JP7102504B2 - 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム - Google Patents

太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム Download PDF

Info

Publication number
JP7102504B2
JP7102504B2 JP2020506369A JP2020506369A JP7102504B2 JP 7102504 B2 JP7102504 B2 JP 7102504B2 JP 2020506369 A JP2020506369 A JP 2020506369A JP 2020506369 A JP2020506369 A JP 2020506369A JP 7102504 B2 JP7102504 B2 JP 7102504B2
Authority
JP
Japan
Prior art keywords
type
electrode
solar cell
layer
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020506369A
Other languages
English (en)
Other versions
JPWO2020059053A1 (ja
Inventor
和重 山本
聡一郎 芝崎
六月 山崎
直之 中川
紗良 吉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Publication of JPWO2020059053A1 publication Critical patent/JPWO2020059053A1/ja
Application granted granted Critical
Publication of JP7102504B2 publication Critical patent/JP7102504B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • H01L31/02725Selenium or tellurium characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • H01L33/343Materials of the light emitting region containing only elements of Group IV of the Periodic Table characterised by the doping materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システムに関する。
新しい太陽電池の1つに、亜酸化銅(CuO)太陽電池がある。CuOはバンドギャップが2.1eVのワイドギャップ半導体である。CuOは地球上に豊富に存在する銅と酸素からなる安全かつ安価な材料であるため、高効率かつ低コストな太陽電池が実現できると期待されている。
n電極とp電極の両方に透明電極を用いた、光透過性CuO太陽電池が開発されている。光透過性CuO太陽電池の場合、原理的に、n電極側とp電極側のいずれからも光照射が可能になるが、p電極側から光照射した場合、n電極側からの光照射と比較して短絡電流が小さく、そのため効率が低下する問題があった。
特開2017-098479号公報
本発明が解決しようとする課題は、効率の高い光透過性の太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システムを提供する。
実施形態の太陽電池は、p電極と、p電極と直接的に接し、Cuを主成分とする金属の酸化物の半導体層であるp型光吸収層と、n型層と、n電極と、を有する。p型光吸収層とn電極との間にn型層が配置される。p型吸収層とp電極の界面からn型層方向に存在する領域はp型ドーパントを含むp+型領域であり、p+型領域は界面を1端と、他端を30nmから70nmまでの領域範囲に有し、p電極は酸化物透明導電膜を含む透明電極である。
実施形態の太陽電池の断面図。 CuO太陽電池の模式的なバンド図(a)と、各波長に対する分光感度A/W(光電流/光強度)(b)。 CuO太陽電池の模式的なバンド図(a)と、各波長に対する分光感度(b)。 p電極1表面近傍にp型ドーパントを高ドープした場合の、CuO太陽電池の模式的なバンド図(a)と、各波長に対する分光感度(b)。 実施形態の太陽電池の断面画像。 実施形態の太陽電池の断面図。 実施形態の多接合型太陽電池の断面図。 実施形態の太陽電池モジュールの斜視図。 実施形態の太陽電池モジュールの断面図。 実施形態の太陽光発電システムの構成図。
以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。
(第1実施形態)
第1実施形態は、太陽電池に関する。図1に、第1実施形態の太陽電池100の断面図を示す。図2に示すように、本実施形態に係る太陽電池100は、p電極1と、p型光吸収層2と、n型層3と、n電極4を有する。n型層3とn電極4との間等には、図示しない中間層が含まれていてもよい。太陽光はn電極4側、p電極1側いずれから入射できるように、両電極が透明電極であることが好ましい。図示しない基板がp電極1側又はn電極4側に設けられてもよい。
(p電極1)
p電極1は、可視光に対して、光透過性を有する電極である。p電極1は、p型光吸収層2と直接的に接した電極である。p電極1には、酸化物透明導電膜などの透明電極を用いることが好ましい。基板がp電極1側に設けられている場合、p電極1は、基板とp型光吸収層2の間に存在する層である。このとき、p電極1は、基板とp型光吸収層2と直接接している。
p電極1には単層膜や積層膜を用いることができる。積層型のp電極1は、例えば、積層した第1p電極と第2p電極で構成される。p型光吸収層2側に配置され、p型光吸収層2と直接接している電極を第1p電極とし、第2p電極とp型光吸収層2の間に第1p電極が配置される。第1p電極には、Snを主成分とする酸化物透明導電膜を用い、第2p電極には、Snを主成分とする酸化物透明導電膜よりも低抵抗な、透明導電膜を用いることが好ましい。積層膜とする理由は、Snを主成分とする酸化物透明導電膜の抵抗率は単独ではしばしば高く、抵抗成分による発電損失を生じるため、これを防ぐために低抵抗な酸化物透明電極と組合せる訳である。p電極が単層膜である場合は、例えば、第2p電極で挙げる酸化物透明導電膜を用いることが好ましい。
第1p電極としては、SnOなど、Snを主成分(90atom%以上)とする酸化物が好ましく、添加物はZn、Al、Ga、In、Ti、Cu、Sb、Nb、F、Taなど特に限定されない。
第2p電極として用いる透明導電膜としては、酸化インジウムスズ(Indium Tin Oxide:ITO)、アルミニウムドープ酸化亜鉛(Al-doped Zinc Oxide:AZO)、ボロンドープ酸化亜鉛(Boron-doped Zinc Oxide:BZO)、ガリウムドープ酸化亜鉛(Gallium-doped Zinc Oxide:GZO)、インジウムドープ酸化亜鉛(Indium-doped Zinc Oxide:IZO)、チタンドープ酸化インジウム(Titanium-doped Indium Oxide:ITiO)や酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide:IGZO)、水素ドープ酸化インジウム(Hydrogen-doped Indium Oxide:In)など特に限定されない。第2p電極中に含まれる金属のうちSnとSbの合計濃度は、10atom%以下であることが好ましい。
(p型光吸収層2)
p型光吸収層2は、p型の半導体層である。p型光吸収層2はp電極1とn型層3との間に配置される。p型光吸収層2としては、Cuを主成分とする金属の酸化物の半導体層である。Cuを主成分とする金属の酸化物は、亜酸化銅又は亜酸化銅の複合酸化物である。以下、明細書では、Cuを主成分とする金属の酸化物をp型光吸収層2として用いた太陽電池をCuO太陽電池する。Cuを主成分とする金属の酸化物は、Cuが60.0atom%以上67.0atom%以下であり、O(酸素)が32.5atom%以上34.0atom%以下である。亜酸化銅の複合酸化物には、Cu以外の金属が含まれる。亜酸化銅の複合酸化物に含まれる金属は、Cuに加えて、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、Ga、In、Zn、Mg及びCaからなる群より選ばれる1種以上の金属である。Cu以外にAg、Li、Na、K、Cs、Rb、Al、Ga、In、Zn、Mg及びCaからなる群より選ばれる1種以上の金属が含まれると、p型光吸収層2のバンドギャップを調整することができる。p型光吸収層2のp電極1側にはSi、Ge及びNのうちのいずれか1種以上のp型ドーパントが高濃度に分散したp+型領域2aを含むため、p型光吸収層2は、局所的にp型ドーパントを含む。p型光吸収層2のバンドギャップは、2.0eV以上2.2eV以下であることが好ましい。かかる範囲のバンドギャップであると、Siを光吸収層に用いた太陽電池をボトムセルに用い、実施形態の太陽電池をトップセルに用いた多接合型太陽電池において、トップセル及びボトムセルの両方で太陽光を効率よく利用できる。p型光吸収層2は、Cuで表される酸化物の層である。Mは、Si、Ge、N、Sn、Sb、Ag、Li、Na、K、Cs、Rb、Al、Ga、In、Zn、Mg及びCaからなる群より選ばれる1種以上の金属である。a、b及びcは、1.80≦a≦2.01、0.00≦b≦0.20及び0.98≦c≦1.02を満たすことが好ましい。上記p型光吸収層2の組成比は、p型光吸収層2の全体の組成比である。また、上記のp型光吸収層2の化合物組成比は、p型光吸収層2において全体的に満たすことが好ましい。なお、Sn及びSbのp型光吸収層中の濃度が高いと、欠陥が増加して、キャリア再結合が増えてしまう。そこで、p型光吸収層2中のSb及びSnの合計体積濃度は、1.5x1019atoms/cm以下が好ましい。
(p+型領域2a)
p型光吸収層2のp電極1側における再結合を抑制するために、p型光吸収層2は、p電極1側にp+型領域2aを含む。p+型領域2aは、局所的にp型ドーパントを高濃度に含む領域である。p型ドーパントとしては、Si、Ge及びNからなる群より選ばれる1種以上の元素が挙げられる。p型ドーパントとしては、Si及びGeからなる群より選ばれる1種以上の元素を含むことが好ましい。p+型領域2aは、p型光吸収層2のp電極1側に存在する領域である。p型吸収層2とp電極1の界面(起点)からn型層3方向に10nmから100nm(終点)までの領域(p型吸収層2とp電極1の界面(起点)からn型層3方向に最小10nmから最大100nm(終点)までの領域)がp+型領域2aである。p型吸収層2とp電極1の界面(起点)からn型層3方向に30nmから70nm(終点)までの領域(p型吸収層2とp電極1の界面(起点)からn型層3方向に最小30nmから最大70nm(終点)までの領域)がp+型領域であることが好ましい。p+型領域2aは、p型光吸収層2中に含まれる領域である。
p+型領域2aの領域厚さが薄すぎると、下記に説明する再結合抑制の効果が少なくなってしまう。また、p+型領域2aの領域厚さが厚すぎると、p+型領域2aの光キャリア生成の量子効率はp+型領域2a以外の光キャリア層の量子効率と比べて低いため、短絡電流が低下する効果が現れ出して好ましくない。再結合を抑制する観点から、p+型領域2a中のp型ドーパントの最高濃度は、5.0×1019atoms/cm以上1.0×1021atoms/cm以下であることが好ましい。p+型領域2a中のp型ドーパントの最低濃度は、1.0×1018atoms/cm以上5.0×1018atoms/cm以下であることが好ましい。p+型領域2a中のp型ドーパントの平均濃度は1.0×1019atoms/cm以上1.0×1020atoms/cm以下であることが好ましい。p+型領域2a以外のp型光吸収層2では、p型ドーパント濃度は1.0×1018atoms/cm以下である。なお、実施形態では、p型ドーパントの検出限界は、1.0×1018atoms/cmとし、p型ドーパント濃度が1.0×1018atoms/cm以下とは、p型ドーパントが含まれない場合と検出限界以下の濃度のp型ドーパントを含む場合の両方を含む。p型ドーパントの最高濃度となる位置は、p+型領域2aのp型光吸収層2とp電極1との界面側、つまり、p+型領域2aの起点側に存在する。また、p型ドーパントの最低濃度となる位置は、p+型領域2aのn型層3側、つまり、p+型領域2aの終点側に存在する。
p+型領域2a中のp型ドーパントの平均濃度は、p+型領域2a中のp型ドーパントの最低濃度の5倍以上100倍以下であることが好ましく、10倍以上100倍以下であることがより好ましい。実施形態において、p型ドーパントの最低濃度と平均濃度の差が大きいことは、p+型領域2aの起点側p型ドーパント濃度と比べて、p+型領域2aの終点側では、p型ドーパントの濃度が非常に低下していることを表している。
p+型領域2a中のp型ドーパントの最高濃度は、p+型領域2aのp型ドーパントの平均濃度の5倍以上100倍以下であることが好ましく、10倍以上100倍以下であることがより好ましい。実施形態において、p型ドーパントの最高濃度と平均濃度の差が大きいことは、p+型領域2aの終点側のp型ドーパント濃度と比べて、p+型領域2aの起点側では、p型ドーパントの濃度が非常に高いことを表している。
p+型領域2a中のp型ドーパントの最高濃度は、p+型領域2aのp型ドーパントの最低濃度の25倍以上1000倍以下であることが好ましく、100倍以上1000倍以下であることがより好ましい。実施形態において、p型ドーパントの最高濃度と平均濃度の差が大きいことは、p+型領域2aの終点側のp型ドーパント濃度と比べて、p+型領域2aの起点側では、p型ドーパントの濃度が非常に高いことを表している。
狭いp+型領域2aにおいて、大きな濃度変化があることで、再結合を抑制し、短絡電流の低下を防ぐことで実施形態の太陽電池の発電効率が向上する。p型光吸収層2全体的にp型ドーパントが低濃度に分散していても、高濃度に分散していても、再結合の抑制と短絡電流の低下を防ぐことはできない。亜酸化銅型の光吸収層において、局所的にp+型領域2aを設けることはこれまで、実現されておらず、本発明のp+型領域2aの条件を満たす場合において生じる効果である。
ここで、本発明の中核をなす、CuO太陽電池における、p電極1/CuO(p型光吸収層2)界面へのp型ドーパントの高ドープによる特性改善のメカニズムについて説明する。
まず短絡電流が低下する原因から説明を行う。電流低下現象は、従来のAu電極を用いたCuO太陽電池では、この現象が起きているか否かが判らなかったが、これはn電極4側一方からしか光照射をできなかったためである。これに対して、我々が開発した光透過性CuO太陽電池は、p電極1とn電極4の両方から光照射が可能であり、入射方向で電流値に大きな差があることが明らかになったため、問題として初めて認識されたものである。
(n電極側から光照射した場合における短絡電流低下)
図2は、n電極側から光照射した場合における、CuO太陽電池の模式的なバンド図(a)と、各波長に対する分光感度A/W(光電流/光強度)(b)を示す。ここで、p電極1はAu電極と透明電極のいずれでもよく、n電極4は透明電極である。
図2aは、p電極1表面でのキャリア再結合の様子を示す。図より、p電極1に近いほど、電子(黒丸)と正孔(白丸)はp電極1に拡散して再結合が生じる。
図2bは、図2aのセルの模式的な分光感度を示す。図から分るように、CuO吸収端近傍の波長500-600nmの分光感度が低い。これは、波長500-600nmの光に対するCuOの光吸収係数が小さいため、長波長になるほど光がCuOの内部まで侵入しやすく、内部で発生した電子と正孔がp電極1側に拡散、再結合して、光電流が低下するためである。
以上の説明が、n電極4側から照射した場合、p電極1付近で発生したキャリアは、p電極1表面で再結合しやすいため、波長500-600nmの光についてその分だけ短絡電流が低下して効率低下が生じる理由である。これは、p電極1がAu電極でも透明電極であっても起きる、再結合現象である。
(p電極側から光照射した場合における短絡電流低下)
次に、図3は、p電極1側から光照射した場合における、CuO太陽電池の模式的なバンド図(a)と、各波長に対する分光感度(b)を示す。ここで、p電極1とn電極4はいずれも透明電極である。
図3aは、p電極表面でのキャリア再結合の様子を示す。図より、p電極1に近いほど、電子と正孔はp電極1に拡散して再結合が生じる。
図3bは、図3aのセルの模式的な分光感度を示す。先の図2bとは異なり、波長500nm以下の分光感度が低い。これは、波長500nm以下の光はCuOの吸収係数が大きいため、p電極1近傍でほぼ全て吸収され、直ちに再結合して、光電流として取り出し難いためである。一方、吸収係数の小さい波長500-600nmの光はCuOの内部まで侵入し、発生した電子と正孔がpn界面側に拡散するため、電流量としては小さいが、光電流になる。
以上の説明が、p電極1側から照射した場合、p電極1表面の再結合のために殆どのキャリアが再結合して、短絡電流が大幅に低下して、大きな効率低下が生じる理由である。
(p型ドーパントの高ドープに短絡電流増加のメカニズム)
CuO太陽電池では、n電極4側とp電極1側から光照射する場合で程度は異なるが、上記説明の通り、いずれの場合もp電極1表面での再結合により短絡電流の低下が生じる。CuOのp電極1表面近傍にp型ドーパントを高ドープすると、再結合を抑えて、短絡電流を増加すること、すなわち効率を改善することが可能になる。図4は、p電極1表面近傍にp型ドーパントを高ドープした場合の、CuO太陽電池の模式的なバンド図(a)と、各波長に対する分光感度(b)を示す。
図4aは、p電極1表面近傍にp型ドーパントを高ドープした場合の、CuO太陽電池の模式的なバンド図を示す。ここで、太陽光はp電極1側から入射する場合を図示した。図から分るように、p電極1の手前に高ドープによる電位障壁が形成され、電子はp電極に近づけず、pn界面側に拡散することを示している。すなわち、p電極1表面で電子と正孔が空間的に分離されるために、再結合が抑制されて、短絡電流が増加して効率が改善するというメカニズムである。
図4bは、図4aのセルの模式的な分光感度を示す。参照データとして、p型ドーパントを添加しなかった参照セルの分光感度(図3bのデータ)を合わせて示す。図より、全波長領域で分光感度は増えるが、とくに参照セルは殆ど光電流が流れなかった波長500nm以下で高い感度を示すことが判る。
以上の説明はp電極1側からの光照射で行ったが、n電極4側から光照射する場合についても、同様なメカニズムで短絡電流と効率は増加する。
従来のCuO太陽電池では、p電極1表面で再結合して電流低下を生じるが、CuOのp電極1表面近傍にp型ドーパントを高ドープすることで再結合を抑制することが可能であり、短絡電流と効率の改善が実現可能になる。
p+型領域2aは、二次イオン質量分析法(Secondary Ion Mass Spectrometry: SIMS)で位置とp型ドーパント濃度を求めることができる。分析条件は、一次イオン種にCsを用い、一次加速電圧は5.0kVであり、検出領域は、28μm×28μmである。p電極1側でp型ドーパント濃度分布とCu濃度分布の両方に屈曲点が現れる深さをp電極1とp型光吸収層2の界面とし、界面からn型層3に向かってp型ドーパント濃度のフィッティングカーブ(ドーパント濃度=Cs×erfc(x/2/L)。erfc:相補誤差関数、Cs:p電極1とp型光吸収層2の界面におけるドーパント濃度、x:深さ。p電極1とp型光吸収層2の界面はx=0、L:ドーパントの拡散長)から得られた深さをp型ドーパントの拡散長とし、1.0×1018atoms/cm以上の領域をp+型領域2aとする。なお、p型ドーパントが2種類以上含まれる場合は、合計濃度をp型ドーパント濃度とする。p電極1側のCu濃度分布の屈曲点(要するにp電極1とp型光吸収層2の界面)におけるp型ドーパント濃度が1.0×1018atoms/cm以下である場合は、p+型領域2aは、p型光吸収層2に存在しないものとして取り扱う。p電極1とp型光吸収層2の界面からn型層4側に100nmより深い位置でp型ドーパント濃度が1.0×1018atoms/cm以上を含む場合は、p+型領域2aは、光吸収層2に含まれない場合としてみなす。
なお、SIMSによる分析では、太陽電池100の中心を含む断面において、p電極1からn電極4に向かう方向に、5等分割する。そして、5等分割した各領域のp電極1の中心とn電極4の中心を結ぶ仮想線上において、p電極1からp型光吸収層2にかけて分析する。得られた5領域の結果を平均して、p型ドーパント濃度などを求めることができる。
p電極1上に、p型ドーパントを含むSiO、GeO、SiGe、SiN、SiO及びGeO(0<x≦2、0<y≦2)からなる群より選ばれる1種以上の化合物などの薄膜を膜厚2nm以下で堆積した後、p型光吸収層2を成膜することで、p電極1界面近傍にp型ドーパントを高ドープすることができる。なお、p型ドーパントを含む化合物の薄膜は、p型光吸収層2などの成膜プロセスの過程でp型光吸収層2に吸収され残らない。
p型ドーパントを含む化合物の薄膜が残存しないことは、太陽電池100の断面を透過型電子顕微鏡(Transmission Electron Microscope: TEM)(条件、倍率4万倍、200kVの加速電圧)で観察した画像から判別することができる。図5に実施形態の太陽電池100の断面TEM画像を示す。図5に示す通り、実施形態太陽電池100では、p電極1のp型光吸収層2と対向する面の全面とp型光吸収層2のp電極1と対向する面の全面が界面を形成していることがわかる。
(パッシベーション層2b)
なお、図6の太陽電池101の断面図に示すように、実施形態の太陽電池100、101において、上述した再結合をさらに抑制するために、パッシベーション層2bが配置されていることがより好ましい。パッシベーション層2bは、間隙を有する絶縁層である。実施形態のパッシベーション層2bは、太陽電池100を構成する層の積層方向において、p電極1とp型光吸収層2の間に存在する絶縁層で、一部でp電極1とp型光吸収層2が接するように不連続な形状を有する。つまり、パッシベーション層2bの上面及び側面は、p型光吸収層2と直接的に接し、パッシベーション層2bの下面は、p電極1と直接的に接している。パッシベーション層2bの側面の少なくとも一部は、p型光吸収層2のp+型領域2aと直接的に接していることが好ましい。
再結合を抑制する観点から、パッシベーション層2bの膜厚は5nm以上200nm以下が好ましい。パッシベーション層2bの膜厚は、p+型領域2aの厚さより薄い場合と厚い場合の両方が実施形態に含まれる。再結合を抑制する観点から、p電極1からn電極4に向かう方向において、パッシベーション層2bとp型光吸収層2が接している面積は、パッシベーション層2bとp型光吸収層2が接している面積とp型光吸収層2とp電極1が接している面積の和の80%以上95%以下であることが好ましい。筆者らの研究によれば、パッシベーション層2bは絶縁層であることが必須条件で、材料としてはHf酸化物、Ta酸化物など特に限定されないが、Si酸窒化物、Ge酸窒化物は適さない。パッシベーション層2bは、メッシュ状、ドット状、ライン状など間隙があるベタ膜ではない絶縁層である。なお、パッシベーション層2bが配置されている部分では、p電極1とp型光吸収層2は対向しないが、パッシベーション層2bの間隙において、p電極1とp型光吸収層2は対向する。
p型光吸収層2の厚さは、電子顕微鏡による断面観察や、段差計によって求められ、1,000nm以上10,000nm以下が好ましい。
p型光吸収層2は、例えばスパッタなどによって成膜されることが好ましい。
(n型層3)
n型層3は、n型の半導体層である。n型層3は、p型光吸収層2とn電極4との間に配置される。n型層3は、p型光吸収層2のp電極1と接した面とは反対側の面と直接接している。n型層3としては、酸化物層や硫化物層を含む層が好ましい。より具体的には、n型層3に用いる酸化物層は、Zn(1-x)(A=Si、Ge、Sn)、Cu(2-x)O(M=Mn、Mg、Ca、Zn、Sr、Ba)、Al(2-x)Gaからなる群から選ばれる層が好ましい。n型層に用いる硫化物層は、ZnIn(2-2x)(3-2x)、ZnS、InGa(1-x)Sからなる群から選ばれる1種以上の硫化物からなる層が好ましい。Zn(1-x)をn型層に用いる場合、Zn/A組成比は、1乃至3の範囲が望ましく、1.5乃至2.5がより好ましい。
n型層3の厚さは、5nm以上100nm以下であることが好ましい。n型層3の厚さが5nm以下であるとn型層3のカバレッジが悪い場合にリーク電流が発生し、好ましくない。n型層3の厚さが100nmを超えると透過率が低下し短絡電流が低下するので好ましくない。従って、n型層3の厚さは10nm以上50nm以下がより好ましい。また、カバレッジの良い膜を実現するためにn型層3の表面粗さは5nm以下が好ましい。
n型層3は、例えばスパッタなどによって成膜されることが好ましい。
(n電極4)
n電極4は、可視光に対して、光透過性を有するn型層3側の電極である。n電極4とp型光吸収層2によってn型層3を挟んでいる。n型層3とn電極4の間には、図示しない中間層を設けることができる。n電極4には、酸化物透明導電膜を用いることが好ましい。n電極4で用いられる酸化物透明導電膜としては、酸化インジウムスズ(Indium Tin Oxide:ITO)、アルミニウムドープ酸化亜鉛(Al-doped Zinc Oxide:AZO)、ボロンドープ酸化亜鉛(Boron-doped Zinc Oxide:BZO)、ガリウムドープ酸化亜鉛(Gallium-doped Zinc Oxide:GZO)、インジウムドープ酸化亜鉛(Indium-doped Zinc Oxide:IZO)、チタンドープ酸化インジウム(Titanium-doped Indium Oxide:ITiO)や酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide:IGZO)及び水素ドープ酸化インジウム(Hydrogen-doped Indium Oxide:In)からなる群より選ばれる1種以上の透明導電膜であることが好ましい。
n電極4の厚さは、電子顕微鏡による断面観察や、段差計によって求められ、特に限定はないが、典型的には、1nm以上2μm以下である。
n電極4は、例えばスパッタなどによって成膜されることが好ましい。
(第2実施形態)
第2実施形態は、多接合型太陽電池に関する。図7に第2実施形態の多接合型太陽電池の断面概念図を示す。図7の多接合型太陽電池200は、光入射側に第1実施形態の太陽電池(第1太陽電池)100(101)と、第2太陽電池201を有する。第2太陽電池201の光吸収層のバンドギャップは、第1実施形態の太陽電池100のp型光吸収層2よりも小さいバンドギャップを有する。なお、実施形態の多接合型太陽電池は、3以上の太陽電池を接合させた太陽電池も含まれる。
第2実施形態の第1太陽電池100のp型光吸収層2のバンドギャップが2.0eV-2.2eV程度であるため、第2太陽電池200の光吸収層のバンドギャップは、1.0eV以上1.6eV以下であることが好ましい。第2太陽電池の光吸収層としては、Inの含有比率が高いCIGS系及びCdTe系からなる群から選ばれる1種以上の化合物半導体層、結晶シリコン及びペロブスカイト型化合物からなる群より選ばれる1種であることが好ましい。
(第3実施形態)
第3実施形態は、太陽電池モジュールに関する。図8に第3実施形態の太陽電池モジュール300の斜視図を示す。図8の太陽電池モジュール300は、第1太陽電池モジュール301と第2太陽電池モジュール302を積層した太陽電池モジュールである。第1太陽電池モジュール301は、光入射側であり、第1実施形態の太陽電池100を用いている。第2の太陽電池モジュール302には、第2太陽電池201を用いることが好ましい。
図9に太陽電池モジュール300の断面図を示す。図9では、第1太陽電池モジュール301の構造を詳細に示し、第2太陽電池モジュール302の構造は示していない。第2太陽電池モジュール301では、用いる太陽電池の光吸収層などに応じて適宜、太陽電池モジュールの構造を選択する。図8の太陽電池モジュールは、複数の太陽電池100(太陽電池セル)が横方向に並んで電気的に直列に接続した破線で囲われたサブモジュール303が複数含まれ、複数のサブモジュール303が電気的に並列もしくは直列に接続している。隣り合うサブモジュール303は、バスバー304で電気的に接続している。
太陽電池100は、スクライブされていて、隣り合う太陽電池100は、上部側のn電極4と下部側のp電極1が接続している。第3実施形態の太陽電池100も第1実施形態の太陽電池100と同様に、p電極1、p型光吸収層2、n型層3とn電極4を有し、さらにp電極1と第2太陽電池モジュール302の間に基板6を有する。基板6としては、白板ガラスを用いることが望ましく、石英、ソーダライムガラス、化学強化ガラスなどガラス全般、あるいはポリイミド、アクリル等の樹脂等を用いることもできる。サブモジュール303中の太陽電池100の両端は、バスバー304と接続し、バスバー304が複数のサブモジュール303を電気的に並列もしくは直列に接続し、第2太陽電池モジュール302との出力電圧を調整するように構成されていることが好ましい。
(第4実施形態)
第4実施形態は太陽光発電システムに関する。第3実施形態の太陽電池モジュールは、第4実施形態の太陽光発電システムにおいて、発電を行う発電機として用いることができる。実施形態の太陽光発電システムは、太陽電池モジュールを用いて発電を行うものであって、具体的には、発電を行う太陽電池モジュールと、発電した電気を電力変換する手段と、発電した電気をためる蓄電手段又は発電した電気を消費する負荷とを有する。図10に実施形態の太陽光発電システム400の構成図を示す。図10の太陽光発電システムは、太陽電池モジュール401(300)と、コンバーター402と、蓄電池403と、負荷404とを有する。蓄電池403と負荷404は、どちらか一方を省略しても良い。負荷404は、蓄電池403に蓄えられた電気エネルギーを利用することもできる構成にしてもよい。コンバーター402は、DC-DCコンバーター、DC-ACコンバーター、AC-ACコンバーターなど変圧や直流交流変換などの電力変換を行う回路又は素子を含む装置である。コンバーター402の構成は、発電電圧、蓄電池403や負荷404の構成に応じて好適な構成を採用すればよい。
太陽電池モジュール300に含まれる受光したサブモジュール301に含まれる太陽電池セルが発電し、その電気エネルギーは、コンバーター402で変換され、蓄電池403で蓄えられるか、負荷404で消費される。太陽電池モジュール401には、太陽電池モジュール401を常に太陽に向けるための太陽光追尾駆動装置を設けたり、太陽光を集光する集光体を設けたり、発電効率を向上させるための装置等を付加することが好ましい。
太陽光発電システム400は、住居、商業施設や工場などの不動産に用いられたり、車両、航空機や電子機器などの動産に用いられたりすることが好ましい。また、太陽光発電システム400は、得られた電力で水電解をして燃料電池用の水素製造等に利用することもできる。実施形態の変換効率に優れた光電変換素子を太陽電池モジュールに用いることで、発電量の増加が期待される。
以下、実施例に基づき本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
実施例1の太陽電池は、光透過性太陽電池の例である。ガラス基板上に、裏面側の積層タイプのp電極として、ガラスと接する側にITO透明導電膜を堆積し、次にITO上にATO(Antimony-doped Tin Oxide)透明導電膜を堆積する。p電極上には、室温、酸素、アルゴンガス雰囲気中でスパッタリング法により2nm程度のSiO薄膜を成膜する。その後、酸素、アルゴンガス雰囲気中でスパッタリング法により500℃で加熱してCuO光吸収層を成膜する。更に、室温でCVD法により、n型層としてZnGeO酸化物を堆積し、表面側のn電極としてAZO透明導電膜を堆積する。
p電極と接する側の光吸収層にSiを高ドープすることで、p電極表面での再結合が抑制されて、短絡電流が改善する。n電極側から光が入射した場合は、p+型領域を形成しない場合(SiO薄膜を形成しない場合)と比べて、短絡電流、FF(フィルファクター)、Vが向上し、変換効率が1.4倍に改善する。p電極側から光が入射した場合は、p+型領域を形成しない場合(SiO薄膜を形成しない場合)と比べて、短絡電流が向上し、変換効率が1.7倍に改善する。
(実施例2)
実施例2の太陽電池は、光透過性太陽電池の例である。ガラス基板上に、裏面側の積層タイプのp電極として、ガラスと接する側にITO透明導電膜を堆積し、次にITO上にATO(Antimony-doped Tin Oxide)透明導電膜を堆積する。p電極上には、室温、酸素、アルゴンガス雰囲気中でスパッタリング法により2nm程度のSiO薄膜を成膜する。その後、酸素、アルゴンガス雰囲気中でスパッタリング法により500℃で加熱してCuO光吸収層を成膜する。更に、室温でCVD法により、n型層としてZnGeO酸化物を堆積し、表面側のn電極としてAZO透明導電膜を堆積する。
p電極と接する側の光吸収層にSiとNを高ドープすることで、p電極表面での再結合が抑制されて、短絡電流が改善する。n電極側から光が入射した場合は、p+型領域を形成しない場合(SiO薄膜を形成しない場合)と比べて、短絡電流、FF(フィルファクター)、Vが向上し、変換効率が1.4倍に改善する。p電極側から光が入射した場合は、p+型領域を形成しない場合(SiO薄膜を形成しない場合)と比べて、短絡電流が向上し、変換効率が1.7倍に改善する。
(実施例3)
実施例3の太陽電池は、光透過性太陽電池の例である。ガラス基板上に、裏面側の積層タイプのp電極として、ガラスと接する側にITO透明導電膜を堆積し、次にITO上にATO(Antimony-doped Tin Oxide)透明導電膜を堆積する。p電極上には、室温、酸素、アルゴンガス雰囲気中でスパッタリング法により2nm程度のSiGe薄膜を成膜する。その後、酸素、アルゴンガス雰囲気中でスパッタリング法により500℃で加熱してCu2O光吸収層を成膜する。更に、室温でCVD法により、n型層としてZnGeO酸化物を堆積し、表面側のn電極としてAZO透明導電膜を堆積する。
p電極と接する側の光吸収層にSiとGeを高ドープすることで、p電極表面での再結合が抑制されて、短絡電流が改善する。n電極側から光が入射した場合は、p+型領域を形成しない場合(SiGe薄膜を形成しない場合)と比べて、短絡電流、FF(フィルファクター)、Vが向上し、変換効率が1.4倍に改善する。p電極側から光が入射した場合は、p+型領域を形成しない場合(SiGe薄膜を形成しない場合)と比べて、短絡電流が向上し、変換効率が1.7倍に改善する。
(実施例4)
実施例4の太陽電池は、光透過性太陽電池の例である。ガラス基板上に、裏面側の積層タイプのp電極として、ガラスと接する側にITO透明導電膜を堆積し、次にITO上にATO(Antimony-doped Tin Oxide)透明導電膜を堆積する。p電極上には、室温、酸素、アルゴンガス雰囲気中でスパッタリング法によりSiGe薄膜を成膜する。その後、酸素、アルゴンガス雰囲気中でスパッタリング法により500℃で加熱してCu2O光吸収層を成膜する。更に、室温でCVD法により、n型層としてZnGeO酸化物を堆積し、表面側のn電極としてAZO透明導電膜を堆積する。Ge/(Zn+Ge)組成比は、0.5乃至3の範囲が望ましく、1乃至2がより好ましい。
p電極と接する側の光吸収層にSi、Ge、Nを高ドープすることで、p電極表面での再結合が抑制されて、短絡電流が改善する。n電極側から光が入射した場合は、p+型領域を形成しない場合(SiGe薄膜を形成しない場合)と比べて、短絡電流、FF(フィルファクター)、Vが向上し、変換効率が1.4倍に改善する。p電極側から光が入射した場合は、p+型領域を形成しない場合(SiGe薄膜を形成しない場合)と比べて、短絡電流が向上し、変換効率が1.7倍に改善する。
(実施例5)
実施例5の太陽電池は、光透過性太陽電池の例である。ガラス基板上に、裏面側の積層タイプのp電極として、ガラスと接する側にITO透明導電膜を堆積し、次にITO上にATO(Antimony-doped Tin Oxide)透明導電膜を堆積する。p電極上には、パッシベーション層として部分的にコンタクトホールの開いたHfO層を形成する(パッシベーション層の作製法の一例:p電極上にフォトレジストを塗布し、パターニングして、コンタクホール部分にレジストを残す。その後全面にHfOxをスパッタ成膜し、次にレジストを溶剤で溶かしてHfO層をリフトオフすることで、部分的にコンタクトホールが空いたHfO層を形成)。
p電極上には、室温、酸素、アルゴンガス雰囲気中でスパッタリング法によりSiO薄膜を成膜する。その後、酸素、アルゴンガス雰囲気中でスパッタリング法により500℃で加熱してCu2O光吸収層を成膜する。更に、室温でCVD法により、n型層としてZnGeO酸化物を堆積し、表面側のn電極としてAZO透明導電膜を堆積する。Ge/(Zn+Ge)組成比は、0.5乃至3の範囲が望ましく、1乃至2がより好ましい。
p電極と接する側の光吸収層にSiとNを高ドープし、さらにパッシベーション層でp電極とp層のコンタクト面積を減じることで、p電極表面での再結合が一層抑制されて、短絡電流が改善する。n電極側から光が入射した場合は、p+型領域を形成しない場合(SiO薄膜を形成しない場合)と比べて、短絡電流、FF(フィルファクター)、Vが向上し、変換効率が1.4倍に改善する。p電極側から光が入射した場合は、p+型領域を形成しない場合(SiO薄膜を形成しない場合)と比べて、短絡電流が向上し、変換効率が1.7倍に改善する。
(参考例1)
参考例1の太陽電池は、可視光に対して不透明な、非光透過性太陽電池の例である。ガラス基板上に、裏面側の積層タイプのp電極として、ガラスと接する側に接着層としてTiを堆積し、次にTi上にAuを堆積する。p電極上には、室温、酸素、アルゴンガス雰囲気中でスパッタリング法によりSiOx薄膜を成膜する。その後、酸素、アルゴンガス雰囲気中でスパッタリング法により500℃で加熱してCu2O光吸収層を成膜する。更に、室温でCVD法により、n型層としてZnGeO酸化物を堆積し、表面側のn電極としてAZO透明導電膜を堆積する。Ge/(Zn+Ge)組成比は、0.5乃至3の範囲が望ましく、1乃至2がより好ましい。
p電極と接する側の光吸収層にSiを高ドープすることで、p電極表面での再結合が抑制されて、短絡電流が改善する。
(実施例6)
実施例6の太陽電池は、実施例1の太陽電池をタンデム太陽電池のトップセルに用いた例である。トップセルの構成は、実施例1と同じである。
タンデム太陽電池を構成するために、ボトムセルには単体での変換効率が22%の単結晶Siを用い、トップセルとボトムセルを積層して、電気的に並列に接続した。なお、両者の出力電圧が一致するように、トップセルのセル数mとボトムセルのセル数nを、m×出力V(トップセル)=n×V(ボトムセル)となるように調整している。
太陽電池特性を調べた結果、1sunの擬似太陽光を照射することで、p+型領域がない太陽電池を用いた多接合型太陽電池と比べて、トップセル単体として効率が約10%向上し、タンデム太陽電池としても効率が向上する。
明細書中一部の元素は、元素記号のみで示している
以上、本発明の実施形態を説明したが、本発明は上記実施形態そのままに限定解釈されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成することができる。例えば、変形例の様に異なる実施形態にわたる構成要素を適宜組み合わせても良い。
100,101…太陽電池(第1太陽電池)、1…p電極、2…p型光吸収層、2a…p+型領域、2b…パッシベーション層、3…n型層、4…n電極、
200…多接合型太陽電池、201…第2太陽電池、
300…太陽電池モジュール、6…基板、301第1太陽電池モジュール、302…第2太陽電池モジュール、303…サブモジュール、304…バスバー、
400…太陽光発電システム、401…太陽電池モジュール、402…コンバーター、403…蓄電池、404…負荷

Claims (16)

  1. p電極と、
    前記p電極と直接的に接し、Cuを主成分とする金属の酸化物の半導体層であるp型光吸収層と、
    n型層と、
    n電極と、を有し、
    前記p型光吸収層と前記n電極との間に前記n型層が配置され、
    前記p型光吸収層と前記p電極の界面から前記n型層方向に存在する領域はp型ドーパントを含むp+型領域であり、
    前記p+型領域は前記界面を1端と、他端を30nmから70nmまでの範囲に有し、
    前記p電極は酸化物透明導電膜を含む透明電極である太陽電池。
  2. 前記p型ドーパントは、Si、Ge及びNからなる群より選ばれる1種以上の元素である請求項1に記載の太陽電池。
  3. p電極と、
    前記p電極と直接的に接したp型光吸収層と、
    n型層と、
    n電極と、を有し、
    前記p型光吸収層と前記n電極との間に前記n型層が配置され、
    前記p型光吸収層と前記p電極の界面から前記n型層方向に存在する領域はSiをp型ドーパントとして含むp+型領域であり、
    前記p+型領域は前記界面を1端と、他端を30nmから70nmまでの範囲に有し
    前記p電極は酸化物透明導電膜を含む透明電極である太陽電池。
  4. 前記p+型領域中の前記p型ドーパントの最低濃度は、1.0×1018atoms/cm以上5.0×1018atoms/cm以下であり、
    前記p+型領域中の前記p型ドーパントの最高濃度は、5.0×1019atoms/cm以上1.0×1021atoms/cm以下である請求項1ないし3のいずれか1項に記載の太陽電池。
  5. 前記p+型領域中の前記p型ドーパントの平均濃度は1.0×1019atoms/cm以上1.0×1020atoms/cm以下である請求項1ないし4のいずれか1項に記載の太陽電池。
  6. 前記p型ドーパントの最高濃度となる位置は、前記p+型領域の前記界面側に存在し、
    前記p型ドーパントの最低濃度となる位置は、前記p+型領域の前記n型層側に存在する請求項1ないし5のいずれか1項に記載の太陽電池。
  7. 前記p+型領域中の前記p型ドーパントの平均濃度は、前記p+型領域中の前記p型ドーパントの最低濃度の5倍以上100倍以下であり、
    前記p+型領域中の前記p型ドーパントの最高濃度は、前記p+型領域の前記p型ドーパントの平均濃度の5倍以上100倍以下であり、
    前記p+型領域中の前記p型ドーパントの最高濃度は、前記p+型領域の前記p型ドーパントの最低濃度の25倍以上1000倍以下である請求項1ないし6のいずれか1項に記載の太陽電池。
  8. 前記p+型領域中の前記p型ドーパントの平均濃度は、前記p+型領域中の前記p型ドーパントの最低濃度の10倍以上100倍以下であり、
    前記p+型領域中の前記p型ドーパントの最高濃度は、前記p+型領域の前記p型ドーパントの平均濃度の10倍以上100倍以下であり、
    前記p+型領域中の前記p型ドーパントの最高濃度は、前記p+型領域の前記p型ドーパントの最低濃度の100倍以上1000倍以下である請求項1ないし7のいずれか1項に記載の太陽電池。
  9. 前記p型光吸収層の厚さは、1,000nm以上10,000nm以下である請求項1ないし8のいずれか1項に記載の太陽電池。
  10. 前記p電極と前記p型光吸収層の間にメッシュ状、ドット状又はライン状の絶縁膜が配置される請求項1ないし9のいずれか1項に記載の太陽電池。
  11. 前記p電極から前記n電極に向かう方向において、前記絶縁膜と前記p型光吸収層が接している面積は、前記絶縁膜と前記p型光吸収層が接している前記面積と前記p型光吸収層と前記p電極が接している面積の和の80%以上95%以下である請求項10に記載の太陽電池。
  12. 請求項1ないし11のいずれか1項に記載の太陽電池と、
    請求項1ないし11のいずれか1項に記載の太陽電池の光吸収層よりもバンドギャップの小さい光吸収層を有する太陽電池とを有する多接合型太陽電池。
  13. 前記請求項1ないし11のいずれか1項に記載の太陽電池の前記p型光吸収層よりもバンドギャップの小さい光吸収層を有する太陽電池の光吸収層は、化合物半導体層、結晶シリコン及びペロブスカイト型化合物からなる群より選ばれる1種である請求項12に記載の多接合型太陽電池。
  14. 請求項1ないし11のいずれか1項に記載の太陽電池を用いた太陽電池モジュール。
  15. 請求項12又は13に記載の多接合型太陽電池を用いた太陽電池モジュール。
  16. 請求項14又は15に記載の太陽電池モジュールを用いて太陽光発電を行う太陽光発電システム。
JP2020506369A 2018-09-19 2018-09-19 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム Active JP7102504B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034689 WO2020059053A1 (ja) 2018-09-19 2018-09-19 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Publications (2)

Publication Number Publication Date
JPWO2020059053A1 JPWO2020059053A1 (ja) 2020-12-17
JP7102504B2 true JP7102504B2 (ja) 2022-07-19

Family

ID=69887020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506369A Active JP7102504B2 (ja) 2018-09-19 2018-09-19 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Country Status (5)

Country Link
US (1) US11810993B2 (ja)
EP (1) EP3855510A4 (ja)
JP (1) JP7102504B2 (ja)
CN (1) CN111279492B (ja)
WO (1) WO2020059053A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145396A (ja) 2019-02-28 2020-09-10 株式会社東芝 積層薄膜の製造方法、太陽電池の製造方法及び太陽電池モジュールの製造方法
JP7330004B2 (ja) 2019-07-26 2023-08-21 株式会社東芝 光電変換層、太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
EP4106020A4 (en) * 2020-10-09 2023-10-18 Kabushiki Kaisha Toshiba SOLAR CELL, MULTI-JUNCTION SOLAR CELL, SOLAR CELL MODULE AND SOLAR POWER GENERATION SYSTEM
WO2022074852A1 (ja) * 2020-10-09 2022-04-14 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
WO2022074850A1 (ja) * 2020-10-09 2022-04-14 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JPWO2023181187A1 (ja) * 2022-03-23 2023-09-28

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101200A1 (ja) 2005-03-24 2006-09-28 Kyocera Corporation 光電変換素子とその製造方法、及びこれを用いた光電変換モジュール
US20140238847A1 (en) 2013-02-26 2014-08-28 Samsung Electronics Co., Ltd. Light absorbing layer for photoelectrode structure, photoelectrode structure including the same, and photoelectrochemical cell including the photoelectrode structure
JP2014170865A (ja) 2013-03-05 2014-09-18 Panasonic Corp 光起電力装置
JP2015079881A (ja) 2013-10-17 2015-04-23 独立行政法人産業技術総合研究所 Cu2O膜をp−型の半導体層として具備する半導体素子の構造とその作製方法
JP2016122749A (ja) 2014-12-25 2016-07-07 京セラ株式会社 太陽電池素子および太陽電池モジュール
JP2017054917A (ja) 2015-09-09 2017-03-16 国立大学法人豊橋技術科学大学 光電変換層及び光電変換層の製造方法
JP2017098479A (ja) 2015-11-27 2017-06-01 学校法人金沢工業大学 光電変換素子、タンデム型光電変換素子および光充電型バッテリー装置
WO2018071509A1 (en) 2016-10-12 2018-04-19 First Solar, Inc. Photovoltaic device with transparent tunnel junction

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
US8283557B2 (en) * 2009-03-10 2012-10-09 Silevo, Inc. Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
US9070811B2 (en) * 2012-01-27 2015-06-30 PLANT PV, Inc. Multi-crystalline II-VI based multijunction solar cells and modules
US20150083212A1 (en) 2013-09-23 2015-03-26 Markus Eberhard Beck Thin-film photovoltaic devices with discontinuous passivation layers
JP7064823B2 (ja) * 2016-08-31 2022-05-11 株式会社マテリアル・コンセプト 太陽電池及びその製造方法
JP2019057536A (ja) 2017-09-19 2019-04-11 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP6951448B2 (ja) 2018-01-29 2021-10-20 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
WO2019146119A1 (ja) 2018-01-29 2019-08-01 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP6759464B2 (ja) 2018-03-20 2020-09-23 株式会社東芝 多接合型太陽電池モジュール及び太陽光発電システム
JP6864642B2 (ja) 2018-03-22 2021-04-28 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101200A1 (ja) 2005-03-24 2006-09-28 Kyocera Corporation 光電変換素子とその製造方法、及びこれを用いた光電変換モジュール
US20140238847A1 (en) 2013-02-26 2014-08-28 Samsung Electronics Co., Ltd. Light absorbing layer for photoelectrode structure, photoelectrode structure including the same, and photoelectrochemical cell including the photoelectrode structure
JP2014170865A (ja) 2013-03-05 2014-09-18 Panasonic Corp 光起電力装置
JP2015079881A (ja) 2013-10-17 2015-04-23 独立行政法人産業技術総合研究所 Cu2O膜をp−型の半導体層として具備する半導体素子の構造とその作製方法
JP2016122749A (ja) 2014-12-25 2016-07-07 京セラ株式会社 太陽電池素子および太陽電池モジュール
JP2017054917A (ja) 2015-09-09 2017-03-16 国立大学法人豊橋技術科学大学 光電変換層及び光電変換層の製造方法
JP2017098479A (ja) 2015-11-27 2017-06-01 学校法人金沢工業大学 光電変換素子、タンデム型光電変換素子および光充電型バッテリー装置
WO2018071509A1 (en) 2016-10-12 2018-04-19 First Solar, Inc. Photovoltaic device with transparent tunnel junction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, Yun Seog et al.,Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells,Journal of Materials Chemistry A,2013年12月28日,Vol. 1, No. 48,pp. 15416-15422,DOI: 10.1039/c3ta13208k
MCSHANE, Colleen M. et al.,Junction studies on electrochemically fabricated p-n Cu2O homojunction solar cells for efficiency enhancement,Physical Chemistry Chemical Physics,Vol. 14, No. 17,2012年05月07日,pp. 6112-6118,DOI: 10.1039/c2cp40502d

Also Published As

Publication number Publication date
US20200194608A1 (en) 2020-06-18
WO2020059053A1 (ja) 2020-03-26
EP3855510A4 (en) 2022-04-13
JPWO2020059053A1 (ja) 2020-12-17
EP3855510A1 (en) 2021-07-28
US11810993B2 (en) 2023-11-07
CN111279492B (zh) 2023-12-05
CN111279492A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP7102504B2 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP6689456B2 (ja) 透明トンネル接合を有する光起電力デバイス
JP6071690B2 (ja) 太陽電池
US11557688B2 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
CN111656538B (zh) 太阳能电池、多结型太阳能电池、太阳能电池模块及太阳光发电系统
EP2136413A2 (en) Photovoltaic device
JP2019057536A (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US11626528B2 (en) Photoelectric conversion layer, solar cell, multi-junction solar cell, solar cell module, and photovoltaic power system
CN115380392A (zh) 太阳能电池、多结型太阳能电池、太阳能电池模块及太阳能发电系统
US11581444B2 (en) Solar cell, multi-junction solar cell, solar cell module, and solar photovoltaic power generation system
CN115244715A (zh) 太阳能电池、多接合型太阳能电池、太阳能电池组件及太阳光发电系统
US11031512B2 (en) Solar cell, multijunction solar cell, solar cell module, and solar power generation system
US20200091365A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
US20230207718A1 (en) Solar cell, method for manufacturing solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US20230215965A1 (en) Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
WO2020250521A1 (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
JP2022063168A (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
JP2020205398A (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7102504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150