JP2014165858A - 光増幅器、光中継伝送装置及び光中継伝送システム - Google Patents

光増幅器、光中継伝送装置及び光中継伝送システム Download PDF

Info

Publication number
JP2014165858A
JP2014165858A JP2013037638A JP2013037638A JP2014165858A JP 2014165858 A JP2014165858 A JP 2014165858A JP 2013037638 A JP2013037638 A JP 2013037638A JP 2013037638 A JP2013037638 A JP 2013037638A JP 2014165858 A JP2014165858 A JP 2014165858A
Authority
JP
Japan
Prior art keywords
optical
wavelength
optical signal
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013037638A
Other languages
English (en)
Other versions
JP2014165858A5 (ja
JP6054775B2 (ja
Inventor
Masayuki Oishi
将之 大石
Kosuke Nishimura
公佐 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2013037638A priority Critical patent/JP6054775B2/ja
Publication of JP2014165858A publication Critical patent/JP2014165858A/ja
Publication of JP2014165858A5 publication Critical patent/JP2014165858A5/ja
Application granted granted Critical
Publication of JP6054775B2 publication Critical patent/JP6054775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】 光中継器で使用可能な光増幅器において、増幅すべき複数の波長帯に対応する複数の光信号を、より簡易な構成で一括して増幅するための技術を提供する。
【解決手段】本発明の光増幅器は、それぞれが複数の光信号に対応する複数の波長帯のうちの1つの波長帯の光信号を増幅する、カスケード接続された複数の光増幅部を備え、これらの光増幅部は、複数の光信号が入力される光入力部に対して接続される。また、複数の光増幅部のうちの隣り合う2つの光増幅部の間に、複数の第1光反射部を、光信号の伝搬方向において最後段の光増幅部の後段に、第2光反射部を設けることで、光入力部を介して入力され、光増幅部によって増幅された光信号を、通過してきた光増幅部を再び通過して光入力部を介して出力するように反射させる。
【選択図】図1

Description

本発明は、光増幅器、光中継伝送装置及び光中継伝送システムに関し、より具体的には、それぞれ異なる波長帯の複数の光信号を一括して増幅する光増幅器、並びに当該光増幅器を備える光中継伝送装置及び光中継伝送システムに関する。
光アクセス伝送システムの一つに、一本の光伝送路及び通信帯域を複数の加入者で共有するPON(Passive Optical Network)システムが広く知られている。一般にPONシステムでは、局側の光回線終端装置OLT(Optical Line Terminal)から加入者側の光回線終端装置ONU(Optical Network Unit)へ向かう下り伝送と、ONUからOLTに向かう上り伝送とで、それぞれ最大で1Gbpsの伝送速度で光信号を伝送する。
近年では、通信トラヒックの増大に応えるべく、上り及び下り伝送の最大伝送速度を10倍に拡大した10Gbps級PONシステムが提案されている。10Gbps級PONシステムでは、機器の初期導入コストを抑えるために、既存の光アクセス分配網ODN(Optical Distribution Network)を利用し、かつ、10GbpsのPON機器を1GbpsのPON機器と共存させる構成が提案されている。
一方、PONシステムのインフラコストを削減するため、OLT−ONU間の伝送距離を延長し、OLTの収容加入者数を拡大する技術が提案されている。このようなPONの長延化を実現するために、半導体光増幅器SOA(Semiconductor Optical Amplifier)や光ファイバ増幅器OFA(Optical Fiber Amplifier)のような光増幅器で構成される光中継器をODN内に挿入し、挿入した光中継器で上下光信号を中継増幅する技術が知られている。
PONシステムでは、上下光信号にそれぞれ異なる波長帯の光を使用し、上り光信号と下り光信号との間の干渉を回避している。更に、1GbpsのPON機器と10GbpsのPON機器とを共存させる構成では、1Gbpsの上り及び下り伝送用に2つの波長の光を使用するのに加えて、10Gbpsの下り伝送用に、それらと異なる波長の光を使用する。なお、10Gbpsの上り伝送は、既存1GbpsのPON機器と同じ波長帯を使用することが一般的である。したがって、10Gbps及び1Gbpsの共存システムにおいて中継増幅を実現するためには、少なくとも3つの波長帯において中継増幅を実行可能な光増幅器がそれぞれ必要となる。
非特許文献1には、ダイプレクサで分離した上下光信号を、それぞれの波長帯に対応した光増幅器で増幅し、ダイプレクサで再度合波して中継増幅する技術が記載されている。また、非特許文献2には、10Gbps及び1Gbpsの共存システムにおける下り伝送に対して、半値幅の広い波長帯域を有するSOAを利用し、2つの波長の下り光信号を一括増幅する技術が記載されている。
ITU-T Recommendation G.986.6, "Gigabit-capable passive optical networks (GPON): Reach extension"(2008). F. Saliou et al., "Single SOA to Extend Simultaneously the Optical Budget of Coexisting G-PON and 10G-PON,"Proc. of ECOC2010, paper Tu.5.B.5(2010).
非特許文献1に記載の技術を10Gbps及び1Gbpsの共存システムに適用する場合、それぞれの波長帯の光信号を中継増幅するために、光増幅器を3つ用意しなければならない。また、非特許文献2に記載の技術によっても、10Gbps及び1Gbpsの下り光信号を1つのSOAのみで増幅可能となる一方、上り中継増幅用のSOAと合わせて、依然として2つのSOAが必要となる。このような場合、光中継器の構成が複雑となるだけでなく、各光増幅器を個別に保守・管理する必要があるために、光中継器の保守・管理に要するコストが増大しうる。このため、光中継器のような能動光デバイスを上述のようなPONシステムに適用するためには、光中継器のサイズを可能な限り小さくするとともに、光中継器の構成として、保守・運用管理ができるだけ容易となる構成を採用することが望ましい。
本発明は、上述の課題に鑑みてなされたものである。本発明は、光中継器で使用可能な光増幅器において、増幅すべき複数の波長帯に対応する複数の光信号を、より簡易な構成で一括して増幅するための技術を提供することを目的としている。
本発明は、例えば光増幅器として実現できる。本発明の一態様の係る光増幅器は、それぞれ異なる波長帯の、波長多重された複数の光信号を一括して増幅する光増幅器であって、前記複数の光信号が入力される光入力部からカスケード接続されており、それぞれが前記複数の光信号に対応する複数の波長帯のうちの1つの波長帯の光信号を増幅する複数の光増幅手段と、前記複数の光増幅手段のうちの隣り合う2つの光増幅手段の間にそれぞれ設けられ、それぞれが、前記光入力部を介して入力される光信号の伝搬方向において前段に位置する光増幅手段によって増幅された光信号に対応する特定の波長帯の光信号を反射させるとともに、当該特定の波長帯以外の波長帯の光信号を通過させる複数の第1光反射手段と、前記伝搬方向において、前記複数の光増幅手段のうちの最後段の光増幅手段の後段に設けられ、前記複数の光増幅手段を通過した光信号を反射させる第2光反射手段とを備え、前記第1光反射手段及び前記第2光反射手段は、前記複数の光増幅手段によって増幅された複数の光信号が、通過してきた光増幅手段を再び通過して前記光入力部を介して出力されるよう、前記光入力部の方向へ光信号を反射させることを特徴とする。
本発明によれば、光中継器で使用可能な光増幅器において、増幅すべき複数の波長帯に対応する複数の光信号を、より簡易な構成で一括して増幅するための技術を提供できる。これにより、光中継器において光増幅器の監視がより容易になるため、光中継器の保守・運用コストを低減することが可能になる。
本発明の実施例1に係る半導体光デバイスの構成図。 本発明の実施例1に係る光中継伝送システムの概略的な構成を示すブロック図。 光中継増幅前後の光スペクトラムの一例を示す図。 本発明の実施例2に係る半導体光デバイスの構成図。 本発明の実施例3に係る光ファイバ増幅器の構成図。
以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。
まず、本発明の実施形態に係る基本概念について説明する。本実施形態では、光中継伝送システム内の光中継器(光中継伝送装置)で使用される光増幅器において、増幅すべき複数の波長帯に対応する複数の光信号を、より簡易な構成で一括して増幅することを狙いとしている。具体的には、本実施形態に係る光増幅器は、それぞれが複数の光信号に対応する複数の波長帯のうちの1つの波長帯の光信号を増幅する、カスケード(縦続)接続された複数の光増幅部で構成される。また、これらのカスケード接続された複数の光増幅部は、複数の光信号が入力される光入力部に対して接続される。
本実施形態では、光入力部を介して入力され、光増幅部によって増幅された光信号を、通過してきた光増幅部を再び通過して光入力部を介して出力させることによって、光入力部を光出力部としても使用する。これにより、光入力部及び光出力部(入出力ポート)を個別に設ける必要がなくなるため、光増幅器をより簡易な構成にすることが可能になる。
これを達成するために、本実施形態では、複数の光増幅部のうちの隣り合う2つの光増幅部の間に、複数の第1光反射部を、光信号の伝搬方向において最後段の光増幅部の後段に、第2光反射部を設ける。第1光反射部は、光信号の伝搬方向において前段に位置する光増幅部によって増幅された光信号に対応する特定の波長帯の光信号を反射させる一方、当該特定の波長帯以外の波長帯の光信号を通過させるように構成されればよい。また、第2光反射部は、複数の光増幅部を最終的に通過してきた光信号を反射させるように構成されればよい。
このように、それぞれ異なる波長帯の、波長多重された複数の光信号を、波長帯ごとに個別に増幅する複数の光増幅部をカスケード接続するとともに、光入力部と光出力部とを共通化することで、光増幅器の構成をより簡易な構成とすることが可能である。
[実施例1]
以下では、本発明の具体的な実施例について説明する。まず、光増幅器を1つの半導体光増幅器(SOA)として構成した例を、実施例1として説明する。
<光増幅器の構成>
図1は、本実施例に係る半導体光デバイスの構成図である。本実施例では、10Gbps及び1Gbpsの共存システムに適用する3つの波長帯に対応した半導体光デバイスについて説明するが、波長帯の数に原理上制限はなく、それ以上の波長帯に対応した半導体光デバイスであってもよい。なお、図1に示すSOA10は、後述するように、(図2に示す光中継伝送装置100のような)光中継器に実装可能である。
SOA10は、一端が低反射コーティングなどで形成される、光信号の反射を防ぐための反射防止膜12で構成され、他端が反射膜24で構成される。反射膜24は、SOA10に入射する光信号を全反射させるもので、光反射鏡などで構成される。SOA10に入射する光信号は反射防止膜12を介してSOA10内に入射するため、本実施例において反射防止膜12は、SOA10の光入力部に相当する。
SOA10は、例えばp型InP(インジウム・リン)から成るp型半導体14、n型InPから成るn型半導体16、InGaAsP(インジウム・ガリウム・砒素・リン)から成る活性層18−1〜18−3とで構成される。図1に示すように、活性層18−1〜18−3は、光信号の伝搬方向において、反射防止膜12(光入力部)からカスケード接続された構成を有する。活性層18−1〜18−3は、上述の複数の光増幅部として機能し、複数の波長帯のうちの1つの波長帯の光信号をそれぞれ増幅する。また、反射膜24は、活性層18−1〜18−3のうちで、入力された光信号の伝搬方向において最後段の光増幅部に相当する活性層18−3の、当該伝搬方向における後段側の表面に設けられる。波長λ1〜λ3の3つの光信号は、反射防止膜12を通過後、活性層18−1〜18−3においてそれぞれ増幅され、反射膜24で全反射した後、反射防止膜12から出力される。
なお、本実施例(図1)では、説明の便宜上、活性層18−1〜18−3を、p型半導体14及びn型半導体16に比べて大きく図示しているが、実際には、活性層18−1〜18−3はp型半導体14及びn型半導体16に比べて十分に狭い。また、反射防止膜12の反射率は十分に小さいものとし、活性層18−1〜18−3は、その内部で共振が起こらないように構成されているものとする。
本実施例における波長λ1〜λ3は、10Gbps及び1Gbpsの伝送速度が共存するPONシステムで用いられる光信号の波長に相当する。具体的には、λ1は、10Gbps及び1Gbpsの上り伝送に用いる1260〜1360nm、λ2は、1Gbpsの下り伝送に用いる1480〜1500nm、λ3は、10Gbpsの下り伝送に用いる1575〜1580nmの波長範囲内の波長とする。
活性層18−1〜18−3は、それぞれ波長λ1〜λ3の光信号に対して増幅作用を与えるように構成されている。また、各活性層は、結合面20−1及び20−2において、バットジョイント手法により光学的に結合されている。活性層18−1〜18−3にはそれぞれ、上部電極26−1〜26−3と、グランドに接続される下部電極28とが設けられている。上部電極26−1〜26−3には、各波長帯において適切な増幅利得を得るために、SOA10外部のバイアスコントローラなどからプラス極性のバイアス電圧が印加される。
結合面20−1及び20−2近傍には、それぞれブラッグ波長λ1及びλ2の回折格子で構成された分布ブラッグ反射鏡(DBR:Distributed Bragg Reflector)22−1及び22−2が設けられる。DBR22−1及び22−2は、複数の活性層のうちの2つの活性層の間の結合面に設けられた、特定の波長帯の光信号をブラッグ反射させる反射鏡であり、上述の第1光反射部として機能する。
波長λ1の10Gbps及び1Gbpsの上り光信号は、反射防止膜12を介してSOA10に入射すると、活性層18−1において増幅された後に、DBR22−1で反射する。DBR22−1で光入力部の方向へ反射した当該光信号は、通過してきた活性層18−1を再び通過して反射防止膜12を介して出力される。
波長λ2の1Gbpsの下り光信号は、反射防止膜12を介してSOA10に入射すると、活性層18−1を通過して、活性層18−2で増幅された後、DBR22−2で反射する。DBR22−2で光入力部の方向へ反射した当該光信号は、通過してきた活性層18−1及び18−2を再び通過して、反射防止膜12を介して出力される。
同様に、波長λ3の10Gbpsの下り光信号は、反射防止膜12を介してSOA10に入射すると、活性層18−1及び18−2を通過して、活性層18−3で増幅された後、反射膜24で反射する。なお、反射膜24は、上述の第2光反射部として機能する。反射膜24で光入力部の方向へ反射した当該光信号は、通過してきた活性層18−1〜18−3を再び通過して、反射防止膜12を介して出力される。
本実施例において、DBR22−1及び22−2は、光信号の伝搬方向において直前に位置する活性層(光増幅部)によって増幅された光信号に対応する波長帯の光信号を、光入力部の方向へ反射する。ここで、DBR22−1及び22−2の反射率は、いずれも90%以上であるとし、100%に可能な限り近いことが望ましい。DBR22−1及び22−2と反射膜24との間で、光信号が多重反射を起こす影響も考えられるが、それぞれの反射率または反射減衰量が十分確保できていれば、その影響を無視することが可能である。なお、上部電極26−1〜26−3に印加するバイアス電圧をそれぞれ制御することで、活性層18−1〜18−3による光増幅の増幅利得を制御し、各波長帯に適した増幅利得を設定することができる。
<光中継伝送システムの構成>
図2は、本実施例に係る光中継伝送システムの概略的な構成を示すブロック図である。本実施例に係る光中継伝送システムは、ONU120−1〜120−nとOLT110との間の伝送路上に、光中継伝送装置100を備える。光中継伝送装置100は、SOA10(図1)を備え、ONU120−1〜120−nとOLT110との間で伝送される、それぞれ異なる波長帯の、波長多重された複数の光信号を、SOA10によって一括して増幅して中継伝送する。
OLT110は、波長λ2の1Gbpsの下り光信号と、波長λ3の10Gbpsの下り光信号を送信可能で、かつ、波長λ1の10Gbps及び1Gbpsの上り光信号を受信可能である。一方、ONU120−1〜120−nは、10Gbpsまたは1Gbpsの上り及び下り光信号を送受信可能であるものとし、それらが混在しているものとする。したがって、伝送速度1GbpsのONUは、波長λ1の1Gbps上り光信号を送信可能で、かつ、波長λ2の1Gbps下り光信号のみを選択的に受信可能である。また、伝送速度10GbpsのONUは、波長λ1の10Gbps上り光信号を送信可能で、かつ、波長λ3の10Gbps下り光信号のみを選択的に受信可能である。
OLT110は、光ファイバ112を介して光中継伝送装置100に接続される。また、ONU120−1〜120−nは、分岐光ファイバ118−1〜118−nを介して光カプラ(OC:Optical Coupler)116に接続され、OC116は光ファイバ114を介して光中継伝送装置100に接続される。光中継伝送装置100は、前述のSOA10を内蔵し、OLT110が送信する波長λ2及びλ3の下り光信号と、ONU120−1〜120−nが送信する波長λ1の上り光信号をそれぞれ中継増幅する。
OLT110が送信する波長λ2及びλ3の下り光信号は、光ファイバ112を伝搬した後、光中継伝送装置100の光入出力部108−1に入射する。光入出力部108−1は、光ファイバのコネクタ間接続などでよい。光中継伝送装置100に入射した下り光信号は、光サーキュレータ106−1を介して波長分割多重光カプラ(WDM OC:Wavelength Division Multiplexing OC)104−1に入射する。光サーキュレータ106−1は、あるポートから入力した光信号を所定のポートからのみ出力する受動光部品である。
同様に、ONU120−1〜120−nが送信する波長λ1の上り光信号は、それぞれ分岐光ファイバ118−1〜118−nを伝搬してOC116で時間軸上に多重された後、光ファイバ114を介して光中継伝送装置100の光入出力部108−2に入射する。光中継伝送装置100に入射した上り光信号は、光サーキュレータ106−2を介してWDM OC104−1に入射する。
WDM OC104−1は、光中継増幅前の波長λ1〜λ3の上り及び下り光信号を波長合波し、合波した光信号を、光サーキュレータ106−3を介してSOA10に供給する。即ち、光サーキュレータ106−3は、WDM OC104−1から出力された、波長多重された波長λ1〜λ3の複数の光信号を、SOA10の光入力部(反射防止膜12)を介してSOA10に入力する。SOA10は、監視・制御装置102により駆動される。監視・制御装置102は、バイアスコントローラなどを備え、必要に応じてSOA10の動作温度、光入出力パワー、増幅利得などを監視する。なお、監視・制御装置102の監視項目に応じて、各種センサを光中継伝送装置100の内部に適宜設置してもよい。
SOA10は、図1を用いて上述したように、波長λ1〜λ3の3つの波長帯の光信号を、一括して中継増幅する。増幅後の光信号は、光サーキュレータ106−3を介してWDM OC104−2に入射する。即ち、光サーキュレータ106−3は、SOA10の光入力部(反射防止膜12)を介して出力された光増幅後の複数の光信号を、SOA10に入力される複数の光信号と分離して、WDM OC104−2に出力する。
WDM OC104−2は、WDM OC104−1と同等の光学特性を持つ受動波長合分波素子であり、増幅された波長λ1〜λ3の光信号を波長分波し、波長λ1の上り光信号を光サーキュレータ106−1に、波長λ2及びλ3の下り光信号を光サーキュレータ106−2にそれぞれ供給(出力)する。増幅された波長λ1の上り光信号は、光入出力部108−1から出射し、光ファイバ112を伝搬してOLT110に入射する。同様に、増幅された波長λ2及びλ3の下り光信号は、光ファイバ114を伝搬後、OC116において分岐され、分岐光ファイバ118−1〜118−nを介してONU120−1〜120−nに到達する。
図3は、光中継増幅前後における各波長帯の光信号の光スペクトラムの一例を示す。図3(a)に示す光中継増幅前の光スペクトラムは、SOA10による光中継増幅後には同(b)に示すように、各波長帯の光信号にSOA10の自然放出光(ASE:Amplified Spontaneous Emission)による雑音が重畳される。ASE雑音は、PONシステムの光伝送品質を劣化させる恐れがあるが、WDM OC104−2を通過後に、例えば図3(c)及び(d)に示す光スペクトラムとなるようにWDM OC104−2の通過帯域を設計しておくことで、ASE雑音の影響を抑えることができる。ただし、WDM OC104−1及び104−2の通過帯域は、PONシステムにおける上下光信号の波長範囲をそれぞれ満足する必要がある。
以上説明したように、本実施例によれば、複数の波長帯に対応する複数の光信号を、単一の半導体光デバイスで一括して増幅することが可能である。また、本実施例に係るSOA10をPONシステムに適用することで、複数の波長帯に対応する複数の光信号を、単一の半導体光デバイスで中継増幅可能となる。これにより、光中継伝送装置100(光中継器)において光増幅器の監視がより容易になるため、光中継器の保守・運用コストを低減することが可能になる。更に、SOA10及び監視・制御装置102以外は、全て受動光部品のみで光中継伝送装置100を構成可能である。
なお、本実施例では、SOA10をPONシステムに適用することを想定し、1260〜1360nm、1480〜1500nm、及び1575〜1580nmの3つの波長帯を例に説明した。しかし、本実施例に係るSOA10によって増幅可能な光信号の波長帯は、これらの波長帯に制限されることはない。このため本実施例に係るSOA10は、他の波長帯を使用する光伝送システムにも適用可能である。本実施例に係るSOA10によって増幅可能な光信号の数にも制限はない。このため本実施例に係るSOA10は、例えば光放送システムで用いられる1.55μm帯、更には将来のPONシステムで使用される可能性があるその他の波長帯に対しても適用が可能である。
[実施例2]
実施例1では、上述の実施形態を実現するために、光増幅器を単一の半導体光デバイスで構成して、それぞれ異なる波長帯の、波長多重された複数の光信号を一括して増幅する例について説明してきた。しかし、上述の実施形態は、個別の複数の半導体光デバイスをカスケード接続することによっても実現できる。以下では、そのような例を実施例2として説明する。
図4は、本実施例に係る半導体光デバイスの構成図である。実施例1(図1)と特に異なるのは、本実施例に係るSOA10は、実施例1のように1つのSOAとして構成するのではなく、3つのSOA−1〜3をカスケード(縦続)接続した構成を有する点である。また、本実施例に係るSOA10は、DBR22−1及び22−2に代えて、SOA−1とSOA−2の間、及びSOA−2とSOA−3の間にそれぞれ波長選択型ミラー214−1及び214−2が挿入されている点でも実施例1と異なる。なお、波長選択型ミラー214−1及び214−2は、SOA−1〜3のうちの隣り合う2つのSOAの間に接続された、特定の波長帯の光信号を反射させる反射鏡に相当する。
SOA−1〜3は、InPなどから成るp型半導体204−1〜204−3及びn型半導体206−1〜206−3と、InGaAsPなどから成る活性層208−1〜208−3と、上部電極210−1〜210−3及びグランドに接続される下部電極212−1〜212−3とで構成される。上部電極210−1〜210−3にプラスのバイアス電圧が印加することで、活性層208−1〜208−3においてそれぞれ波長λ1〜λ3の光信号が増幅される。
また、SOA−1及びSOA−2の両端は、低反射コーティングなどで形成される反射防止膜200−1〜200−4で構成される。一方、SOA−3は、一端が反射防止膜200−5で構成され、他端が反射膜202で構成される。SOA−3のように一端が反射膜で構成されるSOAは、一般に、反射型半導体光増幅器(RSOA:Reflective SOA)として知られている。
波長選択型ミラー214−1及び214−2はそれぞれ、波長λ1及びλ2の光信号のみを選択的に全反射させる。なお、波長選択型ミラー214−1及び214−2の代わりに、WDMフィルタやファイバ・ブラッグ・グレーティング(FBG:Fiber Bragg Grating)などの受動光部品を用いてもよい。
波長λ1の10Gbps及び1Gbpsの上り光信号は、反射防止膜200−1(光入力部)を介してSOA10に入射すると、活性層208−1において増幅された後、波長選択型ミラー214−1で反射する。波長選択型ミラー214−1で光入力部の方向へ反射した当該光信号は、通過してきた活性層208−1を再び通過して反射防止膜200−1を介して出力される。
波長λ2の1Gbpsの下り光信号は、反射防止膜200−1を介してSOA10に入射すると、活性層208−1を通過して、活性層208−2で増幅された後、波長選択型ミラー214−2で反射する。波長選択型ミラー214−2で光入力部の方向へ反射した当該光信号は、通過してきた活性層208−1及び208−2を再び通過して、反射防止膜200−1を介して出力される。
同様に、波長λ3の10Gbpsの下り光信号は、反射防止膜200−1を介してSOA10に入射すると、活性層208−1及び208−2を通過して、活性層208−3で増幅された後、SOA−3の反射膜202で反射する。なお、SOA−3の反射膜202は、上述の第2光反射部として機能する。SOA−3の反射膜202で光入力部の方向へ反射した当該光信号は、通過してきた活性層208−1〜208−3を再び通過して、反射防止膜200−1を介して出力される。
本実施例に係るSOA10(図4)を用いた光中継伝送システムは、実施例1(図2)と同様に実現することが可能である。
本実施例によれば、複数の半導体光デバイスを使用することになるものの、活性層にDBRを形成する必要がなく、既存のSOAやRSOAを用いることで、PONシステムの中継増幅を容易に実現できる。また、SOA10において光入力部及び光出力部(入出力ポート)を個別に設ける必要がないため、光増幅器を簡易な構成にすることが可能になる。
なお、本実施例では、SOA−3の活性層208−3の、入力された光信号の伝搬方向における後段側の表面に、反射膜202を設けているが、以下のように変形可能である。即ち、SOA−3に、反射膜202に代えて反射防止膜を設けるとともに、SOA−3に対して、後段側に波長選択型ミラー214−1及び214−2のような波長選択型ミラーを接続してもよい。また、波長選択型ミラーは、波長λ3の光信号のみを選択的に反射させるものでもよいし、波長λ3を含む、全ての波長の光を反射させるものでもよい。なお、実施例1の反射膜24についても、これらと同様の変形が可能である。
[実施例3]
複数の波長帯に対応する複数の光信号の増幅には、実施例1及び2のようなSOAに代えて、OFAを利用する構成も考えられる。例えば、PONシステムで使用する波長帯の光信号を増幅可能なOFAとして、10Gbps及び1Gbps上り光信号(λ1:1260〜1360nm)の増幅には、プラセオジム添加光ファイバ増幅器(PDFA:Praseodymium Doped Fiber Amplifier)、1Gbps下り光信号(λ2:1480〜1500nm)の増幅には、ツリウム添加光ファイバ増幅器(TDFA:Thulium-Doped Fiber Amplifier)、10Gbps下り光信号(λ3:1575〜1580nm)の増幅には、L帯エルビウム添加光ファイバ増幅器(L−EDFA:L-band Erbium-Doped Fiber Amplifier)などが適用可能である。
しかし、このような希土類添加型の光ファイバ(光増幅媒体)は、それぞれ固有の波長帯の光を吸収する性質を有している。例えば、TDFAでは波長λ1付近の光を、PDFAでは波長λ3付近の光を、それぞれ吸収してしまう可能性がある。このため、本実施例では、10Gbps級のPONシステムにおける、波長λ1及びλ3の上下光信号の中継増幅に着目し、PDFA及びL−EDFAを組み合せたOFAの構成を例に説明する。
図5は、本発明の実施例3に係る光ファイバ増幅器の構成図である。本実施例に係る光ファイバ増幅器(OFA)300は、波長λ3の光信号を増幅する前段のOFA−1と、波長λ1の光信号を増幅する後段のOFA−2の組合せで構成される。波長多重された波長λ1及びλ3の光信号は、光入力部(図示せず)を介してOFA300に入力されると、まずOFA−1(のWDM OC302−1)に入射する。
OFA−1において、波長λ1及びλ3の光信号は、WDM OC302−1によって、光源(LD:laser Diode)304−1から出力される光と更に波長多重された後、希土類添加光ファイバ306−1を伝搬し、WDM OC302−2に入射する。WDM OC302−2は、入射した光信号を波長合分波する受動光部品であり、波長λ1及びλ3の光信号を波長選択型ミラー308−1に、LD304−1からの光をLD304−2に、それぞれ供給する。同様に、WDM OC302−2に接続されているLD304−2からの光は、希土類添加光ファイバ306−1を伝搬後、WDM OC302−1において波長分離され、LD304−1に入射する。
希土類添加光ファイバ306−1には、波長λ3の光信号を増幅可能な、エルビウム添加光ファイバなどを用いればよい。LD304−1及びLD304−2は、波長λ3の光信号を増幅するための励起光を出力する励起光源として使用される。本実施例では、高い増幅利得を得るため、LD304−1及びLD304−2の両方を用いた双方向励起を行う例を示しているが、そのいずれかを使用しない前方励起または後方励起のみを行ってもよい。また、LD304−1及びLD304−2は、λ3の光信号を増幅可能な1.48μm帯や0.98μm帯の波長の光を励起光として出力できる光源であればよい。
増幅された波長λ3の光信号は、波長選択型ミラー308−1において全反射されてWDM OC302−2に再び入射し、希土類添加光ファイバ306−1を伝搬して更に増幅される。増幅された波長λ3の光信号は、その後、WDM OC302−1及び光入力部(図示せず)を介して出力される。波長選択型ミラー308−1は、波長λ3の光信号のみを選択的に全反射する。波長選択型ミラー308−1の代わりに、WDMフィルタやFBGなどの受動光部品を用いてもよい。
一方、波長λ1の光信号は、OFA−1において、希土類添加光ファイバ306−1を、増幅されることなくそのまま伝搬し、更に波長選択型ミラー308−1も反射されることなく通過して、OFA−2(のWDM OC302−3)に入射する。OFA−2において、なお、波長λ1の光信号は、希土類添加光ファイバ306−1でほとんど吸収されることはない。
OFA−2において、波長λ1の光信号は、WDM OC302−3によって、LD304−3から出力される光と波長多重された後、希土類添加光ファイバ306−2を伝搬し、WDM OC302−4に入射する。WDM OC302−4は、波長λ1の光信号を波長選択型ミラー308−2に、LD304−3からの光をLD304−4に、それぞれ供給する。同様に、WDM OC302−4に接続されているLD304−4からの光は、希土類添加光ファイバ306−2を伝搬後、WDM OC302−3において波長分離され、LD304−3に入射する。
希土類添加光ファイバ306−2には、波長λ1の光信号を増幅可能な、プラセオジム添加光ファイバなどを用いればよい。LD304−3及びLD304−4は、波長λ1の光信号を増幅するための励起光を出力する励起光源として使用される。本実施例では、高い増幅利得を得るため、LD304−3及びLD304−4の両方を用いた双方向励起を行う例を示しているが、そのいずれかを使用しない前方励起または後方励起のみを行ってもよい。また、LD304−3及びLD304−4は、λ1の光信号を増幅可能な0.98μm帯の波長の光を励起光として出力できればよい。
増幅された波長λ1の光信号は、波長選択型ミラー308−2において全反射されてWDM OC302−4に再び入射し、希土類添加光ファイバ306−2を伝搬して更に増幅される。増幅された波長λ1の光信号は、その後、WDM OC302−3及び波長選択型ミラー308−1を通過し、WDM OC302−2を介して希土類添加光ファイバ306−1に入射する。増幅された波長λ1の光信号は、希土類添加光ファイバ306−1を、増幅されることなくそのまま通過し、WDM OC302−1及び光入力部(図示せず)を介して出力される。
波長選択型ミラー308−2は、波長λ1の光信号のみを選択的に全反射するものでもよいし、波長λ1を含めた全ての光を反射するものであってもよい。波長選択型ミラー308−2の代わりに、WDMフィルタやFBGなどの受動光部品を用いてもよい。なお、本実施例で、WDM OC302−1〜4は、LD304−1〜4(励起光源)から出力された励起光を、光増幅のために希土類添加光ファイバ306−1及び306−2(光増幅媒体)に供給する供給手段の一例である。
本実施例では、波長λ1の光信号は、希土類添加光ファイバ306−1においてほとんど吸収されずに伝搬可能であるが、波長λ3の光信号は希土類添加光ファイバ306−2に吸収される可能性がある。このため、本実施例で想定したような条件下では、OFA−1及びOFA−2は図5に示した順番に配置することが望ましいであろう。
本実施例に係るOFA300(図4)を用いた光中継伝送システムは、例えば、図2に示すSOA10に代えてOFA300を用いることで、実施例1(図2)と同様に実現することが可能である。即ち、OFA300において入出力される光信号は、図2と同様、OFA300の外部に光サーキュレータを設けるなどによって分離可能である。本実施例によれば、OFA300を、10GbpsのPONシステムのODN内に挿入することによって、PONシステムをOLT−ONU間の伝送距離を延長することができる。また、入出力ポートを個別に設ける必要がないため、増幅すべき複数の波長帯に対応する複数の光信号を、より簡易な構成で一括して増幅することができる。

Claims (14)

  1. それぞれ異なる波長帯の、波長多重された複数の光信号を一括して増幅する光増幅器であって、
    前記複数の光信号が入力される光入力部からカスケード接続されており、それぞれが前記複数の光信号に対応する複数の波長帯のうちの1つの波長帯の光信号を増幅する複数の光増幅手段と、
    前記複数の光増幅手段のうちの隣り合う2つの光増幅手段の間にそれぞれ設けられ、それぞれが、前記光入力部を介して入力される光信号の伝搬方向において前段に位置する光増幅手段によって増幅された光信号に対応する特定の波長帯の光信号を反射させるとともに、当該特定の波長帯以外の波長帯の光信号を通過させる複数の第1光反射手段と、
    前記伝搬方向において、前記複数の光増幅手段のうちの最後段の光増幅手段の後段に設けられ、前記複数の光増幅手段を通過した光信号を反射させる第2光反射手段と
    を備え、
    前記第1光反射手段及び前記第2光反射手段は、前記複数の光増幅手段によって増幅された複数の光信号が、通過してきた光増幅手段を再び通過して前記光入力部を介して出力されるよう、前記光入力部の方向へ光信号を反射させることを特徴とする光増幅器。
  2. 前記複数の光増幅手段は、それぞれが前記複数の波長帯のうちの1つの波長帯の光信号を増幅する、光学的に結合された複数の活性層を備える半導体光デバイスとして構成され、
    前記複数の第1光反射手段のそれぞれは、前記複数の活性層のうちの2つの活性層の間の結合面に設けられた、前記特定の波長帯の光信号をブラッグ反射させる反射鏡である
    ことを特徴とする請求項1に記載の光増幅器。
  3. 前記複数の光増幅手段のそれぞれは、前記複数の波長帯のうちの1つの波長帯の光信号を増幅する活性層を含む、個別の半導体光デバイスとして構成され、
    前記複数の第1光反射手段のそれぞれは、前記複数の光増幅手段のうちの隣り合う2つの光増幅手段の間に接続された、前記特定の波長帯の光信号を反射させる反射鏡である
    ことを特徴とする請求項1に記載の光増幅器。
  4. 前記第2光反射手段は、前記最後段の光増幅手段に相当する活性層の、前記伝搬方向における後段側の表面に設けられた反射膜であることを特徴とする請求項2または3に記載の光増幅器。
  5. 前記第2光反射手段は、前記最後段の光増幅手段に対して前記伝搬方向における後段側に接続された反射鏡であることを特徴とする請求項2または3に記載の光増幅器。
  6. 前記複数の光増幅手段に対してそれぞれ設けられ、各光増幅手段による光増幅の増幅利得を制御するためのバイアス電圧を各光増幅手段に印加する複数のバイアス電圧印加手段を更に備えることを特徴とする請求項1乃至5のいずれか1項に記載の光増幅器。
  7. 前記光入力部は、光信号の反射を防ぐための反射防止膜で構成されることを特徴とする請求項1乃至8のいずれか1項に記載の光増幅器。
  8. 前記複数の光増幅手段のそれぞれは、
    前記光入力部を介して入力された光信号が入力され、前記複数の波長帯のうちの1つの波長帯の光信号を増幅する希土類添加型の光増幅媒体と、
    前記光増幅媒体による光増幅に対応した波長の励起光を出力する励起光源と、
    前記励起光源から出力された励起光を、前記光増幅のために前記光増幅媒体に供給する供給手段と
    を備えることを特徴とする請求項1に記載の光増幅器。
  9. 前記複数の第1光反射手段のそれぞれは、前記伝搬方向において直前に位置する光増幅手段によって増幅された光信号に対応する波長帯の光信号を、前記光入力部の方向へ反射させることを特徴とする請求項1乃至8のいずれか1項に記載の光増幅器。
  10. 前記第2光反射手段は、前記複数の光信号に対応する複数の波長帯を含む、全ての波長帯の光信号を、前記光入力部の方向へ反射させることを特徴とする請求項1乃至9のいずれか1項に記載の光増幅器。
  11. 前記第2光反射手段は、前記伝搬方向において直前に位置する光増幅手段によって増幅された光信号に対応する波長帯の光信号のみを、前記光入力部の方向へ反射させることを特徴とする請求項1乃至9のいずれか1項に記載の光増幅器。
  12. 請求項1乃至11のいずれか1項に記載の光増幅器を備え、
    複数の加入者側の光回線終端装置と局側の光回線終端装置との間で伝送される、それぞれ異なる波長帯の、波長多重された複数の光信号を、前記光増幅器によって一括して増幅して中継伝送することを特徴とする光中継伝送装置。
  13. 前記加入者側の光回線終端装置から前記局側の光回線終端装置へ伝送される上り光信号と、前記局側の光回線終端装置から前記加入者側の光回線終端装置へ伝送される下り光信号とを波長多重する合波手段と、
    前記光増幅器に接続されており、前記合波手段から出力された、波長多重された複数の光信号を、前記光増幅器の光入力部を介して当該光増幅器に入力するとともに、前記増幅器から前記光入力部を介して出力された光増幅後の複数の光信号を、前記光増幅器に入力される複数の光信号と分離して出力する入出力手段と、
    前記入出力手段から出力された前記光増幅後の前記波長多重された複数の光信号を、上り光信号及び下り光信号に分波して出力する分波手段と
    を更に備えることを特徴とする請求項12に記載の光中継伝送装置。
  14. 複数の加入者側の光回線終端装置と局側の光回線終端装置との間の伝送路上に、請求項12または13に記載の光中継伝送装置を備え、
    前記複数の加入者側の光回線終端装置と前記局側の光回線終端装置との間で伝送される複数の光信号を、前記光中継伝送装置によって中継伝送することを特徴とする光中継伝送システム。
JP2013037638A 2013-02-27 2013-02-27 光増幅器、光中継伝送装置及び光中継伝送システム Active JP6054775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037638A JP6054775B2 (ja) 2013-02-27 2013-02-27 光増幅器、光中継伝送装置及び光中継伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037638A JP6054775B2 (ja) 2013-02-27 2013-02-27 光増幅器、光中継伝送装置及び光中継伝送システム

Publications (3)

Publication Number Publication Date
JP2014165858A true JP2014165858A (ja) 2014-09-08
JP2014165858A5 JP2014165858A5 (ja) 2015-10-01
JP6054775B2 JP6054775B2 (ja) 2016-12-27

Family

ID=51616050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037638A Active JP6054775B2 (ja) 2013-02-27 2013-02-27 光増幅器、光中継伝送装置及び光中継伝送システム

Country Status (1)

Country Link
JP (1) JP6054775B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090644A1 (ja) * 2019-11-08 2021-05-14

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226560A (ja) * 1994-02-14 1995-08-22 Sumitomo Electric Ind Ltd 光ファイバ増幅器
JP2000058953A (ja) * 1998-08-11 2000-02-25 Kdd Corp 光増幅装置
JP2002057392A (ja) * 2000-08-10 2002-02-22 Kddi Submarine Cable Systems Inc 光反射・透過素子及びその素子を用いた光増幅器
JP2004193587A (ja) * 2002-11-28 2004-07-08 Fujitsu Ltd 光増幅器
JP2007324954A (ja) * 2006-06-01 2007-12-13 Sumitomo Electric Ind Ltd 波長多重中継装置及びこれを用いた光通信システム
JP2009055267A (ja) * 2007-08-27 2009-03-12 Kddi Corp 光伝送システム
JP2010171641A (ja) * 2009-01-21 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> 光加入者線終端装置および光加入者システム
JP2011023466A (ja) * 2009-07-14 2011-02-03 Fujitsu Ltd 反射型半導体光増幅器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226560A (ja) * 1994-02-14 1995-08-22 Sumitomo Electric Ind Ltd 光ファイバ増幅器
JP2000058953A (ja) * 1998-08-11 2000-02-25 Kdd Corp 光増幅装置
JP2002057392A (ja) * 2000-08-10 2002-02-22 Kddi Submarine Cable Systems Inc 光反射・透過素子及びその素子を用いた光増幅器
JP2004193587A (ja) * 2002-11-28 2004-07-08 Fujitsu Ltd 光増幅器
JP2007324954A (ja) * 2006-06-01 2007-12-13 Sumitomo Electric Ind Ltd 波長多重中継装置及びこれを用いた光通信システム
JP2009055267A (ja) * 2007-08-27 2009-03-12 Kddi Corp 光伝送システム
JP2010171641A (ja) * 2009-01-21 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> 光加入者線終端装置および光加入者システム
JP2011023466A (ja) * 2009-07-14 2011-02-03 Fujitsu Ltd 反射型半導体光増幅器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090644A1 (ja) * 2019-11-08 2021-05-14
WO2021090644A1 (ja) * 2019-11-08 2021-05-14 日本電気株式会社 ケーブルシステム
JP7375825B2 (ja) 2019-11-08 2023-11-08 日本電気株式会社 ケーブルシステム

Also Published As

Publication number Publication date
JP6054775B2 (ja) 2016-12-27

Similar Documents

Publication Publication Date Title
US9413462B2 (en) Optical amplification repeater and optical transmission station
JP5941150B2 (ja) 共存するgponおよびxgpon光通信システムを配置するための構成
JP5805126B2 (ja) 両方向光通信ネットワークで分布ラマン増幅および遠隔ポンピングを使用する方法および装置
US20050041971A1 (en) Multi-wavelength optical transmitter and bi-directional wavelength division multiplexing system using the same
EP2375602B1 (en) Optical network element and optical transmission system
US6993258B2 (en) WDM transmitter
JP6044311B2 (ja) 増幅装置および通信システム
EP2137848B1 (en) Optical signal amplifier, method of optical amplification and optical network
JP6054775B2 (ja) 光増幅器、光中継伝送装置及び光中継伝送システム
JP2007324954A (ja) 波長多重中継装置及びこれを用いた光通信システム
EP2408125B1 (en) Optical transmitter for wdm passive optical network
US20160182179A1 (en) Apparatus for optical signal amplification
US7145716B2 (en) Multiple stage Raman optical amplifier
KR20080099056A (ko) 원격 펌핑 광증폭 파장 분할 다중화 수동 광 네트워크시스템
JP6470028B2 (ja) 双方向光増幅器
CN112993732B (zh) 一种光放大装置以及通过光放大装置的信号放大方法
Schrenk et al. Wavelength conversion towards Rayleigh backscattering tolerant PONs via four-wave mixing in SOA-based ONUs
KR100603595B1 (ko) 양방향 2단 광증폭기
EP1573869A1 (en) Multiple stage raman optical amplifier
SINGH LONG REACH EDFA/DRA HYBRID AMPLIFIER BASED WDM-PON
JPH03252627A (ja) 光ファイバ増幅器

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6054775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150