JP2014178474A - デジタル顕微鏡装置、その合焦位置探索方法およびプログラム - Google Patents

デジタル顕微鏡装置、その合焦位置探索方法およびプログラム Download PDF

Info

Publication number
JP2014178474A
JP2014178474A JP2013052156A JP2013052156A JP2014178474A JP 2014178474 A JP2014178474 A JP 2014178474A JP 2013052156 A JP2013052156 A JP 2013052156A JP 2013052156 A JP2013052156 A JP 2013052156A JP 2014178474 A JP2014178474 A JP 2014178474A
Authority
JP
Japan
Prior art keywords
image
optical system
focus position
unit
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013052156A
Other languages
English (en)
Inventor
Takashi Yamamoto
隆司 山本
Takuya Oshima
拓哉 大嶋
Tatsu Narisawa
龍 成澤
Takamichi Yamagoshi
隆道 山腰
Norihiro Tanabe
典宏 田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2013052156A priority Critical patent/JP2014178474A/ja
Priority to US14/200,835 priority patent/US9341836B2/en
Priority to CN201410083507.8A priority patent/CN104049338B/zh
Publication of JP2014178474A publication Critical patent/JP2014178474A/ja
Priority to US15/097,058 priority patent/US10371931B2/en
Priority to US16/436,587 priority patent/US11156823B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • G02B21/247Differential detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Abstract

【課題】高速かつ高精度に合焦処理に行うことのできるデジタル顕微鏡装置を提供する。
【解決手段】このデジタル顕微鏡装置は、検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して像が結像される第1の撮像素子を有する第1の撮像部と、第1の光学系から分岐され、第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して像が結像される第2の撮像素子を有する第2の撮像部と、第2の撮像部により撮像された像をもとに、対物レンズの暫定合焦位置を算出し、かつ第1の撮像部の第1の撮像素子から像を読み出す領域を判定し、暫定合焦位置を基準とする所定の範囲について、第1の撮像素子から読み出された像をもとに対物レンズの合焦位置を探索する制御部とを具備する。
【選択図】図4

Description

本技術は、生体サンプルなどの検体の拡大像を拡大像として撮像するデジタル顕微鏡装置、その合焦位置探索方法およびプログラムに関する。
従来、デジタル顕微鏡装置で検体の全体を観察するために、スライドガラス上の検体を含む領域を区画する小領域を拡大撮像系により撮像し、小領域毎の複数の像を繋ぎ合わせて1枚の大画像が作成される。
拡大撮像系の対物レンズの焦点を撮像対象である病理検体に合わせる合焦方式にはオートフォーカス(AF:Auto Focus)が採用される。例えば、拡大撮像系の対物レンズの焦点位置を光軸方向に所定間隔毎に移動させ、各々の移動位置で撮像を行い、撮像された各々の画像のうち最もコントラストが高い画像を撮像したときの位置を合焦位置として検出するものなどが提案されている(例えば、特許文献1参照)。この種の合焦方式は「コントラストAF」と呼ばれる。
コントラストAFは、比較的高い焦点精度が得られるものの、焦点位置を探索するために対物レンズの焦点位置の移動および評価の繰り返しを伴う。このため焦点位置が得られるまでに比較的時間がかかる。
そこで、対物レンズを通して取り込んだ光をスプリッタレンズにより二つに分けて、二つの結像された画像の間隔から焦点の位置と方向を判断する「位相差AF」を採用した顕微鏡装置も提案されている(例えば、特許文献2参照)。この位相差AF方式は、コントラストAF方式に比べて焦点探索の必要が無いため高速に焦点位置を得ることができる。しかしその反面、撮像面内にある対象物の大きさや組織の数により精度が低下するおそれがある。
特開2011−197283号公報 特開2011−090222号公報
デジタル顕微鏡装置では、検体の画像を可及的に高い品質でかつ高速に取得したいという要望があるものの、合焦処理などに関して未だ不十分な点が残されている。
以上のような事情に鑑み、本技術の目的は、高速かつ高精度に合焦処理に行うことのできるデジタル顕微鏡装置、その合焦位置探索方法およびプログラムを提供することにある。
上記の課題を解決するために、本技術にかかるデジタル顕微鏡装置は、検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して前記像が結像される第1の撮像素子を有する第1の撮像部と、前記第1の光学系から分岐され、前記第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して前記像が結像される第2の撮像素子を有する第2の撮像部と、前記第2の撮像部により撮像された前記像をもとに、前記対物レンズの暫定合焦位置を算出し、かつ前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定し、前記暫定合焦位置を基準とする所定の範囲について、前記第1の撮像素子から読み出された前記像をもとに前記対物レンズの合焦位置を探索する制御部とを具備する。
本技術では、暫定合焦位置を基準とする所定の範囲における合焦位置の探索が、第1の撮像部の第1の撮像素子の一部の領域から読み出された画像について行われる。これにより、第1の撮像素子からの一回の画像の読み出し時間を短縮でき、合焦位置探索を高速に行うことが可能になる。
前記制御部は、前記第2の撮像部により撮像された前記像をもとに前記検体の像の位置を判定し、この判定結果をもとに前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定するものであってよい。これにより、検体部分の画像について合焦位置探索を行うことができ、合焦位置探索の精度が向上する。
前記制御部は、前記第2の撮像部により撮像された前記像をもとに前記暫定合焦位置の精度を検証し、この結果をもと前記第1の撮像素子から読み出された像に基づく合焦位置の探索の要否を判定する。これにより、暫定合焦位置の精度が十分である場合には、第1の撮像素子から読み出された像に基づく合焦位置の探索を行わず、暫定合焦位置を最終的な合焦位置とすることができる。すなわち、第1の撮像素子から読み出された像に基づく合焦位置の探索は、暫定合焦位置の精度が十分保証されない場合に行われるようにすることで、全体的な効率の向上を図れる。
前記制御部は、前記検体の像の位置の判定に失敗した場合、前記第1の撮像部の前記第1の撮像素子の全画角の像を読み出し、この全画角の像をもとに合焦位置を探索するようにしてもよい。これにより、検体の存在しない部分の画像について合焦位置探索を行うことによる合焦位置探索の失敗を回避することができる。
本技術にかかるデジタル顕微鏡装置において、前記第2の撮像部は、位相差像を撮像する撮像部とすることができる。
本技術の別の観点に基づくデジタル顕微鏡装置の合焦位置探索方法は、検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して前記像が結像される第1の撮像素子を有する第1の撮像部と、前記第1の光学系から分岐され、前記第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して前記像が結像される第2の撮像素子を有する第2の撮像部を準備し、前記第2の撮像部により撮像された前記像をもとに、前記対物レンズの暫定合焦位置を算出し、かつ前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定し、
前記暫定合焦位置を基準とする所定の範囲について、前記第1の撮像素子から読み出された像をもとに前記対物レンズの合焦位置を探索する、というものである。
さらに、本技術の別の観点に基づくプログラムは、検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して前記像が結像される第1の撮像素子を有する第1の撮像部と、前記第1の光学系から分岐され、前記第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して前記像が結像される第2の撮像素子を有する第2の撮像部と、それぞれ通信し、前記第2の撮像部により撮像された前記像をもとに、前記対物レンズの暫定合焦位置を算出し、かつ前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定し、前記暫定合焦位置を基準とする所定の範囲について、前記第1の撮像素子から読み出された像をもとに前記対物レンズの合焦位置を探索する制御部として、コンピュータを機能させるプログラムである。
以上のように、本技術によれば、高速かつ高精度に合焦処理を行うことができる。
合焦方法の典型例を説明するための図である。 合焦方法の他の典型例を説明するための図である。 本実施形態に係るデジタル顕微鏡装置の全体構成を示した図である。 統合制御部の機能ブロック図である。 統合制御部の合焦動作のフローチャートである。 合焦位置検出精度の検証方法を説明する図である。 撮像素子の読み出し領域を制限する具体例を示す図である。 撮像素子の読み出し領域を制限する他の具体例を示す図である。 本実施形態のデジタル顕微鏡装による速度的な効果を他の方式と比較して示す図である。
以下、本技術に係る実施形態を、図面を参照しながら説明する。
<典型例>
まず、典型的なデジタル顕微鏡装置とその合焦方式について説明する。
デジタル顕微鏡装置では、拡大光学系を用いて病理スライド上の細胞組織等の像を拡大してCMOS(Complementary Metal Oxide Semiconductor)センサーなどの撮像素子にて撮影し、撮像された複数の画像を貼りあわせて一枚の巨大な検体画像を構成する。拡大光学系の被写界深度は非常に狭い(例えば1μm前後)ため、厚みのある細胞組織の焦点状態が最良となるように焦点位置合わせを行う必要がある。かかる焦点位置合わせは、病理スライド(プレパラート)を保持したステージを、拡大光学系の対物レンズの光軸方向に相対的に駆動させることで行われる。
焦点位置合わせのための代表的な方式としては、コントラストAF方式(山登り方式)がある。コントラストAF方式では、拡大光学系の被写界深度が焦点探索の単位となる。デジタル顕微鏡装置の拡大光学系の被写界深度は非常に狭いため、探索範囲をカバーするためには、ステージの移動と撮像を何度も繰り替えす必要がある。例えば、病理スライド(プレパラート)の探索範囲を±100μm程度、拡大光学系の被写界深度を1μm程度とすると、200回程度の撮像が必要である。撮像部のフレームレートを10fpsとした場合、結果的にコントラストAF方式による焦点位置合わせには20秒程度の時間を要する。すなわち、病理スライド(プレパラート)毎の撮像には少なくとも20秒程度の時間を要する。
コントラストAFの高速化の方法として、図1に示すように、はじめに、例えば、10μm刻みで粗く合焦位置を探し、続いて、探索された合焦位置を中心に1μm刻みで±10μm範囲の探索を行うといったような2段階コントラストAF方式などがある。あるいは、±10μm範囲において3点以上の合焦位置各々の合焦評価値の逆数の組み合わせから所定の曲線へのカーブフィッティングを行い、所定の曲線上で逆数が最小となる焦点位置を算出する方法も知られている。この場合、2段階目の画像の読み出しが最小3回に減らすことができるので、より一層の高速化を図ることができる。
上記のようにコントラストAFは、拡大撮影のための光学系をそのまま使用して行われる方式である。これに対し、拡大撮影のための光学系(主光学系)から分岐させた別の光学系(副光学系)を用いて合焦位置検出を行う方式がある。その一つが位相差AF方式である。位相差AF方式は、対物レンズを通して取り込んだ光をスプリッタレンズにより二つに分けて、二つの結像された画像の間隔から焦点の位置と方向を判断する方式である。位相差AF用の副光学系は、主光学系に比べて被写界深度が十分広くてよい。すなわち、位相差AF方式は、コントラストAF方式に比べて焦点位置探索の必要が無いため高速に焦点位置を検出することができる。その反面、位相差AF方式は、コントラストAF方式に比べて合焦精度が低いなど、原理的な壁がある。特に、撮像面内にある細胞組織が微小な場合や染色が薄い場合など、精度が低下する傾向がある。
さらには、位相差AFとコントラストAFを併用する方式がある。
この併用型のAF方式は、図2に示すように、はじめに位相差AF方式により暫定合焦位置を求め、続いて、この暫定合焦位置を基準に所定の距離の範囲内をコントラストAF方式により山登り形式にて合焦位置探索をする、というものである。この方式によれば、前述の2段階コントラストAF方式と比較して、1段階目の画像の読み出し回数を大幅に減らすことができるので、大幅な速度アップを期待できる。また、2段階目のコントラストAFにおいてカーブフィッティングを用いて画像の読み出し回数を減らすことによって、より一層の高速化を図れる。
しかし、主光学系の撮像部からの画像の読み出しの繰り返しを伴う以上、高速化に限界がある。すなわち、主光学系の撮像部のフレームレートが、さらなる高速化の要求に対する壁になることが予想される。
そこで、本実施形態のデジタル顕微鏡装置は、位相差AF方式により算出された暫定合焦位置を基準とした所定の範囲に絞った合焦位置探索において、撮像素子の読み出し領域を制限することによって一回の画像読み出し時間を短くし、合焦処理の大幅な速度アップを実現するものである。
以下、本技術にかかる第1の実施形態のデジタル顕微鏡装置について説明する。
<第1の実施形態>
図3は、本実施形態に係るデジタル顕微鏡装置100の全体構成を示した図である。
[全体構成]
このデジタル顕微鏡装置100は、主光学系の撮像部である拡大像撮像部10(第1の撮像部)と、副光学系の撮像部である位相差像撮像部20(第2の撮像部)と、ステージ30と、制御部40とを有する。なお、図示は省略したが、このデジタル顕微鏡装置100は、検体SPLが配設されるプレパラートPRT全体の像を撮像するサムネイル像撮像部を備えるものであってもよい。
拡大像撮像部10は、プレパラートPRT上の検体SPLが所定倍率で拡大された像(以下、この像を「拡大像」または「観察像」と称する。)を撮像する。
位相差像撮像部20は、拡大像撮像部10の対物レンズ13の焦点とプレパラートPRT上の検体SPLとの光軸方向のずれの量と向きを情報として含む位相差像を撮像する。
ステージ30は、プレパラートPRTを載置して、少なくとも拡大像撮像部10による撮像位置に移動させる。ステージ30は、ステージ駆動機構31により、拡大像撮像部10の対物レンズ13の光軸の方向(z軸方向)と、光軸の方向に対して直交する方向(x軸方向およびy軸方向)に移動自在とされる。さらには、光軸の方向に対して直交する面に対して傾斜する方向にも移動自在なものであることが望ましい。
なお、プレパラートPRTは、血液等の結合組織、上皮組織又はそれらの双方の組織などの組織切片又は塗抹細胞からなる生体サンプルである検体SPLを、所定の固定手法によりスライドガラスに固定したものである。これらの組織切片又は塗抹細胞には、必要に応じて各種の染色が施される。この染色には、HE(ヘマトキシリン・エオシン)染色、ギムザ染色、パパニコロウ染色、チール・ネールゼン染色、グラム染色等に代表される一般染色のみならず、FISH(Fluorescence In−Situ Hybridization)や酵素抗体法等の蛍光染色が含まれる。
なお、図示は省略したが、このデジタル顕微鏡装置100には、検体SPLを含むプレパラートPRTを蓄積し、蓄積されたプレパラートPRTを一つずつステージ30の上にローディングするプレパラート・ストック・ローダが付設されていてもよい。
次に、上述した拡大像撮像部10と、位相差像撮像部20と、制御部40の詳細について説明する。
[拡大像撮像部10]
拡大像撮像部10は、図3に示したように、光源11と、コンデンサレンズ12と、対物レンズ13と、撮像素子14(第1の撮像素子)と、ビームスプリッター15とを有する。
光源11は、明視野照明光を照射するものである。光源11はステージ30のプレパラート配置面とは逆の面側に設けられる。また、光源11とは異なる位置(例えばプレパラート配置面側)には、暗視野照明光を照射する光源(図示せず)が設けられる。
コンデンサレンズ12は、光源11から照射された明視野照明光や暗視野照明用の光源から照射された暗視野照明光を集光して、ステージ30上のプレパラートPRTに導くレンズである。このコンデンサレンズ12は、プレパラート配置面における拡大像撮像部10の基準位置の法線を光軸ERとして、光源11とステージ30との間に配設される。
対物レンズ13は、プレパラート配置面における拡大像撮像部10の基準位置の法線を光軸ERとして、ステージ30のプレパラート配置面側に配設される。拡大像撮像部10では、この対物レンズ13を適宜交換することで、検体SPLを様々な倍率に拡大して撮像することができる。ステージ30上に配設されたプレパラートPRTを透過した透過光は、対物レンズ13によって集光され、ビームスプリッター15に到達する。
ビームスプリッター15は、対物レンズ13を透過した透過光を、拡大像撮像部10の撮像素子14へと向かう反射光と、位相差像撮像部20内のフィールドレンズ21へと向かう透過光とに分岐する。
撮像素子14には、撮像素子14の画素サイズ及び対物レンズ13の倍率に応じて、ステージ30のプレパラート配置面上における小領域の撮像範囲の像が結像される。
[位相差像撮像部20]
位相差像撮像部20は、図3に示したように、フィールドレンズ21と、セパレータレンズ22と、撮像素子23(第2の撮像素子)とを有する。
フィールドレンズ21は、ビームスプリッター15を透過した反射光を集光して、フィールドレンズ21の後方(反射光の進行方向側)に設けられたセパレータレンズ22へと導く。
セパレータレンズ22は、フィールドレンズ21から導光された光束を2つの光束に分割する。分割された光束は、セパレータレンズ22の後方(反射光の進行方向側)に設けられた撮像素子23の結像面に対して1組の被写体像を形成する。
撮像素子23には、セパレータレンズ22を透過した1組の被写体像がそれぞれ結像する。セパレータレンズ22には、フィールドレンズ21を射出した様々な方向の光束が入射するため、形成される1組の被写体像間には位相差が存在する。以下では、この1組の被写体像を「位相差像」と称する。
なお、以上の説明では、対物レンズ13と撮像素子14との間にビームスプリッター15が設けられる場合について説明したが、光線を分岐するための光線分岐手段はビームスプリッターに限定されるわけではなく、可動式ミラー等を利用することも可能である。
また、以上の説明では、位相差像撮像部20を対物レンズ13の光軸ER上に配置し、拡大像撮像部10の撮像素子14をビームスプリッター15にて分岐された反射光が入射される位置に配置した。しかし、逆に、拡大像撮像部10の撮像素子14を対物レンズ13の光軸ER上に配置し、位相差像撮像部20をビームスプリッター15にて分岐された反射光が入射される位置に配置してもよい。
また、前述の説明では、位相差像撮像部20内の位相差AF光学系としてフィールドレンズ、セパレータレンズ及び撮像素子を有する構成を示したが、かかる例に限定されるわけではない。かかる位相差AF光学系は、例えば、フィールドレンズ及びセパレータレンズの代わりにコンデンサレンズ及び2眼レンズを利用したりするなど、同等の機能を実現可能なものであれば、他の光学系であってもよい。
また、拡大像撮像部10及び位相差像撮像部20それぞれに設けられる撮像素子は、1次元撮像素子(ラインセンサ)であってもよく、2次元撮像素子(エリアセンサ)であってもよい。
[制御部40]
制御部40は、統合制御部41と、ステージ駆動制御部42と、位相差像撮像制御部43と、拡大像撮像制御部44と、記憶部45と、現像部46と、画像符号化部47と、通信部48と、表示制御部49を有する。
統合制御部41は、例えば、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とを含むコンピュータのハードウェア要素で構成される。あるいはFPGA(field programmable gate array)などの専用ICによって構成されてもよい。統合制御部41は、ステージ駆動制御部42、位相差像撮像制御部43、拡大像撮像制御部44、記憶部45、現像部46、画像符号化部47、通信部48、表示制御部49との間で各種信号をやりとりして、拡大像を取得するための様々な演算処理および制御を実行する。RAMには、そのための各種のプログラムおよびデータがロードされ、CPUはRAMにロードされたプログラムを実行する。ROMには、RAMにロードされるプログラムやデータなどが格納される。
ステージ駆動制御部42、位相差像撮像制御部43、および拡大像撮像制御部44は、例えば、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成されてもよいし、FPGAなどの専用ICによって構成されてもよい。
現像部46および画像符号化部47は、例えば、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成される。あるいはGPU(Graphics Processing Unit)によって構成されてもよい。
ステージ駆動制御部42は、統合制御部41から拡大像を撮像する指示が与えられると、その指示された検体SPLの小領域が撮像素子14の撮像範囲に入るように、ステージ駆動機構31を駆動して、ステージ面方向にステージ30を移動させる。ステージ駆動制御部42は、対物レンズ13の焦点を検体SPLに合わせるように、ステージ駆動機構31を駆動してステージ30をz軸方向に移動させる。
位相差像撮像制御部43は、位相差像撮像部20に設けられた撮像素子23の結像面に結像した一組の位相差像の信号を取得し、統合制御部41に供給する。統合制御部41は、位相差像撮像制御部43より取得した一組の位相差像の距離をもとに拡大像撮像部10の対物レンズ13の焦点の検体SPLに対するデフォーカス量とデフォーカスの向きを算出し、この結果をもとに暫定合焦位置を算出する。また、統合制御部41は、位相差像撮像制御部43より取得した少なくとも一方の位相差像において検体が存在する領域あるいは検体の細胞組織が密な領域を検出し、撮像素子14からの画像の読み込み領域が当該領域に制限されるように拡大像撮像制御部44を制御する。
拡大像撮像制御部44は、拡大像撮像部10の撮像素子14の結像面に結像した小領域毎の拡大像に対応する信号をもとに当該小領域毎の拡大像に対応するRAWデータを生成して統合制御部41に供給する。ここで、「小領域」とは、プレパラートPRTに保持された検体SPL全体の領域を拡大像撮像部10の視野に応じたサイズでメッシュ状に区画した各々の領域である。
統合制御部41は、拡大像撮像制御部44より取得した小領域毎のRAWデータを現像部46に供給して現像処理を実行させる。統合制御部41は、現像部46にて現像された小領域毎の拡大像のデータを接続して検体SPL単位の大画像を生成し、生成された検体SPL単位の大画像をタイルと呼ばれる所定の解像度の単位に分割する処理などを行う。さらに、統合制御部41は、生成された各々のタイルを画像符号化部47に供給して、所定の圧縮符号化形式の画像データを生成させ、記憶部45に保存させる。
記憶部45は、デジタル顕微鏡装置100を制御するための各種設定情報やプログラム、さらには所定の圧縮符号化形式のタイル群などを格納する。
現像部46は、拡大像撮像部10によって撮像された小領域毎の拡大像のRAWデータを現像する。
画像符号化部47は、タイル毎の画像データを所定の画像圧縮形式に符号化する。ここで、画像圧縮形式として、例えば、JPEG(Joint Photographic Experts Group)などが採用される。勿論、JPEG以外の圧縮符号化形式が採用されてもよい。
記憶部45に記憶された各タイルは、通信部48によってネットワーク80を通じて画像管理サーバ81に蓄積される。画像管理サーバ81は、ビューワ端末82からのリクエストに応じて該当する1以上のタイルをビューワ端末82に応答する。ビューワ端末82は、画像管理サーバ81より取得した1以上のタイルを用いて表示用の拡大像を生成して、ビューワ端末82の表示部に表示させる。
表示制御部49は、デジタル顕微鏡装置100に接続された表示部90に表示させる画面データを生成する。
[合焦方式について]
この実施形態のデジタル顕微鏡装置100では、はじめに位相差AF方式による合焦位置の算出と、この合焦位置の精度が保証できるものであるかどうかの判定が行われる。精度が保証できることが判定された場合には、位相差AF方式により算出された合焦位置に対物レンズ13の焦点位置を合わせるようにステージ30をz軸方向に移動させ、拡大像撮像部10による拡大像の撮像が行われる。また、精度が保証できないことが判定された場合には、位相差AF方式により算出された合焦位置を暫定合焦位置として、この暫定合焦位置を基準とした所定の範囲について、拡大像撮像部10によって撮像された拡大像を用いてコントラストAF方式で合焦位置の探索が行われる。
さらに、本実施形態のデジタル顕微鏡装置100では、位相差AF方式により算出された暫定合焦位置を基準とした所定の範囲の合焦位置探索において、撮像素子14の読み出し領域を制限して一回の画像読み出し時間を短くすることによって、合焦位置探索の大幅な高速化を実現している。
[統合制御部41の機能]
次に、上記の合焦制御を行う統合制御部41について説明する。
図4は、統合制御部41の機能ブロック図である。
図5は、統合制御部41の合焦動作のフローチャートである。
図4に示すように、統合制御部41は、合焦位置算出部411、合焦精度評価部412、読み出し領域制御部413、合焦位置探索部414を備える。これらの機能は、統合制御部41内のCPUがRAMにロードされたプログラムを実行することによって実現される。
まず、合焦位置算出部411は、位相差像撮像制御部43を通じて位相差像撮像部20より一組の位相差像を取得し、これらの位相差像の位相差を求め、この位相差をもとに合焦位置までの距離に相当するデフォーカス量とデフォーカスの向きをデフォーカス情報として算出する(ステップS101)。
合焦精度評価部412は、位相差像撮像部20によって撮像された位相差像をもとに、合焦位置精度の検証を行い(ステップS102)、この結果、精度を保証できることが判定された場合には、合焦位置算出部411によって算出されたデフォーカス情報をもとにステージ30をz軸方向に移動させる(ステップS103)。この後、拡大像撮像部10による拡大像の撮像が行われる。
[合焦位置検出精度の検証方法]
ここで、合焦位置検出精度の検証方法の詳細について説明する。
図6は、合焦位置検出精度の検証方法を説明する図である。
本実施形態のデジタル顕微鏡装置100では、位相差像撮像部20によって撮像された位相差像を用いて合焦位置検出精度の検証が行われる。位相差AFによる十分な合焦位置検出精度が保証される場合とは、図6に示した画像201のように、全体の像110において検体部分の像120がある程度の面積割合と鮮明さ(濃さ)を満足する場合である。画像202のように、検体の像120が小さすぎたり、画像203のように、検体の像120が薄すぎたりすると、位相差像撮像部20の撮像素子23に捕らえられた2つの位相差像上における観測面の同一の領域を特定するために必要な情報量が不足し、位相差の検出精度が低下するからである。
ここで、全体の像110をM画素×N画素のブロック130に区画し、ブロック130内の画素の濃さの平均値を0から1の範囲の相関係数に置き換えた値を、そのブロック130の鮮明さ(濃さ)を定量化した値とする。したがって、相関係数が0に近いほどそのブロック130は不鮮明であり、相関係数が1に近いほどそのブロック130は鮮明であることを意味する。
図6の符号204、205,206はそれぞれ、画像201,202,203それぞれの各ブロック130の相関係数を示す図である。
相関係数が第1の閾値以上のブロック130の数の割合が第2の閾値以上であって、かつ相関係数が第1の閾値以上のブロック130の相関係数の平均値が第3の閾値以上である画像を、位相差AFによる十分な合焦位置検出精度が保証される画像として判断される。
例えば、第1の閾値=0.3、第2の閾値=40%、第3の閾値=0.5とする。
画像201において、相関係数が第1の閾値(=0.3)以上であるブロック130の数の割合は60%であり、相関係数が第1の閾値(=0.3)以上のブロック130の相関係数の平均値は0.71で第3の閾値(=0.5)よりも大きい。したがって、画像201は位相差AFによる十分な合焦位置検出精度が保証された画像と判断される。
次に、画像202において、相関係数が第1の閾値(=0.3)以上のブロック130の相関係数の平均値は0.6で第3の閾値(=0.5)よりも大きいものの、相関係数が第1の閾値(=0.3)以上であるブロック130の数の割合は4%である。したがって、画像202は位相差AFによる十分な合焦位置検出精度が保証されない画像と判断される。
同様に、画像203において、相関係数が第1の閾値(=0.3)以上であるブロック130の数の割合は44%と第2の閾値(=40%)より大きいものの、相関係数が第1の閾値(=0.3)以上のブロック130の相関係数の平均値は0.38で第3の閾値(=0.5)よりも小さい。したがって、画像203は位相差AFによる十分な合焦位置精度が保証されない画像と判断される。
以上が、合焦位置検出精度の検証方法の説明である。
ステップS102で、合焦精度評価部412は、合焦位置検出の精度の保証ができないことを判定した場合、続いて位相差像全体の画角内での検体の位置の検出を試みる(ステップS104)。
[検体位置の検出方法]
検体位置を検出しなければならないケースとは、合焦位置精度に問題があることが判定された場合である。したがって、図6に示した画像201のように相関係数が第1の閾値以上のブロックの数の割合が第2の閾値以上であって、かつ相関係数が第1の閾値以上のブロック130の相関係数の平均値が第3の閾値以上である画像について、検体位置を特定する処理は行われる必要はない。
したがって、合焦位置精度に問題があることが判定された画像について、各ブロック130の相関係数の値から検体の位置を判定すればよい。この検体の位置に応じて拡大像撮像部10の撮像素子14の読み出し領域を制限すればよい。
例えば、図6に示した画像202および画像203の各々について、相関係数が第1の閾値=0.3よりも大きいブロック130を検体の位置として判定する。なお、このとき判定の閾値は合焦位置精度の検証で用いた第1の閾値と必ずしも同じである必要はない。
以上が、検体位置の検出方法の説明である。
図4及び図5の説明に戻る。
ステップS104で、合焦精度評価部412は、位相差像全体の画角内での検体の位置の検出に成功した場合、合焦位置算出部411によって算出されたデフォーカス情報をもとにステージ30をz軸方向に移動させ(ステップS105)、検出した検体の位置を読み出し領域制御部413に通知する。
読み出し領域制御部413は、合焦精度評価部412より通知された検体の位置に対応する撮像素子14の読み出し領域を算出し、この読み出し領域に関する情報を拡大像撮像制御部44に通知する。拡大像撮像制御部44は、読み出し領域制御部413より通知された読み出し領域に関する情報をもとに拡大像撮像部10の撮像素子14から画像を読み出す領域を限定するように制御を行う。
撮像素子14に用いられる多くのCMOSセンサーでは帯読み出しが可能とされている。帯読み出しとは、x軸方向またはy軸方向において読み出す範囲を制御できる機能である。この帯読み出し機能を用いて、合焦精度評価部412によって検出された検体の位置に応じて撮像素子14の読み出し領域を制限することが可能である。
図7は、帯読み出し機能を用いて撮像素子の読み出し領域を制限する具体例を示す図である。同図に示すように、一部のブロック130が検体の像120を含む領域であることが判定された場合には、このブロック130を含む帯状部分140を帯読み出し機能によって読み出せばよい。
また、撮像素子からx軸方向とy軸方向において読み出す範囲を制御することができるのであれば、図8に示すように、そのブロックに相当する部分150をx軸とy軸の二軸方向にて制限して読み出すようにすればよい。
このように撮像素子14から部分的に画像を読み出すだけでよいことから、撮像素子14からの一回の画像の読み出し時間を大幅に低減することができる。
図4および図5の説明に再び戻る。
合焦位置探索部414は、合焦精度評価部412による合焦位置精度の検証において精度の保証ができないことが判定された場合(ステップS102)に起動される。起動された合焦位置探索部414は、合焦精度評価部412による検体位置の検出に成功した場合(ステップS104のYes)と失敗した場合(ステップS104のNo)とで異なる処理を行う。
すなわち、合焦精度評価部412による検体位置の検出に成功した場合には(ステップS104のYes)、合焦位置探索部414は、撮像素子14からの読み出し領域を制限された拡大像を拡大像撮像制御部44より取得し、この読み出し領域を制限された拡大像についてコントラストAF方式による合焦位置の探索を行う(ステップS105,ステップS106)。その際、合焦位置算出部411により検出された合焦位置を暫定合焦位置として、この暫定合焦位置を基準とした所定の範囲についてコントラストAF方式での合焦位置の探索が行われる。
この後、合焦位置探索部414によって探索された合焦位置に対物レンズ13の焦点位置が合うようにステージ30をz軸方向に移動させる(ステップS103)。この後、拡大像撮像部10による拡大像の撮像が行われる。
また、合焦精度評価部412による検体位置の検出に失敗する場合とは(ステップS104のNo)、検体の像が薄い場合などが考えられる。この場合、位相差AFで算出された合焦位置の精度は疑わしい。そこで、合焦位置探索部414は、例えば、小領域の撮影の履歴から、今回の撮像対象の小領域に対するおよその合焦位置を推測できるかどうかを判定する(ステップS107)。例えば、今回の撮像対象である小領域に対して隣接する小領域であって、かつ検体の像が両小領域間で連続する1以上の小領域について既に拡大像の撮像が完了している場合、合焦位置探索部414は、その隣接する1以上の小領域の拡大像の撮像時の合焦位置をもとに、今回の撮像対象の小領域の合焦位置を推測する。そして、合焦位置探索部414は、この合焦位置を暫定合焦位置として、この暫定合焦位置を基準とした所定の範囲についてコントラストAF方式での合焦位置を探索する(ステップS108,ステップS109)。なお、このときの暫定合焦位置を基準とした所定の範囲は、ステップS106の所定の範囲と同じであってもよいし、異なっていてもよい。
この後、合焦位置探索部414によって探索された合焦位置に対物レンズ13の焦点位置が合うようにステージ30をz軸方向に移動させる(ステップS103)。この後、拡大像撮像部10による拡大像の撮像が行われる。
さらに、合焦位置を推測も困難である場合には(ステップS107のNo)、合焦位置探索部414は、例えば、コントラストAF方式による合焦位置探索、あるいは粗い合焦位置探索に続いて高精細の合焦位置探索を行う2段階コントラストAF方式による合焦位置探索を行う(ステップS110)。
この後、合焦位置探索部414によって探索された合焦位置に対物レンズ13の焦点位置が合うようにステージ30をz軸方向に移動させる(ステップS103)。この後、拡大像撮像部10による拡大像の撮像が行われる。
[本実施形態のデジタル顕微鏡装置100の効果]
以上のように、本実施形態のデジタル顕微鏡装置100によれば、光軸方向の範囲のみならず、観測面において限定された範囲についてコントラストAFによる合焦位置探索を行うことができる。これにより、高精度で高速な合焦処理が可能になる。
図9は、本実施形態のデジタル顕微鏡装置100による速度的な効果を他の方式と比較して示す図である。
例えば、拡大像撮像部10の撮像素子14からの画像の読出し速度を10fps (100ms/shot)、位相差像撮像部20の撮像素子23からの画像の読出し速度を100fps(10ms/shot)、それぞれの焦点検出の画像処理に要する時間を10ms、拡大像撮像部10の撮像素子14からの画像の読出し回数を3とする。ここで、拡大像撮像部10の撮像素子14の全画角から画像を読み出すとなると、合焦処理に要する通算時間は390msである。これに対し、拡大像撮像部10の撮像素子14からの、例えば帯読み出しによって観測面を1/10に制限した場合、合焦処理に要する通算時間は120msにまで短縮される。
<変形例>
上記の実施形態では、位相差像AF方式により合焦位置の粗い探索が行われることとした。しかし、本技術はこれに限定されない。合焦位置の粗い探索を行う他の方式としては、拡大光学系(拡大像撮像部10の光学系)に比べて被写界深度が深い光学系により広範囲にわたって粗い合焦位置の探索を行うことのできる方式であればよい。
上記の実施形態では、位相差像撮像部20にて撮像される位相差像をもとに、検体の像の位置の判定、および暫定合焦位置の精度の検証を行うこととした。しかし、本技術はこれに限定されない。例えば、検体の位置の判定、および暫定合焦位置の精度の検証のための像を撮像するための専用の撮像部を設け、この専用の撮像部の撮像素子に像を結像させるための光学系を、拡大像撮像部10の光学系から分岐させた構成も考えられる。
なお、本技術は以下のような構成も採ることができる。
(1)検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して前記像が結像される第1の撮像素子を有する第1の撮像部と、
前記第1の光学系から分岐され、前記第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して前記像が結像される第2の撮像素子を有する第2の撮像部と、
前記第2の撮像部により撮像された前記像をもとに、前記対物レンズの暫定合焦位置を算出し、かつ前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定し、前記暫定合焦位置を基準とする所定の範囲について、前記第1の撮像素子から読み出された前記像をもとに前記対物レンズの合焦位置を探索する制御部と
を具備するデジタル顕微鏡装置。
(2)前記(1)に記載のデジタル顕微鏡装置であって、
前記制御部は、前記第2の撮像部により撮像された前記像をもとに前記検体の像の位置を判定し、この判定結果をもとに前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定する
デジタル顕微鏡装置。
(3)前記(1)または(2)に記載のデジタル顕微鏡装置であって、
前記制御部は、前記第2の撮像部により撮像された前記像をもとに前記暫定合焦位置の精度を検証し、この結果をもと前記第1の撮像素子から読み出された像に基づく合焦位置の探索の要否を判定する
デジタル顕微鏡装置。
(4)前記(1)ないし(3)に記載のいずれかのデジタル顕微鏡装置であって、
前記制御部は、前記検体の像の位置の判定に失敗した場合、前記第1の撮像部の前記第1の撮像素子の全画角の像を読み出し、この全画角の像をもとに合焦位置を探索する
デジタル顕微鏡装置。
(5)前記(1)ないし(4)に記載のいずれかのデジタル顕微鏡装置であって、
前記第2の撮像部は、位相差像を撮像する撮像部である
デジタル顕微鏡装置。
10…拡大像撮像部
11…光源
12…コンデンサレンズ
13…対物レンズ
14…撮像素子
15…ビームスプリッター
20…位相差像撮像部
21…フィールドレンズ
22…セパレータレンズ
23…撮像素子
30…ステージ
31…ステージ駆動機構
40…制御部
41…統合制御部
42…ステージ駆動制御部
43…位相差像撮像制御部
44…拡大像撮像制御部
100…デジタル顕微鏡装置
411…合焦位置算出部
412…合焦精度評価部
413…読み出し領域制御部
414…合焦位置探索部

Claims (7)

  1. 検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して前記像が結像される第1の撮像素子を有する第1の撮像部と、
    前記第1の光学系から分岐され、前記第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して前記像が結像される第2の撮像素子を有する第2の撮像部と、
    前記第2の撮像部により撮像された前記像をもとに、前記対物レンズの暫定合焦位置を算出し、かつ前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定し、前記暫定合焦位置を基準とする所定の範囲について、前記第1の撮像素子から読み出された前記像をもとに前記対物レンズの合焦位置を探索する制御部と
    を具備するデジタル顕微鏡装置。
  2. 請求項1に記載のデジタル顕微鏡装置であって、
    前記制御部は、前記第2の撮像部により撮像された前記像をもとに前記検体の像の位置を判定し、この判定結果をもとに前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定する
    デジタル顕微鏡装置。
  3. 請求項2に記載のデジタル顕微鏡装置であって、
    前記制御部は、前記第2の撮像部により撮像された前記像をもとに前記暫定合焦位置の精度を検証し、この結果をもと前記第1の撮像素子から読み出された像に基づく合焦位置の探索の要否を判定する
    デジタル顕微鏡装置。
  4. 請求項3に記載のデジタル顕微鏡装置であって、
    前記制御部は、前記検体の像の位置の判定に失敗した場合、前記第1の撮像部の前記第1の撮像素子の全画角の像を読み出し、この全画角の像をもとに合焦位置を探索する
    デジタル顕微鏡装置。
  5. 請求項1に記載のデジタル顕微鏡装置であって、
    前記第2の撮像部は、位相差像を撮像する撮像部である
    デジタル顕微鏡装置。
  6. 検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して前記像が結像される第1の撮像素子を有する第1の撮像部と、前記第1の光学系から分岐され、前記第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して前記像が結像される第2の撮像素子を有する第2の撮像部を準備し、
    前記第2の撮像部により撮像された前記像をもとに、前記対物レンズの暫定合焦位置を算出し、かつ前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定し、
    前記暫定合焦位置を基準とする所定の範囲について、前記第1の撮像素子から読み出された像をもとに前記対物レンズの合焦位置を探索する
    デジタル顕微鏡装置の合焦位置探索方法。
  7. 検体を保持するプレパラートの像を拡大する対物レンズを含む第1の光学系および、この第1の光学系を通して前記像が結像される第1の撮像素子を有する第1の撮像部と、前記第1の光学系から分岐され、前記第1の光学系に比較して被写界深度が深い第2の光学系および、この第2の光学系を通して前記像が結像される第2の撮像素子を有する第2の撮像部と、それぞれ通信し、前記第2の撮像部により撮像された前記像をもとに、前記対物レンズの暫定合焦位置を算出し、かつ前記第1の撮像部の前記第1の撮像素子から前記像を読み出す領域を判定し、前記暫定合焦位置を基準とする所定の範囲について、前記第1の撮像素子から読み出された像をもとに前記対物レンズの合焦位置を探索する制御部として、コンピュータを機能させるプログラム。
JP2013052156A 2013-03-14 2013-03-14 デジタル顕微鏡装置、その合焦位置探索方法およびプログラム Pending JP2014178474A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013052156A JP2014178474A (ja) 2013-03-14 2013-03-14 デジタル顕微鏡装置、その合焦位置探索方法およびプログラム
US14/200,835 US9341836B2 (en) 2013-03-14 2014-03-07 Digital microscope apparatus, method of searching for in-focus position thereof, and program
CN201410083507.8A CN104049338B (zh) 2013-03-14 2014-03-07 数字显微镜装置、寻找其聚焦位置的方法、及程序
US15/097,058 US10371931B2 (en) 2013-03-14 2016-04-12 Digital microscope apparatus, method of searching for in-focus position thereof, and program
US16/436,587 US11156823B2 (en) 2013-03-14 2019-06-10 Digital microscope apparatus, method of searching for in-focus position thereof, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052156A JP2014178474A (ja) 2013-03-14 2013-03-14 デジタル顕微鏡装置、その合焦位置探索方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2014178474A true JP2014178474A (ja) 2014-09-25

Family

ID=51502415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052156A Pending JP2014178474A (ja) 2013-03-14 2013-03-14 デジタル顕微鏡装置、その合焦位置探索方法およびプログラム

Country Status (3)

Country Link
US (3) US9341836B2 (ja)
JP (1) JP2014178474A (ja)
CN (1) CN104049338B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10470652B2 (en) 2015-04-23 2019-11-12 Canon Kabushiki Kaisha Information processing apparatus and information processing method
WO2021167044A1 (ja) 2020-02-20 2021-08-26 ソニーグループ株式会社 顕微鏡システム、撮像方法、および撮像装置
WO2022269961A1 (ja) * 2021-06-25 2022-12-29 ソニーグループ株式会社 顕微鏡システム、情報処理装置及び制御方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9841590B2 (en) 2012-05-02 2017-12-12 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
JP2014178474A (ja) * 2013-03-14 2014-09-25 Sony Corp デジタル顕微鏡装置、その合焦位置探索方法およびプログラム
CA3000053C (en) 2015-09-24 2023-07-04 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
US9910247B2 (en) * 2016-01-21 2018-03-06 Qualcomm Incorporated Focus hunting prevention for phase detection auto focus (AF)
US10936147B2 (en) 2017-04-28 2021-03-02 Hewlett-Packard Development Company, L.P. Tablet computing device with display dock
EP3514513A1 (de) * 2018-01-23 2019-07-24 Universitatea Stefan cel Mare Suceava - Romania Automatisches fokussiersystem für raman-spektromikroskope
CN112512395A (zh) * 2018-07-20 2021-03-16 奥林巴斯株式会社 摄像单元、内窥镜以及内窥镜系统

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118123A (en) * 1997-02-05 2000-09-12 Jeol Ltd. Electron probe microanalyzer
US7068808B1 (en) * 1998-06-10 2006-06-27 Prokoski Francine J Method and apparatus for alignment, comparison and identification of characteristic tool marks, including ballistic signatures
US6677565B1 (en) * 1998-08-18 2004-01-13 Veeco Tucson Inc. High speed autofocus and tilt for an optical imaging system
US6545761B1 (en) * 1999-11-30 2003-04-08 Veeco Instruments, Inc. Embedded interferometer for reference-mirror calibration of interferometric microscope
US7480149B2 (en) * 2004-08-18 2009-01-20 Donnelly Corporation Accessory module for vehicle
US7518652B2 (en) * 2000-05-03 2009-04-14 Aperio Technologies, Inc. Method and apparatus for pre-focus in a linear array based slide scanner
US6711283B1 (en) * 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
TWI230390B (en) * 2000-07-11 2005-04-01 Tokyo Electron Ltd Apparatus for determining exposure conditions, method for determining exposure conditions and process apparatus
US7756305B2 (en) * 2002-01-23 2010-07-13 The Regents Of The University Of California Fast 3D cytometry for information in tissue engineering
US8116982B2 (en) * 2002-03-13 2012-02-14 Vala Sciences, Inc. System and method for automatic color segmentation and minimum significant response for measurement of fractional localized intensity of cellular compartments
US20060133657A1 (en) * 2004-08-18 2006-06-22 Tripath Imaging, Inc. Microscopy system having automatic and interactive modes for forming a magnified mosaic image and associated method
WO2006063827A1 (en) * 2004-12-15 2006-06-22 Magna Donnelly Electronics Naas Limited An accessory module system for a vehicle window
TWI295247B (en) * 2006-01-02 2008-04-01 Appro Technology Inc Rear-view mirror with front and rear bidirectional lens and screen for displaying image
JP2009069255A (ja) * 2007-09-11 2009-04-02 Sony Corp 撮像装置および合焦制御方法
JP5301889B2 (ja) * 2008-06-16 2013-09-25 オリンパス株式会社 顕微鏡用撮像システム、露光調整プログラム、及び露光調整方法
EP3764085A3 (en) * 2008-10-24 2021-03-24 Leica Biosystems Imaging Inc. Whole slide fluorescence scanner
US8587681B2 (en) * 2008-11-21 2013-11-19 Omnivision Technologies, Inc. Extended depth of field for image sensor
TWI413799B (zh) * 2009-06-05 2013-11-01 中原大學 The method of automatically looking for the focus position of the optical microscope
JP5278252B2 (ja) * 2009-08-31 2013-09-04 ソニー株式会社 組織切片像取得表示装置、組織切片像取得表示方法及び組織切片像取得表示プログラム
JP5672688B2 (ja) * 2009-10-23 2015-02-18 ソニー株式会社 合焦装置、合焦方法、合焦プログラム及び顕微鏡
JP2011095685A (ja) * 2009-11-02 2011-05-12 Sony Corp 顕微鏡システム及び顕微鏡システムの制御方法
JP2011197283A (ja) 2010-03-18 2011-10-06 Sony Corp 合焦装置、合焦方法、合焦プログラム及び顕微鏡
JP2011221253A (ja) * 2010-04-08 2011-11-04 Sony Corp 撮像装置、固体撮像素子、撮像方法およびプログラム
JP2012150331A (ja) * 2011-01-20 2012-08-09 Nikon Corp 共焦点顕微鏡
US8633969B2 (en) * 2011-02-09 2014-01-21 Omnivision Technologies, Inc. Apparatus and method for three-dimensional image capture with extended depth of field
CN102959939A (zh) * 2011-06-27 2013-03-06 松下电器产业株式会社 摄像装置
JP5628778B2 (ja) * 2011-11-30 2014-11-19 日立オートモティブシステムズ株式会社 車載カメラの取り付け装置
JP6091137B2 (ja) * 2011-12-26 2017-03-08 キヤノン株式会社 画像処理装置、画像処理システム、画像処理方法およびプログラム
JP6003199B2 (ja) * 2012-05-08 2016-10-05 ソニー株式会社 レンズ交換式カメラシステムおよびレンズデータ取得プログラム
US9488823B2 (en) * 2012-06-07 2016-11-08 Complete Genomics, Inc. Techniques for scanned illumination
US9628676B2 (en) * 2012-06-07 2017-04-18 Complete Genomics, Inc. Imaging systems with movable scan mirrors
JP6171273B2 (ja) * 2012-06-21 2017-08-02 リコーイメージング株式会社 オートフォーカス装置およびデジタルカメラ
WO2014080932A1 (ja) * 2012-11-26 2014-05-30 国立大学法人大阪大学 光学顕微鏡、および、光学顕微鏡のオートフォーカス装置
JP2014178357A (ja) * 2013-03-13 2014-09-25 Sony Corp デジタル顕微鏡装置、その撮像方法およびプログラム
JP6414050B2 (ja) * 2013-03-13 2018-10-31 ソニー株式会社 情報処理装置、情報処理方法、および情報処理プログラム
JP2014178474A (ja) * 2013-03-14 2014-09-25 Sony Corp デジタル顕微鏡装置、その合焦位置探索方法およびプログラム
JP6455829B2 (ja) * 2013-04-01 2019-01-23 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
US20140313337A1 (en) * 2013-04-23 2014-10-23 Magna Electronics Inc. Vehicle vision system with fastenerless lens attachment
US9143674B2 (en) * 2013-06-13 2015-09-22 Mitutoyo Corporation Machine vision inspection system and method for performing high-speed focus height measurement operations
US9134523B2 (en) * 2013-07-19 2015-09-15 Hong Kong Applied Science and Technology Research Institute Company Limited Predictive focusing for image scanning systems
JP6335482B2 (ja) * 2013-11-13 2018-05-30 キヤノン株式会社 撮像装置及びその制御方法、プログラム
JP6305175B2 (ja) * 2014-04-10 2018-04-04 キヤノン株式会社 画像処理装置、画像処理方法、画像処理システム
JP2016014564A (ja) * 2014-07-01 2016-01-28 株式会社リコー 撮像ユニット
WO2017072853A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 撮像装置、内視鏡装置及び撮像装置の作動方法
CN107645632B (zh) * 2016-07-21 2020-06-16 佳能株式会社 焦点调节设备、焦点调节方法、摄像设备和存储介质
CN110062596B (zh) * 2016-12-20 2022-08-16 奥林巴斯株式会社 自动焦点控制装置、内窥镜装置以及自动焦点控制装置的工作方法
JP7191552B2 (ja) * 2018-05-30 2022-12-19 キヤノン株式会社 制御装置、撮像装置、プログラム、および、記憶媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10470652B2 (en) 2015-04-23 2019-11-12 Canon Kabushiki Kaisha Information processing apparatus and information processing method
WO2021167044A1 (ja) 2020-02-20 2021-08-26 ソニーグループ株式会社 顕微鏡システム、撮像方法、および撮像装置
WO2022269961A1 (ja) * 2021-06-25 2022-12-29 ソニーグループ株式会社 顕微鏡システム、情報処理装置及び制御方法

Also Published As

Publication number Publication date
US20160223804A1 (en) 2016-08-04
CN104049338A (zh) 2014-09-17
US10371931B2 (en) 2019-08-06
US20190293918A1 (en) 2019-09-26
US20140267673A1 (en) 2014-09-18
US9341836B2 (en) 2016-05-17
US11156823B2 (en) 2021-10-26
CN104049338B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
US11156823B2 (en) Digital microscope apparatus, method of searching for in-focus position thereof, and program
JP6414050B2 (ja) 情報処理装置、情報処理方法、および情報処理プログラム
JP4664871B2 (ja) 自動焦点検出装置
US9088729B2 (en) Imaging apparatus and method of controlling same
US20190268573A1 (en) Digital microscope apparatus for reimaging blurry portion based on edge detection
JP5504881B2 (ja) 演算装置、演算方法、演算プログラム及び顕微鏡
RU2734447C2 (ru) Система для формирования синтезированного двухмерного изображения биологического образца с повышенной глубиной резкости
US10073258B2 (en) Microscope system
JP2009115541A (ja) 距離測定装置および距離測定方法
JP6027875B2 (ja) 撮像装置及び顕微鏡システム
JP2009229125A (ja) 距離測定装置および距離測定方法
JP5581690B2 (ja) 厚み情報取得装置、厚み情報取得方法、厚み情報取得プログラム及び顕微鏡
JP2016051167A (ja) 画像取得装置およびその制御方法
JP5454392B2 (ja) 測距装置及び撮像装置
JP5471715B2 (ja) 合焦装置、合焦方法、合焦プログラム及び顕微鏡
JP2007102102A (ja) 共焦点顕微鏡及び合焦カラー画像の生成方法
US9658444B2 (en) Autofocus system and autofocus method for focusing on a surface
JP2014085599A (ja) 顕微鏡
JP2013174709A (ja) 顕微鏡装置およびバーチャル顕微鏡装置
JP2014149381A (ja) 画像取得装置および画像取得方法
JP5927973B2 (ja) 撮像装置、撮像制御プログラム及び撮像方法
JP2009210520A (ja) 距離測定装置および距離測定方法