JP2014174315A - 画像形成方法、画像形成装置及びプロセスカートリッジ - Google Patents

画像形成方法、画像形成装置及びプロセスカートリッジ Download PDF

Info

Publication number
JP2014174315A
JP2014174315A JP2013046545A JP2013046545A JP2014174315A JP 2014174315 A JP2014174315 A JP 2014174315A JP 2013046545 A JP2013046545 A JP 2013046545A JP 2013046545 A JP2013046545 A JP 2013046545A JP 2014174315 A JP2014174315 A JP 2014174315A
Authority
JP
Japan
Prior art keywords
developer
toner
resin
image forming
conveyance path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013046545A
Other languages
English (en)
Other versions
JP6358777B2 (ja
Inventor
Yoshitaka Sekiguchi
良隆 関口
Hisashi Nakajima
久志 中島
Masashi Nagayama
将志 長山
Saori Yamada
沙織 山田
Shinya Hanatani
愼也 花谷
Mariko Takii
真梨子 瀧居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013046545A priority Critical patent/JP6358777B2/ja
Publication of JP2014174315A publication Critical patent/JP2014174315A/ja
Application granted granted Critical
Publication of JP6358777B2 publication Critical patent/JP6358777B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】非常に優れた低温定着性と、高い耐ホットオフセット特性と、良好な保存安定性を両立し、長期的にも高品質な画像を形成することができる画像形成方法を提供する。
【解決手段】現像剤を搬送し、現像剤担持体に現像剤を供給する現像剤供給搬送部材を備えた供給搬送路9と、現像後の現像剤を回収し、攪拌しながら搬送する回収攪拌搬送路10と、を有し、前記供給搬送路及び前記回収攪拌搬送路は、少なくとも長手方向両端部を除いた部分で互いに独立した構造を有し、前記回収攪拌搬送路は、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤を攪拌しながら搬送し、現像後に回収された現像剤と混合された後に供給搬送路へと供給する。
【選択図】図12

Description

本発明は、電子写真画像形成用トナーを用いた画像形成方法、画像形成装置及びプロセスカートリッジに関する。
近年、電子写真においてトナーの低温定着化が求められている。これは、定着に要するエネルギーを少なくすることによる省エネルギー化はもとより、電子写真画像形成装置の高速化、高画質化の要求にも起因している。
一般に、電子写真画像形成装置を高速化すると画像品質は低下していく。これには様々な要因が関係するが、その中でも特に寄与が大きいのは定着工程における定着不良の影響である。
定着工程では、紙に代表される記録媒体上の未定着トナー画像が、熱と圧力により記録媒体上に固着されて定着画像となるが、システム速度が高速となると、定着工程で未定着トナー画像が充分な熱量を得られなくなる。その結果、定着工程では定着不良が発生し、最終的なトナー画像の表面が荒れたり、コールドオフセットと呼ばれる残像現象が発生して不良画像となったりする。そのため、システム速度を高速にする際には、それに伴い、画像品質を落とさないために定着温度を上げることが考えられる。しかし、定着装置から漏れる温度の画像形成装置内の他プロセスに対する副作用、定着部材の消耗速度の加速、消費エネルギー増加の観点から、定着温度の高温化は必ずしも最善の対策とはなり得ない。
そこで、特に、高速な画像形成装置においてはトナー自身の定着性能の向上が求められており、より具体的には、定着工程において、より低温で十分な定着性を有するトナーが求められている。
従来、トナーの定着性を向上させるため、様々な検討がなされている。例えば、トナーの定着性能を向上させるため、ガラス転移温度(Tg)や軟化温度(T1/2)に代表される、樹脂そのものの熱特性をコントロールする方法が知られている。しかしながら、樹脂の低Tg化は耐熱保存性を悪化させる原因となり、また樹脂の低分子量化等によるT1/2温度の低下では、ホットオフセットの発生等の問題が生じる。そのため、樹脂そのものの熱特性をコントロールするだけでは、低温定着性、耐熱保存性、耐ホットオフセット性の全てが良好なトナーを得るには至っていない。
低温定着化に対応すべく、従来多用されてきたスチレン-アクリル系樹脂に代えて、低温定着性に優れ、耐熱保存性も比較的良いポリエステル樹脂の使用が試みられている。(特許文献1〜6)
また、低温定着性の改善を目的にバインダー中にガラス転移温度でシャープメルト性を有する特定の非オレフィン系結晶性重合体を添加する試み(特許文献7)がある。しかし、これらは分子構造、分子量について最適化がされているとはいえない。
特許文献8及び9では、上記した特定の非オレフィン系結晶性重合体と同様にシャープメルト性を有する結晶性ポリエステルをトナーに用いることで、定着性を向上させる技術が開示されている。
しかしながら、特許文献8に記載の結晶性ポリエステルを用いたトナーは、酸価、水酸基価がそれぞれ5以下、20以下と低く、紙と結晶性ポリエステルとの親和性が低いため充分な低温定着性を有しない。
また、特許文献9に記載の結晶性ポリエステルを用いたトナーは、最終的に得られるトナーの分子量や結晶性ポリエステルの存在状態について最適化がなされていない。そのため、特許文献9に記載の結晶性ポリエステルを用いたトナーは、実際にトナー化した後に結晶性ポリエステルに起因する優れた低温定着性、耐熱保存性が十分に発揮されるとは限らない。また、耐ホットオフセットに対する対応がとられておらず、良好な画像の定着が可能な温度幅が確保できるとは限らない。
特許文献10では、非相溶である結晶性ポリエステル樹脂と非結晶性ポリエステル樹脂を海島状の相分離構造とする技術が提案されている。しかし、特許文献10に記載のトナーは、樹脂として結晶性ポリエステル樹脂を含む3種類の樹脂を使用しているが、この技術で結晶性ポリエステル樹脂の海島構造を維持しようとすると、結晶性ポリエステル樹脂の分散径が大きくなりすぎ、耐熱保存性に支障をきたしたり、電気抵抗が低くなりすぎて転写工程において転写不良が発生し、最終的に得られる画像が荒れる原因になったりすることがある。
特許文献11では、示差走査熱量計により測定されるDSC曲線において、吸熱側に出現するピークの吸熱量を規定している。これにより、結晶性ポリエステル樹脂の存在状態を制御し、結晶性ポリエステル樹脂の効果を有意に発揮させ、トナーに低温定着性と耐熱保存性を付与する技術が提案されている。しかし、特許文献11では結晶性ポリエステル樹脂と併用する非結晶性ポリエステル樹脂として、比較的軟化温度の高い樹脂を用いることが想定されており、低温定着性の役割は結晶性ポリエステル樹脂に担保させることになるため、必然的に結晶性ポリエステル樹脂の使用量が多くなり、非結晶性樹脂との相溶により耐熱保存性が悪化するリスクが高くなる。
特許文献12では、トナーが結晶性ポリエステル樹脂を多く含有する技術が提案されているが、結晶性ポリエステル樹脂が非常に多いため、非結晶性樹脂との相溶により耐熱保存性が悪化するリスクが高い。
特許文献13では、トナーの分子量分布のピーク及び半値幅、クロロホルム不溶分の量を規定したり、結着樹脂として軟化温度が異なる2種類以上の樹脂を使用したりする技術が提案されている。しかし、結晶性ポリエステル樹脂を使用していないため、結晶性ポリエステル樹脂を用いた場合と比較して低温定着性が不十分となる。
特許文献14では、結晶性ポリエステル樹脂を用いたトナーを45℃の恒温槽内で12時間保存し、結晶性ポリエステル樹脂と非結晶性樹脂の、フーリエ変換赤外分光分析測定装置を用いたスペクトル高さの比を規定した技術が提案されている。しかし、樹脂の分子量が規定されていないため、低温定着性を結晶性ポリエステル樹脂に依存しており、十分な低温定着性を確保できるとは言い難く、また、耐ホットオフセット性を確保させる技術について言及されてないため、定着温度幅が確保できていない。
上記の問題を解決するためのトナーが得られた場合、高品質な画像を形成するための画像形成方法が求められる。
本発明は上記従来技術を鑑みてなされたものであり、即ち、非常に優れた低温定着性と、高い耐ホットオフセット特性と、良好な保存安定性を両立し、長期的にも高品質な画像を形成することができる画像形成方法を提供することを目的としている。
本発明者らは鋭意検討した結果、特定の電子写真画像形成用トナーを現像剤として用いた画像形成方法において、現像剤担持体に現像剤を供給する供給搬送路と、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤及び現像後に回収された現像剤とを攪拌しながら搬送し、供給搬送路へと供給する回収攪拌搬送路と、を有する構成にすることにより、上記課題を解決できることを見出した。
すなわち本発明は、電子写真画像形成用トナーと、磁性キャリアと、からなる二成分現像剤を、現像剤担持体に搬送、供給し、前記現像剤を表面に担持し、潜像担持体に形成される潜像にトナーを供給し、現像を行う現像手段を有する画像形成方法であって、前記電子写真画像形成用トナーは、結晶性ポリエステル樹脂(A)と、非結晶性樹脂(B)と、縮重合系樹脂ユニット及び付加重合系樹脂ユニットを含む複合樹脂(C)と、を含み、クロロホルム不溶分を含有し、且つ、45℃の恒温槽内で12時間保存した後にフーリエ変換赤外分光分析測定装置を用いて全反射法により測定したときの前記結晶性ポリエステル樹脂(A)に由来する特徴的なスペクトルのピーク高さをCとし、前記非結晶性樹脂(B)に由来する特徴的なスペクトルのピーク高さをRとしたときの、ピーク高さ比(C/R)が0.03〜0.55であり、前記電子写真画像形成用トナーのTHF可溶分は、GPCによる分子量分布が1000〜10000の間にメインピークを有し、該メインピークの半値幅は15000以下であり、前記現像手段は、供給搬送路と、回収攪拌搬送路と、を有し、前記供給搬送路は、前記現像剤を前記現像剤担持体に搬送し、供給し、前記回収攪拌搬送路は、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤と現像後に回収された現像剤とを攪拌しながら搬送し、供給搬送路へと供給し、前記供給搬送路及び前記回収攪拌搬送路は、少なくとも長手方向両端部を除いた部分で互いに独立した構造を有していることを特徴とする画像形成方法である。
本発明によれば、非常に優れた低温定着性と、高い耐ホットオフセット特性と、良好な保存安定性を両立し、長期的にも高品質な画像を形成することができる画像形成方法を提供することができる。
結晶性ポリエステル樹脂(A)の結晶状態での特徴的なスペクトルのピーク高さC(1183cm−1、ベースライン:1158〜1201cm−1)を示すグラフである。 非結晶性樹脂(B)が非結晶性ポリエステルである場合の特徴的なスペクトルのピーク高さR(829cm−1、ベースライン:784〜889cm−1)を示すグラフである。 非結晶性樹脂(B)が非結晶性スチレン−アクリル系樹脂である場合の特徴的なスペクトルのピーク高さR(699cm−1、ベースライン:670〜714cm−1)を示すグラフである。 実施例で用いた結晶性ポリエステル樹脂a−6のX線回折結果を表すグラフである。 実施例30のトナーのX線回折結果を表すグラフである。 本発明に係る画像形成方法を実施し得る画像形成装置の一実施の形態における構成を示す概略図である。 本発明に係る画像形成方法を説明するために参考として示した他の画像形成装置を示す拡大概略図である。 本発明に係る画像形成方法を説明するために参考として示した他の画像形成装置の構成を示す概略図である。 本発明に係る画像形成方法を説明するために参考として示した他の画像形成装置のさらにその他の構成を示す概略図である。 本発明に係る現像装置の一実施の形態における構成を示す概略図である。 本発明に係る現像剤搬送路における現像剤の流れを示す概略図である。 本発明に係る現像装置の現像剤の流れを示す概略図である。 本発明に係る現像装置を用いたときの感光体まわりの概略を示した図である。 本発明に係る現像装置の現像剤供給搬送部材及び現像剤攪拌搬送部材の構成を示す概略図である。 本発明に係る現像装置の現像剤供給搬送部材及び現像剤攪拌搬送部材における現像剤の流れを示す概略図である。 本発明に係るプロセスカートリッジの一実施の形態における構成を示す概略図である。
本発明に係る画像形成方法は、電子写真画像形成用トナーと、磁性キャリアと、からなる二成分現像剤を、現像剤担持体に搬送、供給し、前記現像剤を表面に担持し、潜像担持体に形成される潜像にトナーを供給し、現像を行う現像手段を有する画像形成方法であって、前記電子写真画像形成用トナーは、結晶性ポリエステル樹脂(A)と、非結晶性樹脂(B)と、縮重合系樹脂ユニット及び付加重合系樹脂ユニットを含む複合樹脂(C)と、を含み、クロロホルム不溶分を含有し、且つ、45℃の恒温槽内で12時間保存した後にフーリエ変換赤外分光分析測定装置を用いて全反射法により測定したときの前記結晶性ポリエステル樹脂(A)に由来する特徴的なスペクトルのピーク高さをCとし、前記非結晶性樹脂(B)に由来する特徴的なスペクトルのピーク高さをRとしたときの、ピーク高さ比(C/R)が0.03〜0.55であり、前記電子写真画像形成用トナーのTHF可溶分は、GPCによる分子量分布が1000〜10000の間にメインピークを有し、該メインピークの半値幅は15000以下であり、前記現像手段は、供給搬送路と、回収攪拌搬送路と、を有し、前記供給搬送路は、前記現像剤を前記現像剤担持体に搬送し、供給し、前記回収攪拌搬送路は、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤と現像後に回収された現像剤とを攪拌しながら搬送し、供給搬送路へと供給し、前記供給搬送路及び前記回収攪拌搬送路は、少なくとも長手方向両端部を除いた部分で互いに独立した構造を有していることを特徴とする。
以下に本発明を更に詳細に説明する。
尚、以下に述べる実施の形態は、本発明の好適な実施の形態であるから技術的に好ましい種々の限定が付されているが、本発明の範囲は以下の説明において本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
近年、電子写真において電子写真画像形成用トナー(以下、単にトナーとも称する場合もある。)の低温定着化が求められている。これは、定着に要するエネルギーを少なくすることによる省エネルギー化はもとより、電子写真画像形成装置の高速化、高画質化の要求にも起因しており、電子写真画像形成装置の使用目的が多様化していることも相まって、要求が高まってきている。
単にトナーを低温定着化とさせるためには、トナーの軟化温度(T1/2)を低いものにすればよい。しかし、軟化温度を低くするとガラス転移温度も低下し、耐熱保存性が悪化する。また、画像品質に問題の発生しない定着可能な温度の下限(定着下限温度)の低下と共に定着可能な温度の上限(定着上限温度)も低下してしまうため、耐ホットオフセット性も損ねてしまう。そのため、低温定着性と耐熱保存性、耐ホットオフセット性の三者を両立させることは電子写真画像形成用トナーの設計者にとって非常に難しい命題であった。
そこで、結晶性樹脂を用いることでシャープメルト性を有し低温定着性に優れる一方、結晶性樹脂のトナー表面の存在量を一定値以内とすることで耐熱保存性をも両立することが可能であることを、本発明者は過去の検討において見出した。この技術構想によるトナー構成を用いた場合、低温定着性、耐ホットオフセット性、耐熱保存性に優れる。
しかし、MFP(多機能プリンタ)や複写機で実際に用いる際に、印字率が高い画像を現像する際等、現像機内のトナー/キャリア比が低くなる状態で使用された場合、現像剤中でトナーにかかる摺擦力、せん断力が大きくなり、トナー粒子の割れ、欠けによるトナー粒径分布のブロード化による帯電性の低下、外添剤の離脱、埋没による粉体特性の低下などが起こり、その結果キャリア表面へのトナー成分の付着、堆積、固化(スペント)が発生し、帯電量の低下、地肌汚れ、トナー飛散の課題が顕在化した。
本発明者らは、上記命題に対し、鋭意検討を行なった結果、以下の技術構想を見出し、上記課題を解決するに至った。
<画像形成方法>
電子写真画像形成用トナーと磁性キャリアからなる二成分現像剤を、現像剤担持体に搬送、供給し、該現像剤を表面に担持し、潜像担持体に形成される潜像にトナーを供給し、現像を行う現像手段を有する画像形成方法において、該現像手段は、供給搬送路と、回収攪拌搬送路と、を有し、該供給搬送路は、該現像剤を該現像剤担持体に搬送し、供給し、該回収攪拌搬送路は、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤と現像後に回収された現像剤とを攪拌しながら搬送し、供給搬送路へと供給することを特徴とする。
現像剤担持体上の現像剤は現像剤担持体の軸線方向に沿って搬送される。この搬送は、該現像剤担持体に現像剤を供給する現像剤供給搬送部材を備えた供給搬送路で行う。該現像剤は、該潜像担持体と対向する箇所で潜像にトナーを供給し潜像の現像を行った後、該現像剤担持体上から回収される。
この回収について、該現像剤を該現像剤担持体の軸線方向に沿って、且つ、前記現像剤供給搬送部材と逆方向に搬送する現像剤攪拌搬送部材を備えた回収攪拌搬送路にて行う。この回収攪拌搬送路では、現像に用いられずに該供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤が搬送され、さらに該現像剤担持体から回収された現像剤が供給されるため、両者を攪拌する部材を設けることで該余剰現像剤と該回収現像剤は攪拌されながら搬送されることになる。
これにより、現像後の回収現像剤は、現像されずに現像機内を循環する余剰現像剤と回収後そのまま攪拌されるため、トナー比率が低い状態のままで存在することが無くなり、トナーに強い摺擦力やせん断力がかかる状態を避けることができる。
さらに、該供給搬送路と該回収攪拌搬送路の間に仕切り部材等を設けることで、両者の搬送経路を独立にすると、上記攪拌が不十分な状態で現像剤担持体へ再び現像剤が供給される事態も避けられる。これにより、低温定着性と耐ホットオフセット特性、トナーの耐熱保存性を兼ね備えつつ、記録媒体上で濃度ムラの少ない画像を提供することができ、同時に、トナー補給によるトナー濃度の変動に対しても迅速な対応が可能であり、現像剤を長寿命化することが可能である。
本発明では、該回収攪拌搬送路を異なる経路とすることもできる。
すなわち、前記回収攪拌搬送路を、現像後に回収された現像剤を攪拌搬送する回収搬送路と、現像に用いられずに該供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤及び現像後に回収された現像剤を攪拌しながら搬送する攪拌搬送路とにすることができる。なお、両者は少なくとも長手方向両端部を除いた部分で互いに独立した構造を有している必要がある。
すなわち、現像剤搬送路を
(i)該現像剤担持体の軸線方向に沿って現像剤を搬送し、該現像剤担持体に現像剤を供給する現像剤供給搬送部材を備えた供給搬送路と、
(ii)該潜像担持体と対向する箇所を通過後の該現像剤担持体上から回収された該現像剤を該現像剤担持体の軸線方向に沿って、且つ、前記現像剤供給搬送部材と同方向に搬送する現像剤回収搬送部材を備えた回収搬送路と、
(iii)現像に用いられずに該供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤と、該現像剤担持体から回収され該現像剤回収搬送路の搬送方向の最下流側まで搬送された回収現像剤との供給を受け、該現像剤担持体の軸線方向に沿って、且つ、該余剰現像剤と該回収現像剤とを攪拌しながら該現像剤供給搬送部材とは逆方向に搬送する現像剤攪拌搬送部材を備え、該現像剤を該供給搬送路に供給する攪拌搬送路と、
を有する構成とすることができる。
このような供給搬送路、回収搬送路及び攪拌搬送路からなる3つの現像剤搬送路を、それぞれ仕切り部材により独立した構成とすることで前述の構成(回収攪拌搬送路とする構成)よりも十分に回収現像剤と余剰現像剤の攪拌を行うことが可能となる。
すなわち、本発明の画像形成方法は、現像剤供給搬送部材(1軸目)による供給搬送路、現像剤攪拌搬送部材(2軸目)による攪拌搬送路、現像剤回収搬送部材(3軸目)による回収搬送路の3つの搬送路を要件とする方法、または、現像剤供給搬送部材(1軸目)による供給搬送路、現像剤攪拌搬送部材(2軸目)による回収攪拌搬送路からなる二つの搬送路を要件とし、かついずれの場合もそれぞれ仕切り部材により独立した搬送路とする方法で用いると、記録媒体上で濃度ムラの少ない画像を提供することができるため好ましい。
以下、前者の現像方式を3軸の循環現像、後者の現像方式を2軸の循環現像と称することもある。
どちらにも共通するのは、現像剤供給搬送部材によって現像領域に供給された現像剤は、そのまま供給搬送路へは戻らず、直接、もしくは回収搬送路を経由して攪拌搬送路へ送られ、攪拌工程を経てから再度供給搬送路に送られるという点である。
前者の3軸の現像方式は、現像領域を通過した現像剤は一旦回収搬送路(3軸目)に回収され、攪拌搬送路へ送られる(3軸の循環現像方式)。これに対し、後者の2軸の現像方式においては、現像剤回収搬送部材による回収搬送路がなく、現像領域を通過した現像剤が、攪拌搬送路へ直で送られる(2軸の循環現像方式)。
いずれの現像方式においても、現像領域に供給されることなく供給搬送路を通過してきた現像剤と、現像領域を通過して攪拌搬送路または回収搬送路に回収された現像剤は、攪拌搬送路にて混合され、供給搬送路へ送られる。
そのため、供給搬送路に、現像に用いられたためにトナー濃度が低下した現像剤が混入することがないため、現像時にトナー濃度のムラに起因するトナー付着量のムラが発生しにくい。そのため、記録媒体上の何れの部分においても、濃度の安定した画像を提供することが可能となる。
画像形成装置の構成は3軸の循環現像方式、2軸の循環現像方式のいずれでも効果が得られるが、画像形成装置を高速で使用する際や、高濃度で印字を続ける場合など、現像剤が受ける場合でも、現像で使用した後の現像剤と余剰現像剤を十分に攪拌し均一化することが可能であることから、3軸の循環現像方式が好ましい。
ただし、中速、低速で用いる場合や、現像機の大きさに制約がある場合など、2軸の循環現像方式を用いることも可能である。
<トナー>
電子写真画像形成用トナーに用いる結着樹脂に結晶性ポリエステル樹脂(A)を用いると、そのシャープメルト性により、トナーに低温定着性及び耐熱保存性を付与することができる。
しかし、結着樹脂として結晶性ポリエステル樹脂(A)を単体で使用したのでは、耐ホットオフセット性が非常に悪くなるため、定着温度幅が非常に狭くなり実用に耐えられない。
そこで、本発明者らは、結晶性ポリエステル樹脂(A)と共に、クロロホルム不溶分を含む非結晶性樹脂(B)を用いることで、耐ホットオフセット性が向上し、定着可能な温度に幅を持たせることができると考えた。
しかし、結晶性ポリエステル樹脂(A)と非結晶性樹脂(B)だけを処方した場合、非結晶性樹脂(B)が多すぎると低温定着性が薄れてしまう。結晶性ポリエステル樹脂(A)が多いと、製造工程において溶融混練を施した際に非結晶性樹脂(B)のクロロホルム不溶分以外の成分と相溶してしまい、非結晶性樹脂(B)のガラス転移温度を著しく低下させてしまうため、耐熱保存性が極端に悪化する。
本発明者が鋭意検討を重ねた結果、THF(テトラヒドロフラン)可溶分により求められたGPC(ゲル浸透クロマトグラフィー;Gel Permeation Chromatography)によるトナーの分子量分布が1000〜10000の間にメインピークを有し、かつ、分子量分布の半値幅を15000以下とすることで、低分子量分の絶対量が多く、かつ、シャープな分子量分布となり、結晶性ポリエステル樹脂(A)の配分を少なくして相溶を抑制させ、かつ、結晶性ポリエステル樹脂(A)の低温定着性を補助しつつ、クロロホルム不溶分を含む非結晶性樹脂の耐ホットオフセット性も阻害しないことを本発明者らは見出した。
しかし、この場合でも、耐熱保存性へのリスクは完全には消滅しない。結晶性ポリエステル樹脂(A)の相溶が抑制され、結着樹脂のガラス転移温度の低下が抑えられても、分散径が大きいまま結晶性ポリエステル樹脂(A)が存在すると、結晶性ポリエステル樹脂(A)がトナー表面に過剰に現れやすくなる。結晶性ポリエステル樹脂(A)はシャープメルトな材料であるため、トナー粒子内部に存在する場合は前記のように優れた耐熱保存性を発揮するが、ガラス転移温度以下の温度でも僅かに融解するため、トナー粒子表面に存在する場合、僅かに融解した結晶性ポリエステル樹脂(A)がトナー粒子間でバインダーとして働き、結果としてトナーの耐熱保存性を悪化させる。この現象は、特に、結晶化度の低い結晶性ポリエステル樹脂で顕著となる。
加えて、トナー表面に結晶性ポリエステル樹脂(A)が過剰に存在すると、作像時にOPC(Organic Photo Conductor:有機電子写真感光体)へのフィルミングが発生しやすくなり、画像品質に対するリスクも高くなる。
また、トナーの電気特性の観点でも、前記結晶性ポリエステル樹脂(A)と非結晶性樹脂を組み合わせた処方のトナーでは懸念が生じる。結晶性を有するポリエステル樹脂は比較的電気抵抗が低いため、分散径が大きいままトナー中に存在するとトナーの電気抵抗が低くなる傾向がある。電気抵抗が低くなり、許容範囲を超えると、画像形成時に転写工程において転写不良の原因となる。特に、前記のように低温定着性の維持を目的として結晶性ポリエステル樹脂(A)の相溶を抑制した場合、結晶性ポリエステル樹脂(A)は分散径の大きい状態を維持しやすくなり、結晶性ポリエステル樹脂(A)の電気特性がトナー中で支配的になりやすいため、電気抵抗が低下しやすい。
また、後述のように抵抗調整剤を含有させた場合、抵抗調整剤は結晶性ポリエステル樹脂(A)の構成しているドメイン内に入り込めないため、結着樹脂(ここで言う結着樹脂とは、結晶性ポリエステル樹脂(A)を除く結着樹脂を意味する。)の中に比較的濃度の高い状態で存在することになる。そのため、凝集体のままトナー中に閉じ込められやすくなり、抵抗が過剰に低下しやすくなる。抵抗調整剤を、単に抵抗を下げる目的だけのために用いているのであれば、抵抗調整剤の処方量を調整することにより解決できる場合もあるが、例えばカーボンブラックのように抵抗調整剤と着色剤を兼ねている場合は、着色力の観点から処方量を少なくすることができない場合があり、最適な電気抵抗に調整できないことがある。
本発明者らはこれら技術課題を解決すべく鋭意検討を重ねた。その結果、上記結晶性ポリエステル樹脂(A)、非結晶性樹脂(B)を組み合わせた処方に対して、縮重合系樹脂ユニット及び付加重合系樹脂ユニットを含む複合樹脂(C)を更に処方し、上記結晶性ポリエステル樹脂(A)、非結晶性樹脂(B)を組み合わせた際に特徴的に発現する耐熱保存性低下の懸念と電気抵抗低下の懸念を同時に解決することが可能であるという効果を見出した。
複合樹脂(C)を処方すると、離型剤の分散が向上することは従来知られているが、上記結晶性ポリエステル樹脂(A)と、THF可溶分により求められたGPCによるトナーの分子量分布が1000〜10000の間にメインピークを有し、かつ、分子量分布の半値幅を15000以下とする低分子量の非結晶性樹脂(B)を併用して溶融混練を施した場合、樹脂の粘度が著しく低下するため、原材料にシェアがかかりにくくなり、結晶性ポリエステル樹脂(A)の分散径はより大きくなる傾向がある。そこで結晶性ポリエステル樹脂(A)及び非結晶性樹脂(B)と共に複合樹脂(C)を加えて溶融混練を施すと、適度にシェアが掛かるようになるため、結晶性ポリエステル樹脂(A)の微分散化が促される。
結晶性ポリエステル樹脂(A)が微分散状態となると、粉砕時に結晶性ポリエステル樹脂(A)がトナー表面に現れる頻度が少なくなり、耐熱保存性が劇的に向上する。また、結晶性ポリエステル樹脂(A)が微分散となるため、適度な電気抵抗を維持することが可能となる。
更に、複合樹脂(C)は、比較的低い分子量領域に分子量分布のピークを有する非結晶樹脂(B)よりも硬いため、粉砕時に界面になりやすい。そのため、比較的トナー表面に存在しやすく、軟化温度の低い非結晶性樹脂(B−2)がトナー表面へ表れる確率を低減させる効果もあり、耐熱保存性の向上に貢献する。
なお、後述するが、非結晶性樹脂(B)は、非結晶性樹脂(B−1)と、非結晶性樹脂(B−2)とを含有するのが好ましい。
加えて、トナー表面の硬度を高めることができるため、トナーに物理的なストレスが掛かったときのトナー劣化が少ない。特に、外添剤が過剰に埋め込まれる現象が改善されるため、ストレス付与前後での帯電特性の変化が少なくなり、長期に渡って安定した画質を提供することが可能となる。
ところが、上記の結晶性ポリエステル樹脂(A)、非結晶性樹脂(B)、複合樹脂(C)を併用しても、粉砕トナー製造工程においては溶融混練を行なうと、原材料樹脂の熱特性に起因する各長所が発揮されない場合がある。これは、溶融混練工程においては、樹脂の分子の繋がりが切断され、分子量が変化してしまうことが主要因である。特に、非結晶樹脂に含有されるクロロホルム不溶分の分子の繋がりが切断されると、トナー全体の分子量分布がブロードになり、低温定着性が損ねられてしまう。
本発明者が鋭意検討を重ねた結果、例えば、後述するように、適度に温度を掛けて溶融混練を行なうことで原材料樹脂にかかるシェアを最適なものにしつつ、結晶性ポリエステル樹脂(A)を冷却工程にて再結晶させるような手法をとることで、THF可溶分により求められたGPCによるトナーの分子量分布が1000〜10000の間にメインピークを有し、かつ、分子量分布の半値幅を15000以下とすることで、低分子量分の絶対量が多く、かつ、シャープな分子量分布となり、上記結晶性ポリエステル樹脂(A)、非結晶性樹脂(B)、複合樹脂(C)のそれぞれの特徴を活かした、低温定着かつ耐熱保存性、耐ホットオフセット性の優れたトナーを提供することができるという知見を見出した。
特に、結晶性ポリエステル樹脂(A)の効果及び副作用はトナー表面の結晶性ポリエステル樹脂(A)の存在量が大きく寄与するため、結晶性ポリエステル樹脂(A)の処方量や、複合樹脂(C)に起因する結晶性ポリエステル樹脂(A)の分散度、また、混練工程での工法等にてバランスを取り、トナー表面の結晶性ポリエステル樹脂(A)の存在割合を最適化することで、低温定着性を確保しつつ耐熱保存性を非常に良好に保つことができ、加えて、作像時のOPCへのフィルミングも抑制することができる。
トナー表面の結晶性ポリエステル樹脂(A)の存在割合は、フーリエ変換赤外分光分析測定装置(FT−IR)を用いた全反射法(ATR法)によるスペクトルのピーク高さ比で示すことができる。耐熱保存性を考慮し、本発明者らが検討を行なった結果、45℃の環境で12時間保管した後のスペクトルのピーク高さが、船舶輸送を想定した高温保管(高温保存)後の状態と相関があり、45℃で12時間保管した後の結晶性ポリエステル樹脂(A)の特徴的なスペクトルのピーク高さCと、非結晶性樹脂(B)の特徴的なスペクトルのピーク高さRの比(C/R)が0.03〜0.55の範囲となるようにすることで、低温定着性を確保しつつ、耐熱保存性を非常に良好に保つことができ、加えて、作像時のOPCへのフィルミングも抑制することができることを本発明者らは見出した。
前記ピーク高さ比(C/R)が0.55より高いと、トナー表面の結晶性ポリエステル樹脂(A)が過剰になり、耐熱保存性及び耐フィルミング性が悪くなる。また、0.03未満であると、トナー表面の結晶性ポリエステル樹脂(A)の存在量が少なすぎるため、低温定着に対する効率が悪くなってしまう。
前述のように、トナー表面の結晶性ポリエステル樹脂(A)の存在割合:ピーク高さ比(C/R)は、結晶性ポリエステル樹脂(A)の処方量や、分散度、また、混練工程での工法等によって制御することができる。例えば、結晶性ポリエステル樹脂(A)の処方量を増やすとC/Rは高くなる。複合樹脂(C)を増量して分散性を向上させるとC/Rは低くなる。また、混練工程にて冷却時間を長くすると再結晶が促されるためC/Rは高くなる。C/Rの制御方法はこれらに限定されるものではなく、C/Rを0.03〜0.55の範囲とするならば、いかなる方法を用いてもよい。
結晶性ポリエステル樹脂の特徴的なスペクトルのピーク高さCと、非結晶性ポリエステル樹脂の特徴的なスペクトルのピーク高さRとのピーク高さ比(C/R)は、FT−IR(フーリエ変換赤外分光分析測定装置「Avatar370(Thermo Electron社製)」)を用いてATR法(全反射法)でのATRスペクトルから求めた。また、ATR法では平滑面での測定が必要となるため、トナーを加圧成型し、ペレット化して測定を行なった。加圧成型は、トナー0.6gに対して1000kgを30秒間荷重し、直径20mmのペレットを作製した。
図1は、結晶性ポリエステル樹脂の赤外吸収スペクトルの一例を示したものである。
結晶性ポリエステル樹脂の赤外吸収スペクトルは、図1に示すように、波数1130cm−1〜1220cm−1の間に、吸光度が1番目に小さくなる立ち下がりピーク点(以下「第1立ち下がりピーク点Fp1」という。)と、吸光度が2番目に小さくなる立ち下がりピーク点(以下「第2立ち下がりピーク点Fp2」という。)との間に、吸光度が最大となる最大立ち上がりピーク点Mpがある。第1立ち下がりピーク点Fp1と第2立ち下がりピーク点Fp2とを結ぶ線分をベースラインとする。そして、最大立ち上がりピーク点Mpから横軸に向けて垂線を引き、ベースラインとの交点における吸光度と、最大立ち上がりピーク点Mpにおける吸光度との差分の絶対値を、最大立ち上がりピーク点Mpの高さCとする。
なお、図1に示す例では、Fp1は1158cm−1、Fp2は1201cm−1(即ち、ベースラインは1158cm−1〜1201cm−1)であり、Mpは1183cm−1である。
図2は、非結晶性ポリエステル樹脂の赤外吸収スペクトルの一例を示したものである。
非結晶性ポリエステル樹脂の赤外吸収スペクトルは、図2に示すように、波数780cm−1〜900cm−1の間に、最大立ち上がりピーク点Mpと、吸光度が最小となる第1立ち下がりピーク点Fp1と、吸光度が2番目に小さくなる第2立ち下がりピーク点Fp2があり、最大立ち上がりピーク点Mpが第1立ち下がりピーク点Fp1と第2立ち下がりピーク点Fp2との間に位置している。第1立ち下がりピーク点Fp1と第2立ち下がりピーク点Fp2とを結ぶ線分をベースラインとする。そして、最大立ち上がりピーク点Mpから横軸に向けて垂線を引き、このベースラインとの交点における吸光度と、最大立ち上がりピーク点Mpにおける吸光度との差分の絶対値を、最大立ち上がりピーク点Mpの高さRとする。また、C/Rをピーク比(C/R値)とする。
なお、図2に示す例では、Fp1は784cm−1、Fp2は889cm−1(即ち、ベースラインは784cm−1〜889cm−1)であり、Mpは829cm−1である。
図3は、非結晶性スチレン−アクリル系樹脂の赤外吸収スペクトルの一例を示したものである。
非結晶性スチレン−アクリル系樹脂の赤外吸収スペクトルは、図3に示すように、波数660cm−1〜720cm−1の間に、最大立ち上がりピーク点Mpと、吸光度が最小となる第1立ち下がりピーク点Fp1と、吸光度が2番目に小さくなる第2立ち下がりピーク点Fp2があり、最大立ち上がりピーク点Mpが第1立ち下がりピーク点Fp1と第2立ち下がりピーク点Fp2との間に位置している。第1立ち下がりピーク点Fp1と第2立ち下がりピーク点Fp2とを結ぶ線分をベースラインとする。そして、最大立ち上がりピーク点Mpから横軸に向けて垂線を引き、このベースラインとの交点における吸光度と、最大立ち上がりピーク点Mpにおける吸光度との差分の絶対値を、最大立ち上がりピーク点Mpの高さRとする。また、C/Rをピーク比(C/R値)とする。
なお、図3に示す例では、Fp1は670cm−1、Fp2は714cm−1(即ち、ベースラインは670m−1〜714cm−1)であり、Mpは699cm−1である。
非結晶性樹脂として、非結晶性ポリエステル樹脂と非結晶性スチレン−アクリル系樹脂の両方を用いている場合は、波数780cm−1〜900cm−1の間の最大立ち上がりピーク点Mpから求めたR値と、波数660cm−1〜720cm−1の間の最大立ち上がりピーク点Mpから求めたR値を比較して、強度の強い方を採用して、ピーク比(C/R値)とする。
トナーにおける前記結晶性ポリエステル樹脂(A)の含有量は、1〜15質量%が好ましく、より好ましくは1〜10質量%である。前記非結晶性樹脂(B−1)の含有量は10〜40質量%が好ましく、前記非結晶性樹脂(B−2)の含有量は50〜90質量%が好ましく、前記複合樹脂(C)の含有量は3〜20質量%が好ましい。
GPC(ゲルパーミエーションクロマトグラフィ)は次のようにして測定される。
40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラムに、溶媒としてTHFを毎分1mlの流速で流し、試料濃度として0.05〜0.6重量%に調製した樹脂のTHF試料溶液を50〜200μl注入して測定する。
試料の分子量測定に当たっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により、作成された検量線の対数値とカウント数との関係から算出した。
検量線作成用の標準ポリスチレン試料としては、例えば、Pressure Chemical Co.あるいは東洋ソーダ工業社製の分子量が6×10、2.1×103、4×10、1.75×10、5.1×10、1.1×10、3.9×10、8.6×10、2×10、4.48×10のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。検出器にはRI(屈折率)検出器を用いる。
非結晶性樹脂(B)として、非結晶性樹脂(B−1)と、非結晶性樹脂(B−1)よりも軟化温度(T1/2)が25℃以上低い非結晶性樹脂(B−2)と、を使用することが好ましい。前記非結晶性樹脂(B−1)および前記非結晶性樹脂(B−2)の2種を使用することで、結晶性ポリエステル樹脂(A)の配分を少なくして相溶を抑制させ、かつ、結晶性ポリエステル樹脂(A)の低温定着性を非結晶性樹脂(B−2)が補助しつつ、非結晶性樹脂(B−1)の持つクロロホルム不溶分に起因する耐ホットオフセット性も阻害しないため好ましい。
結着樹脂の軟化温度(T1/2)は、高架式フローテスターCFT−500(島津製作所製)を用い、ダイス穴径1mm、加圧20kg/cm、昇温速度6℃/minの条件下で1cmの試料を溶融流出させたときの流出開始点から流出終了点までの1/2に相当する温度により測定される。
本発明における結晶性ポリエステル樹脂(A)は従来公知のものを使用することが可能ではあるが、より好ましくはその分子主鎖中に下記一般式(1)で表わされるエステル結合を含有することが好ましい。
[−OCO−R−COO−(CH)−] 一般式(1)
(式中、Rは炭素数2〜20の直鎖状不飽和脂肪族2価カルボン酸残基を示し、nは2〜20の整数を示す。)
一般式(1)の構造の存在は固体C13NMRにより確認することができる。
前記直鎖状不飽和脂肪族基の具体例としては、マレイン酸、フマル酸、1,3−n−プロペンジカルボン酸、1,4−n−ブテンジカルボン酸等の直鎖状不飽和2価カルボン酸由来の直鎖状不飽和脂肪族基が挙げられる。
前記一般式(1)において、(CHは直鎖状脂肪族2価アルコール残基を示す。この場合の直鎖状脂肪族2価アルコール残基の具体例としては、エチレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等の直鎖状脂肪族2価アルコールから誘導されたものが挙げられる。
結晶性ポリエステル樹脂(A)は、その酸成分として、直鎖状不飽和脂肪族ジカルボン酸を用いることで、芳香族ジカルボン酸を用いた場合よりも結晶構造を形成し易いという利点があり、結晶性ポリエステル樹脂の機能をより効果的に発揮させることができる。
結晶性ポリエステル樹脂(A)は、例えば、(i)直鎖状不飽和脂肪族2価カルボン酸またはその反応性誘導体(酸無水物、炭素数1〜4の低級アルキルエステル、酸ハライド等)からなる多価カルボン酸成分と、(ii)直鎖状脂肪族ジオールからなる多価アルコール成分とを、重縮合反応をさせることによって製造することができる。この場合、多価カルボン酸成分には、必要に応じ、少量の他の多価カルボン酸を添加してもよい。
その場合、多価カルボン酸には、(i)分岐鎖を有する不飽和脂肪族二価カルボン酸、(ii)飽和脂肪族2価カルボン酸や、飽和脂肪族3価カルボン酸等の飽和脂肪族多価カルボン酸、(iii)芳香族2価カルボン酸や芳香族3価カルボン酸等の芳香族多価カルボン酸等が包含される。
これらの多価カルボン酸の添加量は、全カルボン酸に対して、通常、30モル%以下、好ましくは10モル%以下であり、得られるポリエステルが結晶性を有する範囲内で適宜添加される。
必要に応じて添加することのできる多価カルボン酸の具体例としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、シトラコン酸、フタル酸、イソフタル酸、テレフタル酸等の2価カルボン酸;無水トリメット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−シクロヘキサントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチレンカルボキシプロパン、1,2,7,8−オクタンテトラカルボン酸等の3価以上の多価カルボン酸等が挙げられる。
前記多価アルコール成分には、必要に応じ、少量の脂肪族系の分岐鎖2価アルコールや環状2価アルコールの他、3価以上の多価アルコールを添加してもよい。
その添加量は、全アルコールに対して、30モル%以下、好ましくは10モル%以下であり、得られるポリエステルが結晶性を有する範囲内で適宜添加される。
必要に応じて添加される多価アルコールを例示すると、1,4−ビス(ヒドロキシメチル)シクロヘキサン、ポリエチレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールAプロピレンオキサイド付加物、グリセリン等が挙げられる。
結晶性ポリエステル樹脂(A)において、その分子量分布は、低温定着性の観点からシャープであることが好ましく、また、その分子量は、比較的低分子量であることが好ましい。
結晶性ポリエステル樹脂(A)の分子量は、o−ジクロルベンゼン可溶分のGPCによる分子量分布において、重量平均分子量(Mw)が5500〜6500、数平均分子量(Mn)が1300〜1500およびMw/Mn比が2〜5であることが好ましい。
結晶性ポリエステル樹脂(A)についての前記分子量分布は、横軸をlog(M:分子量)とし、縦軸を重量%とする分子量分布図に基づくものである。本発明で用いる結晶性ポリエステル樹脂(A)の場合、この分子量分布図において、3.5〜4.0(重量%)の範囲に分子量ピークを有することが好ましく、また、そのピークの半値幅が1.5以下であることが好ましい。
結晶性ポリエステル樹脂(A)において、そのガラス転移温度(Tg)および軟化温度(T1/2)は、トナーの耐熱保存性が悪化しない範囲で低いことが望ましいが、一般的には、そのTgは80〜130℃、好ましくは80〜125℃であり、そのT1/2は80〜130℃、好ましくは80〜125℃である。TgおよびT1/2が前記範囲より高くなると、トナーの定着下限温度が高くなり、低温定着性が悪化する。TgおよびT1/2が前記範囲より低くなるとトナーの耐熱保存性が悪化する。
本発明における結晶性ポリエステル樹脂(A)が結晶性を有するか否かは、粉末X線回折装置によるX線回折パターンにピークが存在するかどうかで確認できる。
本発明で用いる結晶性ポリエステル樹脂(A)は、その回折パターンにおいて、2θが19°〜25°の位置に少なくとも1つの回折ピークが存在すること、より好ましくは2θが(i)19°〜20°、(ii)21°〜22°、(iii)23°〜25°および(iv)29°〜31°の位置に回折ピークが存在することが好ましい。トナー化後にも、2θ=19°〜25°の位置に回折ピークが存在すると、即ちそれは、結晶性ポリエステル樹脂(A)が結晶性を維持していることを示しており、結晶性ポリエステル樹脂(A)の機能を確実に発揮させることができるため好ましい。
粉末X線回折測定は、理学電機RINT1100を用い、管球をCu、管電圧−電流を50kV〜30mAの条件で広角ゴニオメーターを用いて測定した。
図4に、実施例で用いた結晶性ポリエステル樹脂a−6(詳細は後述する)のX線回折結果を、図5に実施例30のトナーのX線回折結果を示す。
本発明に用いる非結晶性樹脂(B)はクロロホルム不溶分を含有ことが好ましく、前記非結晶性樹脂(B)が非結晶性樹脂(B−1)および非結晶性樹脂(B−2)を含有してなり、該非結晶性樹脂(B−1)がクロロホルム不溶分を含有していることがより好ましい。特に、前記非結晶性樹脂(B−1)がクロロホルム不溶分を5〜40重量%含有していると耐ホットオフセット性が発現しやすくなるため好ましい。また、トナー化後に、トナー中のクロロホルム不溶分が1〜30重量%となるようにすると、耐ホットオフセット性を維持しつつ、非結晶性樹脂(B−1)以外の樹脂の配分も確保できるため好ましい。トナー中のクロロホルム不溶分が1重量%より少なくなると、クロロホルム不溶分に起因する耐ホットオフセット性が希薄になり、30重量%よりも多くなると、低温定着性に寄与する分の結着樹脂の配分が相対的に少なくなるため、低温定着性が悪化する。
クロロホルム不溶分は以下のように測定される。
トナー(もしくは結着樹脂)約1.0gを秤量し、これにクロロホルムを約50g加える。十分に溶解させた溶液を遠心分離で分け、JIS規格(P3801)5種Cの定性濾紙を用いて常温で濾過する。濾紙残渣が不溶分であり、用いたトナー重量と濾紙残渣重量の比(重量%)でクロロホルム不溶分の含有量を表わす。
なお、トナーとしたときのクロロホルム不溶分を測定する場合には、トナー約1.0gを秤量して結着樹脂と同様の方法で行なうが、濾紙残渣の中には顔料などの固形物が存在するので、熱分析により別途求める。
本発明に用いる非結晶性樹脂(B−2)は非結晶性樹脂(B−1)よりも軟化温度(T1/2)が25℃以上低いことが好ましい。これは、非結晶性樹脂(B−2)には結晶性ポリエステル樹脂(A)の低温定着性を補助させるべく定着下限に寄与する機能、非結晶性樹脂(B−1)にはクロロホルム不溶分に起因する耐ホットオフセット性、つまり定着上限に寄与する機能というように、非結晶性樹脂(B−1)と非結晶性樹脂(B−2)で役割を分け、機能分離をさせているためである。
非結晶性樹脂(B−2)は、THF可溶分により求められたGPCによる分子量分布が1000〜10000の間にメインピークを有し、該分子量分布の半値幅が15000以下であることが好ましい。このような非結晶性樹脂(B−2)は非常に良好な低温定着性を示すため、トナーに処方した際に結晶性ポリエステル樹脂(A)を減量しても十分に低温定着性を補助することができる。また、逆説的ではあるが、上記の分子量分布を持つ非結晶性樹脂(B−2)を用いても、トナーの分子量分布が1000〜10000の間にメインピークを有し、半値幅が15000以下となるのであれば、トナーを構成する結着樹脂のうち非結晶性樹脂(B−2)の占める割合は高くなる。本発明者らが検討を重ねた結果、結晶性ポリエステル樹脂(A)、非結晶性樹脂(B−1)、非結晶性樹脂(B−2)、複合樹脂(C)を組み合わせた処方でトナーを製造すると、非結晶性樹脂(B−2)の割合を高めた場合が最もバランスがよく、過剰な結晶性ポリエステル樹脂や過剰なTHF不溶分による副作用や、複合樹脂(C)による定着下限への悪影響が顕在化せず、それぞれの樹脂の機能が有効に発揮され、低温定着性、耐熱保存性、耐ホットオフセット性が良好になるということを見出した。
したがって、本発明に係る電子写真画像形成用トナーは、THF可溶分により求められたGPCによる分子量分布が1000〜10000の間にメインピークを有し、該分子量分布の半値幅が15000以下であることが好ましい。
本発明において、非結晶性樹脂(B−1)、非結晶性樹脂(B−2)としては、前述のように、非結晶性樹脂(B−1)のクロロホルム不溶分の含有、非結晶性樹脂(B−2)の適切な分子量分布、非結晶性樹脂(B−1)と非結晶性樹脂(B−2)の軟化温度の大小関係が満たされていることが好ましく、それら樹脂には従来公知の材料を用いることができる。例えば、以下に示すような樹脂を用いることが可能である。これらの樹脂は単独使用に限らず、二種以上併用することも可能である。
ポリスチレン、クロロポリスチレン、ポリα−メチルスチレン、スチレン/クロロスチレン共重合体、スチレン/プロピレン共重合体、スチレン/ブタジエン共重合体、スチレン/塩化ビニル共重合体、スチレン/酢酸ビニル共重合体、スチレン/マレイン酸共重合体、スチレン/アクリル酸エステル共重合体(スチレン/アクリル酸メチル共重合体、スチレン/アクリル酸エチル共重合体、スチレン/アクリル酸ブチル共重合体、スチレン/アクリル酸オクチル共重合体、スチレン/アクリル酸フェニル共重合体等)、スチレン/メタクリル酸エステル共重合体(スチレン/メタクリル酸メチル共重合体、スチレン/メタクリル酸エチル共重合体、スチレン/メタクリル酸ブチル共重合体、スチレン/メタクリル酸フェニル共重合体等)、スチレン/α−クロルアクリル酸メチル共重合体、スチレン/アクリロニトリル/アクリル酸エステル共重合体等のスチレン系樹脂(スチレン又はスチレン置換体を含む単独重合体又は共重合体)、塩化ビニル樹脂、スチレン/酢酸ビニル共重合体、ロジン変性マレイン酸樹脂、フェノール樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン/エチルアクリレート共重合体、キシレン樹脂、ポリビニルブチラール樹脂等、石油系樹脂、水素添加された石油系樹脂等が例として挙げられる。
これらの樹脂の製造法は、特に限定されるものではなく、塊状重合、溶液重合、乳化重合、懸濁重合のいずれも利用できる。
本発明に用いられる非結晶性樹脂(B)は、より好ましくはポリエステル樹脂であると低温定着性の観点から好ましい。例えば、アルコールとカルボン酸との縮重合によって通常得られるものも使用可能である。
該アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール等のグリコール類、1,4−ビス(ヒドロキシメチル)シクロヘキサン、及びビスフェノールA等のエチル化ビスフェノール類、その他二価のアルコール単量体、三価以上の多価アルコール単量体を挙げることができる。
また、カルボン酸としては、例えばマレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、コハク酸、マロン酸等の二価の有機酸単量体、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、1,2,4−シクロヘキサントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチレンカルボキシプロパン、1,2,7,8−オクタンテトラカルボン酸等の三価以上の多価カルボン酸単量体を挙げることができる。
特に、ポリエステル樹脂としては、熱保存性の関係から、ガラス転位温度Tgが55℃以上のものが好ましく、さらに60℃以上のものがより好ましい。
前記複合樹脂(C)は、縮重合系モノマーと付加重合系モノマーとが化学的に結合した樹脂(ハイブリッド樹脂と称することもある)である。
即ち、前記複合樹脂(C)は、縮重合系樹脂ユニットと、付加重合系樹脂ユニットとを有している。
前記複合樹脂(C)は、原料となる縮重合系モノマーと付加重合系モノマーを含む混合物を、同一反応容器中で縮重合反応と付加重合反応を同時に並行反応して行うか、縮重合反応と付加重合反応、又は付加重合反応と縮重合反応を順次行うことによって得ることができる。即ち、複合樹脂(C)は、縮重合系ユニットと付加重合系ユニットとを含む樹脂である。
前記複合樹脂(C)における縮重合系モノマーとしては、ポリエステル樹脂ユニットを形成する多価アルコールと多価カルボン酸、ポリアミド樹脂ユニットもしくはポリエステル−ポリアミド樹脂ユニットを形成する多価カルボン酸とアミン、又はアミノ酸が挙げられる。
2価のアルコール成分としては、例えば1,2−プロパンジオール、1,3−プロパンジオール、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素添加ビスフェノールA、又は、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオールなどが挙げられる。
3価以上の多価アルコールとしては、例えばソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシベンゼン、などが挙げられる。
これらの中でも、水素添加ビスフェノールA、又はビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオール等のビスフェノールA骨格を有するアルコール成分は、樹脂に耐熱保存性や機械的強度を付与するので好適に用いることができる。
カルボン酸成分としては、例えば、フタル酸、イソフタル酸、テレフタル酸等のべンゼンジカルボン酸類又はその無水物;コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物;マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物、などが挙げられる。
3価以上の多価カルボン酸成分としては、例えばトリメット酸、ピロメット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステル、などが挙げられる。
これらの中でも、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸等の芳香族多価カルボン酸化合物が、樹脂の耐熱保存性、機械的強度の観点から好適に用いられる。
アミン成分もしくはアミノ酸成分としては、例えば、ジアミン(B1)、3価以上のポリアミン(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、B1〜B5のアミノ基をブロックしたもの(B6)などが挙げられる。
前記ジアミン(B1)としては、例えば芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’−ジアミノジフェニルメタン等)、脂環式ジアミン(4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、ジアミノシクロヘキサン、イソホロンジアミン等)、脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等)などが挙げられる。
前記3価以上のポリアミン(B2)としては、例えばジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。
前記アミノアルコール(B3)としては、例えばエタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。
前記アミノメルカプタン(B4)としては、例えばアミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。
前記アミノ酸(B5)としては、例えばアミノプロピオン酸、アミノカプロン酸、ε−カプロラクタムなどが挙げられる。
前記(B1)〜(B5)のアミノ基をブロックしたもの(B6)としては、前記(B1)〜(B5)のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。
前記複合樹脂(C)中における縮重合系モノマー成分のモル比率は、5モル%〜40モル%であることが好ましく、10モル%〜25モル%がより好ましい。
前記モル比率が、5モル%未満であると、ポリエステル系樹脂との分散性が悪化し、50モル%を超えると、離型剤の分散が悪化する傾向が現れる。
また、縮重合反応を行う際にはエステル化触媒等を使用してもよく、周知慣用の触媒を全て用いることが可能である。
前記複合樹脂(C)における付加重合系モノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、ビニル系モノマーが代表的である。
該ビニル系モノマーとしては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−アミルスチレン、p−tert−ブチルスチレン、p−n−へキシルスチレン、p−n−4−ジクロロスチレン、m−ニトロスチレン、o−ニトロスチレン、p−ニトロスチレン等のスチレン系ビニルモノマー;アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸n−ドデシル、アクリル酸2−エチルへキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニル等のアクリル酸等のアクリル系モノマー;メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸n−ドデシル、メタクリル酸2−エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸系ビニルモノマー;その他のビニルモノマー又は共重合体を形成する他のモノマー、などが挙げられる。
前記その他のビニルモノマー又は共重合体を形成する他のモノマーとしては、例えばエチレン、プロピレン、ブチレン、イソブチレン等のモノオレフイン類;ブタジエン、イソプレン等のポリエン類;塩化ビニル、塩化ビニルデン、臭化ビニル、フッ化ビニル等のハロゲン化ビニル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等のビニルエステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等のN−ビニル化合物;ビニルナフタリン類;アクリロニトリル、メタクリロニトリル、アクリルアミド等のアクリル酸若しくはメタクリル酸誘導体;マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物;マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸モノブチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、シトラコン酸モノブチルエステル、イタコン酸モノメチルエステル、アルケニルコハク酸モノメチルエステル、フマル酸モノメチルエステル、メサコン酸モノメチルエステル等の不飽和二塩基酸のモノエステル;ジメチルマレイン酸、ジメチルフマル酸等の不飽和二塩基酸エステル;クロトン酸、ケイヒ酸等のα,β−不飽和酸;クロトン酸無水物、ケイヒ酸無水物等のα,β−不飽和酸無水物;該α,β−不飽和酸と低級脂肪酸との無水物、アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物又はこれらのモノエステル等のカルボキシル基を有するモノマー;2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸ヒドロキシアルキルエステル類、4−(1−ヒドロキシ−1−メチルブチル)スチレン、4−(1−ヒドロキシ−1−メチルへキシル)スチレン等のヒドロキシ基を有するモノマー、などが挙げられる。
これらの中でも、スチレン、アクリル酸、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸、メタクリル酸n−ブチル、メタクリル酸2−エチルヘキシル等が好適に用いられ、少なくともスチレンとアクリル酸を含む組合せで用いると、離型剤の分散性が極めて良好であるので特に好ましい。
更に必要に応じて付加重合系モノマーの架橋剤を添加することができる。
該架橋剤としては、例えば、芳香族ジビニル化合物として、例えば、ジビニルベンゼン、ジビニルナフタレン、などが挙げられる。
アルキル鎖で結ばれたジアクリレート化合物類として、例えば、エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、これらの化合物のアクリレートをメタクリレートに代えたもの、などが挙げられる。
エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類として、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、これらの化合物のアクリレートをメタアクリレートに代えたもの、などが挙げられる。
その他、芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物、ジメタクリレート化合物も挙げられる。
ポリエステル型ジアクリレート類として、例えば、商品名MANDA(日本化薬株式会社製)が挙げられる。
多官能の架橋剤としては、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート及び以上の化合物のアクリレートをメタクリレートに代えたもの、トリアリルシアヌレート、トリアリルトリメリテートが挙げられる。
前記架橋剤の添加量は、使用される付加重合系モノマー100質量部に対して、0.01質量部〜10質量部が好ましく、0.03質量部〜5質量部がより好ましい。
付加重合系モノマーを重合させる際に用いられる重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2'−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系重合開始剤;メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド、2,2−ビス(tert−ブチルパーオキシ)ブタン、tert−ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、n−ブチル−4,4−ジ−(tert−ブチルパーオキシ)バレレート等の過酸化物系重合開始剤が挙げられる。
これらは、樹脂の分子量及び分子量分布を調節する目的で二種類以上を混合して用いることが可能である。
前記重合開始剤の添加量は、使用される付加重合系モノマー100質量部に対して、0.01質量部〜15質量部が好ましく、0.1質量部〜10質量部がより好ましい。
縮重合系樹脂ユニットと、付加重合系樹脂ユニットを化学的に結合するには、例えば、縮重合と付加重合のいずれでも反応可能なモノマー(両反応性モノマー)を用いる。
このような両反応性モノマーとしては、例えば、アクリル酸、メタクリル酸等の不飽和カルボン酸;フマル酸、マレイン酸、シトラコン酸、イタコン酸等の不飽和ジカルボン酸又はその無水物;ヒドロキシ基を有するビニル系モノマーなどが挙げられる。
前記両反応性モノマーの添加量は、使用される付加重合系モノマー100質量部に対して、1質量部〜25質量部が好ましく、2質量部〜20質量部がより好ましい。
前記複合樹脂(C)は、同一反応容器内であれば、縮重合反応と付加重合反応の両反応の進行及び/又は完了を同時に行う他、それぞれの反応温度、時間を選択して、独立に反応の進行を完了することができる。
例えば、反応容器中に縮重合系モノマーの混合物中に、付加重合系モノマー及び重合開始剤からなる混合物を滴下してあらかじめ混合し、最初にラジカル重合反応により付加重合を完了させ、次いで反応温度を上昇させることにより縮重合を行う方法がある。このように、反応容器中で独立した二つの反応を進行させることにより、二種の樹脂ユニットを効果的に分散、結合させることが可能である。
複合樹脂(C)が、ポリエステルの縮重合系樹脂ユニットとビニル系樹脂の付加重合系ユニットを有する複合樹脂であることが好ましく、複合樹脂(C)の機能をより効果的に発揮させることができる。
前記複合樹脂(C)の軟化温度(T1/2)としては、90℃〜130℃が好ましく、100℃〜120℃がより好ましい。
前記軟化温度(T1/2)が、90℃より低い場合は、耐熱保存性、耐オフセット性が悪化することがあり、130℃より高い場合は、低温定着性を悪化させることがある。
また、前記複合樹脂(C)のガラス転移温度は、定着性、保存性及び耐久性の観点から、45℃〜80℃が好ましく、50℃〜70℃がより好ましく、53℃〜65℃が更に好ましい。
前記複合樹脂(C)の酸価は、帯電性と環境安定性の観点から、5mgKOH/g〜80mgKOH/gが好ましく、15mgKOH/g〜40mgKOH/gがより好ましい。
本発明のトナーは、必要に応じて帯電制御剤を配合することも可能である。
帯電制御剤としては、ニグロシン及び脂肪酸金属塩等による変性物、ホスホニウム塩等のオニウム塩及びこれらのレーキ顔料、トリフェニルメタン染料及びこれらのレーキ顔料、高級脂肪酸の金属塩;ジブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイドなどのジオルガノスズオキサイド;ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレートの如きジオルガノスズボレート類、有機金属錯体、キレート化合物、モノアゾ金属錯体、アセチルアセトン金属錯体、芳香族ハイドロキシカルボン酸、芳香族ダイカルボン酸系の金属錯体、第四級アンモニウム塩、サリチル酸金属化合物等がある。他にも、芳香族ハイドロキシカルボン酸、芳香族モノ及びポリカルボン酸及びその金属塩、無水物、エステル類、ビスフェノールの如きフェノール誘導体類等があり、これら従来公知のいかなる帯電制御剤(極性制御剤)も、単独あるいは混合して使用できる。
これらの帯電制御剤の使用量は、トナー樹脂成分に対し、0.1〜10重量部、好ましくは1〜5重量部である。
これら帯電制御剤の中でも、サリチル酸金属化合物を含有させると、同時に耐ホットオフセット性を改良できるため好ましい。特に、6配位の構成を取りうる3価以上の金属を有する錯体は、樹脂とワックスの反応性が高い部分と反応し、軽度の架橋構造を作るため、耐ホットオフセットへの効果が大きい。また、複合樹脂(C)と併用することで分散性が向上し、帯電極性制御の機能をより有効に発揮させることができる。
ここで、3価以上の金属の例としては、Al,Fe,Cr,Zr等が挙げられる。
また、サリチル酸金属化合物としては、下式で表される化合物を用いることができ、Mが亜鉛である金属錯体としてボントロンE−84 オリエント化学工業(株)製を挙げることができる。
(式中、R、R及びRはそれぞれ独立して水素原子、直鎖又は分枝鎖状の炭素数1〜10のアルキル基又は炭素数2〜10のアルケニル基、Mはクロム、亜鉛、カルシウム、ジルコニウム又はアルミニウム、mは2以上の整数、nは1以上の整数を示す)
本発明における電子写真画像形成用トナーは、DSC(Differential scanning calorimetry;示差走査熱量測定)によるトナーの吸熱ピーク測定にて、90〜130℃の範囲に結晶性ポリエステル樹脂(A)に起因する吸熱ピークを有することが好ましい。結晶性ポリエステル樹脂(A)に起因する吸熱ピークが90〜130℃の範囲に存在すると、結晶性ポリエステル樹脂が常温では溶融せず、かつ、比較的低温な定着温度領域でトナーが溶融し、記録媒体に定着できるため、耐熱保存性と低温定着性をより効果的に発現させることができる。
また、吸熱ピークの吸熱量が1J/g以上、15J/g以下であることが好ましい。
吸熱量が1J/g未満であると、トナー中で有効にはたらく結晶性ポリエステル樹脂の量が少なすぎるため、結晶性ポリエステル樹脂の機能が十分に発揮されない。吸熱量が15J/gより多いと、トナー中で有効な結晶性ポリエステル樹脂の量が過剰であるため、非結晶性ポリエステル樹脂と相溶する絶対量が多くなり、トナーのガラス転移温度が低下し、耐熱保存性の低下を招く。
本発明におけるDSC測定(吸熱ピーク、ガラス転移温度Tg)は、示差走査熱量計(「DSC−60」;島津製作所製)を用い、10℃/分で20〜150℃まで昇温して測定する。
本発明では結晶性ポリエステル由来の吸熱ピークは、結晶性ポリエステルの融点である80〜130℃付近に存在するものであり、吸熱量はベースラインと吸熱曲線で囲まれた範囲の面積から求められる。一般的に、DSC測定における吸熱量は温度上昇を二度行って測定を行なうことが多いが、本発明における吸熱ピーク及びガラス転移温度の測定は一度目の昇温の際の吸熱曲線を用いて導き出す。
結晶性ポリエステル樹脂(A)由来の吸熱ピークがワックスの吸熱ピークと重なる場合には、重なったピークの吸熱量からワックス分の吸熱量を減算する。ワックス分の吸熱量は、ワックス単独の吸熱量とトナー中のワックス含有量から計算される。
本発明のトナーは、脂肪酸アミド化合物を含有することが好ましい。
トナー製造時に溶融混練工程を含む粉砕トナーに対し、結晶性ポリエステル樹脂(A)と共に脂肪酸アミド化合物を配合すると、混練時に溶融していた結晶性ポリエステル樹脂(A)が冷却される際の混練物中での再結晶が促進されるため、樹脂との相溶が少なくなり、トナーのガラス転移温度の低下を抑えることができるため、耐熱保存性を改善することができる。また、離型剤と併用した場合には、離型剤を定着画像表面に留めることが可能となるため、擦れに強く(耐スミア性の向上)なる。
トナーにおける脂肪酸アミド化合物の含有量は、0.5〜10質量%が好ましい。
脂肪酸アミド化合物としては、R10−CO−NR1213で表される化合物が適用される。
10は炭素数10〜30の脂肪族炭化水素基であり、R12、R13は各々独立して水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、又は炭素数7〜10のアラルキル基である。ここで、R12、R13のアルキル基、アリール基、アラルキル基は、フッ素原子、塩素原子、シアノ基、アルコキシ基、アルキルチオ基等の通常不活性な置換基で置換されていても良い。より好ましくは無置換のものである。
好ましい化合物としては、ステアリン酸アミド、ステアリン酸メチルアミド、ステアリン酸ジエチルアミド、ステアリン酸ベンジルアミド、ステアリン酸フェニルアミド、ベヘン酸アミド、ベヘン酸ジメチルアミド、ミリスチン酸アミド、パルミチン酸アミド等が挙げられる。
本発明では、上記脂肪酸アミド化合物としては、中でも、アルキレンビス脂肪酸アミドが特に好適に用いられる。
アルキレンビス脂肪酸アミドは、下記の一般式(2)で示される化合物である。
(式中R21、R23は炭素数5〜21のアルキル基またはアルケニル基、R22は炭素数1〜20のアルキレン基を示す。)
上記一般式(2)で示されるアルキレンビス飽和脂肪酸アミドとしては、例えば、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、メチレンビスパルミチン酸アミド、エチレンビスパルミチン酸アミド、メチレンビスベヘン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサエチレンビスパルミチン酸アミド、ヘキサメチレンビスベヘン酸アミド等を挙げることができる。これらのうちでは、エチレンビスステアリン酸アミドが最も好ましい。
これら脂肪酸アミド化合物は、軟化温度(T1/2)が、定着時の定着部材表面の温度より低いと、定着部材表面で離型剤としての効果も果たすことができる。
上記の他に使用できるアルキレンビス脂肪酸アミド系の化合物として、具体的には、プロピレンビスステアリン酸アミド、ブチレンビスステアリン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、プロピレンビスオレイン酸アミド、ブチレンビスオレイン酸アミド、メチレンビスラウリン酸アミド、エチレンビスラウリン酸アミド、プロピレンビスラウリン酸アミド、ブチレンビスラウリン酸アミド、メチレンビスミリスチン酸アミド、エチレンビスミリスチン酸アミド、プロピレンビスミリスチン酸アミド、ブチレンビスミリスチン酸アミド、プロピレンビスパルミチン酸アミド、ブチレンビスパルミチン酸アミド、メチレンビスパルミトレイン酸アミド、エチレンビスパルミトレイン酸アミド、プロピレンビスパルミトレイン酸アミド、ブチレンビスパルミトレイン酸アミド、メチレンビスアラキジン酸アミド、エチレンビスアラキジン酸アミド、プロピレンビスアラキジン酸アミド、ブチレンビスアラキジン酸アミド、メチレンビスエイコセン酸アミド、エチレンビスエイコセン酸アミド、プロピレンビスエイコセン酸アミド、ブチレンビスエイコセン酸アミド、メチレンビスベヘニン酸アミド、エチレンビスベヘニン酸アミド、プロピレンビスベヘニン酸アミド、ブチレンビスベヘニン酸アミド、メチレンビスエルカ酸アミド、エチレンビスエルカ酸アミド、プロピレンビスエルカ酸アミド、ブチレンビスエルカ酸アミド等の、飽和または1〜2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系の化合物を挙げることができる。
本発明のトナーに用いる着色剤としては、例えばカーボンブラック、ランプブラック、鉄黒、アニリンブルー、フタロシアニンブルー、フタロシアニングリーン、ハンザイエローG、ローダミン6Cレーキ、カルコオイルブルー、クロムイエロー、キナクリドン、ベンジジンイエロー、ローズベンガル、トリアリルメタン系染料等の染顔料など、従来公知のいかなる染顔料をも単独あるいは混合して使用することが可能であり、ブラックトナーとしてもフルカラートナーとしても使用できる。
特に、カーボンブラックは良好な黒色着色力を持つ。しかし、同時に、良好な導電性材料でもあるため、使用量が多かったり、トナー中で凝集状態で存在したりすると電気抵抗が低下し、転写工程において転写不良を招く原因になる。特に、結晶性ポリエステル樹脂(A)と併用した場合、カーボンブラック粒子は結晶性ポリエステル樹脂(A)のドメイン中に入り込めないため、結晶性ポリエステル樹脂(A)が大きな分散径をもってトナー中に存在した場合、結晶性ポリエステル樹脂(A)以外の樹脂中に比較的濃度の高い状態で存在することになる。そのため、凝集体のままトナー中に閉じ込められやすくなり、抵抗が過剰に低下しやすくなる。
本発明の場合、複合樹脂(C)と併用するため、カーボンの分散も良好となり、上記のリスクは軽減することができる。また、カーボンブラックを含有すると、記録媒体へトナーを定着する際に、溶融したトナーの粘性を高いものにすることができるため、非結晶性樹脂(B−1)を多く処方した場合に、粘性低下に起因して発生するホットオフセットを抑制できるという効果も付与することができる。
これらの着色剤の使用量はトナー樹脂成分に対して、通常1〜30重量%、好ましくは3〜20重量%である。
本発明のトナーの離型剤には従来公知のものが使用できる。例えば、低分子量ポリエチレン、低分子量ポリプロピレン等の低分子量ポリオレフィンワックスやフィッシャー・トロプシュワックス等の合成炭化水素系ワックスや蜜ロウ、カルナウバワックス、キャンデリラワックス、ライスワックス、モンタンワックス等の天然ワックス類、パラフィンワックス、マイクロクリスタリンワックス等の石油ワックス類、ステアリン酸、パルミチン酸、ミリスチン酸等の高級脂肪酸及び高級脂肪酸の金属塩、高級脂肪酸アミド、合成エステルワックス等及びこれらの各種変性ワックスが挙げられる。
これら離型剤の中でも、カルナウバワックス及びその変性ワックスやポリエチレンワックス、合成エステル系ワックスが好適に用いられる。特にカルナウバワックスは、ポリエステル樹脂やポリオール樹脂に対して適度に微分散し、耐ホットオフセット性と転写性・耐久性ともに優れたトナーとすることが容易なため非常に好適である。また、脂肪酸アミド化合物と併用した場合、定着画像表面に留まる効果が非常に強くなり、耐スミア性が更に向上する。
これら離型剤は、1種又は2種以上を併用して用いることができる。また、これらの離型剤の使用量は、トナーに対して2〜15重量%が好適である。2重量%未満ではホットオフセット防止効果が不十分であり、15重量%を超えると転写性、耐久性が低下する。
離型剤の融点は70〜150℃であることが好ましい。70℃より低いとトナーの耐熱保存性が低下する。150℃より高いと離型性が十分に果たせない。
本発明のトナーの粒径については、細線再現性等に優れた高画質を得るためには、体積平均粒径が4〜10μmであることが好ましい。
4μmより小さいと現像工程におけるクリーニング性、転写工程における転写効率に支障をきたし、画像品質が低下する。10μmより大きいと、画像の細線再現性が低下する。
ここで、トナー体積平均粒径の測定は、種々の方法によって測定可能であるが、本発明では米国コールター・エレクトロニクス社製のコールターカウンターTAIIが用いられる。
本発明のトナーは、製造工程に少なくとも溶融混練工程を含む、所謂粉砕法を用いて製造された粉砕トナーであると、ピーク比C/Rを制御できるため好ましい。
粉砕法は、結晶性ポリエステル樹脂(A)、非晶性樹脂(B)、複合樹脂(C)を少なくとも含有し、必要に応じて着色剤及び離型剤を含むトナー材料を乾式混合し、混練機にて溶融混練し、粉砕して粉砕トナーを得る方法である。
まず溶融混練工程では、トナー材料を混合し、該混合物を溶融混練機に仕込んで溶融混練する。該溶融混練機としては、例えば、一軸の連続混練機、二軸の連続混練機、ロールミルによるバッチ式混練機を用いることができる。具体的な例としては、神戸製鋼所社製KTK型二軸押出機、東芝機械社製TEM型押出機、ケイシーケイ社製二軸押出機、池貝鉄工所社製PCM型二軸押出機、ブス社製コニーダー等が好適に用いられる。
溶融混練は、結着樹脂(バインダー樹脂)の分子鎖の切断を招来しないような適正な条件で行うことが好ましい。具体的には、溶融混練温度は結着樹脂の軟化点を参考にして行われ、該軟化点より高温過ぎると切断が激しく、低温すぎると分散が進まないことがある。
粉砕工程では、前記混練で得られた混練物を粉砕する。この粉砕においては、まず、混練物を粗粉砕し、次いで微粉砕することが好ましい。この際ジェット気流中で衝突板に衝突させて粉砕したり、ジェット気流中で粒子同士を衝突させて粉砕したり、機械的に回転するローターとステーターの狭いギャップで粉砕する方式が好ましく用いられる。
分級工程では、前記粉砕工程にて得られた粉砕物を分級し、所定粒径の粒子に調整する。分級は、例えば、サイクロン、デカンター、遠心分離等により、微粒子部分を取り除くことにより行うことができる。
前記粉砕及び分級が終了した後に、粉砕物を遠心力などで気流中にて分級し、所定の粒径のトナー(トナー母体粒子)を製造する。
本発明のトナーは、製造工程において溶融混練工程を経る粉砕トナーであることが好ましいが、原材料を溶融混練させた後の冷却工程にて、混練物の厚さを2.5mm以上にすると、混練物の冷却速度が遅くなり、混練物中で溶融している結晶性ポリエステル樹脂(A)の再結晶が行なわれる時間が長くなるため、再結晶が促進され、結晶性ポリエステル樹脂(A)の機能をより効果的に発揮させることができる。再結晶を促進させるには前述のように脂肪酸アミドを配合するのも有効な手段ではあるが、このように製造工程を調整することでも効果が得られる。混練物の厚さに上限はないが、8mmより厚くすると、粉砕工程において効率が著しく低下すること、また、ピーク比C/Rが高くなるため、8mm以下の厚さに留めることが好ましい。
なお、溶融混練工程後の混練物はそのままでは塊状として排出され、冷却に著しく過剰な時間を要し、また粉砕工程においても効率が著しく低くなるため、一般的には圧延工程により混練物を薄い板状とする。そして本発明では、(圧延工程によって得られた薄い板状となったものなどの)混練物の厚さを2.5mm以上とすることで、急冷とならず徐冷を可能とし、結晶性ポリエステル樹脂(A)の再結晶化を促進することができるため好ましい。
トナーの流動性や保存性、現像性、転写性を高めるために、上記のようにして製造されたトナー母体粒子に更に疎水性シリカ微粉末等の無機微粒子を添加混合してもよい。
このような添加剤の混合は、一般の粉体の混合機が用いられるがジャケット等装備して、内部の温度を調節できることが好ましい。添加剤に与える負荷の履歴を変えるには、例えば、途中又は漸次に添加剤を加えていけばよい。
混合機の回転数、転動速度、時間、温度などを適宜変化させてもよい。また、初めに強い負荷を与え、次いで、比較的弱い負荷を与えてもよいし、その逆でもよい。
外添剤混合工程に使用できる混合設備としては、例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサーなどが挙げられる。
混合工程を施した後に、250メッシュ以上の篩を通過させ、粗大粒子や凝集粒子を除去してもよい。
本発明のトナーを現像剤として使用する際は、トナーのみにて構成される一成分現像剤として用いても、キャリアと混合して二成分現像剤として用いてもよく、特に限定はされないが、近年の情報処理速度の向上に対応した高速プリンタ等に使用する場合には、寿命向上等の観点から、二成分現像剤として用いることが好ましい。
本発明における電子写真現像装置の一例を示す。
なお、図7〜図9は、本発明に含まれないが、本発明を説明するための参考として図示し説明する。
図6の符号101Aは駆動ローラ、101Bは従動ローラ、102は感光体ベルト(像担持体)、103は帯電器(帯電手段)、104はレーザー書き込み系ユニット(露光手段)、105A〜105Dはそれぞれイエロー,マゼンタ,シアン,ブラックの各色のトナーを収容する現像ユニット(現像手段)、106は給紙カセット、107は中間転写ベルト、107Aは中間転写ベルト駆動用の駆動軸ローラ、107Bは中間転写ベルトを支持する従動軸ローラ(以上、107,107A,107Bで中間転写手段)、108はクリーニング装置(クリーニング手段)、109は定着ローラ(定着手段)、109Aは加圧ローラ(定着手段)、110は排紙トレイ、113は紙転写ローラ(転写手段)を示している。
このカラー画像形成装置では、可撓性の中間転写ベルト107が使用されており、該中間転写体たる中間転写ベルト107は駆動軸ローラ107Aと一対の従動軸ローラ107Bに張架されて時計方向に循環搬送されていて、一対の従動軸ローラ107B間のベルト面を駆動ローラ101Aの外周の感光体ベルト102に対して水平方向から当接させた状態としている。
通常のカラー画像出力時は、感光体ベルト102上に形成される各色のトナー像は、形成の都度前記中間転写ベルト107に転写されて、カラーのトナー像を合成し、これを給紙カセット106から搬送される転写紙に対し紙転写ローラ113によって一括転写し、転写後の転写紙は定着装置の定着ローラ109と加圧ローラ109Aの間へと搬送され、定着ローラ109と加圧ローラ109Aによる定着後、排紙トレイ110に排紙される。
105A〜105Dの現像ユニットがトナーを現像すると、現像ユニットに収容されている現像剤のトナー濃度が低下する。現像剤のトナー濃度の低下はトナー濃度センサ(図示せず)により検知される。トナー濃度の低下が検知されると、各現像ユニットにそれぞれ接続されているトナー補給装置(図示せず)が稼動し、トナーを補給してトナー濃度を上昇させる。このとき、補給されるトナーは、現像ユニットに現像剤排出機構が備わっていれば、キャリアとトナーが混合されている所謂トリクル現像方式用現像剤であってもよい。
図6では中間転写ベルト上にトナー像を重ねて画像を形成しているが、中間転写ベルトを用いることなく像担持体から直接に記録媒体へ転写を行なうシステムにおいても、同様に本発明の電子写真画像形成装置とすることができる。
図7は、1軸の循環現像方式に係るものであり、本発明には含まれないが、本発明を説明するための比較例として示すものである。
図7において、潜像担持体である感光体20に対向して配設された現像手段である現像装置40は、現像剤担持体としての現像スリーブ41、現像剤収容部材42、規制部材としてのドクターブレード43、支持ケース44等から主に構成されている。
感光体20側に開口を有する支持ケース44には、内部にトナー21を収容するトナー収容部としてのトナーホッパー45が接合されている。トナーホッパー45に隣接した、トナー21と、キャリア23からなる現像剤を収容する現像剤収容部46には、トナー21とキャリア23を攪拌し、トナー21に摩擦/剥離電荷を付与するための、現像剤攪拌機構47が設けられている。
トナーホッパー45の内部には、図示しない駆動手段によって回動されるトナー供給手段としてのトナーアジテータ48及びトナー補給機構49が配設されている。トナーアジテータ48及びトナー補給機構49は、トナーホッパー45内のトナー21を現像剤収容部46に向けて攪拌しながら送り出す。
感光体20とトナーホッパー45との間の空間には、現像スリーブ41が配設されている。図示しない駆動手段で図の矢印方向に回転駆動される現像スリーブ41は、キャリア23による磁気ブラシを形成するために、その内部に現像装置40に対して相対位置不変に配設された、磁界発生手段としての図示しない磁石を有する。
現像剤収容部材42の、支持ケース44に取り付けられた側と対向する側には、ドクターブレード43が一体的に取り付けられている。ドクターブレード43は、この例では、その先端と現像スリーブ41の外周面との間に一定の隙間を保った状態で配設されている。
図7の画像形成方法は、次のように遂行される。即ち、上記構成により、トナーホッパー45の内部からトナーアジテータ48、トナー補給機構49によって送り出されたトナー21は、現像剤収容部46へ運ばれ、現像剤攪拌機構47で攪拌されることによって、所望の摩擦/剥離電荷が付与され、キャリア23と共に現像剤として、現像スリーブ41に担持されて感光体20の外周面と対向する位置まで搬送され、トナー21のみが感光体20上に形成された静電潜像と静電的に結合することにより、感光体20上にトナー像が形成される。
図8は、図7の現像装置を有する画像形成装置の一例を示す図である。ドラム状の感光体20の周囲に、帯電部材32、像露光系33、現像装置40、転写装置50、クリーニング装置60、除電ランプ70が配置されている。この例の場合、帯電部材32の表面は、感光体20の表面とは約0.2mmの間隙を置いて非接触状態にあり、帯電部材32により感光体20に帯電を施す際、帯電部材32に図示してない電圧印加手段によって直流成分に交流成分を重畳した電界により、感光体20を帯電させることにより、帯電ムラを低減することが可能であり、効果的である。現像方法を含む画像形成方法は、以下の動作で行われる。
画像形成の一連のプロセスは、ネガ−ポジプロセスで説明を行うことができる。有機光導電層を有する感光体(OPC)に代表される感光体20は、除電ランプ70で除電され、帯電チャージャ、帯電ローラ等の帯電部材32で均一にマイナスに帯電され、レーザー光学系等の像露光系33から照射されるレーザー光で潜像形成(この例では、露光部電位の絶対値は、非露光部電位の絶対値より低電位となる)が行われる。
レーザー光は、半導体レーザーから発せられて、高速で回転する多角柱の多面鏡(ポリゴン)等により、感光体20の表面を、感光体20の回転軸方向に走査する。このようにして形成された潜像が、現像装置40にある現像剤担持体である現像スリーブ41上に供給されたトナー及びキャリアの混合物からなる現像剤により現像され、トナー像が形成される。潜像の現像時には、電圧印加機構(図示せず)から現像スリーブ41に、感光体20の露光部と非露光部の間に、ある適当な大きさの直流電圧又はこれに交流電圧を重畳した現像バイアスが印加される。
一方、転写媒体80(例えば紙)が、給紙機構(図示せず)から給送され、上下一対のレジストローラ(図示せず)で画像先端と同期をとって、感光体20と転写装置50との間に給送され、トナー像が転写される。このとき、転写装置50には、転写バイアスとして、トナー帯電の極性と逆極性の電位が印加されることが好ましい。その後、転写媒体80は、感光体20より分離され、転写像が得られる。
また、感光体20上に残存するトナーは、クリーニング部材としてのクリーニングブレード61により、クリーニング装置60内のトナー回収室62に回収される。
回収されたトナーは、トナーリサイクル手段(図示せず)により現像剤収容部46及び/又はトナーホッパー45に搬送され、再使用されてもよい。
画像形成装置は、上述の現像装置を複数配置し、記録媒体(転写媒体)上へトナー像を順次転写した後、定着機構へ送り、熱等によってトナーを定着する装置であってもよく、一端中間転写媒体上へ複数のトナー像を転写し、これを一括して記録媒体に転写後同様の定着を行う装置であってもよい。
図9には、画像形成装置の他の例を示す。感光体20は、導電性支持体上に少なくとも感光層が設けられており、駆動ローラ24a、24bにより駆動され、帯電部材32による帯電、像露光系33による像露光、現像装置40による現像、転写装置50を用いる転写、クリーニング前露光光源26によるクリーニング前露光、ブラシ状クリーニング手段64及びクリーニングブレード61によるクリーニング、除電ランプ70による除電が繰り返し行われる。図9においては、感光体20(勿論この場合は支持体が透光性である)に支持体側よりクリーニング前露光が行われる。
次に、本発明の循環現像装置の構成について説明する。図10〜12は、仕切り部材により仕切られた供給搬送路、回収搬送路、攪拌搬送路をもつ現像方式を図示したものである。図10〜12は、3軸の循環現像方式の例を示す図であり、図13〜15は、2軸の循環現像方式の例を示す図である。
図10は、現像装置及び感光体を示す拡大構成図である。
図10に示すように感光体1は図中矢印G方向に回転しながら、その表面を不図示の帯電装置により帯電される。帯電された感光体1の表面は不図示の露光装置より照射されたレーザ光により静電潜像を形成された潜像に現像装置4からトナーを供給され、トナー像を形成する。
現像装置4は、図中矢印I方向に表面移動しながら感光体1の表面の潜像に現像剤を供給し、現像する現像剤担持体としての現像ローラ5を有している。また、現像ローラ5に現像剤を供給しながら図10の奥方向に現像剤を搬送する現像剤供給搬送部材としての供給スクリュー8を有している。
現像ローラ5の供給スクリュー8との対向部から表面移動方向下流側には、現像ローラ5に供給された現像剤を現像に適した厚さに規制する現像剤規制部材としての現像ドクタ12を備えている。
現像ローラ5の感光体1との対向部である現像部から表面移動方向下流側には、現像部を通過した現像済みの現像剤を回収し、回収した回収現像剤を供給スクリュー8と同方向に搬送する現像剤回収搬送部材としての回収スクリュー6を備えている。供給スクリュー8を備えた供給搬送路である供給搬送路9は、現像ローラ5の横方向に、回収スクリュー6を備えた回収搬送路としての回収搬送路7は現像ローラ5の下方に並設されている。
現像装置4は、供給搬送路9の下方で回収搬送路7に並列して、現像剤攪拌搬送路である攪拌搬送路10を設けている。攪拌搬送路10は、現像剤を攪拌しながら供給スクリュー8とは逆方向である図中手前側に搬送する現像剤攪拌搬送部材としての攪拌スクリュー11を備えている。
供給搬送路9と攪拌搬送路10とは仕切り部材としての第一仕切り壁133によって仕切られている。第一仕切り壁133の供給搬送路9と攪拌搬送路10とを仕切る箇所は図中手前側と奥側との両端は開口部となっており、供給搬送路9と攪拌搬送路10とが連通している。
なお、供給搬送路9と回収搬送路7とも第一仕切り壁133によって仕切られているが、第一仕切り壁133の供給搬送路9と回収搬送路7とを仕切る箇所には開口部を設けていない。
また、攪拌搬送路10と回収搬送路7との2つの搬送路は仕切り部材としての第二仕切り壁134によって仕切られている。第二仕切り壁134は、図中手前側が開口部となっており、攪拌搬送路10と回収搬送路7とが連通している。
現像剤搬送部材である供給スクリュー8、回収スクリュー6及び攪拌スクリュー11は、この例の装置では、樹脂のスクリューからなっており、一例としては、各スクリュー径を全てφ18mm、スクリューピッチを25mm、回転数を約600rpmとしたものが挙げられる。
現像ローラ5上にステンレスからなる現像ドクタ12によって薄層化された現像剤を感光体1との対抗部である現像領域まで搬送し現像を行なう。現像ローラ5の表面はV溝あるいはサンドブラスト処理されており、構成の一例としては、φ25mmのAl(アルミ)素管を用い、現像ドクタ12及び感光体1とのギャップを0.3mm程度にしたものが挙げられる。
現像後の現像剤は回収搬送路7にて回収を行ない、図10中の断面手前側に搬送され、非画像領域部に設けられた第一仕切り壁133の開口部で、攪拌搬送路10へ現像剤が移送される。なお、攪拌搬送路10における現像剤搬送方向上流側の第一仕切り壁133開口部の付近で攪拌搬送路10の上側に設けられたトナー補給口から攪拌搬送路10にトナーが供給される。
次に、3つの現像剤搬送路内での現像剤の循環について説明する。
図11は現像剤搬送路内の現像剤の流れを説明する現像装置4の斜視断面図である。図中の各矢印は現像剤の移動方向を示している。
また、図12は、現像装置4内の現像剤の流れの模式図であり、図11と同様、図中の各矢印は現像剤の移動方向を示している。
攪拌搬送路10から現像剤の供給を受けた供給搬送路9では、現像ローラ5に現像剤を供給しながら、供給スクリュー8の搬送方向下流側に現像剤を搬送する。そして、現像ローラ5に供給され現像に用いられず供給搬送路9の搬送方向下流端まで搬送された余剰現像剤は第一仕切り壁133の開口部より攪拌搬送路10に供給される(図12中矢印(E))。
現像ローラ5から回収搬送路7に送られ、回収スクリュー6によって回収搬送路7の搬送方向下流端まで搬送された回収現像剤は第二仕切り壁134の開口部より攪拌搬送路10に供給される(図12中矢印(F))。
そして、攪拌搬送路10は、供給された余剰現像剤と回収現像剤とを攪拌し、攪拌スクリュー11の搬送方向下流側であり、供給スクリュー8の搬送方向上流側に搬送し、第一仕切り壁133の開口部より供給搬送路9に供給される(図12中矢印(D))。
攪拌搬送路10では攪拌スクリュー11によって、回収現像剤、余剰現像剤及び移送部で必要に応じて補給されるトナーを、回収搬送路7及び供給搬送路9の現像剤と逆方向に攪拌搬送する。そして、搬送方向下流側で連通している供給搬送路9の搬送方向上流側に攪拌された現像剤を移送する。なお、攪拌搬送路10の下方には、不図示のトナー濃度センサが設けられ、センサ出力により不図示のトナー補給制御装置を作動し、不図示のトナー収容部からトナー補給を行なっている。
図11に示す現像装置4では、供給搬送路9と回収搬送路7とを備え、現像剤の供給と回収とを異なる現像剤搬送路で行なうので、現像済みの現像剤が供給搬送路9に混入することがない。よって、供給搬送路9の搬送方向下流側ほど現像ローラ5に供給される現像剤のトナー濃度が低下することを防止することができる。
また、回収搬送路7と攪拌搬送路10とを備え、現像剤の回収と攪拌とを異なる現像剤搬送路で行なうので、現像済みの現像剤が攪拌の途中に落ちることがない。よって、充分に攪拌がなされた現像剤が供給搬送路9に供給されるため、供給搬送路9に供給される現像剤が攪拌不足となることを防止することができる。
このように、供給搬送路9内の現像剤のトナー濃度が低下することを防止し、供給搬送路9内の現像剤が攪拌不足となることを防止することができるので現像時の画像濃度を一定にすることができる。
図13は、感光体1を用いた画像形成装置に、本発明の現像装置3を用いたときの感光体1まわりの概略を示した各部材配置構成図である。
現像装置3はケーシング301内に、現像剤320を供給搬送路で攪拌搬送する現像剤供給搬送部材304及び回収攪拌搬送路で攪拌搬送する現像剤攪拌搬送部材305、現像ローラ302などの回転部材及びその他の部材を具備している。現像ローラ302はその長手方向の寸法が感光体1の長手方向と略同じ長さを有している。
現像ローラ302は感光体1に近接して対向させることで現像ニップ領域Aを構成するようにして近接配置されている。この感光体1との対向部位に相当するケーシング301の部位は現像ローラ302を露出させるため開口している。
現像ローラ302によりケーシング301内の現像剤320は現像ニップ領域Aへ搬送されるようになっている。現像ニップ領域Aで感光体1の表面に形成されている静電潜像に現像剤320中のトナーが付着してトナー像として顕像化される。
現像装置3は、ケーシング301の内部に現像ローラ302、現像剤供給搬送部材304、現像剤攪拌搬送部材305、現像剤規制部材303を有し、現像剤320を攪拌搬送して循環させている。
現像ローラの周囲に円筒状に位置するスリーブ302cは、アルミ等の非磁性の金属で形成されている。マグネットローラ302dは、各磁石が所定の方向を向くように不動部材、例えば、ケーシング301に固定されており、その周囲をスリーブ302cが回転して、現像ローラ内部に設けたマグネットローラ302dの円周方向に配置した、複数の磁石によって引き付けた現像剤320を搬送していく。
現像ローラ302と感光体1は現像ニップ領域Aで直接には接触せずに、現像に適する一定の間隔、現像ギャップGP1を保持して対向している。
現像ローラ302上において現像剤320を穂立ちさせ、現像剤320を感光体1に接触させることで、感光体1表面の静電潜像にトナーを付着させて顕像化する。
この現像装置3では、固定軸302aには接地されたバイアス用の電源(図示せず)が接続されている。固定軸302aに接続された電源の電圧は、スリーブ302cに印加される。一方、感光体1を構成する最下層の導電性支持体(図示せず)は接地されている。
こうして、現像ニップ領域Aには、キャリアから離脱したトナーを感光体1側へ移動させる電界を形成しておき、スリーブ302cと感光体1の表面に形成された静電潜像との電位差によりトナーを感光体1側に向けて移動させることに供している。
なお、本例の現像装置は、露光用の光で書き込む方式の画像形成装置と組み合わせている。帯電装置2により感光体1上に一様に負極性の電荷を乗せ、書き込み量を少なくするために文字部を露光用の光で露光することで、低下した電位の文字部(静電潜像)に負極性のトナーで現像する所謂反転現像方式を採用している。これは一例であり、本発明の現像方式の中で、感光体1に乗せる帯電電荷の極性は大きな問題ではない。
現像後、現像ローラ302上に担持された現像後の現像剤320は現像ローラ302の回転と共に下流側に搬送され、ケーシング301内に引き入れられる。該ケーシング301の一部はスリーブ302cの周面に近接して沿う湾曲形状をしており、シール効果により所謂トナー飛散防止機能を果たしている。
引き入れられた現像剤には、それまで現像ローラ302周囲に引き寄せていた現像剤320を現像ローラ302から引き離す“剤離し”の作用が働き、剤離し領域(図13に符号9で示す。)が形成される。
感光体1にトナーを付着させた現像剤320は、現像剤中のトナー濃度が下がっているため、このトナー濃度が低下した現像剤が現像ローラ302から離れずに再度現像ニップ領域Aに搬送され現像に供給されると、狙いの画像濃度を得ることができないという不具合が生じてしまう。
これを防止するため、本例では、現像後の剤離し領域9で、現像ローラ302から現像剤を離す。現像ローラ302から離した現像剤はその後、狙いのトナー濃度、トナー帯電量になるように、ケーシング301内で充分に攪拌混合する。
こうして、狙いのトナー濃度、帯電量にされた現像剤が、現像ローラ上の剤汲み上げ領域(図13に符号10で示す)で、現像ローラ302に汲み上げられる。
現像ローラ302に引き付けられ、所謂汲み上げられた現像剤は現像剤規制部材303を通過することにより、所定の厚さに整えられて、磁気ブラシを形成しながら現像ニップ領域Aに搬送される。
以下、必要に応じて、現像装置の内部の構成を組み立て状態で示した図14及び分解状態で示した図15等をも参照しつつ、各部材の配置構成などを説明する。図14は、本発明に係る現像装置の現像剤供給搬送部材及び現像剤攪拌搬送部材の構成を示す概略図であり、図15は、本発明に係る現像装置の現像剤供給搬送部材及び現像剤攪拌搬送部材における現像剤の流れを示す概略図である。
図13に示したように、現像剤供給搬送部材304は現像ローラ302のまわりの位置で、剤汲み上げ領域10の近傍に配置されている。この位置は現像剤規制部材303の上流側でもある。図14、図15に示すように、現像剤供給搬送部材304は回転軸の回りにスパイラルを設けたスクリュー形状をしており、現像ローラ302の中心O−302を通る中心線O−302aと平行な中心線O−304aを中心に回転し、該中心線O−304aの長手方向奥側から手前側に向けて矢印11で示すように現像剤を攪拌しながら搬送する。つまり、現像剤供給搬送部材304は回転軸の回転により現像剤をその軸方向に搬送する。
現像剤攪拌搬送部材305は現像ローラ302のまわりの位置で、剤離し領域9の近傍に配置されている。図14に示すように、現像剤攪拌搬送部材305は回転軸の回りにスパイラルを設けたスクリュー形状をしており、現像ローラ302の中心O−302を通る中心線O−302aと平行な中心線O−305aを中心に回転し、中心線O−305aの長手方向手前側から奥側に向けて矢印12で示すように現像剤を攪拌しながら搬送する。つまり、現像剤攪拌搬送部材305は回転軸の回転により現像剤を現像剤供給搬送部材304による搬送方向と逆向きに搬送する。
現像剤供給搬送部材304に対して現像剤攪拌搬送部材305は斜め上方に位置する関係となっているのが好ましく、ケーシング301内で現像剤供給搬送部材304周囲の空間と現像剤攪拌搬送部材305周囲の空間とは隣接している。
現像剤供給搬送部材304及び現像剤攪拌搬送部材305の奥側端部は現像ローラ302の奥側端部よりも若干奥側に位置するように設定して、現像ローラ302の奥側端部の現像剤の供給を確保している。また、現像剤供給搬送部材304及び現像剤攪拌搬送部材305の手前側端部は現像ローラ302の手前側端部よりも手前側に位置するようにして後述するトナー補給のためのスペースを確保している。現像剤規制部材303は現像ローラ302の長さに合わせて設置されている。
現像剤供給搬送部材304と現像剤攪拌搬送部材305の間であって、現像ローラ302の長手方向両端部を除く中央部で、現像剤供給搬送部材304周囲の空間と現像剤攪拌搬送部材305周囲の空間とを遮蔽する仕切板306がケーシング301の現像ローラ302から離れる側の内壁と一体に片持ち支持状に形成されている。
仕切板306はその長手方向については、現像ローラ302の長手方向両端部を除く中央部に位置し、現像ローラ302の長手方向両端部に対応する部位にはない。一方、現像剤供給搬送部材304及び現像剤攪拌搬送部材305の各長手方向端部は現像ローラ302の長手方向両端部まで及んでいる。
現像剤攪拌搬送部材305で矢印12の向きに搬送された現像剤はその搬送方向端部でケーシング301の側壁で進路を絶たれるため該側壁に沿って供給搬送路へ移動し、矢印13に沿って現像剤供給搬送部材304により該供給搬送路を移動する。
同様に、現像剤供給搬送部材304で矢印11の向きに搬送された現像剤はその搬送方向端部でケーシング301の側壁で進路を絶たれるために該側壁に沿って移動し、矢印14に沿って現像剤攪拌搬送部材305により該攪拌搬送路を移動する。
仕切板306はその長手方向については、現像ローラ302の長手方向両端部を除く中央部に位置するようにしたのは、その長手方向の端部での矢印13、14の現像剤の流れを可能にして、全体として矢印11、14、12、13に沿う循環搬送路を形成するためである。
なお、図示の例では、仕切板306はその奥側の端部近傍に開口307を設けていて、この開口307を介して攪拌搬送路から供給搬送路への現像剤の移動を行なうようにしているので、現像ローラ302の長手方向奥側端部まで仕切板306が及ぶ構成とすることもできる。
こうして、本発明の現像装置3は、(i)現像剤を担持して回転し感光体1に形成された静電潜像を可視像化する現像ローラ302と、(ii)現像ローラ302に現像剤を汲み上げる剤汲み上げ領域10の近傍に配置されていて現像ローラ302の中心線O−302aと平行な中心線O−304aを中心に回転し、その中心線O−304aの長手方向に現像剤を攪拌しつつ搬送する現像剤供給搬送部材304と、(iii)現像ローラ302から現像剤を離す剤離し領域9の近傍に配置されていて、現像ローラ302の中心線302aと平行な中心線305aを中心に回転し、現像剤供給搬送部材304が現像剤を搬送する向きの反対の向きに現像剤を攪拌しつつ搬送する現像剤攪拌搬送部材305と、(iv)現像剤供給搬送部材304と現像剤攪拌搬送部材305の間であって、かかる構成では、現像装置3内、つまりケーシング、現像ローラ302の長手方向両端部を除く中央部で、供給搬送路と攪拌搬送路を遮蔽する仕切板306と、を有する。この構成により、矢印11、14、12、13に沿う循環搬送路を構成する301内の現像剤供給搬送部材304、現像剤攪拌搬送部材305が現像ローラ302の横に2本並べて配置されることから、現像ローラから離れる方向(水平方向に)に2つの現像剤攪拌搬送部材を配置する図11に示した技術に比べて、現像装置の横(水平方向)の大きさを小さくすることができる。
さらに、こうして、水平方向のコンパクト化を図った現像装置3においても、仕切板306により現像ローラ302の長手方向両端部を除く中央部で現像剤供給搬送部材304周囲と現像剤攪拌搬送部材305周囲の空間が仕切られているので、現像ローラ302に対しては現像剤供給搬送部材304により、トナーとキャリアを充分に攪拌混合された現像剤320のみが供給され、現像直後のトナー濃度の下がった現像剤は専ら現像剤攪拌搬送部材305により攪拌搬送されるだけで、直ぐに現像ローラ320に供給されることがないので、現像ローラ320へは狙いの帯電量を持ったトナーだけが現像に用いられることとなり、高画質を得ることができる。
仕切板306は、現像剤供給搬送部材304が攪拌搬送する現像剤320を支えて現像剤搬送経路を形成すると共に、剤離し領域9で該仕切板306上流側にて現像ローラ302から離され現像剤攪拌搬送部材305により攪拌搬送される現像剤が再度現像ローラ302に引き付けられて、現像剤供給搬送部材304により攪拌される空間へ移動するのを防止する。
この機能をより確実にするため、現像ローラ302の外周部と仕切板306との間隔、仕切板ギャップGP2を、0.2〜1mm程度のギャップに保持することが好ましい。0.2mm未満では現像ローラ302の回転時の偏心により仕切板306が現像ローラにぶつかるおそれがあり、1mmを超えると穂切り性能が不完全になるからである。これにより、仕切板306の設定位置を剤離し領域9の任意の位置にしても充分な機能を得る。つまり、仕切板設定位置の自由度が増す。
さらに、剤離し領域9からずれた配置としても、仕切板としての機能を得ることは可能である。しかし、剤離し領域9からずれた配置とした場合には、仕切板が多量の現像剤を規制するケースも生じ得ることから、現像剤が受けるストレスが大となり、好ましくない。
その場合、現像ローラ302を間にして感光体1と反対側の現像ローラ302の周りに剤離れ領域9が位置し、現像ローラの回転方向上で剤離れ領域9の下流側に隣接して剤汲み上げ領域10が位置する構成とし、剤離し領域9と剤汲み上げ領域10との間で、現像ローラ302の周囲に現像剤が付着する量が最も少ない位置に、供給搬送路の空間と、攪拌搬送路の空間を遮蔽するようにして、仕切板306を設け、かつ、仕切板306の現像ローラ302側の端部を現像ローラ302に対向させた構成とすることが好ましい。
このような構成であれば、前記仕切板ギャップGP2の0.2〜1mmの設定をしなくてもこの仕切板が設けられる部位では現像ローラ302の周囲に現像剤が付着する量が最も少ない位置であるので、仕切板306の機能を発揮できる。また、該仕切板により規制されることで現像剤が受けるストレスを最小限にすることができる。つまり、仕切板設定時のギャップ管理を緩和できる。尤も、その上で仕切板ギャップGP2を0.2〜1mmの設定にする条件をさらに付加した構成とすれば、現像剤に与えるストレスをより少なくすることが可能となる。
図14、図15に示したように、現像剤攪拌搬送部材305は現像ローラ302から離された現像剤320を攪拌しながら現像装置の奥側に矢印12の向きに搬送する。現像剤攪拌搬送路の搬送方向下流側、現像装置の奥側の端部では、図14、図15に示すように仕切板306の一部に開口307が設けてあり、現像剤攪拌搬送部材305により搬送された現像剤320が、供給搬送路へ矢印に沿って開口307の向きに移動していく。
図15に示すように、現像剤攪拌搬送部材305による現像剤の搬送方向下流部では、開口307に対応する範囲で、スクリュー部に代えて羽根車308の構成としてもよい。
この羽根車308は現像剤攪拌搬送部材305の軸部305Jについて軸心(中心線O−305a)から法線方向に板状に延びる複数枚の羽根状部材を設けた構成であり、その回転に伴って現像剤320を跳ねる機能を有する。
現像剤供給搬送部材304の中心O−304と現像剤攪拌搬送部材305の中心O−305とは略同一鉛直線上にあり、羽根車308が回転することで、ケーシング301の内壁に沿って現像剤320を跳ねる。開口307はこの跳ねによる現像剤の進路を妨げないように、中心O−304と中心O−305とを結ぶ略鉛直線よりもわずかにケーシング内壁寄りの位置からケーシング内壁部に及ぶように形成すると好ましい。
現像剤供給搬送部材304の回転方向は、現像ローラ302と逆向きにすることが好ましい。一般に、スクリューは、被搬送物を軸方向に送りながら、回転方向に寄せる作用があるので、現像剤供給搬送部材304は現像剤320を供給搬送路で現像ローラ302に寄せながら搬送することになる。従って、現像ローラ302への連続した現像剤供給が可能になる。
現像剤攪拌搬送部材305を現像ローラ302と同じ向きに回転させていると、現像剤320を現像ローラ302から離れた方向に寄せながら搬送することになり、剤離し領域9で磁気力や仕切板306などにより一度現像ローラ302から離された現像剤が現像ローラ302に再度付着することが防止される。よって、現像後のトナー濃度が低下した現像剤が現像剤供給搬送部材304の領域に搬送されることを防ぐことができる。
現像装置3内の現像剤320は、現像動作を繰り返す内にトナーが消費されていくので、現像装置外部から装置内の現像剤に対してトナーを補給する必要がある。現像ローラ302から現像剤320が離される剤離し領域9の近傍に配置した攪拌搬送路の上流側端部、即ち、現像装置の手前側の端部近傍に設けた現像剤の補給部より外部などからトナーの補給を行なうと、補給されたトナーが直ちに現像に供されることがなく、現像剤攪拌搬送部材305で攪拌され、安定した所定のトナー濃度で現像に供される。
攪拌搬送路は、現像ローラ302に対しては、離れた現像剤320を回収するのみであり、現像ローラ302へのトナー供給は行なわないので、補給用開口310から新しく補給されたトナーにより充分に攪拌されていない、トナー濃度が不均一な状態の現像剤が現像に供されることがない。
補給トナーは、現像ローラ302から離れた、トナー濃度の低下した現像剤320と共に攪拌混合されながら、現像装置3の奥側まで搬送される。それまでにトナー濃度は正常化され、現像剤供給搬送部材304により手前側に搬送されながら現像ローラ302に供給され現像に使用される。
本例に係る現像装置3では、現像剤供給搬送部材304で搬送される現像剤320は、手前側に向けて搬送されながら、現像ローラ302に汲み上げられる。現像ローラ302に汲み上げられた現像剤320は、磁気ブラシを介して感光体1に接触して現像に供された後、現像装置3内で剤離し領域9で現像ローラ302から離され、現像剤攪拌搬送部材305により、奥側へ向けて搬送される。
このような現像剤循環経路は図14、図15において矢印11、14、12、13で説明したとおりであるが、現像剤供給搬送部材304により手前側まで搬送される前に現像に使用されることから、現像剤攪拌搬送部材305により奥側へ戻される現像剤が多くなり、現像剤320が奥側に溜まる傾向にある。これを放置すると剤の円滑な循環が阻害される可能性がある。
これは、現像剤供給搬送部材304の現像剤搬送能力を現像剤攪拌搬送部材305よりも大きくすることで、現像剤供給搬送部材304による単位時間あたりの現像剤搬送量を現像剤攪拌搬送部材305による単位時間あたりの現像剤搬送量よりも大きくし、奥行方向における現像剤の搬送バランスをとることで解決できる。これにより、円滑な現像剤の循環が長期にわたり維持できる。
現像剤攪拌搬送部材305に対して、現像剤供給搬送部材304のスクリューの外径を大きくすることで現像剤攪拌搬送部材305の現像剤搬送能力を上げることができる。現像剤供給搬送部材304のスクリューのスパイラルピッチを大きくすること、回転数を大きくすること、また、現像剤供給搬送部材304による現像剤搬送経路の空間を大きくすることによっても、同様の利益を得ることができる。
図16には、本発明のプロセスカートリッジの一例が示される。このプロセスカートリッジは、本発明のトナーを含む現像剤を使用し、感光体20と、近接型のブラシ状接触帯電手段32、本発明のトナーを含む現像剤を収納せる現像手段40、クリーニング手段としてのクリーニングブレード61を少なくとも有するクリーニング手段を一体に支持し、画像形成装置本体に着脱自在であるプロセスカートリッジである。本発明においては、上述の各構成要素をプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やプリンタ等の画像形成装置本体に対して着脱可能に構成することができる。
以下、本発明を実施例および比較例を挙げて説明する。なお、本発明はここに例示される実施例に限定されるものではない。また、以下において「部」は重量部を表す。
(実施例1)
[粉砕トナーの作製]
<粉砕トナー1処方>
結晶性ポリエステル樹脂:a−1 4重量部
非結晶性樹脂:b1−1 35重量部
非結晶性樹脂:b2−1 55重量部
複合樹脂:c−1 10重量部
着色剤:p−1 14重量部
離型剤:カルナウバワックス(融点:81℃) 6重量部
帯電制御剤:モノアゾ金属錯体 2重量部
(クロム系錯塩染料(ボントロンS−34 オリエント化学工業(株)製)
下記表1〜5に記載の原材料と、上記離型剤、帯電制御剤によるトナー原材料を、上記の処方に従いへンシェルミキサー(三井三池化工機株式会社製、FM20B)を用いて予備混合した後、二軸混練機(株式会社池貝製、PCM−30)で100〜130℃の温度で溶融、混練した。得られた混練物はローラにて2.7mmの厚さに圧延した後にベルトクーラーにて室温まで冷却し、ハンマーミルにて200〜300μmに粗粉砕した。次いで、超音速ジェット粉砕機ラボジェット(日本ニューマチック工業株式会社製)を用いて微粉砕した後、気流分級機(日本ニューマチック工業株式会社製、MDS−I)で重量平均粒径が6.9±0.2μmとなるようにルーバー開度を適宜調整しながら分級し、トナー母体粒子を得た。次いで、トナー母体粒子100質量部に対し、添加剤(HDK−2000、クラリアント株式会社製)1.0重量部をヘンシェルミキサーで攪拌混合し、粉砕トナー1を作製した。
作製した粉砕トナーの分子量メインピーク、分子量分布の半値幅、結晶性ポリエステル樹脂(A)に起因する90〜130℃の範囲におけるDSCピーク温度・吸熱量、体積平均粒径を表7に示す。
作製した粉砕トナー1を5質量%と、コーティングフェライトキャリア95質量%を、ターブラーミキサー(ウィリー・エ・バッコーフェン(WAB)社製)を用いて48rpmで5分間均一混合し、粉砕トナー現像剤1を作製した。
この現像剤1を図10に示す3軸循環現像の現像機にて評価を行ったものを実施例1−1とし、現像剤1を図13に示す2軸循環現像の現像機にて評価を行ったものを実施例1−2とした。また、現像剤1を図7に示す現像機にて評価を行ったものを比較例0とした。
(実施例2〜30、比較例1〜8)
以下、下記表1〜5に記載の原材料と表6に記載の離型剤、帯電制御剤、圧延厚さ、また、製造例によっては脂肪酸アミドを表6に記載の重量部にて実施例1と同様に混合、混練、粉砕、添加剤混合を施し、トナー2〜38を作成し、現像剤を作製した。
ただし、トナー34においては、樹脂中での顔料の分散が悪いため、他の原材料と混合する前に、非結晶性樹脂b2−3と純水を用いて予備混練を行い、マスターバッチ化を行って着色剤p−2を用いたトナーを作製した。トナー化にあたっては、マスターバッチ中に含有されている非結晶性樹脂b2−3の量から逆算し、最終的に配合される原材料比率が表6の分量となるように調整した。各現像剤を図10に示す3軸循環現像の現像機にて評価を行った。
なお、比較例1において、図10に示す3軸循環現像の現像機にて評価を行ったものを比較例1−1、図13に示す2軸循環現像の現像機にて評価を行ったものを比較例1−2、図7に示す現像機にて評価を行ったものを比較例1−3とした。(下記に示す表8の現像機構成を参照)
<粉砕トナー31のマスターバッチ作製>
非結晶性樹脂:b2−3 100重量部
着色剤:p−2 50重量部
純水 50重量部
無論、本発明において、マスターバッチの作製方法は上記に限定されるものではない。
なお、実施例37〜39で用いた帯電制御剤のサリチル酸金属化合物は、サリチル酸亜鉛化合物である金属錯体(ボントロンE−84 オリエント化学工業(株)製)を使用した。
結晶性ポリエステル樹脂a−1〜a−6のガラス転移温度Tg、軟化温度について表1に示す。
上記結晶性ポリエステル樹脂a−1〜a−6は、アルコール成分として1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールから選択される化合物を、カルボン酸成分としてフマル酸、コハク酸、トリメリット酸、テレフタル酸から選択される化合物を用いて得られた樹脂である。
また、上記結晶性ポリエステル樹脂a−1〜a−6は、粉末X線回折装置によるX線回折パターンにおいて、2θ=19°〜25°の位置に少なくとも1つの回折ピークが存在し、結晶性ポリエステルであることを確認した。結晶性ポリエステル樹脂a−6のX線回折結果を図4に示す。
次に、非結晶性樹脂b1−1〜b1−6、b2−1〜b2−3、複合樹脂c−1、c−2の組成、各評価を表2〜表4に示す。
上記非結晶性樹脂b1−1〜b1−6、b2−1〜b2−3及び複合樹脂c−1、c−2は以下のようにして得られた樹脂である。
芳香族ジオール成分、エチレングリコール、グリセリン、アジピン酸、テレフタル酸、イソフタル酸及びイタコン酸より選ばれた単量体を、常圧下、170〜260℃、無触媒の条件でエステル化反応せしめた後、反応系に全カルボン酸成分に対し400ppmの3酸化アンチモンを加え3Torrの真空下でグリコールを系外へ除去しながら250℃で重縮合を行い樹脂を得た。尚、架橋反応は攪拌トルクが10kg・cm(100ppm)となるまで実施し、反応は反応系の減圧状態を解除して停止させた。
上記非結晶性樹脂b1−1〜b1−6、b2−1〜b2−3及び複合樹脂c−1、c−2はX線回折パターンにより、回折ピークが存在せず、非結晶性であることを確認した。
複合樹脂c−1:軟化温度115℃、ガラス転移温度58℃、酸価25mgKOH/g
縮重合系モノマー:テレフタル酸、フマル酸、無水トリメット酸、ビスフェノールA(2,2)プロピレンオキサイド、ビスフェノールA(2,2)エチレンオキサイド
付加重合系モノマー:スチレン、アクリル酸、2−エチルヘキシルアクリレート
複合樹脂c−2:
縮重合系モノマー:ヘキサメチレンジアミン、ε−カプロラクタム
付加重合系モノマー:スチレン、アクリル酸、2−エチルヘキシルアクリレート
次に、実施例・比較例で用いた着色剤を表5に、原材料比率を表6に、各測定結果を表7に示す。
粉砕トナー現像剤1〜38を図6の現像ユニット105D部分を各々に改造を施し収容した。現像ユニット105A〜Cは使用しなかった。
<低温定着性、耐ホットオフセット性、細線再現性(初期)>
上記画像形成装置を用いて粉砕トナー現像剤1〜38の画像出力を行なった。付着量0.4mg/cmのベタ画像を、露光、現像、転写工程を経ることで紙(リコー製 Type6200)上に出力した。定着の線速は180mm/秒とした。定着温度を5℃刻みで順次出力し、コールドオフセットが発生しない下限温度(定着下限温度:低温定着性)と、ホットオフセットが発生しない上限温度(定着上限温度:耐ホットオフセット性)を測定した。定着装置のNIP幅は11mmであった。また、別途、定着下限温度+20℃の定着温度にて粉砕トナーによる画像面積率5%の文字チャート(1文字の大きさが2mm×2mm程度)を出力し、目視による判定を行なうことで細線再現性評価とした。
◆低温定着性評価基準
◎:130℃未満
○:130℃以上140℃未満
□:140℃以上150℃未満
△:150℃以上160℃未満
×:160℃以上
◆耐ホットオフセット性評価基準
◎:200℃以上
○:190℃以上200℃未満
□:180℃以上190℃未満
△:170℃以上180℃未満
×:170℃未満
◆細線再現性評価基準
◎:非常に良好
○:良好
□:一般的な水準
△:実用上は問題ない
×:許容できない
<耐スミア性>
定着下限温度にて、紙(リコー製 Type6200紙)上に0.40±0.1mg/cmのトナー付着量で画像面積率が60%であるハーフトーン画像を出力し、定着画像部をクロックメータを用いて白綿布(JIS L0803 綿3号)で10回摺擦し、布に付着した汚れのID(以後スミアIDと呼ぶ)を測定した。スミアIDは、測色計(X−Rite938)で測定した。粉砕トナー31はシアンで測色し、それ以外のトナーはブラックで測色した。
◆耐スミア性評価基準
◎:スミアIDが0.20以下
○:スミアIDが0.20より大きく0.35以下
△:スミアIDが0.35より大きく0.55以下
×:スミアIDが0.55より大きい
<細線再現性(経時)>
初期の細線再現性を評価した後、トナーを補給しながら画像面積率5%のチャートを100k枚連続で出力し、その後、再度、定着下限温度+20℃の定着温度にて粉砕トナーによる画像面積率5%の文字チャート(1文字の大きさが2mm×2mm程度)を出力し、目視による判定を行なうことで、経時での細線再現性評価とした。判定基準は初期の細線再現性評価と同じとした。
<耐熱保存性>
それぞれのトナー10gを30mlのスクリューバイアル瓶に入れ、タッピングマシンで100回タッピングした後、50℃環境の恒温槽で24時間保管し、室温に戻した後、針入度試験機で針入度を測定し、耐熱保存評価とした。
◆耐熱保存性評価基準
◎:貫通
○:20mm以上
□:15mm以上20mm未満
△:10mm以上15mm未満
×:10mm未満
<低印字率ラン後帯電性>
各条件に記載の画像形成装置を用いて、各トナーの定着下限温度+20℃の定着温度にて各トナーによる画像面積率2%の文字チャート(1文字の大きさが2mm×2mm程度)を出力した。トナーを補給しながら100k枚連続で出力を行い、その現像剤の帯電量の測定を行った。
◆低印字率ラン後帯電性評価基準
◎:21μC/g以上
○:18以上21μC/g未満
△:15以上18μC/g未満
×:15μC/g未満
<濃度ムラ>
上記の精細再現性(経時)評価の後に全面ベタ画像を3枚連続にて出力し、出力画像の濃度ムラを目視にてランク評価を行なった。
◆濃度ムラ評価基準
◎:画像上にムラが一切存在しない状態
○:問題とはならないレベルの濃度ムラがわずかに観察される状態
△:問題とはならないレベルの濃度ムラが観察される状態
×:許容範囲外で濃度ムラが非常に目立つ状態
各評価の結果を表8に示す。
以上示したように本発明によれば、非常に優れた低温定着性と、高い耐ホットオフセット特性と、良好な保存安定性を両立し、長期的にも高品質な画像を形成することができる画像形成方法を提供することができることがわかった。
(図6について)
101A 駆動ローラ
101B 従動ローラ
102 感光体ベルト
103 帯電器
104 レーザー書き込み系ユニット
105A、105B、105C、105D それぞれイエロー,マゼンタ,シアン,ブラックの各色のトナーを収容する現像ユニット
106 給紙カセット
107 中間転写ベルト
107A 中間転写ベルト駆動用の駆動軸ローラ
107B 中間転写ベルトを支持する従動軸ローラ
108 クリーニング装置
109 定着ローラ
109A 加圧ローラ
110 排紙トレイ
113 紙転写ローラ
(図7について)
20 感光体
21 トナー
23 キャリア
41 現像スリーブ
42 現像剤収容部材
43 現像剤供給規制部材
44 支持ケース
45 トナーホッパー
46 現像剤収容部
47 現像剤攪拌機構
48 トナーアジテータ
49 トナー補給機構
(図8について)
20 感光体
32 帯電部材
33 像露光系
40 現像装置
41 現像スリーブ
45 トナーホッパー
47 現像剤攪拌機構
50 転写装置
60 クリーニング装置
61 クリーニングブレード
62 トナー回収室
70 除電ランプ
80 転写媒体
(図9について)
20 感光体
24a 駆動ローラー
24b 駆動ローラー
26 クリーニング前露光光源
32 帯電部材
33 像露光系
40 現像装置
50 転写装置
61 クリーニングブレード
64 ブラシ状クリーニング手段
70 除電ランプ
(図10〜図12について)
1 感光体
4 現像装置
5 現像ローラ
6 回収スクリュー
7 回収搬送路
8 供給スクリュー
9 供給搬送路
10 攪拌搬送路
11 攪拌スクリュー
12 現像ドクタ
133 第一仕切り壁
134 第二仕切り壁
(図13〜図15について)
1 感光体
2 帯電装置
3 現像装置
9 剤離し領域
10 剤汲み上げ領域
11、12、13、14 現像剤循環経路
301 ケーシング
302 現像ローラ
302a 固定軸
302c スリーブ
302d マグネットローラ
303 現像剤規制部材
304 現像剤供給搬送部材
305 現像剤攪拌搬送部材
305J 軸部
306 仕切板
307 開口
308 羽根車
310 補給用開口
320 現像剤
O−302 中心
O−302a、O−304a、O−305a 中心線
A 現像ニップ領域A
GP1 現像ギャップ
GP2 仕切板ギャップ
(図16について)
20 感光体
32 帯電手段
40 現像手段
61 クリーニング手段
特開昭60−90344号公報 特開昭64−15755号公報 特開平2−82267号公報 特開平3−229264号公報 特開平3−41470号公報 特開平11−305486号公報 特開昭62−63940号公報 特許第2931899号公報 特開2001−222138号公報 特開2004−46095号公報 特開2007−33773号公報 特開2005−338814号公報 特許第4118498号公報 特開2007−206097号公報

Claims (13)

  1. 電子写真画像形成用トナーと、磁性キャリアと、からなる二成分現像剤を、現像剤担持体に搬送、供給し、前記現像剤を表面に担持し、潜像担持体に形成される潜像にトナーを供給し、現像を行う現像手段を有する画像形成方法であって、
    前記電子写真画像形成用トナーは、結晶性ポリエステル樹脂(A)と、非結晶性樹脂(B)と、縮重合系樹脂ユニット及び付加重合系樹脂ユニットを含む複合樹脂(C)と、を含み、クロロホルム不溶分を含有し、且つ、45℃の恒温槽内で12時間保存した後にフーリエ変換赤外分光分析測定装置を用いて全反射法により測定したときの前記結晶性ポリエステル樹脂(A)に由来する特徴的なスペクトルのピーク高さをCとし、前記非結晶性樹脂(B)に由来する特徴的なスペクトルのピーク高さをRとしたときの、ピーク高さ比(C/R)が0.03〜0.55であり、
    前記電子写真画像形成用トナーのTHF可溶分は、GPCによる分子量分布が1000〜10000の間にメインピークを有し、該メインピークの半値幅は15000以下であり、
    前記現像手段は、供給搬送路と、回収攪拌搬送路と、を有し、
    前記供給搬送路は、前記現像剤を前記現像剤担持体に搬送し、供給し、
    前記回収攪拌搬送路は、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤と現像後に回収された現像剤とを攪拌しながら搬送し、供給搬送路へと供給し、
    前記供給搬送路及び前記回収攪拌搬送路は、少なくとも長手方向両端部を除いた部分で互いに独立した構造を有していることを特徴とする画像形成方法。
  2. 前記回収攪拌搬送路が、現像後に回収された現像剤を攪拌搬送する回収搬送路と、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤及び現像後に回収された現像剤を攪拌しながら搬送する攪拌搬送路と、からなり、
    前記回収搬送路及び前記攪拌搬送路は、少なくとも長手方向両端部を除いた部分で互いに独立した構造を有することを特徴とする請求項1に記載の画像形成方法。
  3. 前記トナーが、クロロホルム不溶分を1〜30重量%含有することを特徴とする請求項1又は2に記載の画像形成方法。
  4. 前記トナーが、示唆走査熱量計による吸熱ピーク測定において、90〜130℃の範囲に吸熱ピークを有し、該吸熱ピークの吸熱量が1〜15J/gであることを特徴とする請求項1〜3のいずれかに記載の画像形成方法。
  5. 前記非結晶性樹脂(B)は、非結晶性樹脂(B−1)と、非結晶性樹脂(B−2)と、の2種を含有し、
    前記非結晶性樹脂(B−1)は、クロロホルム不溶分を含有することを特徴とする請求項1〜4のいずれかに記載の画像形成方法。
  6. 前記非結晶性樹脂(B)は、非結晶性樹脂(B−1)と、非結晶性樹脂(B−2)と、の2種を含有し、
    前記非結晶性樹脂(B−1)は、非結晶性樹脂(B−2)よりも軟化温度(T1/2)が25℃以上高いことを特徴とする請求項1〜5のいずれかに記載の画像形成方法。
  7. 前記非結晶性樹脂(B−1)は、クロロホルム不溶分を5〜40%含有することを特徴とする請求項5または6に記載の画像形成方法。
  8. 前記非結晶性樹脂(B−2)は、THF可溶分により求められたGPCによる分子量分布が1000〜10000の間にメインピークを有し、該メインピークの半値幅が15000以下であることを特徴とする請求項5〜7のいずれかに記載の画像形成方法。
  9. 前記トナーが、脂肪酸アミド化合物を含有することを特徴とする請求項1〜8のいずれかに記載の画像形成方法。
  10. 前記結晶性ポリエステル樹脂(A)は、分子主鎖中に下記一般式(1)で表されるエステル結合を含有することを特徴とする請求項1〜9のいずれかに記載の画像形成方法。
    [−OCO−R−COO−(CH−] ・・・一般式(1)
    (一般式(1)中、Rは炭素数2〜20の直鎖状不飽和脂肪族2価カルボン酸残基を示し、nは2〜20の整数を示す。)
  11. 前記複合樹脂(C)が、ポリエステルの縮重合系樹脂ユニットと、ビニル系樹脂の付加重合系ユニットと、を有する複合樹脂であることを特徴とする請求項1〜10のいずれかに記載の画像形成方法。
  12. 像担持体と、該像担持体上に形成された静電潜像を電子写真画像形成用トナー及びキャリアを含む現像剤により可視像とする現像手段と、を一体に支持し、請求項1〜11のいずれかに記載の画像形成方法を用いて画像形成を行う画像形成装置本体に着脱可能に備えられることを特徴とするプロセスカートリッジ。
  13. 電子写真画像形成用トナーと、磁性キャリアと、からなる二成分現像剤を、現像剤担持体に搬送、供給し、前記現像剤を表面に担持し、潜像担持体に形成される潜像にトナーを供給し、現像を行う現像手段を有する画像形成装置であって、
    前記電子写真画像形成用トナーは、結晶性ポリエステル樹脂(A)と、非結晶性樹脂(B)と、縮重合系樹脂ユニット及び付加重合系樹脂ユニットを含む複合樹脂(C)と、を含み、クロロホルム不溶分を含有し、且つ、45℃の恒温槽内で12時間保存した後にフーリエ変換赤外分光分析測定装置を用いて全反射法により測定したときの前記結晶性ポリエステル樹脂(A)に由来する特徴的なスペクトルのピーク高さをCとし、前記非結晶性樹脂(B)に由来する特徴的なスペクトルのピーク高さをRとしたときの、ピーク高さ比(C/R)が0.03〜0.55であり、
    前記電子写真画像形成用トナーのTHF可溶分は、GPCによる分子量分布が1000〜10000の間にメインピークを有し、該メインピークの半値幅は15000以下であり、
    前記現像手段は、供給搬送路と、回収攪拌搬送路と、を有し、
    前記供給搬送路は、前記現像剤を前記現像剤担持体に搬送し、供給し、
    前記回収攪拌搬送路は、現像に用いられずに前記供給搬送路の搬送方向の最下流側まで搬送された余剰現像剤と現像後に回収された現像剤とを攪拌しながら搬送し、供給搬送路へと供給し、
    前記供給搬送路及び前記回収攪拌搬送路は、少なくとも長手方向両端部を除いた部分で互いに独立した構造を有していることを特徴とする画像形成装置。
JP2013046545A 2013-03-08 2013-03-08 画像形成方法、画像形成装置及びプロセスカートリッジ Active JP6358777B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046545A JP6358777B2 (ja) 2013-03-08 2013-03-08 画像形成方法、画像形成装置及びプロセスカートリッジ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046545A JP6358777B2 (ja) 2013-03-08 2013-03-08 画像形成方法、画像形成装置及びプロセスカートリッジ

Publications (2)

Publication Number Publication Date
JP2014174315A true JP2014174315A (ja) 2014-09-22
JP6358777B2 JP6358777B2 (ja) 2018-07-18

Family

ID=51695590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046545A Active JP6358777B2 (ja) 2013-03-08 2013-03-08 画像形成方法、画像形成装置及びプロセスカートリッジ

Country Status (1)

Country Link
JP (1) JP6358777B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076240A1 (en) 2015-04-02 2016-10-05 Konica Minolta, Inc. Electrostatic latent image-developing toner and method of producing electrostatic latent image-developing toner
US9915883B2 (en) 2016-02-19 2018-03-13 Konica Minolta, Inc. Toner
CN110978793A (zh) * 2016-01-08 2020-04-10 佳能株式会社 液体排出头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167260A (ja) * 1997-12-03 1999-06-22 Toshiba Corp 現像装置
JP2001290368A (ja) * 2000-04-04 2001-10-19 Konica Corp 現像装置及び画像形成装置
JP2003255588A (ja) * 2001-12-28 2003-09-10 Ricoh Co Ltd 静電荷像現像用トナー、現像剤および画像形成方法
JP2006251440A (ja) * 2005-03-11 2006-09-21 Ricoh Co Ltd 現像装置、プロセスカートリッジ、及び画像形成装置
JP2007041500A (ja) * 2005-07-06 2007-02-15 Ricoh Co Ltd 電子写真用トナーおよび現像剤
JP2007065620A (ja) * 2005-08-01 2007-03-15 Ricoh Co Ltd トナー及び画像形成装置
JP2007193289A (ja) * 2005-12-20 2007-08-02 Ricoh Co Ltd 現像装置、画像形成装置
JP2007206097A (ja) * 2006-01-30 2007-08-16 Ricoh Co Ltd トナー、並びに現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2008116580A (ja) * 2006-11-01 2008-05-22 Ricoh Co Ltd 画像形成用トナー、トナー供給方法及びプロセスカートリッジ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167260A (ja) * 1997-12-03 1999-06-22 Toshiba Corp 現像装置
JP2001290368A (ja) * 2000-04-04 2001-10-19 Konica Corp 現像装置及び画像形成装置
JP2003255588A (ja) * 2001-12-28 2003-09-10 Ricoh Co Ltd 静電荷像現像用トナー、現像剤および画像形成方法
JP2006251440A (ja) * 2005-03-11 2006-09-21 Ricoh Co Ltd 現像装置、プロセスカートリッジ、及び画像形成装置
JP2007041500A (ja) * 2005-07-06 2007-02-15 Ricoh Co Ltd 電子写真用トナーおよび現像剤
JP2007065620A (ja) * 2005-08-01 2007-03-15 Ricoh Co Ltd トナー及び画像形成装置
JP2007193289A (ja) * 2005-12-20 2007-08-02 Ricoh Co Ltd 現像装置、画像形成装置
JP2007206097A (ja) * 2006-01-30 2007-08-16 Ricoh Co Ltd トナー、並びに現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2008116580A (ja) * 2006-11-01 2008-05-22 Ricoh Co Ltd 画像形成用トナー、トナー供給方法及びプロセスカートリッジ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076240A1 (en) 2015-04-02 2016-10-05 Konica Minolta, Inc. Electrostatic latent image-developing toner and method of producing electrostatic latent image-developing toner
CN110978793A (zh) * 2016-01-08 2020-04-10 佳能株式会社 液体排出头
US9915883B2 (en) 2016-02-19 2018-03-13 Konica Minolta, Inc. Toner

Also Published As

Publication number Publication date
JP6358777B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6160133B2 (ja) 電子写真画像形成用トナー、画像形成方法及びプロセスカートリッジ
JP5892089B2 (ja) 電子写真画像形成用トナー、画像形成方法、画像形成装置及びプロセスカートリッジ
US9128398B2 (en) Toner for forming electrophotographic image, method for manufacturing toner for forming electrophotographic image, image forming method, and process cartridge
US9182694B2 (en) Toner, image forming apparatus, image forming method, and process cartridge
JP5861537B2 (ja) 画像形成方法及び画像形成装置
JP6152699B2 (ja) トナー収容容器、及び画像形成装置
JP2006133348A (ja) 静電荷像現像用マゼンタトナー及びトナーカートリッジ並びにプロセスカートリッジ
JP5966517B2 (ja) 画像形成方法及び該画像形成方法を用いた画像形成装置
JP4810595B2 (ja) 現像装置、画像形成装置、現像装置の評価方法
JP2010031096A (ja) 合一樹脂粒子の製造方法および合一樹脂粒子、トナー、二成分現像剤、現像装置ならびに画像形成装置
JP6035680B2 (ja) 電子写真画像形成用トナー、画像形成方法及びプロセスカートリッジ
CN103048897B (zh) 用于形成电子照相图像的调色剂、制造用于形成电子照相图像的调色剂的方法、图像形成方法、以及处理盒
JP2014174501A (ja) トナー、及び画像形成方法
JP2015194667A (ja) トナー、画像形成装置、画像形成方法、及びプロセスカートリッジ
JP6080003B2 (ja) 電子写真画像形成用トナー、画像形成方法及びプロセスカートリッジ
JP6358777B2 (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
JP2016029471A (ja) トナー、画像形成装置、画像形成方法、及びプロセスカートリッジ
WO2017159288A1 (ja) トナー、トナー収容ユニット、及び画像形成装置
JP2013190691A (ja) 静電荷現像用トナー、補給用二成分現像剤、それを用いた画像形成方法および画像形成装置
JP6032064B2 (ja) トナー、画像形成装置、及びプロセスカートリッジ
JP5861538B2 (ja) 画像形成方法及び画像形成装置
JP2009175284A (ja) トナー、トナーの製造方法、現像剤、現像装置および画像形成装置
JP6131619B2 (ja) 画像形成装置
JP2012173503A (ja) 光定着トナー、現像剤、定着方法、定着装置および画像形成装置
JP2001005232A (ja) 非磁性一成分系トナー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150