくことにより、省電力への制御を行い、省電力モードあるいはシャットダウン状態からの復帰はユーザ自身によるマニュアル操作とする。
また、充電器類や充電時のノートブック型PCをタップ600に接続する場合には、利便性を考慮して常時オンとする。なお、タップ600のタップ口に接続する機器については、これらに限定されるものではない。
図1に戻り、測位サーバ装置100は、各センサの検知データを受信して、各センサを装着した人間の位置や動作状況を検出し、当該位置や動作状況を制御サーバ装置200および調停サーバ装置800に送信する。
図7は、測位サーバ装置100の機能的構成を示すブロック図である。測位サーバ装置100は、図7に示すように、通信部101と、位置特定部102と、動作状況検出部103と、補正部104と、記憶部110とを主に備えている。
記憶部110は、ハードディスクドライブ装置(HDD)やメモリ等の記憶媒体であり、制御対象領域の室内の地図データを記憶している。
通信部101は、一定時間ごとに、スマートフォン300に搭載された加速度センサ、角速度センサおよび地磁気センサのそれぞれ、あるいはスマートフォン300とは別個のセンサ群301の加速度センサ、角速度センサ、地磁気センサのそれぞれから検知データを受信する。すなわち、通信部101は、加速度センサから加速度ベクトルを受信し、角速度センサから角速度ベクトルを受信し、地磁気センサから磁気方位ベクトルを受信する。
また、通信部101は、監視カメラ400から撮像画像を受信する。さらに、通信部101は、後述する人間の絶対位置、および方向、姿勢等の動作状況を、制御サーバ装置200および調停サーバ装置800に送信する。
位置特定部102は、受信した検知データを解析して、室内での人間の絶対位置を人間の肩幅または歩幅の精度で特定する。位置特定部102による人間の絶対位置の特定手法の詳細については後述する。
動作状況検出部103は、受信した検知データを解析して、人間の動作状況を検出する。本実施形態では、動作状況検出部103は、動作状況として、人間が静止状態か歩行状態かを検出する。また、動作状況検出部103は、動作状況が静止状態である場合に、検知データに基づいて、制御対象領域内の機器に対する人間の方向、人間の姿勢が起立状態か着座状態かの動作状況を検出する。
すなわち、動作状況検出部103は、監視カメラ400からの撮像画像により、人間が扉から入室したことを検知した場合に、当該入室した人間に装着されたスマートフォン300の加速度センサ、角速度センサ、地磁気センサ、あるいはスマートフォン300とは別個のセンサ群301の加速度センサ、角速度センサ、地磁気センサから逐次受信している検知データのうち加速度ベクトルと角速度ベクトルのそれぞれの時系列データを用いて、人間の動作状況が歩行状態か静止状態かを逐次判定する。ここで、加速度ベクトルと角速度ベクトルを用いて、人間の動作状況が歩行状態かを判定する手法は、特許第4243684号公報に開示されているデッドレコニング装置による処理で実現する。そして、動作状況検出部103は、この手法により人間が歩行状態でないと判断された場合に、人間が静止状態であると判定する。
より具体的には、動作状況検出部103は、特許第4243684号公報に開示されているデッドレコニング装置による処理と同様に、以下のように人間の動作状態を検出する。
すなわち、動作状況検出部103は、加速度センサから受信した加速度ベクトルと角速度センサから受信した角速度ベクトルから重力加速度ベクトルを求めて、加速度ベクトルから重力加速度ベクトルを差し引き、鉛直方向の加速度を除去して、残差加速度成分の時系列データを得る。そして、動作状況検出部103は、この残差加速度成分の時系列データに対して主成分解析を行って、歩行動作の進行方向を求める。さらに、動作状況検出部103は、鉛直方向の加速度成分の山ピークと谷ピークのペアを探索し、進行方向の加速度成分の谷ピークと山ピークのペアを探索する。そして、動作状況検出部103は、進行方向の加速度成分の勾配を算出する。
さらに、動作状況検出部103は、鉛直方向の加速度成分が山ピークから谷ピークに変化する当該谷ピークの検出時刻における、上記進行方向の加速度成分の勾配が所定値以上であるか否かを判断し、所定値以上である場合に、人間の動作状況は歩行状態であると判定する。
一方、上記処理において、鉛直方向の加速度成分の山ピークと谷ピークのペアが探索されず、あるいは、進行方向の加速度成分の谷ピークと山ピークのペアが探索されず、若しくは、鉛直方向の加速度成分が山ピークから谷ピークに変化する当該谷ピークの検出時刻における、上記進行方向の加速度成分の勾配が所定値未満である場合には、動作状況検出部103は、人間の動作状況は静止状態であると判定する。
そして、人間が静止状態であると判定されたら、位置特定部102は、加速度ベクトル、角速度ベクトルおよび磁気方位ベクトルを用いて、扉の位置を基準位置として、当該基準位置から静止状態であると判定された位置までの相対移動ベクトルを求める。ここで、加速度ベクトル、角速度ベクトルおよび磁気方位ベクトルを用いた相対移動ベクトルの算出手法は、特開2011−47950号公報のデッドレコニング装置の処理で開示されている手法を用いる。
より具体的には、位置特定部102は、特開2011−47950号公報のデッドレコニング装置の処理と同様に、以下のように相対移動ベクトルを求める。
すなわち、位置特定部102は、加速度センサから受信した加速度ベクトルと角速度センサから受信した角速度ベクトルから重力方位ベクトルを求め、重力方位ベクトルと、角速度ベクトルまたは地磁気センサから受信した磁気方位ベクトルとから人間の姿勢角を移動方位として算出する。また、位置特定部102は、加速度ベクトルと角速度ベクトルとから重力加速度ベクトルを求め、重力加速度ベクトルと加速度ベクトルとから、歩行動作によって発生している加速度ベクトルを算出する。そして、位置特定部102は、重力加速度ベクトルと、歩行動作によって発生している加速度ベクトルとから、歩行動作を解析して検出し、検出結果に基づいて、歩行動作の大きさを、重力加速度ベクトルと歩行動作によって発生している加速度ベクトルとに基づいて計測して、計測結果を歩幅とする。そして、位置特定部102は、このようにして求めた移動方位と歩幅とを積算することにより、基準位置からの相対移動ベクトルを求める。すなわち、人間の歩幅あるいは肩幅、例えば、略60cm以下(より具体的には略40cm程度以下)の精度で、リアルタイムに人間の位置を検出していることになる。
このようにして相対移動ベクトルが算出されたら、位置特定部102は、扉からの相対移動ベクトルと、記憶部110に記憶されている室内の地図データとから、人間の移動後の絶対位置を特定する。
これにより、位置特定部102は、人間が室内に配置されたどの机の位置にいるかまでを特定することができ、その結果、人間の肩幅、例えば、略60cm以下(より具体的には略40cm程度以下)の精度で、人間の位置を特定することが可能となる。
このような位置精度は、高ければ高いほど良く、1cmレベルまでできれば良いというものではない。例えば、2人以上が会話をしている場面を想定すると、体を接して話しをすることは少なく、ある程度の距離は離れている。そこで、精度を考える場合、人の肩幅または歩幅相当の精度、立っているか、座っているかは、腰から膝までの長さ相当が本実施形態では適切な精度としている。
厚生労働省の公表している人体計測データ(河内まき子,持丸正明,岩澤洋,三谷誠二(2000):日本人人体寸法データベース1997−98,通商産業省工業技術院くらしとJISセンター)によれば、青年、高齢者の男女の肩幅に相当するデータ(肩峰幅)は、平均値の幅が最も低い高齢者女性で約35cm(34.8cm)、最も高い青年男性で約40cm(39.7cm)となっている。また、腰から膝までの長さ(恥骨結合上縁高―大腿骨外側上顆高)の差は、同様に、約34cm〜約38cmである。一方、人が移動する場合の歩幅は、50m歩いた場合、95歩となり、これから約53cm(50÷95×10)となり、本発明で用いる位置検出方法は、歩幅相当の精度が可能である。従って、上記データから、精度としては、60cm以下、好ましくは40cm以下が妥当であるとして本実施形態を構成している。これらデータは精度を考えるための基準の目安になるが、日本人に基づいたものであり、この数値に限定されるものではない。
また、人間の絶対位置を特定し、人間が机の前の席で静止状態である場合には、動作状況検出部103は、地磁気センサから受信した磁気方位ベクトルの向きにより、人間のディスプレイ装置に対する方向(向き)を判定する。また、動作状況検出部103は、人間が机の前の席で静止状態である場合には、加速度ベクトルの鉛直方向の加速度成分から、人間の姿勢、すなわち起立状態か着座状態かを判定する。
ここで、起立状態か着座状態かの判定は、特許第4243684号公報に開示されているデッドレコニング装置と同様に、加速度センサから受信した加速度ベクトルと角速度センサから受信した角速度ベクトルから重力加速度ベクトルを求めて、鉛直方向の加速度成分を求める。そして、動作状況検出部103は、特許第4243684号公報に開示されているデッドレコニング装置と同様に、鉛直方向の加速度成分の山と谷のピークを求める。
図8は、着座動作と起立動作のそれぞれを行った場合における鉛直方向の加速度成分の波形を示す図である。図8に示すように、着座動作の場合には、鉛直方向の加速度成分の山のピークから谷のピークまでの間隔が約0.5秒前後である。一方、起立動作の場合には、鉛直方向の加速度成分の谷のピークから山のピークまでの間隔が約0.5秒である。このため、動作状況検出部103は、かかるピークの間隔により、人間が着座状態か起立状態かを判断している。すなわち、動作状況検出部103は、鉛直方向の加速度成分の山のピークから谷のピークまでの間隔が0.5秒から所定範囲内である場合には、人間の動作状態は着座状態であると判定する。また、動作状況検出部103は、鉛直方向の加速度成分の谷のピークから山のピークまでの間隔が0.5秒から所定範囲内である場合には、人間の動作状態は起立状態であると判定する。
このように、動作状況検出部103が人間の動作状態が起立状態か着座状態かを判定することにより、人間の高さ方向の位置を、略50cm以下(より具体的には、略40cm以下)の精度で検出したことを意味する。
さらに、図3に示した例のように、加速度センサ、角速度センサおよび地磁気センサ等の人間の動作を検知する情報機器を搭載したスマートフォン300を腰に装着し、さらに、加速度センサ、角速度センサおよび地磁気センサを備えた小型のヘッドセットタイプのセンサ群301を頭部に装着した場合には、動作状況検出部103は、さらに、以下のような人間の姿勢や動作を検出することができる。
図9は、しゃがむ動作と起立動作とをそれぞれ行った場合における水平方向の角速度成分の波形を示す図である。加速度センサからの加速度データからは、図8に示す着座動作と起立動作と類似の波形が検出されるが、加速度データのみでしゃがむ動作と起立動作を判別することは困難である。
このため、動作状況検出部103は、図8の波形に基づく、上述した着座動作と起立動作の判別の手法とともに、角速度センサから受信した水平方向の角速度データの経時的変化が図9の波形に一致するか否かを判断することにより、しゃがむ動作と起立動作の判別を行っている。
具体的には、動作状況検出部103は、まず、加速度センサから受信した加速度ベクトルに基づく鉛直方向の加速度成分の山のピークから谷のピークまでの間隔が0.5秒から所定範囲内であるか否かを判断する。
そして、鉛直方向の加速度成分の山のピークから谷のピークまでの間隔が0.5秒から所定範囲内である場合には、動作状況検出部103は、角速度センサから受信した角速度ベクトルの水平方向の角速度成分が、図9に示す波形のように、0から徐々に増加した後急激な増加で山のピークに達し、山のピークから急激に下がった後徐々に0に戻り、かつこの間の時間が約2秒である場合に、人間の動作がしゃがむ動作であると判定する。
また、動作状況検出部103は、鉛直方向の加速度成分の谷のピークから山のピークまでの間隔が0.5秒から所定範囲内であるか否かを判断する。そして、鉛直方向の加速度成分の谷のピークから山のピークまでの間隔が0.5秒から所定範囲内である場合には、動作状況検出部103は、角速度センサから受信した角速度ベクトルの水平方向の角速度成分が、図9に示す波形のように、0から段階的に谷のピークに達し、谷のピークから徐々に0に戻り、かつこの間の時間が約1.5秒である場合に、人間の動作が起立動作であると判定する。
このような動作状況検出部103におけるしゃがむ動作と起立動作の判定で用いる角速度ベクトルとしては、頭部に装着した角速度センサから受信した角速度ベクトルを用いることが好ましい。しゃがむ動作と起立動作において、頭部に装着した角速度センサからの角速度ベクトルに基づく水平方向の角速度成分が、図9に示す波形を顕著に示すからである。
図10は、人間が静止状態で方向をほぼ90度変化させる動作を行った場合の鉛直方向の角速度成分の波形を示す図である。鉛直方向の角速度成分が正であれば右側に向きを変える動作であり、負であれば左側に方向を変化させる動作である。
動作状況検出部103は、角速度センサから受信した角速度ベクトルの鉛直方向の角速度成分の経時的変化が、図10に示す波形のように、0から徐々に山のピークに達した後徐々に0に戻り、かつこの間の時間が約3秒である場合に、方向が右に変化する動作と判定する。
また、動作状況検出部103は、鉛直方向の角速度成分の経時的変化が、図10に示す波形のように、0から徐々に谷のピークに達した後徐々に0に戻り、かつその間の時間が約1.5秒である場合に、方向が左に変化する動作と判定する。
動作状況検出部103は、頭部の角速度センサおよび腰のスマートフォン300の角速度センサの双方から受信した角速度ベクトルの鉛直方向の角速度成分が、共に、上述のような判断で図10の波形と類似する経時的変化を示す場合には、体全体の向きが右若しくは左に変わる動作と判定する。
一方、動作状況検出部103は、頭部の角速度センサから受信した角速度ベクトルの鉛直方向の角速度成分が、上述のような図10の波形に類似する経時的変化を示すが、腰のスマートフォン300の角速度センサからの角速度ベクトルの鉛直方向の角速度成分が、図10の波形と全く異なる経時的変化を示す場合には、頭部だけ方向を右若しくは左に変える動作と判定する。このような動作としては、例えば、ユーザが着座したまま、隣のユーザとコミュニケーションをとる場合の姿勢動作が考えられる。
図11は、着座状態でディスプレイから上方向に目線を外した場合の頭部の角速度センサから受信した角速度ベクトルの水平方向の角速度成分の波形を示す図である。
位置特定部102が人間の絶対位置を机の前であると特定し、かつ動作状況検出部103が当該机の前にいる人間が着座状態であることを検出した場合を考える。そして、このような場合に、動作状況検出部103は、その人間の頭部の角速度センサから受信した角速度ベクトルの水平方向の角速度成分が、図11に示す波形のように、0から徐々に谷のピークに達し、その後急激に0に戻り、かつその間の時間が約1秒である場合に、着座状態でディスプレイから上方向に目線を外した動作(見上げる動作)であると判定する。そして、さらに、動作状況検出部103は、水平方向の角速度成分が、図11に示す波形のように、0から徐々に増加しながら山のピークに達し、その後徐々に0に戻り、かつこの間の時間が約1.5秒である場合に、着座状態でディスプレイから上方向に目線を外した状態からディスプレイに目線を戻した動作であると判定する。
図12は、着座状態でディスプレイから下方向に目線を外した場合の頭部の角速度センサから受信した角速度ベクトルの水平方向の角速度成分の波形を示す図である。
位置特定部102が人間の絶対位置を机の前であると特定し、かつ動作状況検出部103が当該机の前にいる人間が着座状態であることを検出した場合を考える。そして、このような場合に、動作状況検出部103は、その人間の頭部の角速度センサから受信した角速度ベクトルの水平方向の角速度成分が、図12に示す波形のように、0から急激に山のピークに達し、その後急激に0に戻り、かつその間の時間が約0.5秒である場合に、着座状態でディスプレイから下方向に目線を外した動作(見下げる動作)であると判定する。
そして、さらに、動作状況検出部103は、水平方向の角速度成分が、図12に示す波形のように、0から急激に減少しながら谷のピークに達し、その後急激に0に戻り、かつこの間の時間が約1秒である場合に、着座状態でディスプレイから下方向に目線を外した状態からディスプレイに目線を戻した動作であると判定する。
このように、動作状況検出部103は、オフィスの作業者が日常取り得る姿勢や動作、すなわち、歩く(立った状態)、起立する(静止状態)、椅子に着座する、作業時にしゃがむ、着座状態あるいは起立状態で向き(方向)を変える、着座状態あるいは起立状態で天を仰ぐ、着座状態あるいは起立状態で俯く等を、上述の手法で判定することが可能になる。
なお、特許第4243684号公報のデッドレコニング装置の手法を用いる場合、特許第4243684号公報に開示されているように、エレベータによる人間の昇降動作も、鉛直方向の加速度成分を用いて判断している。
このため、本実施形態では、動作状況検出部103は、特開2009−14713号公報に開示されているマップマッチング装置の機能を用い、エレベータのない場所で、鉛直方向の加速度成分が図8に示す波形で検出された場合には、特許第4243684号公報のデッドレコニング装置によるエレベータによる昇降動作とは異なり、起立動作または着座動作であることを高精度に判定することができる。
なお、本実施形態では、特許第4243684号公報および特開2011−47950号公報に開示されたデッドレコニング装置と同様の技術を用いて、人間の動作状態、基準位置からの相対移動ベクトル、姿勢(起立状態か着座状態か)を検出しているが、検出手法はこれらの技術に限定されるものではない。また、以上の説明では、人間の動作状況が静止状態と判定された場合にその人間の位置を特定し、その人間の方向や姿勢を検出しているが、人間の動作状況が歩行状態である場合にも同様に、その人間の位置を逐次特定し、方向や姿勢を逐次検出するように構成してもよい。
補正部104は、監視カメラ400からの撮像画像や記憶部110に保存された地図データに基づいて、特定された絶対位置や動作状況(方向、姿勢)を補正する。より具体的には、補正部104は、上述のように判断された人間の絶対位置、方向、姿勢を、監視カメラ400の撮像画像の画像解析等により正しいか否かを判断したり、地図データと、特開2009−14713号公報に開示されているマップマッチング装置の機能とを用いて正しいか否かを判断する。そして、誤っている場合には、補正部104は、撮像画像やマップマッチング機能から得られる、正しい絶対位置、方向、姿勢に補正する。
なお、補正部104は、監視カメラ400からの撮像画像に限らず、RFIDやBluetooth(登録商標)などの短距離無線、光通信等の限定的な手段を用いて補正を行うように構成してもよい。
また、本実施形態では、特許第4243684号公報および特開2011−47950号公報に開示されたデッドレコニング装置と同様の技術、特開2009−14713号公報に開示されたマップマッチング装置と同様の技術を用いて、人間の動作状態、基準位置からの相対移動ベクトル、姿勢(起立状態か着座状態か)を検出しているが、検出手法はこれらの技術に限定されるものではない。
次に、制御サーバ装置200の詳細について説明する。制御サーバ装置200は、制御対象領域である室内の人間の位置、動作状態(方向、姿勢)に基づいて、当該室内に設置された複数のLED照明機器500、複数のタップ600、複数の空調機700のそれぞれを、ネットワークを介して遠隔制御する。
図13は、本実施形態の制御サーバ装置200の機能的構成を示すブロック図である。本実施形態の制御サーバ装置200は、図13に示すように、通信部201と、消費電力管理部202と、機器制御部210と、記憶部220とを主に備えている。
記憶部220は、HDDやメモリ等の記憶媒体であり、制御対象領域である室の位置データを記憶している。
通信部201は、測位サーバ装置100から、人間の絶対位置、動作情報(方向、姿勢)を受信する。また、通信部201は、複数のLED照明機器500、複数のタップ600に接続された電気機器、複数の空調機700から消費電力を受信する(取得部)。また、通信部201は、複数のLED照明機器500、複数のタップ600、複数の空調機700に対して電力制御を行うための制御信号を送信する。通信部201による消費電力の取得(受信)方法は、各電気機器(LED照明機器500、空調機700も含む)が消費する消費電力を時系列に取得できれば、どのような方法であってもよい。例えば、タップ600が、当該タップ600に接続された電気機器の消費電力を計測し送信する機能を備える場合は、通信部201はタップ600から電気機器の消費電力を取得してもよい。
消費電力管理部202は、複数のLED照明機器500、複数のタップ600に接続された電気機器、複数の空調機700から受信した消費電力を管理する。例えば消費電力管理部202は、時系列に取得された消費電力を、機器ごとに区別して記憶部220などの記憶部に保存する。
機器制御部210は、照明機器制御部211と、コンセント制御部213と、空調機制御部215とを備えている。照明機器制御部211は、人間の絶対位置、動作情報(方向、姿勢)に基づいてLED照明機器500を制御する。より具体的には、照明機器制御部211は、受信した絶対位置の近傍に配置されたLED照明機器500に対して、人間が着座状態であれば、その照明範囲を所定範囲より狭く設定し、照度を所定の閾値より高く設定する制御信号を通信部201を介して送信する。これにより、着座状態で作業を行っているユーザに対して、細かい作業に適した照明範囲や照度に制御することが可能となる。
一方、照明機器制御部211は、当該LED照明機器500に対して、人間が起立状態であれば、その照明範囲を所定範囲より広く設定し、照度を所定の閾値より低く設定する制御信号を通信部201を介して送信する。これにより、起立状態のユーザが室全体を見渡せるような照明範囲や照度に制御することが可能となる。
コンセント制御部213は、人間の絶対位置、動作情報(方向、姿勢)に基づいてタップ600のタップ口に対して電源のオンオフを制御する。より具体的には、コンセント制御部213は、受信した絶対位置の近傍に配置されたタップ600に接続されたディスプレイ装置に対して、人間が着座状態であり、かつディスプレイ装置に対する方向が前方である場合には、タップ600においてディスプレイ装置が接続されたタップ口のスイッチをオンにする制御信号を通信部201を介して送信する。
一方、コンセント制御部213は、当該タップ600に接続されたディスプレイ装置に対して、人間が起立状態であるか、またはディスプレイ装置に対する方向が後方である場合には、タップ600においてディスプレイ装置が接続されたタップ口のスイッチをオフにする制御信号を通信部201を介して送信する。
このように、ディスプレイ装置に対する人間の方向によって電力制御を行うのは、ディスプレイ装置が人間との正対関係で重要となる機器であり、方向が前方の場合にディスプレイ装置が使用されていると判断することができるからである。また、人間の姿勢も着座状態の場合に、ディスプレイ装置が使用されていると判断することができる。このように、本実施形態では、実際の機器の利用を考慮して電力制御を行うことになり、単に機器からの距離によって電力制御を行う場合に比べて、より細かな制御を行うことが可能となる。
さらに本実施形態のコンセント制御部213は、ユーザの個人認識情報に連動させてデスクトップ型PC本体やディスプレイ装置の電力制御を行っている。
空調機制御部215は、人間の絶対位置に基づいて空調機700の電源のオンオフを制御する。より具体的には、空調機制御部215は、受信した絶対位置の席が存在するグループに設定された空調機700の電源をオンにする制御信号を通信部201を介して送信する。
次に、以上のように構成された本実施形態の測位サーバ装置100による検出処理について説明する。図14は、本実施形態の測位サーバ装置100による検出処理の手順を示すフローチャートである。かかるフローチャートによる検出処理は、複数のスマートフォン300のそれぞれに対応して実行される。
なお、測位サーバ装置100は、このフローチャートによる検出処理とは別個に、複数のスマートフォン300に搭載された加速度センサ、角速度センサ、地磁気センサあるいはスマートフォン300とは別個の加速度センサ、角速度センサ、地磁気センサのそれぞれの各センサから検知データ(加速度ベクトル、角速度ベクトル、磁気方位ベクトル)を一定間隔で受信し、複数の監視カメラ400から撮像画像を受信している。
まず、人間が制御対象領域である室内に入室したか否かを、開閉する扉の撮像画像などにより判断する(ステップS11)。入室していない場合(ステップS11:No)、測位サーバ装置100は、人間が室内から退室したか否かを判断する(ステップS20)。退室していない場合(ステップS20:No)、ステップS11に戻り処理を繰り返す。退室した場合(ステップS20:Yes)、検出処理を終了する。入室した場合には(ステップS11:Yes)、動作状況検出部103は、入室した人間の動作状況を、上述した手法により検出する(ステップS12)。そして、動作状況検出部103は、人間の動作状況が歩行状態であるか否かを判断し(ステップS13)、歩行状態である間は(ステップS13:Yes)、動作状況の検出を繰り返し行う。
一方、ステップS13で人間の動作状況が歩行状態でない場合には(ステップS13:No)、動作状況検出部103は、人間の動作状況が静止状態であると判断する。そして、位置特定部102は、基準位置を扉として、扉からの相対移動ベクトルを、上述の手法で算出する(ステップS14)。
そして、位置特定部102は、記憶部110に保存されている室の地図データと、扉からの相対移動ベクトルにより、静止状態となった人間の絶対位置を特定する(ステップS15)。これにより、位置特定部102は、人間が室内に配置されたどの机の位置にいるかまでを特定することができ、その結果、人間の肩幅(略60cm以下、より具体的には略40cm以下)の精度で、人間の位置を特定することになる。
次に、動作状況検出部103は、さらに静止状態の人間の動作状況として、人間のディスプレイ装置に対する方向(向き)を、地磁気センサから受信した磁気方位ベクトルから検出する(ステップS16)。
次いで、動作状況検出部103は、人間の動作状況として、着座状態か起立状態かという姿勢を、上述の手法で検出する(ステップS17)。これにより、動作状況検出部103は、人間の高さ方向の位置を、略50cm以下(より具体的には、略40cm以下)の精度で検出したことになる。
さらに、動作状況検出部103は、人間の動作状況として、しゃがむ動作か起立動作か、着座状態で向きを変更する動作か戻す動作か、着座状態で目線を上げる動作か目線を戻す動作か、着座状態で目線を下げる動作か目線を戻す動作か、をそれぞれ検出してもよい。
次に、補正部104は、特定された絶対位置、検出された方向および姿勢に対して、上述のとおり、補正が必要か否かを判断して、必要であれば補正する(ステップS18)。
そして、通信部101は、絶対位置、検出された方向および姿勢(補正された場合には、補正後の絶対位置、検出された方向および姿勢)を、検出結果データとして、制御サーバ装置200に送信する(ステップS19)。
次に、制御サーバ装置200による機器制御処理について説明する。図15は、本実施形態の機器制御処理の手順を示すフローチャートである。
まず、通信部201は、測位サーバ装置100から、検出結果データとしての人間の絶対位置、方向、姿勢を受信する(ステップS31)。次に、機器制御部210の各制御部211,213,215は、受信した検出結果データの絶対位置から、制御対象のLED照明機器500、タップ600、空調機700を特定する(ステップS32)。
より具体的には、照明機器制御部211は、記憶部220に保存された位置データを参照して、絶対位置に相当する机に設置されたLED照明機器500を制御対象として特定する。また、コンセント制御部213は、記憶部220に保存された位置データを参照して、絶対位置に相当する机の近傍に設置されたタップ600を制御対象として特定する。空調機制御部215は、記憶部220に保存された位置データを参照して、絶対位置に相当する机があるグループに対応して設置された空調機700を制御対象として特定する。
次に、空調機制御部215は、特定した空調機700の電源をオンにする制御を行う(ステップS33)。
次に、コンセント制御部213は、受信した検出結果データの方向が前方であり、かつ当該検出結果データの姿勢が着座状態であるか否かを判断する(ステップS34)。そして、方向が前方であり、かつ姿勢が着座状態である場合には(ステップS34:Yes)、コンセント制御部213は、ステップS32で特定したタップ600においてディスプレイ装置が接続されたタップ口のスイッチをオンにする制御を行う(ステップS35)。
一方、ステップS34において、方向が後方であるか、または、姿勢が起立状態である場合には(ステップS34:No)、コンセント制御部213は、ステップS32で特定したタップ600においてディスプレイ装置が接続されたタップ口のスイッチをオフにする制御を行う(ステップS36)。
次に、照明機器制御部211は、受信した検出結果データの姿勢が着座状態であるか否かを再度判断する(ステップS37)。そして、姿勢が着座状態である場合には(ステップS37:Yes)、照明機器制御部211は、ステップS32で特定したLED照明機器500の照明範囲を所定範囲より狭く設定し、照度を所定の閾値より高く設定する制御を行う(ステップS38)。
一方、ステップS37において、姿勢が起立状態である場合には(ステップS37:No)、照明機器制御部211は、ステップS32で特定したLED照明機器500の照明範囲を所定範囲より広く設定し、照度を所定の閾値より低く設定する制御を行う(ステップS39)。
なお、機器制御部210の各制御部211、213、215は各制御対象の機器に対して上述した制御以外の制御を行うように構成してもよい。
また、人間の動作状況として、しゃがむ動作か起立動作か、着座状態で向きを変更する動作か戻す動作か、着座状態で目線を上げる動作(見上げる動作)か目線を戻す動作か、着座状態で目線を下げる動作(見下げる動作)か目線を戻す動作かにより、各制御対象の機器に対する制御を行うように、機器制御部210の各制御部211、213、215を構成してもよい。
このような場合の各動作と制御対象機器および制御方法として、以下のような例があげられる。これらの動作は、作業者が机の前に着座している状態を想定した場合に起こり得る動作であり、制御対象機器は、PCあるいはPCのディスプレイ装置、電気スタンド、個別空調に相当する卓上扇風機などである。
例えば、作業者が机にいる場合で、受信した検出結果データから、一定時間以上しゃがむ動作が継続していると判断した場合には、PCの電源が接続されたタップ口のスイッチをオフにするようにコンセント制御部213を構成することができる。また、機器制御部210に機器のモードを制御するモード制御部を設け、PCのディスプレイ装置をスタンバイモードに移行させるように、モード制御部を構成することができる。
また、着座状態から、起立動作を検出して、起立状態が一定時間以上継続した場合には、PCをスタンバイモードに移行するようにモード制御部を構成したり、同時にディスプレイ装置の電源が接続されたタップ口のスイッチをオフにするようにコンセント制御部213を構成することができる。
向きの変化という動作に対しては以下のような制御が一例としてあげられる。机の前に着座した状態から、顔あるいは上半身の向きの変化が検出され、この状態が一定時間以上継続した場合には、隣接する席の他の作業者と会話している等の状況が考えられ、PC、ディスプレイ装置、電気スタンド等の照明機器をスタンバイあるいはオフとし、作業者の向きが元の状態に戻ったか元の姿勢に戻ったことを検出した場合には、PC、ディスプレイ装置、電気スタンド等の照明機器をオンにする等のようにコンセント制御部213、モード制御部を構成することができる。
また、作業者が机で書類を読むような場合には見下げる動作を行い、作業者がアイデアを思いつく、あるいは考えるような場合には天井方向を見上げる動作を行うことが考えられる。このため、一定時間以上見上げる動作または見下げる動作が継続して検出された場合には、PCをスタンバイモードに移行したり、ディスプレイ装置をオフにするような制御を行うようにコンセント制御部213、モード制御部を構成することができる。さらに、見下げる動作の場合には、電気スタンドをオフにしない制御を行うようにコンセント制御部213を構成してもよい。
このように本実施形態では、人間の位置を肩幅の精度で特定し、人間の方向や姿勢を検出して、機器の電力制御を行っているので、より細かい精度での機器の電力制御が可能となり、作業者の快適性、仕事の高効率化を維持しつつ、より一層の省電力化および省エネルギー化を実現することができる。
すなわち、本実施形態では、人間を検出するだけでなく、その人間が所有する機器、その人間が座る机の直上の照明機器、空調機、オフィス機器を個別に制御することができ、かつ一人一人の電力使用量を同時に把握することが可能となる。
従来技術では、ビル、オフィス、工場全体、オフィス全体の電力がいわゆる「見える化」を実現することができても、個人個人がどのように省電力をしたら良いか不明であり、全体の目標値を超える、供給電力量を超えるといった逼迫した状況でないと、省電力化を意識しにくいなどにより、継続的に進めることができないが、本実施形態によれば、作業者の快適性、仕事の高効率化を維持しつつ、より一層の省電力化および省エネルギー化を実現することができる。
また、本実施形態によれば、機器の自動制御においても、人と機器だけでなく、機器間の協調制御をすることにより、省電力をより向上させることができる。
次に、調停サーバ装置800による電力調停処理について説明する。なお、電力調停処理では、各電気機器に割り当てる電力が算出される。算出された電力の情報は、例えば調停サーバ装置800から制御サーバ装置200に送信される。制御サーバ装置200は、図13および図15で説明したような機器制御処理を実行せず、算出された電力で動作するように各電気機器を制御してもよい。
最初に、電力調停処理の概要について図16および図17を用いて説明する。図16は、電力調停処理の概要を示す図である。図17は、時間経過に伴う電力量の変化の一例を示す図である。
図16(1)に示すように、あるユーザが、優先度が「中」である機器の電源オンが要求されたとする。なお、この例では、優先度は「高」「中」「低」の3段階に設定されるものとする。また、電源オンを要求した機器の消費電力は100W(ワット)であるものとする。調停サーバ装置800は、例えば、当該機器が設置された座席にユーザが着座状態になったこと示す動作状況を測位サーバ装置100から受信したときに、電源オンが要求されたと判断することができる。このような電源制御の要求は、一旦調停サーバ装置800に保存される。
なお、調停サーバ装置800は、電源制御の要求を任意の装置から受信できる。例えば、制御サーバ装置200、スマートフォン300から電源制御の要求を受信してもよい。LED照明機器500、タップ600および空調機700から電源制御の要求を受信してもよい。
図17に示すように、要求を受信した時点での各電子機器の消費電力の合計(総電力量)が予め定められた制限値(制限電力量)の近くまで達しており、消費電力100Wの機器に電力を供給すると、制限電力量を超えるものとする。このような場合、調停サーバ装置800は、優先度が「中」より低い「低」である他の機器を探索する(図16(2))。図16では、優先度「高」の機器が1台、優先度「中」の機器が3台、および、優先度「低」の機器が6台、稼働中である例が示されている。
調停サーバ装置800は、優先度の低い機器に供給する電力を停止する、または、供給する電力を低減するなどにより、総電力量を100W分低下させる(図16(3))。例えば、図16の右に示すように、優先度「低」の5台の機器に供給する電力をそれぞれ20Wずつ低下させることにより、100Wの電力が確保される。調停サーバ装置800は、この後、電源オンを要求した機器の電源オンを許可すると判断し(図16(4))、当該機器の電源をオンにする(図16(5))。
図17は、図16に示すような電力調停処理を行った場合の総電力量の変化の例を示している。図16(3)で総電力量を100W分低下させた後、電源オンを要求した機器に電力を供給したため、再度、総電力量が制限電力量近くまで増加している。このように、本実施形態では、制限電力量を超えないことを保証しつつ、優先度が高い機器から順に可能な限り電力を供給する。これにより、不要な機器に電力が供給されることを回避しながら、業務環境を快適にするための必要な機器に対して効率的に電力を供給することが可能となる。
図18は、調停サーバ装置800の機能的構成を示すブロック図である。調停サーバ装置800は、図18に示すように、受信部801と、決定部802と、算出部803と、送信部804と、記憶部821と、を備えている。
記憶部821は、電力調停処理で参照する各種情報を記憶する。記憶部821は、例えば測位サーバ装置100から送信される、ユーザの位置および動作状況を示す情報を記憶する。また、記憶部821は、決定部802が優先度を決定する際に参照する優先度テーブルを記憶する。
図19は、優先度テーブルのデータ構造の一例を示す図である。なお、優先度テーブルのデータ構造は図19に示す例に限られるものではない。図19では、ユーザの位置がオフィス内であるかオフィス外であるか、および、ユーザの動作状況(座る、立っている、など)に応じて異なる優先度テーブルを設定する例が示されている。優先度テーブル1911が、ユーザがオフィス外に存在する場合の優先度テーブルである。優先度テーブル1901〜1905が、ユーザがオフィス内に存在する場合の優先度テーブルである。各優先度テーブルは、機器の種類と優先度とを含む。機器の例として、MFP(Multifunction Peripheral)、PC、モニタ、および、LED照明機器が示されている。
なお、機器ごとに、さらに機器の動作モードに応じて優先度を設定できるように構成してもよい。図19では、LED照明機器の照度を動作モードとし、この動作モードごとに優先度を設定する例が示されている。動作モードはこれに限られるものではない。例えば、PCに対してスタンバイモードであるか通常モードであるかなどの動作モードを用いてもよい。
なお、記憶部821は、HDD、光ディスク、メモリカード、RAM(Random Access Memory)などの一般的に利用されているあらゆる記憶媒体により構成することができる。
受信部801は、測位サーバ装置100および制御サーバ装置200などの外部装置から各種情報を受信する。例えば、受信部801は、測位サーバ装置100から送信された、ユーザの位置および動作状況を示す情報を受信する。また、受信部801は、電力調停の要求を、例えば制御サーバ装置200から受信する。
決定部802は、ユーザの位置および動作状況の少なくとも一方に応じて、電気機器それぞれの優先度を決定する。例えば決定部802は、ユーザの位置および動作状況に対応する優先度テーブルを記憶部821から抽出し、抽出した優先度テーブルを参照することにより、ユーザの位置および動作状況に対応する各電気機器の優先度を決定する。
決定部802は、例えば、複数の電気機器のうち少なくとも1つに対する電力の割り当てが要求されたとき、または、人間の位置および動作状況の少なくとも一方が変化したときに、優先度を決定する処理を実行してもよい。
算出部803は、決定された優先度をもとに、各電気機器に割り当てる電力の合計(総電力量)が制限電力量以内となり、かつ、優先度が高い電気機器を優先して電力を割り当てるように、電気機器それぞれに対して割り当てる電力を算出する。例えば、算出部803は、優先度が最も高い電気機器に対して、必要な電力を割り当てる。割り当てた電力の合計値が制限電力量未満のときは、次に優先度が高い電気機器に対して電力を割り当てる。算出部803は、このような処理を繰り返し、総電力量が制限電力量を超えない最大値となるように電力を算出してもよい。
送信部804は、測位サーバ装置100および制御サーバ装置200などの外部装置に対して各種情報を送信する。例えば、送信部804は、制御サーバ装置200に対して、算出された各電気機器に割り当てる電力の情報を送信する。制御サーバ装置200は、調停サーバ装置800から送信された電力の情報に従い、各電気機器に対して電力を供給するように制御する。
次に、このように構成された本実施形態の調停サーバ装置800による電力調停処理について説明する。図20は、本実施形態の調停サーバ装置800による電力調停処理の手順を示すフローチャートである。以下では、オフィスを制御対象領域とし、オフィス内のユーザ(ワーカー)の位置および動作状況に応じて電力を調停する場合を例に説明する。
調停サーバ装置800は、制限電力量を把握する(ステップS101)。例えば調停サーバ装置800は、制限電力量の値を事前に記憶部821等に記憶しておき、この値を参照することにより制限電力量の値を把握する。
調停サーバ装置800は、オフィス内のワーカーの人数を把握する(ステップS102)。例えば調停サーバ装置800は、測位サーバ装置100から送信された人間の位置の情報の数を、ワーカーの人数として把握することができる。
調停サーバ装置800は、オフィス内のワーカーの位置および動作状況(姿勢および状態など)を判定する(ステップS103)。本実施形態では、測位サーバ装置100から人間の位置および動作状況の情報が送信されるため、調停サーバ装置800は、この情報によりオフィス内のワーカーの姿勢および状態を判定する。測位サーバ装置100の機能と調停サーバ装置800の機能とを統合するように構成する場合は、例えば調停サーバ装置800内に位置特定部102および動作状況検出部103を備え、これらによってオフィス内のワーカーの姿勢および状態を判定してもよい。
調停サーバ装置800の決定部802は、各電気機器に対して、判定したワーカーの姿勢および状態に対応する優先度を決定する(ステップS104)。例えば、決定部802は、ワーカーの姿勢および状態に対応する優先度テーブルを記憶部821から読み出す。決定部802は、読み出した優先度テーブルを参照し、電気機器ごとの優先度を決定する。
算出部803は、決定された優先度を参照し、制限電力量の範囲内で、最も総電力量が大きくなるように、各電気機器に供給する電力を算出する(ステップS105)。送信部804は、算出された各電気機器に供給する電力の値を、制御サーバ装置200に送信する。
制御サーバ装置200は、送信された電力の値を参照し、各電気機器に供給する電力が、送信された電力の値となるように、電力の供給を制御する(ステップS106)。
次に、電力調停処理の具体例について図21〜図23を用いて説明する。図21〜図23は、電力調停処理の具体例を説明するための図である。
図21は、電気機器として、ノートPCおよびLED照明機器が使用される場合の例である。また、この例では、ワーカーの位置または動作状況を表す情報として、ワーカーの位置情報を用いる。また、制限電力量は2950Wであり、ノートPCの1台あたりの消費電力は100Wであるものとする。さらに、LED照明機器の消費電力は、100%の照度(一例として500lx(ルクス))のとき44Wであるものとする。
以下、最初にワーカーの人数が20人であったが、1人のワーカーが外出から席に戻り、その後、さらに1人のワーカーが外出した場合を例に説明する。ワーカーが20人の場合の総電力量は、100W×20+44W×20=2880Wとなる。この場合は、例えば図19の優先度テーブル1901の優先度が高い順、すなわち、PC(優先度20)、照度500lx(10)の順に必要な電力を割り当てても、総電力量が制限電力量を超えない。
ワーカー1人が外出から戻り21人となった場合、まず優先度が高いPCから電力が割り当てられる。PC分の消費電力は100W×21=2100Wとなる。次に優先度が高い照度500lx(優先度10)を割り当てるとすると、必要な電力は44W×21=924Wとなる。この場合、総電力量が2100+924=3024Wとなり、制限電力量を超える。このため、さらに次に優先度が高い照度450lx(優先度9)を割り当てた場合について、総電力量と制限電力量とが比較される。この場合、総電力量が2100+819(=39×21)=2919Wとなり、制限電力量未満となる。このように、本実施形態では、制限電力量を超えない電力量で、かつ、優先度が高い機器を優先するように、かつ、業務環境を快適にするための機器(LED照明機器)に対して適切に電力を供給することができる。
この後、ワーカー1人が外出した場合は、最初と同様の状態、すなわち、LED照明機器の照度を100%(500lx)に増加させた状態となる。
図22は、電気機器として、PC、モニタ、および、LED照明機器が使用される場合の例である。この例では、ワーカーの位置または動作状況を表す情報として、ワーカーの姿勢(座ってPCの方向を向いている、座ってPC以外の方向を向いている、など)を用いる。また、制限電力量は2985Wであり、PCおよびモニタの1台あたりの消費電力は、それぞれ100Wおよび20Wであるものとする。さらに、LED照明機器の消費電力は、100%の照度(一例として500lx(ルクス))のとき44Wであるものとする。
以下、最初にワーカーの人数が21人であり、各ワーカーがPCを用いた作業(PC作業)をしていたが、その後1人のワーカーがPC作業をやめて資料を読み始めた場合を例に説明する。ワーカーが21人の場合の総電力量は、100W×21+20W×21+22W(50%の照度に相当)×21=2982Wとなる。この場合は、座ってPCに向いている姿勢に対応する図19の優先度テーブル1901が用いられる。この例では、優先度に従い、制限電力量を超えない照度として250lx(優先度5)が、LED照明機器の照度として決定される。
1人のワーカーがPC作業をやめて資料を読み始めた場合、測位サーバ装置100により、PC以外の方向を向いたことが検出される。調停サーバ装置800は、例えばこの情報を受信したときを契機として、優先度の決定、電力供給量の算出を行う。決定部802は、PC以外の方向を向いたことが検出されたユーザに対応するPCに対しては、例えば図19の優先度テーブル1902を適用する。なお、残りのユーザに対応するPCに対しては、最初の状態と同様に、例えば図19の優先度テーブル1901が適用される。
優先度テーブル1902では、照度500lxの優先度が20に設定され、モニタの優先度が0に設定されている。従って、PC以外の方向を向いたことが検出されたユーザに対応するLED照明機器の電力として、照度500lxに相当する44Wが算出される。また、優先度が0であるため、モニタの電力として0が算出される。
図23は、電気機器として、PC、LED照明機器、および、MFPが使用される場合の例である。この例では、ワーカーの位置または動作状況を表す情報として、ワーカーの位置(MFPが存在する位置にいるか)を用いる。また、制限電力量は3500Wであり、PCおよびモニタの1台あたりの消費電力は、それぞれ100Wおよび20Wであるものとする。また、LED照明機器の消費電力は、100%の照度(一例として500lx(ルクス))のとき44Wであるものとする。さらに、MFPの消費電力は、1000Wであるものとする。
以下、最初にワーカーの人数が21人であり、1人のワーカーがMFPに対して印刷命令を送った場合を例に説明する。ワーカーが21人の場合の総電力量は、100W×21+20W×21+44W(100%の照度に相当)×21=3444Wとなる。この場合は、座ってPCに向いている姿勢に対応する図19の優先度テーブル1901が用いられる。
1人のワーカーがMFPに対して印刷命令を送信したとする。この時点ではワーカーの位置および動作状況は変化しないため、電力の供給量も変化しない。この後、印刷命令を指示したワーカーがMFPの存在する場所に移動したとする。この場合、印刷命令を送信したワーカーに対応する機器に対しては、印刷ジョブを送信し、かつ、MFPから2m以内にいる動作状況に対応する図19の優先度テーブル1905が適用される。
優先度テーブル1905では、MFPの優先度が100に設定され、PCおよびモニタの優先度が0に設定されている。このため、印刷命令を送信したワーカーに対応するPCおよびモニタの電力として0が算出される。また、この例では、MFPの消費電力が大きいため、すべてのLED照明機器の電力としても0が算出される。なお、すべてのLED照明機器の電力を共通に制御するのではなく、個別に制御するように構成してもよい。例えば上記例では、3500W−3400W=100W分の電力を、一部のLED照明機器に対して割り当てるように構成してもよい。
以上のように、本実施形態の調停装置は、ユーザの位置および動作状況の少なくとも一方に応じて各機器に優先順位をつけ、優先順位が高い電気機器を優先し、かつ、各電気機器に割り当てる電力の合計が制限値以内となるように、各電気機器に電力を割り当てる。これにより、機器に対する電力供給を効率的に制御可能となる。
すなわち、本実施形態の調停装置によれば、ユーザの行動や状態に合わせて機器に対する優先順位付けを動的に行うため、例えば、オフィス空間で業務を行う複数の執務者がそれぞれの時間で行動する場合であっても、不必要な箇所で使用されている電力を判定してその電力を必要な箇所に供給することで、より快適な環境を提供することができ、生産性の高いオフィス空間を実現することができる。例えば、PCの電源をオンにしたまま当該PCのユーザが離席した場合に、ユーザの行動(位置情報)や状態(動作状況)からユーザが当該PCから離れた状態を判定し、当該PCに対する優先度を低く変化させることで当該PCへの電力供給を抑制することができ、その分の電力を他の機器に供給することで、各機器に対する電力供給を効率的に制御することができる。
次に、本実施形態にかかる装置(測位サーバ装置100、制御サーバ装置200、調停サーバ装置800)のハードウェア構成について図24を用いて説明する。図24は、本実施形態にかかる装置のハードウェア構成例を示す説明図である。
本実施形態の装置は、CPU51などの制御装置と、ROM(Read Only Memory)52やRAM53などの記憶装置と、ネットワークに接続して通信を行う通信I/F54と、HDD、CDドライブ装置などの外部記憶装置と、ディスプレイ装置などの表示装置と、キーボードやマウスなどの入力装置と、各部を接続するバス61を備えており、通常のコンピュータを利用したハードウェア構成となっている。
本実施形態の装置で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disc)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
また、本実施形態の装置で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、本実施形態の装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。
また、本実施形態の装置で実行されるプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
本実施形態の調停サーバ装置800で実行されるプログラムは、上述した各部(受信部、決定部、算出部、送信部)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(プロセッサ)が上記記憶媒体から検出プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、上記各部が主記憶装置上に生成されるようになっている。なお、上記各部の一部または全部をハードウェア回路により実現してもよい。
(変形例1)
本実施形態における機器制御から、人間の方向に応じたディスプレイ装置の電力制御を行わないように構成することができる。
(変形例2)
本実施形態における機器制御から、人間の方向に応じたディスプレイ装置の電力制御と、個人認識情報に連動したデスクトップ型PC本体やディスプレイ装置の電力制御を行わないように構成することができる。
(変形例3)
本実施形態における機器制御に対して、起立状態、着座状態の他、さらに、起立状態、着座状態に相関関係のある姿勢を検出し、当該姿勢に基づいてディスプレイ装置の電力制御を行うように構成することができる。
(変形例4)
決定部802による優先度の決定方法は、図19のような優先度テーブルに基づく方法に限られない。例えば、電子機器が稼働しているか否かを判定し、判定結果に応じて優先度を可変とするように構成してもよい。例えばPCの場合、CPU使用率およびメモリ変化量などから、PCの稼働状態を判定し、PCの電力供給を停止できない稼働状態の場合は、優先度を高く設定してもよい。
(変形例5)
なお、人間の位置を検出可能な技術としては、加速度センサ、角速度センサおよび地磁気センサの検知データに基づいて測位サーバ装置100が実施する上述した方法の他に、例えば、ICカード等による入退室管理、人感センサによる人間の検知、無線LANを用いる方法、屋内GPS(IMES:Indoor MEssaging System)を用いる方法、カメラの撮像画像を画像処理する方法、アクティブRFIDを用いる方法、および可視光通信を用いる方法等が知られている。
ICカード等による入退室管理は、個人識別は可能であるが、測位精度が管理対象のエリア全体となり極めて低い。そのため、誰がそのエリアにいるかを知ることはできるものの、そのエリア内での人間の活動状況を把握することができない。
人感センサによる人間の検知は、人感センサの検知範囲となる1〜2m程度の測位精度が得られるが、個人識別を行うことができない。また、エリア内での人間の活動状況を把握するためには、多数の人感センサを分散してエリア内に配置する必要がある。
無線LANを用いる方法は、人間が所持する1台の無線LAN端末とエリア内に設置された複数台のLANアクセスポイントとの間の距離を測定し、三角測量の原理によりエリア内における人間の位置を特定する。この方法は、個人識別は可能であるが、測位精度の環境依存性が大きく、一般的に測位精度は3m以上と比較的低い精度となる。
屋内GPSを用いる方法は、GPS衛星と同じ周波数帯の電波を発する専用の送信機を屋内に設置し、その送信機から通常のGPS衛星が時刻情報を送信する部分に位置情報を埋め込んだ信号を送信する。そして、その信号を屋内の人間が所持する受信端末で受信することにより、屋内における人間の位置を特定する。この方法は、個人識別は可能であるが、測位精度が3〜5m程度と比較的低い精度となる。また、専用の送信機を設置する必要があり導入コストが嵩む。
カメラの撮像画像を画像処理する方法は、数十cm程度の比較的高い測位精度が得られるが、個人識別を行うことが難しい。このため、本実施形態の測位サーバ装置100では、従業者の絶対位置、方向、姿勢を補正する場合にのみ、監視カメラ400の撮像画像を用いている。
アクティブRFIDを用いる方法は、電池を内蔵するRFIDタグを人間が所持し、RFIDタグの情報をタグリーダで読み取ることで人間の位置を特定する。この方法は、個人識別は可能であるが、測位精度の環境依存性が大きく、一般的に測位精度は3m以上と比較的低い精度となる。
可視光通信を用いる方法は、個人識別が可能であり、しかも数十cm程度の比較的高い測位精度が得られるが、可視光が遮られる場所では人間を検知できず、また、自然光や他の可視光等のノイズ源、干渉源が多いため、検出精度の安定性を維持することが難しい。
これらの技術に対し、本実施形態の測位サーバ装置100が実施する方法は、個人識別が可能で、しかも人間の肩幅または歩幅相当の高い測位精度が得られ、その上、人間の位置だけでなく、人間の動作状況を検出することができる。具体的には、本実施形態の測位サーバ装置100が実施する方法によれば、人間の動作状況として、オフィスの従業者が日常取り得る姿勢や動作、すなわち、歩く(立った状態)、起立する(静止状態)、椅子に着座する、作業時にしゃがむ、着座状態あるいは起立状態で向き(方向)を変える、着座状態あるいは起立状態で天を仰ぐ、着座状態あるいは起立状態で俯く等を検知することができる。
このため、本実施形態では、測位サーバ装置100が、スマートフォン300やセンサ群301の加速度センサ、角速度センサおよび地磁気センサの検知データに基づいて、上述した方法により、制御対象領域であるオフィス内の従業者の絶対位置および従業者の動作状況を検出するようにしている。しかし、制御対象領域であるオフィス内の従業者の絶対位置および従業者の動作状況を検出する方法は、測位サーバ装置100が実施する上述した方法に限定されるものではない。例えば、上述した他の方法の1つまたは複数の組み合わせにより従業者の絶対位置および動作状況を検出するようにしてもよく、また、測位サーバ装置100が実施する上述した方法に上述した他の方法の1つまたは複数を組み合わせて、従業者の絶対位置および動作状況を検出するようにしてもよい。
100 測位サーバ装置
101 通信部
102 位置特定部
103 動作状況検出部
104 補正部
110 記憶部
200 制御サーバ装置
201 通信部
202 消費電力管理部
210 機器制御部
211 照明機器制御部
213 コンセント制御部
215 空調機制御部
220 記憶部
230 判定部
300 スマートフォン
400 監視カメラ
500 LED照明機器
600 タップ
700 空調機
800 調停サーバ装置
801 受信部
802 決定部
803 算出部
804 送信部
821 記憶部
特開2010−193562号公報
湯浅健史ほか、"スマートタップネットワークを用いたオンデマンド型電力制御システム"、信学技報、USN2011−11、pp.25−30、2011年7月

Claims (8)

  1. 制御対象領域内の人間の位置および動作状況の少なくとも一方に応じて、複数の電気機器それぞれの優先度を決定する決定部と、
    複数の前記電気機器に割り当てる電力の合計が制限値以内となり、かつ、前記優先度が高い前記電気機器を優先して電力を割り当てるように、前記電気機器それぞれに対して割り当てる電力を算出する算出部と、
    を備えることを特徴とする調停装置。
  2. 前記算出部は、複数の前記電気機器に割り当てる電力の合計が制限値を超えない最大値となり、かつ、前記優先度が高い前記電気機器を優先して電力を割り当てるように、前記電気機器それぞれに対して割り当てる電力を算出すること、
    を特徴とする請求項1に記載の調停装置。
  3. 前記決定部は、前記電子機器の種類ごとに、人間の位置および動作状況の少なくとも一方に応じて前記優先度を決定すること、
    を特徴とする請求項1に記載の調停装置。
  4. 前記決定部は、前記電子機器の動作モードごとに、人間の位置および動作状況の少なくとも一方に応じて前記優先度を決定すること、
    を特徴とする請求項1に記載の調停装置。
  5. 前記決定部は、複数の前記電気機器のうち少なくとも1つに対する電力の割り当てを要求されたときに、変化後の人間の位置および動作状況の少なくとも一方に応じて前記優先度を決定すること、
    を特徴とする請求項1に記載の調停装置。
  6. 前記決定部は、人間の位置および動作状況の少なくとも一方が変化したときに、変化後の人間の位置および動作状況の少なくとも一方に応じて前記優先度を決定すること、
    を特徴とする請求項1に記載の調停装置。
  7. 制御対象領域内の人間の位置および動作状況の少なくとも一方に応じて、複数の電気機器それぞれの優先度を決定する決定ステップと、
    複数の前記電気機器に割り当てる電力の合計が制限値以内となり、かつ、前記優先度が高い前記電気機器を優先して電力を割り当てるように、前記電気機器それぞれに対して割り当てる電力を算出する算出ステップと、
    を含むことを特徴とする調停方法。
  8. コンピュータを
    制御対象領域内の人間の位置および動作状況の少なくとも一方に応じて、複数の電気機器それぞれの優先度を決定する決定部と、
    複数の前記電気機器に割り当てる電力の合計が制限値以内となり、かつ、前記優先度が高い前記電気機器を優先して電力を割り当てるように、前記電気機器それぞれに対して割り当てる電力を算出する算出部、
    として機能させるためのプログラム。
JP2013258367A 2013-03-14 2013-12-13 調停装置、調停方法およびプログラム Pending JP2014200165A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013258367A JP2014200165A (ja) 2013-03-14 2013-12-13 調停装置、調停方法およびプログラム
EP20140156713 EP2778835A3 (en) 2013-03-14 2014-02-26 Arbitration device, arbitration method, and computer program product
US14/196,153 US9500683B2 (en) 2013-03-14 2014-03-04 Arbitration device, arbitration method, and computer program product
CN201410190505.9A CN104052149B (zh) 2013-03-14 2014-03-13 仲裁装置、仲裁方法和计算机程序产品

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013052539 2013-03-14
JP2013052539 2013-03-14
JP2013258367A JP2014200165A (ja) 2013-03-14 2013-12-13 調停装置、調停方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2014200165A true JP2014200165A (ja) 2014-10-23

Family

ID=50235911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258367A Pending JP2014200165A (ja) 2013-03-14 2013-12-13 調停装置、調停方法およびプログラム

Country Status (4)

Country Link
US (1) US9500683B2 (ja)
EP (1) EP2778835A3 (ja)
JP (1) JP2014200165A (ja)
CN (1) CN104052149B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203799A1 (ja) * 2016-05-25 2017-11-30 株式会社東芝 エネルギー管理装置、管理システム、消費電力監視方法及びプログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909774B2 (en) 2015-03-04 2018-03-06 Elwha Llc Systems and methods for regulating an environmental variable within a target zone having multiple inhabitants
US9915438B2 (en) * 2015-03-04 2018-03-13 Elwha Llc System and methods for regulating an environmental variable within a target zone having multiple inhabitants
JP2017043267A (ja) * 2015-08-28 2017-03-02 修一 田山 電子キーシステム
JP6686565B2 (ja) 2016-03-11 2020-04-22 富士ゼロックス株式会社 制御装置、処理装置及びプログラム
US11720161B2 (en) * 2021-06-23 2023-08-08 Dell Products, L.P. Platform framework arbitration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069578A (ja) * 1999-08-25 2001-03-16 Sanyo Electric Co Ltd 家電機器制御システム
WO2011036757A1 (ja) * 2009-09-24 2011-03-31 株式会社東芝 エネルギー削減装置
WO2012093324A1 (en) * 2011-01-06 2012-07-12 Koninklijke Philips Electronics N.V. Electrical energy distribution apparatus.
JP2013027211A (ja) * 2011-07-22 2013-02-04 Toshiba Corp 電気機器制御システム及び電気機器制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145198B2 (ja) 2003-05-30 2008-09-03 株式会社リコー 環境制御方法及び環境制御プログラム
JP4279618B2 (ja) 2003-07-01 2009-06-17 株式会社リコー 機器制御方法及び機器制御プログラム
US7117380B2 (en) * 2003-09-30 2006-10-03 International Business Machines Corporation Apparatus, system, and method for autonomic power adjustment in an electronic device
JP4243684B2 (ja) 2003-10-07 2009-03-25 独立行政法人産業技術総合研究所 歩行動作検出処理装置および歩行動作検出処理方法
WO2006075513A1 (ja) * 2005-01-13 2006-07-20 Matsushita Electric Industrial Co., Ltd. 機器動作制御装置及びその方法
US7995801B2 (en) 2007-06-08 2011-08-09 National Institute Of Advanced Industrial Science And Technology Mobile positioning system
JP5424161B2 (ja) 2009-02-16 2014-02-26 独立行政法人情報通信研究機構 需給調停システム、需給調停装置、需給調停方法および需給調停プログラム
JP5631897B2 (ja) * 2009-12-28 2014-11-26 シャープ株式会社 制御装置、使用電力制御システム、および制御方法
JP4845068B2 (ja) 2010-10-22 2011-12-28 独立行政法人産業技術総合研究所 デッドレコニング装置
JP2012195988A (ja) 2011-03-14 2012-10-11 Omron Corp 需給電力制御装置およびその制御方法、並びに制御プログラム
CN202034821U (zh) 2011-05-09 2011-11-09 常熟开关制造有限公司(原常熟开关厂) 一种转换开关的自动控制装置
JP2014041814A (ja) 2012-07-23 2014-03-06 Ricoh Co Ltd 機器制御システム、制御装置、機器制御方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069578A (ja) * 1999-08-25 2001-03-16 Sanyo Electric Co Ltd 家電機器制御システム
WO2011036757A1 (ja) * 2009-09-24 2011-03-31 株式会社東芝 エネルギー削減装置
WO2012093324A1 (en) * 2011-01-06 2012-07-12 Koninklijke Philips Electronics N.V. Electrical energy distribution apparatus.
JP2013027211A (ja) * 2011-07-22 2013-02-04 Toshiba Corp 電気機器制御システム及び電気機器制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203799A1 (ja) * 2016-05-25 2017-11-30 株式会社東芝 エネルギー管理装置、管理システム、消費電力監視方法及びプログラム
JPWO2017203799A1 (ja) * 2016-05-25 2019-02-28 株式会社東芝 エネルギー管理装置、管理システム、消費電力監視方法及びプログラム

Also Published As

Publication number Publication date
EP2778835A2 (en) 2014-09-17
US20140266153A1 (en) 2014-09-18
EP2778835A3 (en) 2014-11-12
CN104052149B (zh) 2017-09-29
CN104052149A (zh) 2014-09-17
US9500683B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
JP6064384B2 (ja) 機器制御システム
KR20150030248A (ko) 디바이스 제어 시스템, 제어 장치 및 컴퓨터 판독가능 매체
JP2014053884A (ja) 測位装置、プログラムおよび機器制御システム
JP2014075964A (ja) 種類判定装置、種類判定方法およびプログラム
JP2014200165A (ja) 調停装置、調停方法およびプログラム
JP6040650B2 (ja) 制御装置、制御方法およびプログラム
JP2014135155A (ja) 給電タップ、機器認識方法およびプログラム
JP2014078398A (ja) 照明制御装置、照明制御システムおよびプログラム
JP2014235102A (ja) 位置推定システムおよび位置推定装置
JP2014068115A (ja) 通信装置
JP2014089841A (ja) 照明制御装置およびプログラム
JP2014086809A (ja) 機器制御装置、機器制御方法およびプログラム
JP6094227B2 (ja) 給電タップ
JP2014049378A (ja) 照明制御装置、プログラムおよび照明制御システム
JP2014222166A (ja) 給電装置および電力管理システム
JP2014032049A (ja) 位置検出装置およびプログラム
JP5974708B2 (ja) 表示制御装置、表示制御方法およびプログラム
JP2014096673A (ja) 通信装置
JP6089816B2 (ja) 通信装置および通信システム
JP6040730B2 (ja) 自動登録装置、自動登録方法およびプログラム
JP2014180089A (ja) 給電装置
JP2014153835A (ja) タップ制御装置、タップ制御方法およびプログラム
JP2014106631A (ja) 制御装置、制御方法およびプログラム
JP2014179181A (ja) 通信型タップ
JP2014135803A (ja) 給電タップ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403