JP2014170865A - 光起電力装置 - Google Patents

光起電力装置 Download PDF

Info

Publication number
JP2014170865A
JP2014170865A JP2013042486A JP2013042486A JP2014170865A JP 2014170865 A JP2014170865 A JP 2014170865A JP 2013042486 A JP2013042486 A JP 2013042486A JP 2013042486 A JP2013042486 A JP 2013042486A JP 2014170865 A JP2014170865 A JP 2014170865A
Authority
JP
Japan
Prior art keywords
layer
oxide layer
amorphous silicon
silicon oxide
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013042486A
Other languages
English (en)
Inventor
Takeyuki Sekimoto
健之 関本
Masataka Yoshimura
昌高 吉村
Mitsuki Hishida
光起 菱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013042486A priority Critical patent/JP2014170865A/ja
Publication of JP2014170865A publication Critical patent/JP2014170865A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】亜酸化銅(CuO)を光電変換層に含む光起電力装置において高い開放電圧を実現する。
【解決手段】p型の亜酸化銅層14と、n型の非晶質酸化シリコン層18と、亜酸化銅層14と非晶質酸化シリコン層18との間に設けられた拡散防止層16と、を有する光起電力装置100とする。
【選択図】図1

Description

本発明は、光起電力装置に関し、特に半導体層に亜酸化銅を用いた光起電力装置に関する。
従来、光電変換を行う半導体層に亜酸化銅(CuO)を用いた光起電力装置が知られている。ここで、半導体層のpn接合として互いに隣接させたp型CuO領域及びn型TiO領域を備えた光電変換装置が開示されている(特許文献1)。
特開2000−243994号公報
p型CuO領域に対してn型TiO領域を適用してpn接合を形成した場合、n型TiO領域の電子親和力は3.7eVでありp型CuO領域の3.2eVに比べて高く、拡散電位が小さくなり、光電変換装置の開放電圧が制限されるという問題がある。これに対して、電子親和力の低いn型材料としてn型非晶質シリコン(電子親和力:3.0eV)が挙げられるが、Si−Si結合が弱いためにシリコンがp型CuO領域内に拡散し、変換効率が低下する問題がある。
本発明は、上記課題の少なくとも1つを解決すべく、高い開放電圧を持つ光起電力装置を提供することを目的とする。
本発明の1つの態様は、p型亜酸化銅層と、n型非晶質酸化シリコン層と、p型亜酸化銅層とn型非晶質酸化シリコン層との間に設けられた拡散防止層と、を有する光起電力装置である。
本発明によれば、亜酸化銅(CuO)を光電変換層に含む光起電力装置において高い開放電圧を実現することができる。
第1の実施の形態における光起電力装置の断面模式図である。 本発明の実施の形態における光起電力装置のバンドエネルギー構造を示す図である。 従来の光起電力装置のバンドエネルギー構造を示す図である。 第3の実施の形態における光起電力装置の断面模式図である。
<第1の実施の形態>
本発明の第1の実施の形態における光起電力装置100は、図1の断面模式図に示すように、透明基板10、第1電極層12、亜酸化銅層14、拡散防止層16、非晶質酸化シリコン層18及び第2電極層20を備える。
透明基板10は、発電に寄与する波長領域の光に対して透光性を有し、かつ絶縁性を有する材料からなる。透明基板10は、例えば、ガラス、プラスチック等とすることができる。光起電力装置100では、光は透明基板10側から入射される。
第1電極層12は、透明電極材料からなる層である。第1電極層12のバンドギャップは、後述する亜酸化銅層14での光吸収を増加させるために、亜酸化銅層14のバンドギャップより大きくすることが好適である。具体的には、亜酸化銅層14のバンドギャップは2.1eV程度であるので、第1電極層12のバンドギャップは2.1eVより大きくすることが好適である。第1電極層12は、例えば、インジウム錫酸化物(ITO)、酸化錫(SnO)、酸化亜鉛(ZnO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。
亜酸化銅層14は、亜酸化銅(CuO)を主材料とする層であり、光起電力装置100の光電変換部におけるp型の半導体層となる。亜酸化銅層14は、スパッタリング法、蒸着法、スプレー法又はパルスレーザー法等により形成することができる。また、第1電極層12上に銅膜を形成し、酸化処理を施すことにより亜酸化銅層14を形成することもできる。
例えば、スプレー法では、加熱した透明基板10に原材料(原料を溶媒で溶かした液体)をノズルから噴射して塗布し、溶媒を蒸発させることにより亜酸化銅層14を形成する。原料は、無添加CuO、Ca添加CuO、Mg添加CuO、Zn添加CuO等が挙げられる。
亜酸化銅層14の膜厚は、拡散電位を高めるために空乏層幅よりも十分に大きい必要があり、50nm以上、より好ましくは250nm以上とすることが好適である。
拡散防止層16は、亜酸化銅層14と非晶質酸化シリコン層18との間に挿入され、非晶質酸化シリコン層18から亜酸化銅層14へのシリコン原子(Si)の拡散を防止する。拡散防止層16を設けることにより、亜酸化銅層14の半導体特性が劣化することを防ぐことができる。
拡散防止層16は、Si−Si結合よりも強い結合を有する物質を主材料とする。拡散防止層16は、例えば、高酸素濃度の非晶質酸化シリコン、酸化亜鉛、窒化シリコン、酸窒化シリコン、炭化シリコンが挙げられ、その導電型はn型、i型、p型のいずれでもよい。
拡散防止層16として高酸素濃度の非晶質酸化シリコンを適用する場合、後述の非晶質酸化シリコン層18に含有される酸素の濃度より高い酸素濃度とすることが好適である。拡散防止層16を、非晶質酸化シリコン層18と同じシラン(SiH)と二酸化炭素(CO)の混合ガスのプラズマCVDにより成膜する場合、拡散防止層16の成膜中の二酸化炭素(CO)/シラン(SiH)比を非晶質酸化シリコン層18の成膜中の比の2倍以上、好ましくは4倍以上とすることが好適である。また、成膜後の拡散防止層16中の酸素濃度を非晶質酸化シリコン層18中の酸素濃度の10倍以上とすることが好適である。
より具体的には、膜厚が50nmの場合には拡散防止層16中の酸素濃度を1×1021原子/cm以上とし、膜厚が270nmの場合には拡散防止層16中の酸素濃度を5×1020原子/cm以上とすることが好適である。また、拡散防止層16の膜厚方向に沿って亜酸化銅層14側を非晶質酸化シリコン層18側よりも高い酸素濃度とするように酸素濃度の変化を設けてもよい。
高酸素濃度の非晶質酸化シリコンにおいてSi−O結合の結合エネルギーは110kcal/molであり、Si−Si結合の結合エネルギーが52kcal/mol及び亜酸化銅層14中のCu−O結合の結合エネルギーが81kcal/molであるので、非晶質酸化シリコン層18から亜酸化銅層14へのSi原子の拡散を防ぎ、亜酸化銅層14内へのSi原子の混入による特性低下を抑制することができる。
また、拡散防止層16として酸化亜鉛、窒化シリコン、酸窒化シリコン、炭化シリコンを用いた場合、Zn−O結合の結合エネルギーは72kcal/mol、Si−N結合の結合エネルギーは105kcal/mol、Si−C結合の結合エネルギーは76kcal/molでSi−Si結合よりも大きいので酸素の拡散防止の効果を得ることができる。ただし、Zn−O結合、Si−N結合及びSi−C結合の結合エネルギーはSi−O結合の結合エネルギーよりも小さく、高酸素濃度の非晶質酸化シリコンを用いた場合よりも亜酸化銅層14へのSi原子の拡散を防ぐ効果は小さい。そのため、拡散防止層16の材料としては非晶質酸化シリコンの方がより好適である。
なお、拡散防止層16として窒化シリコンや酸窒化シリコンを適用した場合、拡散防止層16中の窒素の濃度は1×1018原子/cm程度とすることが好適である。また、拡散防止層16として炭化シリコンを適用した場合、拡散防止層16中の炭素の濃度は5×1019原子/cm〜5×1020原子/cm程度とすることが好適である。
一方、拡散防止層16として水素化非晶質シリコンを用いた場合、Si−Si結合は結合エネルギーが52kcal/molと低く、Si−H結合の結合エネルギーも75kcal/molと低いため、Si原子の亜酸化銅層14への拡散を防ぐことができず、亜酸化銅層14の特性低下を招くおそれが高くなる。
拡散防止層16の膜厚は、亜酸化銅層14へのSi原子の拡散を防止できる程度に厚く、亜酸化銅層14と非晶質酸化シリコン層18とで形成されるpn接合の拡散電位を低下させない程度に薄くする必要があり、10nm以上250nm以下、より好ましくは50nm以下とすることが好適である。
また、拡散防止層16は、例えば、高酸素濃度のp型非晶質酸化シリコン/i型非晶質酸化シリコン層、酸化亜鉛/i型非晶質酸化シリコンのように2層以上の異なる種類の層を積層してもよい。このように、拡散防止層16を多層構造とすることにより、亜酸化銅層14から非晶質酸化シリコン層18との間のエネルギー準位のスパイクを小さくする等、発電に適したエネルギーバンド構造とすることができる。
なお、拡散防止層16の形成方法によっては、亜酸化銅層14の表面が還元されるおそれがあるが、その場合には還元後に組成が亜酸化銅(CuO)となるように予め酸素リッチの酸化銅(CuO)層を形成しておいてもよい。酸化銅の形成方法は、酸素、オゾン、二酸化炭素、水蒸気等を用いた熱酸化法やプラズマ法、または酸性溶液やアルカリ性溶液を用いた化学処理等が挙げられる。
非晶質酸化シリコン層18は、非晶質酸化シリコンを主材料とする層であり、光起電力装置100の光電変換部におけるn型の半導体層となる。非晶質酸化シリコン層18は、スパッタリング法、スプレー法又はプラズマCVD法等により形成することができる。
ここで、非晶質酸化シリコン層18の形成にプラズマCVD法を用いた場合、酸素源として二酸化炭素ガス(CO)を同時に導入し、プラズマ中に散乱断面積の大きなCOやOHラジカルを存在させることにより、亜酸化銅層14の表面の水素ラジカルによる還元を抑制することができる。これにより、亜酸化銅層14と非晶質酸化シリコン層18との接合は、亜酸化銅層14と水素化非晶質シリコン層との接合よりも良好な界面を形成することができる。この点において、n型の半導体層として非晶質シリコン層でなく非晶質酸化シリコン層18を適用することが好適である。
さらに、亜酸化銅層14上に拡散防止層16が形成されていることにより、非晶質酸化シリコン層18の成膜時において亜酸化銅層14の還元反応を抑制することができる。
非晶質酸化シリコン層18の膜厚は、拡散電位を高めるために空乏層幅よりも十分に大きい必要があり、50nm以上、より好ましくは250nm以上とすることが好適である。
非晶質酸化シリコン層18は、炭素又は窒素を含有してもよい。非晶質酸化シリコン層18に炭素又は窒素を含有させることによって、炭素又は窒素とシリコンとが結合する。Si−C結合の結合エネルギーは76kcal/mol、Si−N結合の結合エネルギーは105kcal/molであり、Si−Si結合より大きな結合エネルギーを有するので、シリコン原子の亜酸化銅層14への拡散を低減する効果を得られる。
第2電極層20は、インジウム錫酸化物(ITO)、酸化錫(SnO)、酸化亜鉛(ZnO)等のバンドギャップの大きい酸化物半導体やアルミニウム(Al)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、銀(Ag)、金(Au)等の金属を用いることができ、これらの層を複数積層させてもよい。
図2は、本実施の形態における光起電力装置100のバンド構造図である。また、図3は、n型層として非晶質酸化シリコン層18の代りに酸化チタン(TiO)を用い、拡散防止層16を省略した光起電力装置のバンド構造図である。
非晶質酸化シリコン層18の電子親和力は3.0eVであり、従来のn型材料である酸化チタン(TiO)の4.1eVに比べて小さい。また、従来のn型材料である酸化亜鉛(ZnO)の電子親和力は3.7eV、酸化錫(SnO)の電子親和力は4.9eVであり、酸化チタン(TiO)の4.1eVと同様の傾向である。したがって、従来の材料を用いた場合に比べて拡散電位が増加する効果が得られる。
また、従来の材料である酸化チタン(TiO)のバンドギャップは3.3eVであり、亜酸化銅層14のバンドギャップの2.1eVとの差が小さい。したがって、図3に示すように、界面におけるオフセットがクリフ状となり、キャリアの再結合が増加するという問題が生じる。同様に、従来の材料である酸化亜鉛(ZnO)のバンドギャップは3.3eV、酸化錫(SnO)のバンドギャップは3.6eVであり、酸化チタン(TiO)と同様に亜酸化銅層14のバンドギャップの2.1eVとの差が小さい。これに対して、非晶質酸化シリコン層18のバンドギャップは1.6eV以上であり、亜酸化銅層14のバンドギャップの2.1eVとの差が従来材料に比べて大きく、界面におけるバンドオフセットが小さなスパイク状になるので、キャリアの再結合が低減され、開放電圧の低下を抑制することができる。
なお、亜酸化銅層14を銅板の熱酸化処理により形成した場合、亜酸化銅層14を基板として、一方の面に拡散防止層16、非晶質酸化シリコン層18、第2電極層20を形成し、反対の面に第1電極層12を形成し、さらに透明基板10を貼り合わせることで、光起電力装置100と同様の構造とすることができる。
本実施の形態における光起電力装置によれば、拡散防止層16を設けることにより亜酸化銅層14へのシリコン(Si)の拡散を防ぐことができる。特に、拡散防止層16に非晶質酸化シリコン層18よりも高濃度の酸素を含有させることによって、亜酸化銅層14へのシリコン(Si)の拡散の抑制効果を高めることができる。このとき、拡散防止層16に非晶質酸化シリコン層18の10倍以上の高濃度の酸素を含有させることにより、亜酸化銅層14へのシリコン(Si)の拡散の抑制が顕著となる。また、亜酸化銅層14の形成後において、亜酸化銅層14の表面の水素ラジカルによる還元を抑制することができる。これにより、光起電力装置の開放電圧を高め、発電効率を向上させることができる。
また、非晶質酸化シリコン層18に炭素又は窒素を含有させることによって、シリコン原子の亜酸化銅層14への拡散を低減することができ、高い開放電圧を得ることができる。
<第2の実施の形態>
本発明の第2の実施の形態における光起電力装置は、透明基板10側から第1電極層12、非晶質酸化シリコン層18、拡散防止層16、亜酸化銅層14及び第2電極層20の順に積層される。光起電力装置200では、光は透明基板10側から入射される。
本実施の形態における光起電力装置は、第1の実施の形態に対して、亜酸化銅層14と非晶質酸化シリコン層18との積層順序を入れ替えた点で相違する。透明基板10、第1電極層12、非晶質酸化シリコン層18、拡散防止層16、亜酸化銅層14及び第2電極層20は、光起電力装置100における各層の成膜方法、膜質及び膜厚等と同様に形成される。
第2の実施の形態における光起電力装置によっても、第1の実施の形態における光起電力装置100と同様の効果を得ることができる。
<第3の実施の形態>
本発明の第3の実施の形態における光起電力装置200は、図4の断面模式図に示すように、基板30、第1電極層32、亜酸化銅層34、拡散防止層36、非晶質酸化シリコン層38及び第2電極層40を備える。光起電力装置200では、光は第2電極層40側から入射される。
第1電極層32、亜酸化銅層34、拡散防止層36、非晶質酸化シリコン層38及び第2電極層40は、光起電力装置100における第2電極層20、亜酸化銅層14、拡散防止層16、非晶質酸化シリコン層18及び第1電極層12にそれぞれ対応し、成膜方法、膜質及び膜厚等について光起電力装置100と同様に設定される。
また、基板30は、発電に寄与する波長領域の光に対して透光性を有し、かつ絶縁性を有する材料であるガラス、石英又は樹脂のみならず、不透明な金属等を適用することができる。
第3の実施の形態における光起電力装置によっても、第1の実施の形態における光起電力装置100と同様の効果を得ることができる。
<第4の実施の形態>
本発明の第4の実施の形態における光起電力装置は、基板30側から第1電極層32、非晶質酸化シリコン層38、拡散防止層36、亜酸化銅層34及び第2電極層40を備える。本実施の形態における光起電力装置では、光は第2電極層40側から入射される。
本実施の形態における光起電力装置は、第3の実施の形態に対して、亜酸化銅層34と非晶質酸化シリコン層38とを入れ替えた点で相違する。基板30、第1電極層32、非晶質酸化シリコン層38、拡散防止層36、亜酸化銅層34及び第2電極層40は、光起電力装置200における各層の成膜方法、膜質及び膜厚等と同様に形成される。
第4の実施の形態における光起電力装置によっても、第1の実施の形態における光起電力装置100と同様の効果を得ることができる。
なお、本発明の趣旨を逸脱しない範囲において、上記複数の実施の形態における構成要素を適宜組み合わせてもよい。
本発明における光起電力装置は、太陽光スペクトルにおける短波長領域を効率良く吸収し、長波長領域を透過するので、窓ガラスや時計等の可視光領域における透過性を必要とする太陽電池として適用できる。また、本発明における光起電力装置は、太陽光スペクトルにおける長波長領域の光吸収性が高い結晶シリコン太陽電池、微結晶シリコン太陽電池、微結晶シリコンゲルマニウム太陽電池等の他種類の光起電力装置と積層することによって、太陽光を全波長に亘って効率良く発電に寄与させることができる。
10 透明基板、12 第1電極層、14 亜酸化銅層、16 拡散防止層、18 非晶質酸化シリコン層、20 第2電極層、30 基板、32 第1電極層、34 亜酸化銅層、36 拡散防止層、38 非晶質酸化シリコン層、40 第2電極層、100、200 光起電力装置。

Claims (4)

  1. p型亜酸化銅層と、n型非晶質酸化シリコン層と、前記p型亜酸化銅層と前記n型非晶質酸化シリコン層との間に設けられた拡散防止層と、を有することを特徴とする光起電力装置。
  2. 請求項1に記載の光起電力装置であって、
    前記拡散防止層は、前記n型非晶質酸化シリコン層よりも高濃度の酸素を含有する非晶質酸化シリコン層であることを特徴とする光起電力装置。
  3. 請求項2に記載の光起電力装置であって、
    前記拡散防止層は、前記n型非晶質酸化シリコン層よりも10倍以上の高濃度の酸素を含有する非晶質酸化シリコン層であることを特徴とする光起電力装置。
  4. 請求項1〜3のいずれか1項に記載の光起電力装置であって、
    前記n型非晶質酸化シリコン層は、炭素又は窒素を含有することを特徴とする光起電力装置。
JP2013042486A 2013-03-05 2013-03-05 光起電力装置 Pending JP2014170865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042486A JP2014170865A (ja) 2013-03-05 2013-03-05 光起電力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042486A JP2014170865A (ja) 2013-03-05 2013-03-05 光起電力装置

Publications (1)

Publication Number Publication Date
JP2014170865A true JP2014170865A (ja) 2014-09-18

Family

ID=51693036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042486A Pending JP2014170865A (ja) 2013-03-05 2013-03-05 光起電力装置

Country Status (1)

Country Link
JP (1) JP2014170865A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059053A1 (ja) * 2018-09-19 2020-03-26 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP2020053668A (ja) * 2018-09-19 2020-04-02 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP2020202360A (ja) * 2019-06-13 2020-12-17 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US11302831B2 (en) 2018-03-22 2022-04-12 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11322627B2 (en) 2018-09-19 2022-05-03 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
WO2022201591A1 (en) * 2021-03-24 2022-09-29 Kabushiki Kaisha Toshiba Method for manufacturing stacked thin film, method for manufacturing solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US11557688B2 (en) 2018-01-29 2023-01-17 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11563132B2 (en) 2018-01-29 2023-01-24 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system
WO2023181187A1 (ja) * 2022-03-23 2023-09-28 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP7494348B2 (ja) 2022-04-12 2024-06-03 株式会社東芝 太陽電池の製造方法
JP7494347B2 (ja) 2022-04-12 2024-06-03 株式会社東芝 太陽電池の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557688B2 (en) 2018-01-29 2023-01-17 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US11563132B2 (en) 2018-01-29 2023-01-24 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system
US11302831B2 (en) 2018-03-22 2022-04-12 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
JP2020053668A (ja) * 2018-09-19 2020-04-02 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
WO2020059053A1 (ja) * 2018-09-19 2020-03-26 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US11322627B2 (en) 2018-09-19 2022-05-03 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
JP7102504B2 (ja) 2018-09-19 2022-07-19 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JPWO2020059053A1 (ja) * 2018-09-19 2020-12-17 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US11810993B2 (en) 2018-09-19 2023-11-07 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
JP7378940B2 (ja) 2018-09-19 2023-11-14 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP2020202360A (ja) * 2019-06-13 2020-12-17 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP7378974B2 (ja) 2019-06-13 2023-11-14 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
WO2022201591A1 (en) * 2021-03-24 2022-09-29 Kabushiki Kaisha Toshiba Method for manufacturing stacked thin film, method for manufacturing solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
WO2023181187A1 (ja) * 2022-03-23 2023-09-28 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP7494348B2 (ja) 2022-04-12 2024-06-03 株式会社東芝 太陽電池の製造方法
JP7494347B2 (ja) 2022-04-12 2024-06-03 株式会社東芝 太陽電池の製造方法

Similar Documents

Publication Publication Date Title
JP2014170865A (ja) 光起電力装置
JP6329660B2 (ja) 光電変換装置
RU2435251C2 (ru) Передний электрод со слоем тонкой металлической пленки и буферным слоем с высокой работой выхода для применения в фотоэлектрическом приборе и способ получения таковых
TW201218401A (en) Crystalline photovoltaic cell and method of manufacturing crystalline photovoltaic cell
US8779281B2 (en) Solar cell
CN111279492B (zh) 太阳能电池、多结型太阳能电池、太阳能电池模块及太阳能发电系统
US20110203650A1 (en) Optical converter device and electronic equipment including the optical converter device
CN108963013B (zh) 太阳能电池及其制造方法
WO2019146120A1 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JPWO2009144944A1 (ja) 光電変換装置
WO2013002102A1 (ja) 光電変換装置
CN113728445A (zh) 制造多层薄膜的工艺、制造太阳能电池的方法、和制造太阳能电池组件的方法
CN111656538A (zh) 太阳能电池、多结型太阳能电池、太阳能电池模块及太阳光发电系统
JP5995204B2 (ja) 光電変換素子
JP2020145396A (ja) 積層薄膜の製造方法、太陽電池の製造方法及び太陽電池モジュールの製造方法
JP2022116110A (ja) 光起電デバイス用の金属酸窒化物バック接点層
CN104600136A (zh) 一种异质结太阳能电池的制造方法及异质结太阳能电池
KR101219835B1 (ko) 태양전지 및 이의 제조방법
KR101000051B1 (ko) 박막형 태양전지 및 그 제조방법
JP5918765B2 (ja) 太陽光発電装置
KR20140066087A (ko) 태양전지 및 그 제조방법
KR101283140B1 (ko) 태양전지 및 이의 제조방법
TWI462318B (zh) 光伏結構及其製作方法
KR101055103B1 (ko) 태양전지 및 이의 제조방법
US20140261686A1 (en) Photovoltaic device with a zinc oxide layer and method of formation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312