JP2014142411A - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JP2014142411A
JP2014142411A JP2013009309A JP2013009309A JP2014142411A JP 2014142411 A JP2014142411 A JP 2014142411A JP 2013009309 A JP2013009309 A JP 2013009309A JP 2013009309 A JP2013009309 A JP 2013009309A JP 2014142411 A JP2014142411 A JP 2014142411A
Authority
JP
Japan
Prior art keywords
electrode
lithium niobate
film
single crystal
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013009309A
Other languages
English (en)
Inventor
Shinji Iwatsuka
信治 岩塚
Kenji Sasaki
権治 佐々木
Mari Taniguchi
真理 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013009309A priority Critical patent/JP2014142411A/ja
Publication of JP2014142411A publication Critical patent/JP2014142411A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】作製が容易で、進行波電極の特性インピーダンスを所定の値に維持した状態で、小型または低駆動電圧の光変調器を提供する。
【解決手段】光変調器は、単結晶基板4と、単結晶基板4の主面上に形成されたエピタキシャル膜であり、リッジ形状部7を有するニオブ酸リチウム膜5と、リッジ形状部7上に形成されたバッファ層6と、バッファ層6上に形成された第1電極2a、2bと、ニオブ酸リチウム膜5の上面および/または段差部と接して形成された第2電極3a、3b、3cとを有する。
【選択図】図2

Description

本発明は、光通信、光計測分野において用いられる光変調器に関する。
インターネットの普及に伴い通信量は飛躍的に増大しており、光ファイバ通信の重要性が非常に高まっている。光ファイバ通信は、電気信号を光信号に変換し、光信号を光ファイバにより伝送するものであり、広帯域、低損失、ノイズに強いという特徴を有する。
電気信号を光信号に変換する方式としては、半導体レーザによる直接変調方式と光変調器を用いた外部変調方式が知られている。直接変調は光変調器が不要で低コストであるが、高速変調には限界があり、高速で長距離の用途では外部光変調方式が使われている。
光変調器としては、ニオブ酸リチウム単結晶基板の表面付近にTi(チタン)拡散により光導波路を形成した光変調器が実用化されている。40Gb/s以上の高速の光変調器が商用化されているが、全長が10cm前後と長いことが大きな欠点になっている。Ti拡散による光導波路は閉じ込めが弱いこと、ニオブ酸リチウムの誘電率が高いことが欠点であり、十分な小型化は実現されていない。
これに対して、特許文献1では、サファイア単結晶基板上にエピタキシャル成長によりc軸配向のニオブ酸リチウム膜を形成し、そのニオブ酸リチウム膜を光導波路として用いたマッハツェンダー型光変調器が開示されている。
特開2006−195383号公報
しかしながら、特許文献1によるニオブ酸リチウム膜を用いた光変調器には、以下に示す課題が残されている。図12に特許文献1の光変調器100の断面構成を示す。サファイア基板21上にエピタキシャル成長によりニオブ酸リチウム膜が形成された後、微細加工により長方形状の断面を有する光導波路(22a、22b)が形成されている。光導波路(22a、22b)の側面と上面はSiOバッファ層23により囲まれていて、いわゆる、埋め込み型の光導波路(22a、22b)となっている。光導波路(22a、22b)の上部には、バッファ層23を介して、電極(24a、24b)が配置されている。光変調器100用の光導波路(22a、22b)はシングルモード、もしくは、実質上、一つのモードのみ導波するように設計する必要がある。この従来例で示されている埋め込み型の光導波路(22a、22b)では、シングルモードの条件を満足するためには、非常に微細な導波路にする必要があり、作製が困難という課題があった。例えば、波長1550nmにおいてシングルモード条件を満足する光導波路(22a、22b)のサイズを計算した所、光導波路(22a、22b)の高さが1μmの場合は、光導波路(22a、22b)の幅を1μm以下と大変狭くする必要がある。また、バッファ層23はニオブ酸リチウム膜より誘電率が低いので、電極(24a、24b)間に電圧を印加した場合に、光導波路(22a、22b)には十分な電界が印加されず、大型または駆動電圧が高いという課題もあった。電極間のギャップを狭めることで、光導波路(22a、22b)に印加される電界を強めることはできるものの、電極の特性インピーダンスが低くなり、所定の値を維持できないという別の問題が生じてしまう。
本発明は、上記の点を考慮してなされたもので、単結晶基板上にエピタキシャル成長により形成されたニオブ酸リチウム膜を用い、作製が容易で、進行波電極の特性インピーダンスを所定の値に維持した状態で、小型または駆動電圧を低減した光変調器を提供することを目的とする。
本発明は、単結晶基板と、単結晶基板の主面上に形成されたエピタキシャル膜であり、リッジ形状部を有するニオブ酸リチウム膜と、リッジ形状部上に形成されたバッファ層と、バッファ層上に形成された第1電極と、ニオブ酸リチウム膜の上面および/または段差部と接して形成された第2電極とを有する光変調器である。
第2電極の一部の膜厚は第1電極の膜厚より薄いことが好ましい。また、第2電極の段差部および上面の少なくとも一部に、バッファ層が配置されていることが好ましい。
単結晶基板は、サファイア単結晶基板またはシリコン単結晶基板であることが好ましく、単結晶基板がシリコン単結晶基板の場合は、シリコン単結晶基板とニオブ酸リチウム膜の間にクラッド層を備えることが好ましい。
本発明により、作製が容易で、進行波電極の特性インピーダンスを所定の値に維持した状態で、小型または駆動電圧を低減した光変調器を実現することができる。
実施形態1の光変調器の平面図である。 実施形態1の光変調器の断面図である。 実施形態2の光変調器の断面図である。 比較形態1の光変調器の断面図である。 比較形態2の光変調器の断面図である。 VπLの計算結果を示す図である。 特性インピーダンスの計算結果を示す図である。 VπLの計算結果を示す図である。 実施形態3の光変調器の断面図である。 実施形態4の光変調器の断面図である。 実施形態5の光変調器の断面図である。 従来技術の光変調器の断面図である。
以下、本発明の好適な実施形態について説明する。なお、本発明の対象は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれると共に、その構成要素は、適宜組み合わせることが可能である。また説明図は模式的なものであり、説明の便宜上、厚みと平面寸法との関係は、本実施形態の効果が得られる範囲内で実際の構造とは異なっていても良いこととする。
以下、実施形態1について図面を参照して説明する。図1は、実施形態1の、マッハツェンダ型の光変調器10の平面図である。以後、光変調器10と呼ぶ。光変調器10は、電気光学効果を有する光導波路1で形成されたマッハツェンダ干渉計に、電圧を印加して光導波路1内を伝搬する光を変調するデバイスである。光導波路1は、2本の光導波路(1a、1b)に分岐され、光導波路(1a、1b)上には、それぞれ1本ずつ、すなわち、2本の第1電極(2a、2b)が設けられていて、デュアル電極構造となっている。
図2は、実施形態1の、光変調器10のA−A´線の断面図である。単結晶基板4の主面上にエピタキシャル成長によりニオブ酸リチウム膜5が形成されている。ニオブ酸リチウム膜5のc軸は単結晶基板4の主面に垂直方向に配向している。ニオブ酸リチウム膜5はリッジ形状部7を有しており、光導波路(1a、1b)として機能している。このリッジ型の光導波路(1a、1b)は、シングルモード動作の範囲が広く、作製が容易という特徴を有する。例えば、波長1550nmにおいて、リッジ形状部7におけるニオブ酸リチウム膜5の膜厚1μm、リッジ高さ0.2μm、光の進行方向と直交する左右のニオブ酸リチウム膜5の膜厚0.8μmの場合、リッジ幅が2.3μmまでシングルモード条件を満足できる。リッジ形状部7上にはバッファ層6を介して第1電極(2a、2b)が形成されている。第2電極(3a、3b、3c)は、ニオブ酸リチウム膜5の上面と接して形成されている。また、第2電極(3a、3b、3c)の膜厚は第1電極(2a、2b)の膜厚より薄くなっている。通常、リッジ形状部7は凸形状部の上に突き出した場所を指す。この上に突き出した場所は、光の進行方向と直交する左右の場所と比較して、ニオブ酸リチウム膜5の膜厚が厚くなっているので、実効屈折率が高くなっている。そのため、光の進行方向と直交する左右方向についても光を閉じ込めることができ、3次元光導波路として機能する。リッジ形状部7の形状は光を導波可能とする形状であればよく、リッジ形状部7におけるニオブ酸リチウム膜5の膜厚が、光の進行方向と直交する左右のニオブ酸リチウム膜5の膜厚より厚ければよい。上に凸のドーム形状、三角形状などであっても良い。
光変調器10の動作原理について説明する。図1において、2本の第1電極(2a、2b)と、第2電極(3a、3b、3c)を終端抵抗9で接続して、進行波電極として機能させる。第2電極(3a、3b、3c)を接地電極とし、2本の第1電極(2a、2b)に対して、絶対値が同じで正負の異なる位相がずれていない、いわゆる、相補信号を光変調器10の第1電極(2a、2b)の入力側(13a、13b)から入力する。ニオブ酸リチウム膜5は電気光学効果を有しているので、光導波路(1a、1b)に与えられる電界によって光導波路(1a、1b)の屈折率がそれぞれ+Δn、−Δnのように変化し、光導波路(1a、1b)間の位相差が変化する。この位相差の変化により光変調器10の出射導波路1cから強度変調された信号光が出力側12に出力される。光導波路(1a、1b)間の位相差がπの偶数倍であれば光は強め合い、位相差がπの奇数倍ならば光は弱め合う。
次に、実施形態1、実施形態2、比較形態1、比較形態2の4つの形態を比較した結果を詳細に説明する。図3は実施形態2の断面図であり、第2電極(3a、3b、3c)は単結晶基板4上に形成され、かつ、ニオブ酸リチウム膜5の段差部(51)と接していて、第2電極(3a、3b、3c)の膜厚は第1電極(2a、2b)の膜厚より薄くなっている。第2電極(3a、3b、3c)以外の部分については、実施形態1と同じである。図4は比較形態1の断面図であり、ニオブ酸リチウム膜5の断面を長方形状に加工することで埋め込み導波路(25a、25b)を形成している。光導波路(25a、25b)上にはバッファ層6を介して第1電極(2a、2b)が設けられている。第2電極(3a、3b、3c)は、バッファ層6の上面に形成されており、ニオブ酸リチウム膜5とは接していない。図5は比較形態2の断面図であり、第2電極(3a、3b、3c)はバッファ層6の上面に形成されており、ニオブ酸リチウム膜5とは接していない。第2電極(2a、2b)以外の部分については、実施形態1と同じである。
第1電極(2a、2b)の部分は4つの形態において同一条件とし、進行波電極の特性インピーダンス、VπL、帯域特性をシミュレーションにより計算した。ここで、Vπとは半波長電圧であり、光出力が最大となる電圧V1と最小となる電圧V2との差で定義され、駆動電圧を意味している。Lは、リッジ形状部7を有する導波路上の電極の長さである。VπはLと反比例の関係にあり、例えば、同一の値であるVπとLの積値について、Lが2倍になると、Vπは半分になる。そのため、VπとLの積をとったVπLは、光変調器10の性能を表す重要な指標である。VπLが小さい程、小型または低駆動電圧であることを示している。なお、本発明で小型とはLが短いことを意味している。図1において幅方向の寸法はLより十分小さく問題とならない。通常、Lは数mm〜50mmの範囲であるが、導波路1a、1bの間隔は100μm以下であり、Lと比較すると十分短い。通常、幅方向の寸法(W)とLの比、W/Lは0.02以上0.5以下である。図1は、横方向と比べて縦方向を大幅に拡大して描いた模式図になっている。計算条件として、第1電極(2a、2b)の幅は3μm、第1電極(2a、2b)の膜厚は6μm、ニオブ酸リチウム膜5の膜厚は1μm、バッファ層6の膜厚は1μm、単結晶基板4はサファイア、バッファ層6はアルミナ膜、電極は金とした。入力側11の光導波路1に入射する光の波長は1550nmとした。
図6にVπLを計算した結果を示す。横軸のギャップGは第1電極(2a、2b)と第2電極(3a、3b、3c)の間隔である。ギャップGが狭いほど、VπLを低減できる。比較形態1、比較形態2と比較して、実施形態1と実施形態2は、同じギャップGで比較した場合に、VπLを低減できていることが分かる。これは、実施形態1と実施形態2では、第2電極(3a、3b、3c)とニオブ酸リチウム膜5の間にバッファ層6が介在していないので、光導波路(1a、1b)に高い電界を印加できるからである。また、実施形態1と実施形態2の差異は小さく、第2電極(3a、3b、3c)がニオブ酸リチウム膜5と接していれば、構造によらずVπLの低減効果があることが分かる。なお、第2電極(3a、3b、3c)の膜厚を変化させた場合のVπLの変化は小さい。
図7に進行波電極の特性インピーダンスを計算した結果を示す。ギャップGにより、特性インピーダンスは変化し、第2電極(3a、3b、3c)の膜厚によっても変化することが分かる。特性インピーダンスは所定の値にする必要があり、例えば、50Ωの場合を考えると、図7に示す3つの例では50ΩとなるギャップGが異なっている。特性インピーダンスが50ΩとなるギャップGは、比較形態2で第2電極(3a、3b、3c)の膜厚が6μmの場合は6.3μm、実施形態1で第2電極(3a、3b、3c)の膜厚が1μmの場合は5.3μm、第2電極(3a、3b、3c)の膜厚が6μmの場合は6.8μmであった。一般に第2電極(3a、3b、3c)の膜厚が薄いほど、特性インピーダンスは高くなる。一方、ギャップGが狭くなるほど、特性インピーダンスは低くなる。ここで、第2電極(3a、3b、3c)が同一膜厚の場合、比較形態2の方が実施形態1よりギャップGが小さくなっている。しかし、Lに比較してギャップGは十分小さい値なので問題にはならない。
このように特性インピーダンスは、第2電極(3a、3b、3c)の膜厚、ギャップGに依存するので、特性インピーダンスが同じ値になる条件で比較することが重要である。特性インピーダンスが50ΩとなるようにギャップGを設定し、VπLを計算した結果を図8に示す。第2電極(3a、3b、3c)の膜厚Tgが第1電極(2a、2b)の膜厚と等しく6μmの場合は、比較形態1と比較形態2はほぼ同じ結果であり、VπL=3.8Vcmであった。実施形態1と実施形態2もほぼ同じ結果であり、VπL=3.5Vcmであった。実施形態1と実施形態2の差異が小さく、さらに、比較形態1と比較形態2の差異が小さいことから、第2電極(3a、3b、3c)がニオブ酸リチウム膜5と接しているのか否かが、VπLに影響していることが分かる。第2電極(3a、3b、3c)がニオブ酸リチウム膜5と接している場合は、接していない場合と比較して、VπLを約10%低減する効果がある。いずれの形態においても、第2電極(3a、3b、3c)の膜厚が薄い程、VπLを低減できている。なお、高周波では表皮効果により電極の損失が大きくなり、第1電極(2a、2b)の幅および膜厚は、ある程度大きくする必要がある。従って、第1電極(2a、2b)の幅および膜厚を同じ条件にして構造を比較することが重要である。また、図8とは異なり、ギャップGを固定して、電極の膜厚を変化させてインピーダンスを50Ωに設定してもよい。第2電極(3a、3b、3c)の膜厚はVπLにはほとんど影響しないので、この場合は図6と同じ結果となる。実施形態1と実施形態2のVπLはほぼ同じであり、比較形態1と比較形態2より低く、第2電極(3a、3b、3c)がニオブ酸リチウム膜5と接している場合に、特性インピーダンスを維持した状態でVπLを低くできる。
以上、説明したように、第2電極(3a、3b、3c)がニオブ酸リチウム膜5と接していて、第2電極(3a、3b、3c)の膜厚を第1電極(2a、2b)の膜厚より薄くすることで、特性インピーダンスを維持した状態で、VπLを低減できる、すなわち、小型または駆動電圧を低減できることが分かる。また、第2電極(3a、3b、3c)がニオブ酸リチウム膜5と接していて、ギャップGを同一の値として第2電極(3a、3b、3c)の膜厚を調整することで、特性インピーダンスを維持した状態で、VπLを低減できる。ここで、第2電極(3a、3b、3c)がニオブ酸リチウム膜5の上面および/または段差部51と接している場合に、本質的に重要なことは、第2電極(3a、3b、3c)と光導波路(1a、1b)とを結ぶ経路の中でニオブ酸リチウム膜5のみが介在している経路があることである。このようなニオブ酸リチウム膜5のみの経路があることにより、VπLを低減できる。この理由について、平行平板の電極の間に、厚さd1、比誘電率ε1のニオブ酸リチウム膜と厚さd2、比誘電率ε2のバッファ層が挿入されている簡単なモデルを用いて説明する。電圧Vを印加すると、ニオブ酸リチウム膜の部分に印加される電界は、V/(d1+d2ε1/ε2)であり、バッファ層6が介在すると同一印加電圧に対するニオブ酸リチウム膜5に印加される電界が低くなる。バッファ層として使用されるSiO、Alなどの比誘電率ε2は、通常、ニオブ酸リチウム膜5の比誘電率ε1より低く、ε1/ε2>1であり、バッファ層介在による電界の低減は大きくなる。逆に、ニオブ酸リチウム膜5のみであれば、ニオブ酸リチウム膜5に印加される電界は高くなるので、VπLを低減できる。図4で示した埋め込み導波路では、光導波路(1a、1b)の周囲は光導波路(1a、1b)より低い屈折率の領域により囲まれており、第2電極(3a、3b、3c)と光導波路(1a、1b)とを結ぶ経路は、ニオブ酸リチウム膜5以外の領域を必ず含んでいる。本発明の効果を得るには、実効屈折率が高く、光の進行方向と直交する左右方向についても光を閉じ込めることができるリッジ形状部7を有する導波路にする必要がある。
次に帯域特性について説明する。広帯域の光変調器10を実現するには、光導波路(1a、1b)を伝搬する光の速度と進行波電極を伝搬する高周波の速度を一致させる必要がある。すなわち、光導波路(1a、1b)と進行波電極の実効屈折率を一致させる必要がある。一例として、単結晶基板4として、比誘電率が10のサファイア単結晶基板を用いた場合を考える。ニオブ酸リチウム膜5と第1電極(2a、2b)および第2電極(3a、3b、3c)の膜厚が十分薄く、無視できるとすると、進行波電極の実効比誘電率は、単結晶基板と空気の比誘電率の平均値と近似でき、空気の比誘電率は約1なので、単結晶基板4の比誘電率10と1の平均をとって、5.5となる。実効屈折率は実効比誘電率の平方根であり、進行波電極の実効屈折率は2.3となる。ニオブ酸リチウム膜5による光導波路(1a、1b)の実効屈折率は約2.1であり、速度整合がほぼ取れており、本発明は広帯域に大変適した構成であることが分かる。図8において計算した全ての条件において、電極長10mmにおける帯域は20GHz以上となっており、広帯域特性を満足している。
本発明の構成要素について詳しく説明する。単結晶基板4としては、ニオブ酸リチウム膜5をエピタキシャル膜として形成させることができる基板であればよく、サファイア単結晶基板もしくはシリコン単結晶基板が好ましい。シリコン単結晶の比誘電率は12であり、サファイア単結晶の比誘電率10と近く、シリコン単結晶基板を用いた場合もサファイア単結晶基板と同様、広帯域に大変適した構成となっている。単結晶基板4の結晶方位は特に限定されない。ニオブ酸リチウム膜5はさまざまな結晶方位の単結晶基板4に対して、c軸配向のエピタキシャル膜として形成されやすいという性質を持っている。c軸配向のニオブ酸リチウム膜5は3回対称の対称性を有しているので、下地の単結晶基板4も同じ対称性を有していることが望ましく、サファイア単結晶基板の場合はc面、シリコン単結晶基板の場合は(111)面の基板が好ましい。
ここで、エピタキシャル膜とは、下地の基板もしくは下地膜の結晶方位に対して、そろって配向している膜のことである。膜面内をX−Y面とし、膜厚方向をZ軸としたとき、結晶がX軸、Y軸およびZ軸方向にともにそろって配向しているものである。例えば、第1に2θ−θX線回折による配向位置でのピーク強度の確認と、第2に極点の確認を行うことで、エピタキシャル膜を証明できる。
具体的には、第1に2θ−θX線回折による測定を行ったとき、目的とする面以外の全てのピーク強度が目的とする面の最大ピーク強度の10%以下、好ましくは5%以下である必要がある。例えば、ニオブ酸リチウムのc軸配向エピタキシャル膜では、(00L)面以外のピーク強度が、(00L)面の最大ピーク強度の10%以下、好ましくは5%以下である。(00L)は、(001)や(002)などの等価な面を総称する表示である。
第2に、極点測定において、極点が見えることが必要である。前述の第1の配向位置でのピーク強度の確認の条件においては、一方向における配向性を示しているのみであり、前述の第1の条件を得たとしても、面内において結晶配向がそろっていない場合には、特定角度位置でX線の強度が高まることはなく、極点は見られない。LiNbO3は三方晶系の結晶構造であるため、単結晶におけるLiNbO3(014)の極点は3つとなる。ニオブ酸リチウム膜5の場合、c軸を中心に180°回転させた結晶が対称的に結合した、いわゆる双晶の状態にてエピタキシャル成長することが知られている。この場合、3つの極点が対称的に2つ結合した状態になるため、極点は6つとなる。また、(100)面のシリコン単結晶基板上にニオブ酸リチウム膜5を形成した場合は、基板が4回対称となっているため、4x3=12個の極点が観測される。なお、本発明では、双晶の状態にてエピタキシャル成長したニオブ酸リチウム膜5もエピタキシャル膜に含める。
ニオブ酸リチウム膜5の組成はLiNbAである。Aは、Li、Nb、O以外の元素を表している。xは0.5〜1.2であり、好ましくは、0.9〜1.05である。yは、0〜0.5である。zは1.5〜4であり、好ましくは2.5〜3.5である。Aの元素としては、K、Na、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Fe、Co、Ni、Zn、Sc、Ceなどがあり、2種類以上の組み合わせでも良い。
ニオブ酸リチウム膜5の膜厚は2μm以下であることが望ましい。これ以上、膜厚が厚くなると、高品質な膜を形成するのが困難になるとともに、進行波電極の実効比誘電率が高くなってしまい、速度整合を満足するのが難しくなるからである。ニオブ酸リチウム膜5の膜厚が薄すぎる場合は、ニオブ酸リチウム膜5における光の閉じ込めが弱くなり、単結晶基板4やバッファ層6に光が漏れて導波することになる。ニオブ酸リチウム膜5に電界を印加しても、光導波路(1a、1b)の実効屈折率の変化が小さくなるおそれがある。そのため、ニオブ酸リチウム膜5は、波長の1/3程度以上の膜厚が望ましい。
ニオブ酸リチウム膜5の形成方法としては、スパッタ法、CVD法、ゾルゲル法などの膜形成方法を利用するのが望ましい。c軸が単結晶基板4の主面に垂直に配向されており、c軸に平行に電界を印加することで、電界に比例して光学屈折率が変化する。単結晶基板4としてサファイアを用いる場合は、サファイア単結晶基板上に直接、ニオブ酸リチウム膜5をエピタキシャル成長できる。単結晶基板4としてシリコンを用いる場合は、クラッド層(図示せず)を介して、ニオブ酸リチウム膜5をエピタキシャル成長により形成する。クラッド層(図示せず)としては、ニオブ酸リチウム膜5より屈折率が低く、エピタキシャル成長に適したものを用いる。例えば、クラッド層(図示せず)としてYを用いると、高品質のニオブ酸リチウム膜5を形成できる。
バッファ層6としては、ニオブ酸リチウム膜5より屈折率が低く、透明性が高い材料であればよく、SiO、Al、MgF、La、ZnO、HfO、MgO、Y、CaFなどを用いることができる。電極の光吸収による光導波路(1a、1b)の伝搬損失を低減するために、光導波路(1a、1b)と第1電極(2a、2b)の間にバッファ層6を配置する必要がある。バッファ層6の膜厚は、電極の光吸収を低減するためには厚いほど良く、光導波路(1a、1b)に高い電界を印加するためには薄いほど良い。電極の光吸収と電極の印加電圧とは、トレードオフの関係にあるので、目的に応じて適切な膜厚を設定する必要がある。なお、図8はバッファ層として膜厚1μmのアルミナ膜(Al膜)を用いた場合について計算した結果であるが、材料と膜厚を変更しても、得られる傾向は変わらない。本発明の効果は、バッファ層の材料や膜厚に依存せず、得られる。
第1電極(2a、2b)、第2電極(3a、3b、3c)の材料は、電気伝導度が高い材料であればよいが、高周波における信号の伝搬損失を低減するために、Au、Cu、Ag、Ptなどの高電気伝導度の金属材料を使用することが望ましい。
電極の構造については様々な変形が可能である。実施形態1では、第1電極(2a、2b)を信号電極、第2電極(3a、3b、3c)を接地電極として動作原理を説明したが、例えば、第2電極3b、もしくは、第2電極3aと3cを省いてもよい。また、第2電極3bを省き、第1電極2aもしくは第1電極2bを接地電極とすることもできる。第1電極(2a、2b)には相補信号を入力すると説明したが、一方のみに入力し、他方を省くことも可能である。さらに、第1電極(2a、2b)におけるニオブ酸リチウム膜5の分極方向を反転させることにより、相補信号ではなく、同じ信号を入力することも可能である。
第2電極(3a、3b、3c)の膜厚を第1電極(2a、2b)の膜厚より薄くすることが好ましいと説明したが、これは、第2電極(3a、3b、3c)の全ての部分について規定しているのではなく、少なくとも一部について薄ければよい。例えば、第2電極(3a、3b、3c)の膜厚を、第1電極(2a、2b)の近傍では第1電極(2a、2b)の膜厚より薄くし、離れた部分では第1電極(2a、2b)の膜厚以上に設定してもよい。このように設定しても、第2電極(3a、3b、3c)の膜厚が第1電極(2a、2b)の膜厚と等しい場合と比較して、特性インピーダンスを低減できるので、発明の効果が得られる。
図9は実施形態3の光変調器10の断面図である。単結晶基板4の部分を、シリコン単結晶基板41、エピバッファ層42、クラッド層43で置き換えた以外は、実施形態2と同じである。光導波路(1a、1b)はリッジ形状部7を有するリッジ型光導波路(1a、1b)となっており作製が容易である。第2電極(3a、3b、3c)はニオブ酸リチウム膜5の段差部51と接して形成されていて、第2電極(3a、3b、3c)の膜厚は第1電極(2a、2b)の膜厚より薄くなっているので、特性インピーダンスを維持した状態で、小型または低駆動電圧を実現できる。シリコン単結晶基板41上にニオブ酸リチウム膜5を直接エピタキシャル成長させるのは困難であり、エピタキシャル成長を促進させるバッファ層42を介して、成長させる必要がある。このバッファ層42を、バッファ層6と区別するため、ここでは、エピバッファ層42と呼んでいる。また、ニオブ酸リチウム膜5を用いて光導波路1を形成し、光を伝搬させるためには、ニオブ酸リチウム膜5の光学屈折率が周囲の光学屈折率より高いことが必要である。このため、光学屈折率が約3.5のシリコン単結晶基板41を用いる場合は、シリコン単結晶基板41とニオブ酸リチウム膜5の間にニオブ酸リチウム膜5の光学屈折率より低い光学屈折率を有するクラッド層43を挟む必要がある。エピバッファ層42、クラッド層43、ニオブ酸リチウム膜5は全て、エピタキシャル膜となっている。なお、シリコン単結晶基板41を用いる場合、クラッド層43は必須であるが、エピエピバッファ層42を省くことができる。エピバッファ層42としてはZrO、クラッド層43としては、Yが好ましい。
図10は実施形態4の光変調器10の断面図である。光導波路(1a、1b)はリッジ形状部7を有するリッジ型光導波路(1a、1b)となっており作製が容易である。第2電極(3a、3b、3c)はニオブ酸リチウム膜5の上面と接して形成されていている。さらに、第2電極(3a、3b、3c)はバッファ層6とも接していて、第2電極(3a、3b、3c)の段差部31および上面の少なくとも一部に、バッファ層6が配置されている。ここで、第1電極(2a、2b)と第2電極(3a、3b、3c)のギャップにはバッファ層6が介在しているので、第1電極(2a、2b)と第2電極(3a、3b、3c)がショートする可能性は低く、歩留の悪化を低減できるという顕著な効果も有している。高周波では表皮効果により電極の表面にしか電流が流れないので、損失が高くなる。この損失を低減するには、電極の表面積を広げる必要があるが、第1電極(2a、2b)の幅を広げることはVπLが高くなる方向であり好ましくなく、第1電極(2a、2b)の膜厚を厚くすることが好ましい。このように電極の膜厚が厚い場合、ショートする可能性が高く、歩留が悪くなるという問題があった。なお、実施形態1と比較すると、実施形態4は、第2電極(3a、3b、3c)の上面にバッファ層6が配置されている点が異なるが、この違いはVπLや特性インピーダンスに大きく影響しないので、実施形態1で得られる発明の効果は実施形態4についても成り立つ。さらに、第2電極(3a、3b、3c)の膜厚は第1電極(2a、2b)の膜厚より薄くなっているので、特性インピーダンスを維持した状態で、より小型または低駆動電圧を実現できる。
図11は実施形態5の光変調器10の断面図である。光導波路(1a、1b)はリッジ形状部7を有するリッジ型光導波路(1a、1b)となっており作製が容易である。第2電極(3a、3b、3c)は単結晶基板4上に形成されている。第2電極(3a、3b、3c)はニオブ酸リチウム膜5の段差部51および上面の少なくとも一部に接していて、第2電極(3a、3b、3c)の膜厚は第1電極(2a、2b)の膜厚より薄くなっている。さらに、第2電極(3a、3b、3c)はバッファ層6とも接していて、第2電極(3a、3b、3c)の段差部31および上面の少なくとも一部に、バッファ層6が配置されている。ここで、第1電極(2a、2b)と第2電極(3a、3b、3c)のギャップにはバッファ層6が介在しているので、第1電極(2a、2b)と第2電極(3a、3b、3c)がショートする可能性は低く、歩留の悪化を低減できる。なお、実施形態2と比較すると、実施形態5は、第2電極(3a、3b、3c)はニオブ酸リチウム膜5の段差部51および上面の少なくとも一部に接していて、第2電極(3a、3b、3c)の上面にバッファ層6が配置されている点が異なるが、この違いはVπLや特性インピーダンスに大きく影響しないので、実施形態2で得られる発明の効果は実施形態4についても成り立つ。さらに、第2電極(3a、3b、3c)の膜厚は第1電極(2a、2b)の膜厚より薄くなっているので、特性インピーダンスを維持した状態で、より小型または低駆動電圧を実現できる。
本発明に係わる光変調器は、光ファイバ通信、光計測における様々な用途に利用できる。
10、100 光変調器
1、1a、1b、1c 光導波路
2a、2b 第1電極
3a、3b、3c 第2電極
31 第2電極の段差部
4 単結晶基板
41 シリコン単結晶基板
42 エピバッファ層
42 クラッド層
5 ニオブ酸リチウム膜
51 ニオブ酸リチウム膜の段差部
6 バッファ層
7 リッジ形状部
9 終端抵抗
11 入力側
12 出力側
13a、13b 入力側
21 サファイア基板
22a、22b 光導波路
23 SiOバッファ層
24a、24b 電極
25a、25b 光導波路


















Claims (5)

  1. 単結晶基板と、
    前記単結晶基板の主面上に形成されたエピタキシャル膜であり、リッジ形状部を有するニオブ酸リチウム膜と、
    前記リッジ形状部上に形成されたバッファ層と、
    前記バッファ層上に形成された第1電極と、
    前記ニオブ酸リチウム膜の上面および/または段差部と接して形成された第2電極とを有する光変調器。
  2. 前記第2電極の少なくとも一部の膜厚は前記第1電極の膜厚より薄いことを特徴とする請求項1に記載の光変調器。
  3. 前記第2電極の段差部および上面の少なくとも一部に、前記バッファ層が形成されていることを特徴とする請求項1または2に記載の光変調器。
  4. 前記単結晶基板がサファイア単結晶基板であることを特徴とする請求項1ないし3に記載の光変調器。
  5. 前記単結晶基板がシリコン単結晶基板であり、
    前記単結晶基板と前記ニオブ酸リチウム膜の間にクラッド層を備えることを特徴とする請求項1ないし3に記載の光変調器。























JP2013009309A 2013-01-22 2013-01-22 光変調器 Pending JP2014142411A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009309A JP2014142411A (ja) 2013-01-22 2013-01-22 光変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013009309A JP2014142411A (ja) 2013-01-22 2013-01-22 光変調器

Publications (1)

Publication Number Publication Date
JP2014142411A true JP2014142411A (ja) 2014-08-07

Family

ID=51423768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009309A Pending JP2014142411A (ja) 2013-01-22 2013-01-22 光変調器

Country Status (1)

Country Link
JP (1) JP2014142411A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939709B2 (en) 2015-08-21 2018-04-10 Tdk Corporation Optical waveguide element and optical modulator using the same
JP2018173604A (ja) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 光変調器
JP2020020953A (ja) * 2018-07-31 2020-02-06 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール
CN111164496A (zh) * 2017-10-02 2020-05-15 Tdk株式会社 光调制器
CN111665647A (zh) * 2020-06-22 2020-09-15 三明学院 一种新型电光调制器
US10989980B2 (en) 2019-02-25 2021-04-27 Tdk Corporation Optical modulator
US11003043B2 (en) 2019-02-25 2021-05-11 Tdk Corporation Optical modulator
WO2021201131A1 (en) * 2020-03-31 2021-10-07 Tdk Corporation Electro-optical device
JP2021173792A (ja) * 2020-04-21 2021-11-01 富士通オプティカルコンポーネンツ株式会社 光導波路デバイス
US11226531B2 (en) 2017-08-24 2022-01-18 Tdk Corporation Optical modulator
US20220060260A1 (en) * 2020-08-24 2022-02-24 Tdk Corporation Transmission device, information terminal, communication system, and communication method
JP2022549713A (ja) * 2020-05-14 2022-11-28 上海徠刻科技有限公司 弱位相ドリフトを有するニオブ酸リチウムウェイブガイド
US11693291B2 (en) 2020-04-21 2023-07-04 Fujitsu Optical Components Limited Optical waveguide device and method of manufacturing optical waveguide device
WO2023187872A1 (ja) * 2022-03-28 2023-10-05 Tdk株式会社 プロジェクターモジュール及びそれを備えた網膜投影表示装置
US11947147B2 (en) 2021-03-30 2024-04-02 Tdk Corporation Optical device with microcrack resistance from surface roughness thereby reducing loss of light

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939709B2 (en) 2015-08-21 2018-04-10 Tdk Corporation Optical waveguide element and optical modulator using the same
JP2018173604A (ja) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 光変調器
US11226531B2 (en) 2017-08-24 2022-01-18 Tdk Corporation Optical modulator
JPWO2019069815A1 (ja) * 2017-10-02 2020-10-22 Tdk株式会社 光変調器
US11366344B2 (en) 2017-10-02 2022-06-21 Tdk Corporation Optical modulator
CN111164496A (zh) * 2017-10-02 2020-05-15 Tdk株式会社 光调制器
JP7131565B2 (ja) 2017-10-02 2022-09-06 Tdk株式会社 光変調器
JP7135546B2 (ja) 2018-07-31 2022-09-13 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール
JP2020020953A (ja) * 2018-07-31 2020-02-06 富士通オプティカルコンポーネンツ株式会社 光変調器、光変調器モジュール、及び光送信モジュール
US10989980B2 (en) 2019-02-25 2021-04-27 Tdk Corporation Optical modulator
US11003043B2 (en) 2019-02-25 2021-05-11 Tdk Corporation Optical modulator
WO2021201131A1 (en) * 2020-03-31 2021-10-07 Tdk Corporation Electro-optical device
JP7476342B2 (ja) 2020-03-31 2024-04-30 Tdk株式会社 電気光学デバイス
JP2021173792A (ja) * 2020-04-21 2021-11-01 富士通オプティカルコンポーネンツ株式会社 光導波路デバイス
US11693291B2 (en) 2020-04-21 2023-07-04 Fujitsu Optical Components Limited Optical waveguide device and method of manufacturing optical waveguide device
US11693290B2 (en) 2020-04-21 2023-07-04 Fujitsu Optical Components Limited Optical waveguide device
JP2022549713A (ja) * 2020-05-14 2022-11-28 上海徠刻科技有限公司 弱位相ドリフトを有するニオブ酸リチウムウェイブガイド
CN111665647A (zh) * 2020-06-22 2020-09-15 三明学院 一种新型电光调制器
US20220060260A1 (en) * 2020-08-24 2022-02-24 Tdk Corporation Transmission device, information terminal, communication system, and communication method
US11947147B2 (en) 2021-03-30 2024-04-02 Tdk Corporation Optical device with microcrack resistance from surface roughness thereby reducing loss of light
WO2023187872A1 (ja) * 2022-03-28 2023-10-05 Tdk株式会社 プロジェクターモジュール及びそれを備えた網膜投影表示装置

Similar Documents

Publication Publication Date Title
JP6787387B2 (ja) 光変調器
JP2014142411A (ja) 光変調器
JP5853880B2 (ja) 光変調器
JP7115483B2 (ja) 光変調器
JP6787397B2 (ja) 光変調器
US20170052424A1 (en) Optical waveguide element and optical modulator using the same
JP6369147B2 (ja) 光導波路素子およびこれを用いた光変調器
JP2017129834A (ja) 光導波路素子およびこれを用いた光変調器
US20200310170A1 (en) Optical modulator
US11086149B2 (en) Electro-optic device
WO2007020924A1 (ja) 光変調器
US11460751B2 (en) Optical modulator
JP2015014715A (ja) 電気光学デバイス
JP7315034B2 (ja) 光デバイス
JP6379703B2 (ja) 光導波路型偏光子
JP2019074595A (ja) 光変調器
JP2021157065A (ja) 光変調器
JP2020134875A (ja) 光変調器
US20210103165A1 (en) Electro-optic device
JP2022155577A (ja) 電気光学デバイス
CN109375389B (zh) 一种石墨烯电光调制器及其制备方法
JP2022155576A (ja) 光変調器
WO2022071356A1 (en) Optical modulator
US20230124507A1 (en) Electro-optical device
JP2022032257A (ja) 光変調素子及び光変調素子の駆動方法