JP2014138300A - 判定装置、判定方法、及び、判定プログラム - Google Patents

判定装置、判定方法、及び、判定プログラム Download PDF

Info

Publication number
JP2014138300A
JP2014138300A JP2013006313A JP2013006313A JP2014138300A JP 2014138300 A JP2014138300 A JP 2014138300A JP 2013006313 A JP2013006313 A JP 2013006313A JP 2013006313 A JP2013006313 A JP 2013006313A JP 2014138300 A JP2014138300 A JP 2014138300A
Authority
JP
Japan
Prior art keywords
span
path
wavelength
determination
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013006313A
Other languages
English (en)
Other versions
JP6056494B2 (ja
Inventor
yu Shinohara
悠 篠原
Kiyotoshi Nobechi
清敏 野辺地
Takuya Miyashita
卓也 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013006313A priority Critical patent/JP6056494B2/ja
Priority to US14/100,140 priority patent/US9509435B2/en
Priority to EP13198026.0A priority patent/EP2757716A3/en
Publication of JP2014138300A publication Critical patent/JP2014138300A/ja
Application granted granted Critical
Publication of JP6056494B2 publication Critical patent/JP6056494B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0268Restoration of optical paths, e.g. p-cycles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0275Transmission of OAMP information using an optical service channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

【課題】処理の負荷を軽減することが可能な判定装置を提供すること。
【解決手段】判定装置250は、通信網において隣接する2つの伝送装置間の区間であるスパンが連結されることにより又は単一のスパンにより、通信網において形成される、複数の異なる経路が複数の異なる波長に対してそれぞれ設定可能に構成され、各波長の光信号を、該波長に対して設定された経路を介して伝送するように構成された光波長分割多重通信システムの判定装置である。判定装置は、ある波長の光信号を伝送するためにスパンが新たに使用される場合に、該スパンにより形成される経路のうちの、該経路を形成するスパンの数であるスパン数が上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する判定手段259を備える。
【選択図】図2

Description

本発明は、判定装置、判定方法、及び、判定プログラムに関する。
光波長分割多重通信を行なう光波長分割多重通信システムが知られている(例えば、特許文献1及び特許文献2を参照)。この種の光波長分割多重通信システムの一つは、通信網を構成する複数の伝送装置を備える。更に、光波長分割多重通信システムは、複数の異なる経路が複数の異なる波長に対してそれぞれ設定可能に構成される。
ここで、各経路は、通信網において隣接する2つの伝送装置間の区間であるスパンが連結されることにより、又は、単一のスパンにより、当該通信網において形成される。更に、光波長分割多重通信システムは、各波長の光信号を、当該波長に対して設定された経路を介して伝送するように構成される。光波長分割多重通信システムは、ある経路において、ある波長の光信号を新たに伝送可能であるか否かを判定する。
特開2007−158727号公報 特開2006−211385号公報
ところで、上記光波長分割多重通信システムにおいては、ある波長の光信号を伝送するために、あるスパンが新たに使用される場合、そのスパンにより形成される経路において、新たに使用可能な波長(即ち、空きリソース)が変化する。従って、経路が決定された時点よりも後に、あるスパンが新たに使用された場合には、当該決定された経路が依然として、使用可能な波長を有するか否かを判定することが好適である。
また、あるスパンが新たに使用された場合には、空きリソースは、新たに使用されたスパンにより形成される、すべての経路において変化する可能性がある。しかしながら、新たに使用されたスパンにより形成される、すべての経路に対して上記判定を行なった場合、当該判定を行なうための処理の負荷が過大となる。従って、この場合、例えば、判定結果に基づく処理(例えば、経路の切り替え等)が過度に遅延してしまう虞があった。
そこで、本発明の目的の一つは、上述した課題である「処理の負荷が過大となる場合が生じること」を解決することが可能な判定装置を提供することにある。
なお、上記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の1つとして位置付けることができる。
かかる目的を達成するため判定装置は、
通信網を構成する複数の伝送装置のうちの、当該通信網において隣接する2つの伝送装置間の区間であるスパンが連結されることにより、又は、単一のスパンにより、当該通信網において形成される、複数の異なる経路が複数の異なる波長に対してそれぞれ設定可能に構成され、且つ、各波長の光信号を、当該波長に対して設定された経路を介して伝送するように構成された光波長分割多重通信システムの判定装置である。
更に、この判定装置は、
上記複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用される場合に、当該スパンにより形成される経路のうちの、当該経路を形成するスパンの数であるスパン数が所定の上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する判定手段を備える。
開示の判定装置によれば、処理の負荷を軽減することができる。
第1実施形態の一例としての光波長分割多重通信システムの構成を表す図である。 第1実施形態の一例としての伝送装置の構成を表す図である。 第1実施形態の一例としてのスパン毎リソース情報を表すテーブルである。 第1実施形態の一例としての経路毎リソース情報を表すテーブルである。 第1実施形態の一例としての伝送装置が実行する経路切替処理を表すフローチャートである。 第1実施形態の一例としての伝送装置が実行する経路毎確認処理を表すフローチャートである。 第1実施形態の一例としての光波長分割多重通信システムの作動を概念的に示した説明図である。 比較例としての光波長分割多重通信システムにおいて判定の対象となる経路を概念的に示した説明図である。 第1実施形態の一例としての光波長分割多重通信システムにおいて判定の対象となる経路を概念的に示した説明図である。 第1実施形態の第1変形例の一例としての伝送装置の構成を表す図である。 第1実施形態の第1変形例の一例としての、変調方式を表す情報と、上限スパン数を表す情報と、を対応付けたテーブルである。 第1実施形態の第1変形例の一例としての、波長を表す情報と、変調方式を表す情報と、を対応付けたテーブルである。 第1実施形態の第1変形例の一例としての伝送装置が実行する経路毎確認処理の一部を表すフローチャートである。 第1実施形態の第2変形例の一例としての伝送装置の構成を表す図である。 第1実施形態の第2変形例の一例としての、変調方式を表す情報と、ガードバンドを表す情報と、上限スパン数を表す情報と、を対応付けたテーブルである。 第1実施形態の第2変形例の一例としての、スパンを表す情報と、ガードバンドを表す情報と、を対応付けたテーブルである。 第1実施形態の第2変形例の一例としての伝送装置が実行する経路毎確認処理の一部を表すフローチャートである。 第1実施形態の第2変形例の一例としての光波長分割多重通信システムにおいて判定の対象となる経路を概念的に示した説明図である。 第1実施形態の第3変形例の一例としての伝送装置の構成を表す図である。 第1実施形態の第3変形例の一例としての、変調方式を表す情報と、ファイバ種別を表す情報と、上限スパン数を表す情報と、を対応付けたテーブルである。 第1実施形態の第3変形例の一例としての、スパンを表す情報と、ファイバ種別を表す情報と、を対応付けたテーブルである。 第1実施形態の第3変形例の一例としての伝送装置が実行する経路毎確認処理の一部を表すフローチャートである。 第1実施形態の第3変形例の一例としての光波長分割多重通信システムにおいて判定の対象となる経路を概念的に示した説明図である。 第2実施形態の一例としての光波長分割多重通信システムの構成を表す図である。 第2実施形態の一例としての伝送装置の構成を表す図である。 第2実施形態の一例としての管理装置の構成を表す図である。
上述した課題の少なくとも1つに対処するため、以下、本発明に係る、判定装置、判定方法、及び、判定プログラム、の各実施形態について図1乃至図26を参照しながら説明する。
<第1実施形態>
(概要)
第1実施形態に係る光波長分割多重通信システムは、複数の異なる経路が複数の異なる波長に対してそれぞれ設定可能に構成される。更に、光波長分割多重通信システムは、各波長の光信号を、当該波長に対して設定された経路を介して伝送するように構成される。加えて、光波長分割多重通信システムは、複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用される場合に、リソース確認処理を実行する。ここで、スパンは、複数の伝送装置により構成される通信網において隣接する2つの伝送装置間の区間(伝送路)である。
リソース確認処理は、新たに使用されるスパンにより形成される経路のうちの、スパン数が所定の上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する処理である。ここで、スパン数は、1つの経路を形成するスパンの数である。
このように、上記判定の対象となる経路を限定することにより、上記判定を行なうための処理の負荷が無駄に過大となることを回避することができる。即ち、処理の負荷を軽減することができる。
以下、第1実施形態に係る光波長分割多重通信システムについて詳細に説明する。
(構成)
図1に示したように、第1実施形態に係る光波長分割多重通信システム1は、複数(本例では、8個)の伝送装置(ノード)2−i(ここで、iは、1から8までの自然数)を備える。なお、光波長分割多重通信システム1は、8個以外の複数の伝送装置を備えていてもよい。なお、以下では、伝送装置2−iは、伝送装置#iとも表記される。また、伝送装置2−iは、特定される必要がない場合、単に、伝送装置2とも表記される。
光波長分割多重通信システム1は、光波長多重通信(波長分割多重通信、WDM(Wavelength Division Multiplex))を行なう。即ち、光波長分割多重通信システム1は、複数の異なる経路が複数(本例では、8個)の異なる波長に対してそれぞれ設定可能に構成される。更に、光波長分割多重通信システム1は、各波長の光信号を、当該波長に対して設定された経路を介して伝送するように構成される。なお、光波長分割多重通信システム1が使用する波長の数は、40個、又は、88個等の8個以外の数であってもよい。
ここで、経路は、複数の伝送装置2−iにより構成される通信網において、スパンが連結されることにより、又は、単一のスパンにより、形成される。スパンは、通信網において隣接する2つの伝送装置2−i間の区間である。
伝送装置2−2と伝送装置2−6とは、光ファイバ3aにより接続されている。伝送装置2−2と伝送装置2−6との間の区間は、スパンaとも表記される。また、伝送装置2−6と伝送装置2−7とは、光ファイバ3bにより接続されている。伝送装置2−6と伝送装置2−7との間の区間は、スパンbとも表記される。
伝送装置2−7と伝送装置2−8とは、光ファイバ3cにより接続されている。伝送装置2−7と伝送装置2−8との間の区間は、スパンcとも表記される。また、伝送装置2−8と伝送装置2−4とは、光ファイバ3dにより接続されている。伝送装置2−8と伝送装置2−4との間の区間は、スパンdとも表記される。
伝送装置2−1と伝送装置2−2とは、光ファイバ3eにより接続されている。伝送装置2−1と伝送装置2−2との間の区間は、スパンeとも表記される。また、伝送装置2−4と伝送装置2−5とは、光ファイバ3fにより接続されている。伝送装置2−4と伝送装置2−5との間の区間は、スパンfとも表記される。
伝送装置2−2と伝送装置2−3とは、光ファイバ3gにより接続されている。伝送装置2−2と伝送装置2−3との間の区間は、スパンgとも表記される。また、伝送装置2−3と伝送装置2−4とは、光ファイバ3hにより接続されている。伝送装置2−3と伝送装置2−4との間の区間は、スパンhとも表記される。
本例では、各光ファイバ3a〜3hは、SMF(Single−mode Fiber)である。なお、各光ファイバ3a〜3hは、SMF以外の光ファイバ(例えば、DSF(Dispersion Shifted Fiber)、又は、NZ−DSF(Non−Zero Dispersion Shifted Fiber)等)であってもよい。
次に、各伝送装置2−iの構成について説明する。
図2に示したように、伝送装置2は、光スイッチ210と、第1OSC(Optical Supervisory Channel)ユニット220と、第2OSCユニット230と、光送受信ユニット240と、ノード制御ユニット250と、を備える。なお、ノード制御ユニット250は、判定装置の一例である。
光スイッチ210は、光クロスコネクトスイッチである。光スイッチ210は、複数のポートを備える。光スイッチ210は、複数の異なる波長のそれぞれの光信号に対して、ポート間の接続を切り替え可能に構成される。
第1OSCユニット220は、OSC受信部221と、OSC送信部222と、を備える。
OSC受信部221は、第1の隣接ノードから受信した光信号から、当該光信号に含まれる制御信号(本例では、OSC信号)を分岐することにより、当該第1の隣接ノードから当該OSC信号を受信する。OSC信号は、制御チャネル(本例では、OSC)を介して伝送される信号である。本例では、OSC信号は、各伝送装置2−iを制御するための信号である。
ここで、第1の隣接ノードは、通信網において自装置と隣接する伝送装置(隣接ノード)の1つである。
OSC受信部221により受信されたOSC信号は、後述するOSCユニットIF部251を介してノード制御ユニット250へ入力される。
OSC送信部222は、第1の隣接ノードへ送信される光信号にOSC信号を挿入することにより、当該OSC信号を当該第1の隣接ノードへ送信する。
OSC送信部222により送信されるOSC信号は、後述するOSCユニットIF部251を介してノード制御ユニット250により出力された信号である。
第2OSCユニット230は、OSC受信部231と、OSC送信部232と、を備える。
OSC受信部231は、第2の隣接ノードから受信した光信号から、当該光信号に含まれるOSC信号を分岐することにより、当該第2の隣接ノードから当該OSC信号を受信する。ここで、第2の隣接ノードは、隣接ノードのうちの第1の隣接ノード以外の1つである。OSC受信部231により受信されたOSC信号は、後述するOSCユニットIF部251を介してノード制御ユニット250へ入力される。
OSC送信部232は、第2の隣接ノードへ送信される光信号にOSC信号を挿入することにより、当該OSC信号を当該第2の隣接ノードへ送信する。
OSC送信部232により送信されるOSC信号は、後述するOSCユニットIF部251を介してノード制御ユニット250により出力された信号である。
光送受信ユニット240は、自装置、又は、自装置に接続された図示しない通信装置を宛先として含むデータ信号を、隣接ノードから受信した光信号から分岐することにより、当該データ信号を受信する。光送受信ユニット240により受信されたデータ信号は、後述する光送受信ユニットIF部253を介してノード制御ユニット250へ入力される。
光送受信ユニット240は、自装置、又は、上記通信装置により生成されたデータ信号を、隣接ノードへ送信される光信号に挿入することにより、当該データ信号を当該隣接ノードへ送信する。
ノード制御ユニット250は、OSCユニットIF(Interface)部251と、光スイッチIF部252と、光送受信ユニットIF部253と、経路記憶部254と、リソース情報記憶部255と、障害検出部(障害検出手段)256と、経路切替部(経路切替手段)257と、上限スパン数記憶部258と、リソース確認部(判定手段)259と、経路決定部260と、通知部(通知手段)261と、を備える。
OSCユニットIF部251は、第1OSCユニット220及び第2OSCユニット230のそれぞれを制御するためのインタフェースである。
光スイッチIF部252は、光スイッチ210を制御するためのインタフェースである。
光送受信ユニットIF部253は、光送受信ユニット240を制御するためのインタフェースである。
経路記憶部254は、現用経路及び予備経路(を表す情報)を記憶する。現用経路は、現時点にて光信号を伝送するために実際に使用されている経路である。予備経路は、現時点では光信号を伝送するために使用されていない経路であり、且つ、現用経路を形成するスパンのいずれかにて障害が発生した場合に、当該現用経路に代えて使用される予定の経路である。
具体的には、経路記憶部254は、現用経路と、当該現用経路に対する予備経路(即ち、当該現用経路と、経路の始端及び終端がそれぞれ同一である経路)と、を対応付けて記憶する。後述するように、経路記憶部254に記憶されている情報は、経路決定部260により決定された予備経路を表す情報、経路切替部257による、切替前の経路及び切替後の経路を表す情報、及び、他のノードから受信した経路切替指示が表す情報等に基づいて更新される。
リソース情報記憶部255は、スパン毎リソース情報を記憶する。本例では、図3に示したように、スパン毎リソース情報は、スパンを表す情報と、複数の波長のそれぞれが、当該スパンにて使用されているか否かを表す使用フラグと、を含む。本例では使用フラグは、値が「1」である場合に、波長が使用されていることを表し、一方、値が「0」である場合に、波長が使用されていないことを表す。
障害検出部256は、光送受信ユニット240により受信されたデータ信号に基づいて、各スパンにおける障害の発生を検出する。本例では、障害検出部256は、予め設定された待機時間に亘って、ある隣接ノードからデータ信号が受信されない場合、当該隣接ノードと自装置(自ノード)との間のスパンにおける障害の発生を検出する。なお、障害検出部256は、受信されたデータ信号の誤り率等に基づいて障害の発生を検出するように構成されていてもよい。
経路切替部257は、障害検出部256により障害の発生が検出された場合、経路記憶部254に記憶されている予備経路のうちの、当該障害の発生が検出されたスパン(障害スパン)が形成する現用経路に対する予備経路を取得する。具体的には、経路切替部257は、上記現用経路に対する予備経路のうちの、障害スパン以外のスパンにより形成される予備経路(即ち、障害スパンを含まない(障害スパンを迂回する)予備経路)を取得する。
そして、経路切替部257は、障害スパンが形成する現用経路の使用を中止し、且つ、取得された予備経路の使用を新たに開始する(即ち、取得された予備経路を新たな現用経路として使用し始めることにより、使用される経路を切り替える)ように各伝送装置2−iを制御する。
具体的には、経路切替部257は、リソース情報記憶部255に記憶されているスパン毎リソース情報に基づいて、取得された予備経路にて新たに使用可能な波長を選択する。更に、経路切替部257は、取得された予備経路にて、選択された波長の光信号を伝送するための設定を、光スイッチ210及び光送受信ユニット240のそれぞれに対して行なう。本例では、光スイッチ210に対する設定は、光スイッチ210のポート間の接続を切り替えるための設定である。また、光送受信ユニット240に対する設定は、光送受信ユニット240が送受信する対象となる波長を変更するための設定である。
経路切替部257は、経路を切り替える場合、経路の切り替えを指示する経路切替指示を含むOSC信号を隣接ノードへ送信する。経路切替指示は、切替前の経路及び波長と、切替後の経路及び波長と、を表す情報を含む。
経路切替部257は、経路を切り替える場合、切替前の経路及び切替後の経路を表す情報に基づいて、経路記憶部254に記憶されている、現用経路及び予備経路を表す情報を更新する。更に、経路切替部257は、経路を切り替える場合、切替前の経路及び切替後の経路を表す情報に基づいて、リソース情報記憶部255に記憶されているスパン毎リソース情報を更新する。
経路切替部257は、隣接ノードから経路切替指示を含むOSC信号を受信した場合、当該経路切替指示に従って、光スイッチ210及び光送受信ユニット240のそれぞれに対する設定を行なう。更に、経路切替部257は、隣接ノードから経路切替指示を含むOSC信号を受信した場合、経路切替指示に基づいて、経路記憶部254に記憶されている、現用経路及び予備経路を表す情報を更新する。これにより、各伝送装置2−i間で、それぞれが記憶している、現用経路及び予備経路を表す情報が同期される。
加えて、経路切替部257は、隣接ノードから経路切替指示を含むOSC信号を受信した場合、経路切替指示に基づいて、リソース情報記憶部255に記憶されているスパン毎リソース情報を更新する。これにより、各伝送装置2−i間で、それぞれが記憶しているスパン毎リソース情報が同期される。
上限スパン数記憶部258は、上限スパン数(本例では、「4」)を表す情報を予め記憶している。
リソース確認部259は、複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用される場合に、リソース確認処理を実行する。本例では、経路切替部257により、使用される経路が切り替えられる場合、リソース確認部259は、リソース確認処理を実行する。なお、リソース確認部259は、経路が切り替えられることなく、新たな経路の使用が開始する場合にも、リソース確認処理を実行するように構成されていてもよい。
ここで、リソース確認処理は、新たに使用されるスパンにより形成される経路のうちの、スパン数が上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する処理である。スパン数は、経路を形成するスパンの数である。
リソース確認部259は、上記スパンが新たに使用され始めた直後に、上記リソース確認処理(即ち、上記判定)を行なう。本例では、リソース確認部259は、経路切替部257による経路の切り替えが完了した直後に、リソース確認処理を行なう。
本例では、リソース確認部259は、リソース情報記憶部255に記憶されているスパン毎リソース情報と、上限スパン数記憶部258に記憶されている上限スパン数と、に基づいて、リソース確認処理を実行する。
リソース確認部259は、リソース確認処理の実行結果を表す経路毎リソース情報を、リソース情報記憶部255に記憶させる(格納する)。本例では、図4に示したように、経路毎リソース情報は、経路を表す情報と、その経路にて新たに使用可能な波長(使用可能リソース)が存在する(即ち、その経路が使用可能リソースを有する)か否かを表す情報と、を含む。
具体的には、経路毎リソース情報は、経路を表す情報と、複数の波長のそれぞれが当該経路にて使用可能であるか否かを表す使用可否フラグ(本例では、論理和)と、を対応付けた情報を含む。使用可否フラグは、値が「1」である場合に、波長が使用不能であることを表し、一方、値が「0」である場合に、波長が使用可能であることを表す。即ち、経路毎リソース情報は、ある経路にて、少なくとも1つの波長の光信号を新たに伝送可能であるか否かが判定された結果(判定結果)を表す情報である、と言うことができる。
経路決定部260は、リソース情報記憶部255に記憶されている経路毎リソース情報に基づいて、経路記憶部254に記憶されている予備経路の中で、使用可能リソースを有しない予備経路が存在するか否かを判定する。経路決定部260は、経路記憶部254に記憶されている予備経路の中で、使用可能リソースを有しない予備経路が存在する場合、当該予備経路に対する代替経路を決定する。代替経路は、予備経路と経路の始端及び終端がそれぞれ同一であり、且つ、使用可能リソースを有する経路である。なお、本例では、経路決定部260は、上限スパン数以下のスパン数を有する経路を代替経路として決定するように構成される。
経路決定部260は、経路記憶部254に記憶されている予備経路のうちの、使用可能リソースを有しない予備経路を表す情報を、当該予備経路に対して決定された代替経路を表す情報に更新する。更に、経路決定部260は、更新後の予備経路(即ち、代替経路)を表す情報と、更新前の予備経路を表す情報と、を含む予備経路変更指示を含むOSC信号を隣接ノードへ送信する。
経路切替部257は、隣接ノードから予備経路変更指示を含むOSC信号を受信した場合、当該予備経路変更指示に基づいて、経路記憶部254に記憶されている予備経路を表す情報を更新する。これにより、各伝送装置2−i間で、それぞれが記憶している、予備経路を表す情報が同期される。
通知部261は、リソース確認部259により、少なくとも1つの経路に対して、複数の波長のいずれの光信号も新たに伝送不能である(即ち、少なくとも1つの経路が使用可能リソースを有しない)と判定された場合、その旨を通知する通知情報を、出力装置400へ出力する。
出力装置400は、表示装置(例えば、ディスプレイ)を備え、通知情報が入力された場合、通知情報を表示装置に表示する。
(作動)
次に、上述した光波長分割多重通信システム1の作動について、図5乃至図7を参照しながら説明する。
本例では、図7に示したように、スパンg及びスパンhを連結した、伝送装置#2から伝送装置#4までの経路P1が現用経路として使用されている場合において、スパンgにおいて障害が発生し、その後、伝送装置#2が当該障害の発生を検出した場合を想定する。
従って、以下、伝送装置#2の作動を中心として説明する。なお、他の伝送装置2−iも伝送装置#2と同様に作動する。
伝送装置#2は、図5にフローチャートにより示した経路切替処理を実行するようになっている。具体的には、伝送装置#2は、隣接ノードと自装置(自ノード)との間のスパンにおける障害の発生を検出するまで待機する(図5のステップS101)。
上記仮定に従えば、伝送装置#2は、スパンgにおける障害の発生を検出する。従って、伝送装置#2は、「Yes」と判定して、スパンg(障害スパン)が形成する現用経路P1の使用を中止し、且つ、現用経路P1に対する予備経路のうちの、障害スパンを迂回する予備経路P2の使用を新たに開始するように各伝送装置2−iを制御する。即ち、伝送装置#2は、使用される経路を現用経路P1から予備経路P2へ切り替える(図5のステップS102)。
具体的には、伝送装置#2は、記憶されているスパン毎リソース情報に基づいて、予備経路P2にて新たに使用可能な波長を選択する。更に、伝送装置#2は、予備経路P2にて、選択された波長の光信号を伝送するための設定を、自装置の光スイッチ210及び光送受信ユニット240のそれぞれに対して行なう。加えて、伝送装置#2は、経路切替指示を含むOSC信号を隣接ノード(本例では、伝送装置#1及び伝送装置#6)へ送信する。
更に、伝送装置#2は、切替前の経路P1及び切替後の経路P2を表す情報に基づいて、記憶されている、現用経路及び予備経路を表す情報を更新する。加えて、伝送装置#2は、切替前の経路P1及び切替後の経路P2を表す情報に基づいて、記憶されているスパン毎リソース情報を更新する。
経路切替指示を受信した伝送装置#iは、隣接ノードへ経路切替指示を転送する。これにより、各伝送装置#iのそれぞれが、当該経路切替指示を受信する。そして、本例では、伝送装置#6、#7、#8、#4のそれぞれは、予備経路P2にて、選択された波長の光信号を伝送するための設定を、自装置の光スイッチ210及び光送受信ユニット240のそれぞれに対して行なう。
更に、各伝送装置#iは、切替前の経路P1及び切替後の経路P2を表す情報に基づいて、記憶されている、現用経路及び予備経路を表す情報を更新する。加えて、伝送装置#iは、切替前の経路P1及び切替後の経路P2を表す情報に基づいて、記憶されているスパン毎リソース情報を更新する。
次いで、伝送装置#2は、切替後の経路(新規使用経路)P2を形成する各スパンを1つずつ順に処理対象とする第1のループ処理(図5のステップS103〜ステップS106)を実行する。本例では、伝送装置#2は、スパンa、スパンb、スパンc、及び、スパンdを順に処理対象とする第1のループ処理を実行する。
第1のループ処理において、先ず、伝送装置#2は、処理対象となるスパンを対象経路として設定する(図5のステップS104)。本例では、この時点では、対象経路は、スパンaからなる経路である。次いで、伝送装置#2は、図6にフローチャートにより示した経路毎確認処理をステップS104にて設定された対象経路に対して実行する(図5のステップS105)。
具体的には、伝送装置#2は、上限スパン数を取得する(図6のステップS201)。本例では、伝送装置#2は、予め記憶されている上限スパン数として「4」を取得する。そして、伝送装置#2は、対象経路に対するスパン数が、取得された上限スパン数以下であるか否かを判定する(図6のステップS202)。本例では、この時点では、対象経路に対するスパン数は、「1」である。
対象経路に対するスパン数が上限スパン数よりも大きい場合、伝送装置#2は、「No」と判定して、実行中の経路毎確認処理を実行する基となった処理(呼び出し元)の次の処理(図5のステップS106又は図6のステップS209)へ進む。
一方、対象経路に対するスパン数が上限スパン数以下である場合、伝送装置#2は、「Yes」と判定して、図6のステップS203へ進む。本例では、この時点では、スパン数「1」が上限スパン数「4」以下であるから、伝送装置#2は、「Yes」と判定して、図6のステップS203へ進む。
次いで、伝送装置#2は、記憶されているスパン毎リソース情報に基づいて経路毎リソース情報を取得し、取得された経路毎リソース情報を記憶(格納)する(図6のステップS203)。
具体的には、伝送装置#2は、対象経路を形成する各スパンの使用フラグの、波長毎の論理和を使用可否フラグとして取得(算出)する。伝送装置#2は、経路を表す情報と、使用可否フラグと、判定結果を表す情報と、を対応付けた情報を含む経路毎リソース情報を取得する。ここで、判定結果を表す情報は、値が「OK」である場合、少なくとも1つの波長が使用可能であることを表し、一方、値が「NG」である場合、いずれの波長も使用不能であることを表す。本例では、判定結果を表す情報を取得することは、ある経路にて少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定することの一例である。
そして、伝送装置#2は、対象経路が使用可能リソースを有するか否かを判定する(図6のステップS204)。
対象経路が使用可能リソースを有しない場合、伝送装置#2は、「No」と判定して、実行中の経路毎確認処理を実行する基となった処理の次の処理(図5のステップS106又は図6のステップS209)へ進む。
一方、対象経路が使用可能リソースを有する場合、伝送装置#2は、「Yes」と判定して図6のステップS205へ進む。本例では、図3に示したように、スパンaが使用可能な波長を有する場合を想定する。従って、この時点では、伝送装置#2は、「Yes」と判定して図6のステップS205へ進む。
そして、伝送装置#2は、対象経路が隣接スパンを有するか否かを判定する(図6のステップS205)。ここで、隣接スパンは、対象経路の始端又は終端に隣接する(即ち、対象経路の始端又は終端を含むスパンに連結可能な)スパンである。
対象経路が隣接スパンを有しない場合、伝送装置#2は、「No」と判定して、実行中の経路毎確認処理を実行する基となった処理の次の処理へ進む。一方、対象経路が隣接スパンを有する場合、伝送装置#2は、「Yes」と判定して、図6のステップS206へ進む。
本例では、この時点では、対象経路(スパンa)は、隣接スパン(スパンe及びスパンb)を有する。従って、伝送装置#2は、「Yes」と判定して、図6のステップS206へ進む。
そして、伝送装置#2は、各隣接スパンを1つずつ順に処理対象とする第2のループ処理(図6のステップS206〜ステップS209)を実行する。即ち、本例では、この時点では、伝送装置#2は、隣接スパンe、及び、隣接スパンbを順に処理対象とする第2のループ処理を実行する。
第2のループ処理において、先ず、伝送装置#2は、処理対象となる隣接スパンを、実行中の経路毎確認処理に対して設定されていた対象経路に連結した経路を、対象経路として設定する(図6のステップS207)。本例では、この時点では、対象経路は、スパンa及びスパンeを連結した経路である。
次いで、伝送装置#2は、経路毎確認処理を、上記ステップS207にて設定された対象経路に対して実行する(図6のステップS208)。即ち、伝送装置#2は、経路毎確認処理を再帰的に実行する。
経路毎確認処理を再帰的に実行した結果、対象経路のスパン数が上限スパン数よりも大きくなった場合、上述したように、伝送装置#2は、図6のステップS202にて「No」と判定する。そして、伝送装置#2は、以降の処理(ステップS203〜ステップS209)を実行することなく、実行中の経路毎確認処理を実行する基となった処理の次の処理へ進む。
例えば、対象経路として、スパンa、スパンb、スパンc、スパンd、及び、スパンfを連結した経路が設定され、その対象経路に対して経路毎確認処理が実行された場合、対象経路のスパン数は、「5」である。従って、この場合、スパン数が上限スパン数よりも大きい。このため、伝送装置#2は、図6のステップS202にて「No」と判定して、以降の処理(ステップS203〜ステップS209)を実行することなく、実行中の経路毎確認処理を実行する基となった処理の次の処理へ進む。
即ち、伝送装置#2は、新たに使用されるスパンにより形成される経路のうちの、スパン数が上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する処理を実行している、と言うことができる。
そして、伝送装置#2は、隣接スパンのすべてに対して、上記第2のループ処理(図6のステップS206〜ステップS209)を実行した後、実行中の経路毎確認処理を実行する基となった処理の次の処理へ進む。
また、伝送装置#2は、新規使用経路を形成するスパンのすべてに対して、上記第1のループ処理(図5のステップS103〜ステップS106)を実行した後、図5のステップS107へ進む。そして、伝送装置#2は、図6のステップS203にて更新された経路毎リソース情報に基づいて、記憶されている予備経路の中で、使用可能リソースを有しない経路が存在するか否かを判定する(図5のステップS107)。
記憶されている予備経路のすべてが、使用可能リソースを有する経路である(即ち、使用可能リソースを有しない予備経路が存在しない)場合、伝送装置#2は、「No」と判定して図5のステップS101へ戻り、ステップS101〜ステップS109の処理を繰り返し実行する。
一方、記憶されている予備経路の中で、使用可能リソースを有しない経路が存在する場合、伝送装置#2は、「Yes」と判定して図5のステップS108へ進む。そして、伝送装置#2は、使用可能リソースを有しない経路が存在する旨を通知する通知情報(本例では、警告)を出力装置400を介して出力する(図5のステップS108)。
次いで、伝送装置#2は、記憶されているスパン毎リソース情報に基づいて、使用可能リソースを有しない予備経路に対する代替経路を決定する(図5のステップS109)。そして、伝送装置#2は、記憶されている予備経路のうちの、使用可能リソースを有しない予備経路を表す情報を、当該予備経路に対して決定された代替経路を表す情報に更新する。更に、伝送装置#2は、更新後の予備経路(即ち、代替経路)を表す情報と、更新前の予備経路を表す情報と、を含む予備経路変更指示を含むOSC信号を隣接ノードへ送信する。
予備経路変更指示を受信した伝送装置#iは、隣接ノードへ予備経路変更指示を転送する。これにより、各伝送装置#iのそれぞれが、当該予備経路変更指示を受信する。更に、各伝送装置#iは、更新後の予備経路(即ち、代替経路)及び更新前の予備経路を表す情報に基づいて、記憶されている予備経路を表す情報を更新する。
その後、伝送装置#2は、図5のステップS101へ戻り、ステップS101〜ステップS109の処理を繰り返し実行する。
なお、図5のステップS103〜ステップS106の処理、及び、図6の経路毎確認処理は、リソース確認処理の一例である。
以上、説明したように、第1実施形態に係るノード制御ユニット250(判定装置)は、複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用される場合に、リソース確認処理を実行する。リソース確認処理は、新たに使用されるスパンにより形成される経路のうちの、スパン数が所定の上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する処理である。
ところで、1つの経路を形成するスパンの数であるスパン数が多くなるほど、伝送される光信号の品質は低下する。従って、伝送される光信号の品質を所要の品質以上とするためには、スパン数を限定する必要がある。このため、光波長分割多重通信システムが、スパン数を所定の上限スパン数以下とするように経路を決定するように構成されることが多い。
そこで、上記のように、上記判定の対象となる経路を限定することにより、上記判定を行なうための処理の負荷が無駄に過大となることを回避することができる。即ち、ノード制御ユニット250によれば、処理の負荷を軽減することができる。
具体的には、仮に、すべての経路に対して上記判定を行なう場合、図8に示したように、判定の対象となる経路の数は、「19」である。一方、第1実施形態に係るノード制御ユニット250によれば、スパン数が「5」以上である経路が、判定の対象から除外される。従って、第1実施形態に係るノード制御ユニット250によれば、図9に示したように、判定の対象となる経路の数は、「16」である。このように、ノード制御ユニット250によれば、処理の負荷を軽減することができる。
更に、第1実施形態に係るノード制御ユニット250は、複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用され始めた直後に、上記判定を行なう。
これによれば、判定結果に基づく処理(本例では、経路の切り替え)が実行される時点よりも早期に、上記判定の実行を完了することができるので、当該判定結果に基づく処理が過度に遅延することを回避することができる。
加えて、第1実施形態に係るノード制御ユニット250は、各スパンにおける障害の発生を検出し、障害の発生が検出された場合、当該障害が発生したスパンが形成する経路を、当該スパンを迂回する経路に切り替える。更に、ノード制御ユニット250は、経路の切り替えが完了した直後に、上記判定を行なう。
これによれば、次に障害の発生が検出される時点よりも早期に、上記判定の実行を完了することができるので、次の障害の発生に伴う経路の切り替えが過度に遅延することを回避することができる。
更に、第1実施形態に係るノード制御ユニット250は、少なくとも1つの経路に対して、複数の波長のいずれの光信号も新たに伝送不能であると判定された場合、その旨を通知する。
これによれば、ある経路において光信号を新たに伝送できないことをユーザ(例えば、光波長分割多重通信システム1の管理者等)に迅速に認識させることができる。
なお、第1実施形態に係るノード制御ユニット250は、経路が切り替えられる毎にリソース確認処理を実行するように構成されていたが、経路が切り替えられる回数が所定の周期回数(例えば、2以上の自然数)に到達する毎にリソース確認処理を実行するように構成されていてもよい。
この場合、ノード制御ユニット250は、波長毎に周期回数を変更可能に構成されていてもよい。更に、この場合、ノード制御ユニット250は、周期回数として「1」を用いてもよい。即ち、ノード制御ユニット250は、予め設定された波長の光信号を伝送している経路において障害が発生した場合には、経路が切り替えられる毎にリソース確認処理を実行し、且つ、他の波長の光信号を伝送している経路において障害が発生した場合には、経路が切り替えられる回数が所定の周期回数(例えば、2以上の自然数)に到達する毎にリソース確認処理を実行するように構成されていてもよい。
また、第1実施形態に係るノード制御ユニット250は、新たに使用されるスパンにより形成される経路に対して、リソース確認処理を実行するように構成されていた。ところで、ノード制御ユニット250は、新たに使用されるスパンにより形成される経路のうちの予備経路のみに対して、リソース確認処理を実行するように構成されていてもよい。
<第1変形例>
次に、本発明の第1実施形態の第1変形例に係る光波長分割多重通信システムについて説明する。第1変形例に係る光波長分割多重通信システムは、上記第1実施形態に係る光波長分割多重通信システムに対して、変調方式に応じた上限スパン数を用いる点において相違している。以下、かかる相違点を中心として説明する。なお、第1変形例の説明において、上記第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
(構成)
第1変形例に係る光波長分割多重通信システム1は、複数の異なる変調方式が複数の異なる波長に対してそれぞれ設定可能に構成される。本例では、複数の変調方式は、光信号の強度を変調する強度変調方式と、光信号の位相を変調する位相変調方式と、である。なお、光波長分割多重通信システム1は、経路毎に異なる変調方式を設定可能に構成されていてもよい。
光波長分割多重通信システム1は、各波長の光信号を、当該波長に対して設定された変調方式に従って生成し、当該生成された光信号を、当該波長に対して設定された経路を介して伝送するように構成される。本例では、光波長分割多重通信システム1は、強度変調方式に従って生成された光信号を、10Gbit/秒にて伝送するとともに、位相変調方式に従って生成された光信号を、100Gbit/秒にて伝送する。
図10に示したように、第1変形例に係る伝送装置2Aは、ノード制御ユニット250に代えて、ノード制御ユニット250Aを備える。更に、ノード制御ユニット250Aは、上限スパン数記憶部258に代えて、上限スパン数記憶部258Aを備えるとともに、リソース確認部259に代えて、リソース確認部259Aを備える。
上限スパン数記憶部258Aは、図11に示したように、変調方式を表す情報と、上限スパン数を表す情報と、を対応付けて予め記憶している。
更に、上限スパン数記憶部258Aは、波長を表す情報と、変調方式を表す情報と、を対応付けて予め記憶している。本例では、上限スパン数記憶部258Aは、図12に示したように、波長#1〜波長#4と、位相変調方式と、を対応付けて記憶し、波長#5〜波長#8と、強度変調方式と、を対応付けて記憶している。
リソース確認部259Aは、リソース情報記憶部255に記憶されているスパン毎リソース情報と、上限スパン数記憶部258Aに記憶されている情報と、に基づいて、リソース確認処理を実行する。
具体的には、リソース確認部259Aは、判定の対象となる経路において使用可能な波長に対して予め設定された変調方式に応じて予め定められた値を上限スパン数として用いる。
(作動)
第1変形例に係る伝送装置2Aは、経路毎確認処理として、図6に示した処理のステップS201及びステップS202を、図13のステップS301〜ステップS304に置換した処理を実行する。
具体的には、伝送装置2Aは、記憶されているスパン毎リソース情報に基づいて、対象経路において使用可能な波長を抽出する(図13のステップS301)。更に、伝送装置2Aは、抽出された波長のそれぞれと対応付けて記憶されている変調方式を取得する(図13のステップS302)。
そして、伝送装置2Aは、抽出された波長のそれぞれに対して、取得された変調方式と対応付けて記憶されている上限スパン数を波長毎上限スパン数として取得する(図13のステップS303)。次いで、伝送装置2Aは、対象経路のスパン数が、取得された波長毎上限スパン数の最大値(上限スパン数)以下であるか否かを判定する(図13のステップS304)。
即ち、本例では、伝送装置2Aは、判定の対象となる経路(対象経路)において使用可能な波長に対して予め設定された変調方式に応じて予め定められた値を上限スパン数として用いている、と言うことができる。
そして、対象経路のスパン数が、上限スパン数以下である場合、伝送装置2Aは、図6のステップS203以降の処理を実行する。一方、対象経路のスパン数が、上限スパン数よりも大きい場合、伝送装置2Aは、実行中の経路毎確認処理を実行する基となった処理の次の処理(図5のステップS106又は図6のステップS209)へ進む。
以上、説明したように、第1変形例に係るノード制御ユニット250Aによれば、第1実施形態に係るノード制御ユニット250と同様の作用及び効果を奏することができる。
更に、第1変形例に係るノード制御ユニット250Aは、判定の対象となる経路において使用可能な波長に対して予め設定された変調方式に応じて予め定められた値を上限スパン数として用いる。
ところで、位相変調方式に従った光信号は、強度変調方式に従った光信号よりも、相互位相変調(XPM(Cross Phase Modulation))等の非線形効果の影響を強く受ける。従って、位相変調方式に対する上限スパン数は、強度変調方式に対する上限スパン数よりも小さい。そこで、上記のように、変調方式に応じて予め定められた値を上限スパン数として用いることにより、判定の対象となる経路を適切に選択することができる。
<第2変形例>
次に、本発明の第1実施形態の第2変形例に係る光波長分割多重通信システムについて説明する。第2変形例に係る光波長分割多重通信システムは、上記第1実施形態に係る光波長分割多重通信システムに対して、ガードバンドに応じた上限スパン数を用いる点において相違している。以下、かかる相違点を中心として説明する。なお、第2変形例の説明において、上記第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。ここで、ガードバンドは、波長領域において隣接する、光信号が割り当てられた波長間の波長領域における距離(即ち、波長の差)を表す。
(構成)
第2変形例に係る光波長分割多重通信システム1は、複数の異なる変調方式が複数の異なる波長に対してそれぞれ設定可能に構成される。本例では、複数の変調方式は、光信号の強度を変調する強度変調方式と、光信号の位相を変調する位相変調方式と、である。なお、光波長分割多重通信システム1は、経路毎に異なる変調方式を設定可能に構成されていてもよい。
光波長分割多重通信システム1は、各波長の光信号を、当該波長に対して設定された変調方式に従って生成し、当該生成された光信号を、当該波長に対して設定された経路を介して伝送するように構成される。本例では、光波長分割多重通信システム1は、強度変調方式に従って生成された光信号を、10Gbit/秒にて伝送するとともに、位相変調方式に従って生成された光信号を、100Gbit/秒にて伝送する。
図14に示したように、第2変形例に係る伝送装置2Bは、ノード制御ユニット250に代えて、ノード制御ユニット250Bを備える。更に、ノード制御ユニット250Bは、上限スパン数記憶部258に代えて、上限スパン数記憶部258Bを備えるとともに、リソース確認部259に代えて、リソース確認部259Bを備える。
上限スパン数記憶部258Bは、図15に示したように、変調方式を表す情報と、ガードバンドを表す情報と、上限スパン数を表す情報と、を対応付けて予め記憶している。
加えて、上限スパン数記憶部258Bは、図16に示したように、スパンを表す情報と、当該スパンにおけるガードバンドを表す情報と、を対応付けて予め記憶している。
更に、上限スパン数記憶部258Bは、波長を表す情報と、変調方式を表す情報と、を対応付けて予め記憶している。本例では、上限スパン数記憶部258Bは、図12に示したように、波長#1〜波長#4と、位相変調方式と、を対応付けて記憶し、波長#5〜波長#8と、強度変調方式と、を対応付けて記憶している。
リソース確認部259Bは、リソース情報記憶部255に記憶されているスパン毎リソース情報と、上限スパン数記憶部258Bに記憶されている情報と、に基づいて、リソース確認処理を実行する。
具体的には、リソース確認部259Bは、判定の対象となる経路において使用可能な波長に対して予め設定された変調方式、及び、判定の対象となる経路を形成するスパンのガードバンドの最小値、に応じて予め定められた値を上限スパン数として用いる。
(作動)
第2変形例に係る伝送装置2Bは、経路毎確認処理として、図6に示した処理のステップS201及びステップS202を、図17のステップS401〜ステップS405に置換した処理を実行する。
具体的には、伝送装置2Bは、記憶されているスパン毎リソース情報に基づいて、対象経路において使用可能な波長を抽出する(図17のステップS401)。更に、伝送装置2Bは、抽出された波長のそれぞれと対応付けて記憶されている変調方式を取得する(図17のステップS402)。次いで、伝送装置2Bは、対象経路を形成するスパンのそれぞれと対応付けて記憶されているガードバンドの最小値を取得する(図17のステップS403)。
そして、伝送装置2Bは、抽出された波長のそれぞれに対して、取得された変調方式、及び、取得されたガードバンドの最小値と対応付けて記憶されている上限スパン数を波長毎上限スパン数として取得する(図17のステップS404)。次いで、伝送装置2Bは、対象経路のスパン数が、取得された波長毎上限スパン数の最大値(上限スパン数)以下であるか否かを判定する(図17のステップS405)。
即ち、本例では、伝送装置2Bは、判定の対象となる経路(対象経路)において使用可能な波長に対して予め設定された変調方式、及び、対象経路を形成するスパンのガードバンドの最小値に応じて予め定められた値を上限スパン数として用いている、と言うことができる。
そして、対象経路のスパン数が、上限スパン数以下である場合、伝送装置2Bは、図6のステップS203以降の処理を実行する。一方、対象経路のスパン数が、上限スパン数よりも大きい場合、伝送装置2Bは、実行中の経路毎確認処理を実行する基となった処理の次の処理(図5のステップS106又は図6のステップS209)へ進む。
以上、説明したように、第2変形例に係るノード制御ユニット250Bによれば、第1実施形態に係るノード制御ユニット250と同様の作用及び効果を奏することができる。
更に、第2変形例に係るノード制御ユニット250Bは、判定の対象となる経路を形成するスパンのガードバンドの最小値に応じて予め定められた値を上限スパン数として用いる。
ところで、光信号は、ガードバンドが小さくなるほど、相互位相変調等の非線形効果の影響を強く受ける。即ち、上限スパン数は、ガードバンドが小さくなるほど小さくなる。そこで、上記のように、経路を形成するスパンのガードバンドの最小値に応じて予め定められた値を上限スパン数として用いることにより、判定の対象となる経路を適切に選択することができる。
具体的には、仮に、すべての経路に対して上記判定を行なう場合、図8に示したように、判定の対象となる経路の数は、「19」である。一方、第2変形例に係るノード制御ユニット250Bによれば、すべての波長に対して位相変調方式が設定され、且つ、図15及び図16に示したようにガードバンド及び上限スパン数が設定されている場合、図18に示したように、判定の対象となる経路の数は、「13」である。このように、ノード制御ユニット250Bによれば、処理の負荷を軽減することができる。
<第3変形例>
次に、本発明の第1実施形態の第3変形例に係る光波長分割多重通信システムについて説明する。第3変形例に係る光波長分割多重通信システムは、上記第1実施形態に係る光波長分割多重通信システムに対して、光ファイバの種別に応じた上限スパン数を用いる点において相違している。以下、かかる相違点を中心として説明する。なお、第2変形例の説明において、上記第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
(構成)
第3変形例に係る光波長分割多重通信システム1は、複数の異なる変調方式が複数の異なる波長に対してそれぞれ設定可能に構成される。本例では、複数の変調方式は、光信号の強度を変調する強度変調方式と、光信号の位相を変調する位相変調方式と、である。なお、光波長分割多重通信システム1は、経路毎に異なる変調方式を設定可能に構成されていてもよい。
光波長分割多重通信システム1は、各波長の光信号を、当該波長に対して設定された変調方式に従って生成し、当該生成された光信号を、当該波長に対して設定された経路を介して伝送するように構成される。本例では、光波長分割多重通信システム1は、強度変調方式に従って生成された光信号を、10Gbit/秒にて伝送するとともに、位相変調方式に従って生成された光信号を、100Gbit/秒にて伝送する。
図19に示したように、第3変形例に係る伝送装置2Cは、ノード制御ユニット250に代えて、ノード制御ユニット250Cを備える。更に、ノード制御ユニット250Cは、上限スパン数記憶部258に代えて、上限スパン数記憶部258Cを備えるとともに、リソース確認部259に代えて、リソース確認部259Cを備える。
上限スパン数記憶部258Cは、図20に示したように、変調方式を表す情報と、光ファイバの種別(ファイバ種別)を表す情報と、上限スパン数を表す情報と、を対応付けて予め記憶している。
加えて、上限スパン数記憶部258Cは、図21に示したように、スパンを表す情報と、当該スパンのファイバ種別を表す情報と、を対応付けて予め記憶している。
更に、上限スパン数記憶部258Cは、波長を表す情報と、変調方式を表す情報と、を対応付けて予め記憶している。本例では、上限スパン数記憶部258Cは、図12に示したように、波長#1〜波長#4と、位相変調方式と、を対応付けて記憶し、波長#5〜波長#8と、強度変調方式と、を対応付けて記憶している。
リソース確認部259Cは、リソース情報記憶部255に記憶されているスパン毎リソース情報と、上限スパン数記憶部258Cに記憶されている情報と、に基づいて、リソース確認処理を実行する。
具体的には、リソース確認部259Cは、判定の対象となる経路において使用可能な波長に対して予め設定された変調方式、及び、判定の対象となる経路を形成するスパンの光ファイバの種別、に応じて予め定められた値を上限スパン数として用いる。
(作動)
第3変形例に係る伝送装置2Cは、経路毎確認処理として、図6に示した処理のステップS201及びステップS202を、図22のステップS501〜ステップS505に置換した処理を実行する。
具体的には、伝送装置2Cは、記憶されているスパン毎リソース情報に基づいて、対象経路において使用可能な波長を抽出する(図22のステップS501)。更に、伝送装置2Cは、抽出された波長のそれぞれと対応付けて記憶されている変調方式を取得する(図22のステップS502)。次いで、伝送装置2Cは、対象経路を形成するスパンのそれぞれと対応付けて記憶されているファイバ種別を取得する(図22のステップS503)。
そして、伝送装置2Cは、抽出された波長のそれぞれに対して、対象経路を形成するスパン毎に、取得された変調方式、及び、取得されたファイバ種別と対応付けて記憶されている上限スパン数を要素毎上限スパン数として取得する。次いで、伝送装置2Cは、抽出された波長のそれぞれに対して取得された要素毎上限スパン数の最小値(波長毎上限スパン数)を取得する(図22のステップS504)。
そして、伝送装置2Cは、対象経路のスパン数が、取得された波長毎上限スパン数の最大値(上限スパン数)以下であるか否かを判定する(図22のステップS505)。
即ち、本例では、伝送装置2Cは、判定の対象となる経路(対象経路)を形成するスパンの光ファイバの種別に応じて予め定められた値の最小値(波長毎上限スパン数)を上限スパン数として用いている、と言うことができる。
そして、対象経路のスパン数が、上限スパン数以下である場合、伝送装置2Cは、図6のステップS203以降の処理を実行する。一方、対象経路のスパン数が、上限スパン数よりも大きい場合、伝送装置2Cは、実行中の経路毎確認処理を実行する基となった処理の次の処理(図5のステップS106又は図6のステップS209)へ進む。
以上、説明したように、第3変形例に係るノード制御ユニット250Cによれば、第1実施形態に係るノード制御ユニット250と同様の作用及び効果を奏することができる。
更に、第3変形例に係るノード制御ユニット250Cは、判定の対象となる経路を形成するスパンの光ファイバの種別に応じて予め定められた値の最小値を上限スパン数として用いる。
ところで、NZ−DSFを伝送される光信号は、SMFを伝送される光信号よりも、相互位相変調等の非線形効果の影響を強く受ける。従って、NZ−DSFに対する上限スパン数は、SMFに対する上限スパン数よりも小さい。そこで、上記のように、経路を形成するスパンの光ファイバの種別に応じて予め定められた値の最小値を上限スパン数として用いることにより、判定の対象となる経路を適切に選択することができる。
具体的には、仮に、すべての経路に対して上記判定を行なう場合、図8に示したように、判定の対象となる経路の数は、「19」である。一方、第3変形例に係るノード制御ユニット250Cによれば、すべての波長に対して位相変調方式が設定され、且つ、図20及び図21に示したようにファイバ種別及び上限スパン数が設定されている場合、図23に示したように、判定の対象となる経路の数は、「10」である。このように、ノード制御ユニット250Cによれば、処理の負荷を軽減することができる。
<第2実施形態>
次に、本発明の第2実施形態に係る光波長分割多重通信システムについて説明する。第2実施形態に係る光波長分割多重通信システムは、上記第1実施形態に係る光波長分割多重通信システムに対して、伝送装置以外の管理装置が判定装置を備える点において相違している。以下、かかる相違点を中心として説明する。なお、第2実施形態の説明において、上記第1実施形態にて使用した符号と同じ符号を付したものは、同一又はほぼ同様のものである。
(構成)
図24に示したように、第2実施形態に係る光波長分割多重通信システム1Dは、複数(本例では、8個)の伝送装置(ノード)2D−i(ここで、iは、1から8までの自然数)と、管理装置5Dと、を備える。なお、光波長分割多重通信システム1Dは、8個以外の複数の伝送装置を備えていてもよい。なお、以下では、伝送装置2D−iは、伝送装置#iとも表記される。また、伝送装置2D−iは、特定される必要がない場合、単に、伝送装置2Dとも表記される。
本例では、管理装置5Dは、伝送装置2D−1に接続されている。なお、管理装置5Dは、各伝送装置2D−iと接続されていてもよい。また、管理装置5Dは、NMS(Network Management System)、又は、PCE(Path Computation Element)と呼ばれる装置であってもよい。
図25に示したように、伝送装置2Dは、ノード制御ユニット250に代えて、ノード制御ユニット250Dを備える。
ノード制御ユニット250Dは、経路切替部257に代えて、経路切替部257Dを備える。更に、ノード制御ユニット250Dは、管理装置IF部262を備える。なお、ノード制御ユニット250Dは、ノード制御ユニット250と異なり、経路記憶部254、リソース情報記憶部255、障害検出部256、上限スパン数記憶部258、リソース確認部259、経路決定部260、及び、通知部261を備えない。
管理装置IF部262は、管理装置5Dとの間で制御信号を送受信するためのインタフェースである。
経路切替部257Dは、管理装置IF部262を介して管理装置5Dから経路切替指示としての制御信号を受信した場合、当該経路切替指示に従って、光スイッチ210及び光送受信ユニット240のそれぞれに対する設定を行なう。経路切替指示は、切替前の経路及び波長と、切替後の経路及び波長と、を表す情報を含む。
図26に示したように、管理装置5Dは、伝送装置IF部501と、経路記憶部502と、リソース情報記憶部503と、障害検出部(障害検出手段)504と、経路切替部(経路切替手段)505と、上限スパン数記憶部506と、リソース確認部(判定手段)507と、経路決定部508と、通知部(通知手段)509と、を備える。なお、管理装置5Dは、判定装置の一例である。また、管理装置5Dは、判定装置以外の機能を有していてもよい。
伝送装置IF部501は、伝送装置2Dとの間で制御信号を送受信するためのインタフェースである。
経路記憶部502、リソース情報記憶部503、障害検出部504、上限スパン数記憶部506、リソース確認部507、及び、経路決定部508は、経路記憶部254、リソース情報記憶部255、障害検出部256、上限スパン数記憶部258、リソース確認部259、及び、経路決定部260と同様の機能をそれぞれ有する。
経路切替部505は、経路切替部257の機能のうちの、自装置の経路を切り替えるための機能以外の部分と同様の機能を有する。
通知部509は、リソース確認部507により、少なくとも1つの経路に対して、複数の波長のいずれの光信号も新たに伝送不能である(即ち、少なくとも1つの経路が使用可能リソースを有しない)と判定された場合、その旨を通知する通知情報を、出力装置400Dへ出力する。出力装置400Dは、表示装置(例えば、ディスプレイ)を備え、通知情報が入力された場合、通知情報を表示装置に表示する。
第2実施形態に係る光波長分割多重通信システム1Dは、伝送装置2Dに代わって管理装置5Dが、図5及び図6に示した処理を実行することにより、第1実施形態に係る光波長分割多重通信システム1と同様に作動する。
従って、第2実施形態に係る管理装置5Dによれば、第1実施形態に係るノード制御ユニット250と同様の作用及び効果を奏することができる。
以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成及び詳細に、本願発明の範囲内において当業者が理解し得る様々な変更をすることができる。
なお、上記各実施形態において、判定装置の各機能は、回路等のハードウェアにより実現されていた。ところで、判定装置は、処理装置と、プログラム(ソフトウェア)を記憶する記憶装置と、を備えるコンピュータを有するとともに、処理装置がそのプログラムを実行することにより、各機能を実現するように構成されていてもよい。この場合、プログラムは、コンピュータ読み取り可能な記録媒体に記憶されていてもよい。例えば、記録媒体は、フレキシブルディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等の可搬性を有する媒体である。
また、本発明の趣旨を逸脱しない範囲内において、上記実施形態の他の変形例として、上述した実施形態及び変形例の任意の組み合わせが採用されてもよい。
1,1D 光波長分割多重通信システム
2,2A,2B,2C,2D 伝送装置
210 光スイッチ
220 第1OSCユニット
221 OSC受信部
222 OSC送信部
230 第2OSCユニット
231 OSC受信部
232 OSC送信部
240 光送受信ユニット
250,250A,250B,250C,250D ノード制御ユニット
251 OSCユニットIF部
252 光スイッチIF部
253 光送受信ユニットIF部
254 経路記憶部
255 リソース情報記憶部
256 障害検出部
257,257D 経路切替部
258,258A,258B,258C 上限スパン数記憶部
259,259A,259B,259C リソース確認部
260 経路決定部
261 通知部
262 管理装置IF部
3a〜3h 光ファイバ
400,400D 出力装置
5D 管理装置
501 伝送装置IF部
502 経路記憶部
503 リソース情報記憶部
504 障害検出部
505 経路切替部
506 上限スパン数記憶部
507 リソース確認部
508 経路決定部
509 通知部

Claims (10)

  1. 通信網を構成する複数の伝送装置のうちの、当該通信網において隣接する2つの伝送装置間の区間であるスパンが連結されることにより、又は、単一のスパンにより、当該通信網において形成される、複数の異なる経路が複数の異なる波長に対してそれぞれ設定可能に構成され、且つ、各波長の光信号を、当該波長に対して設定された経路を介して伝送するように構成された光波長分割多重通信システムの判定装置であって、
    前記複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用される場合に、当該スパンにより形成される経路のうちの、当該経路を形成するスパンの数であるスパン数が所定の上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する判定手段を備える判定装置。
  2. 請求項1に記載の判定装置であって、
    前記判定手段は、前記判定の対象となる経路において使用可能な波長に対して予め設定された変調方式に応じて予め定められた値を前記上限スパン数として用いるように構成された判定装置。
  3. 請求項1又は請求項2に記載の判定装置であって、
    前記判定手段は、前記判定の対象となる経路を形成するスパンのガードバンドの最小値に応じて予め定められた値を前記上限スパン数として用いるように構成された判定装置。
  4. 請求項1乃至請求項3のいずれか一項に記載の判定装置であって、
    前記判定手段は、前記判定の対象となる経路を形成するスパンの光ファイバの種別に応じて予め定められた値の最小値を前記上限スパン数として用いるように構成された判定装置。
  5. 請求項1乃至請求項4のいずれか一項に記載の判定装置であって、
    前記判定手段は、
    前記複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用され始めた直後に、前記判定を行なうように構成された判定装置。
  6. 請求項5に記載の判定装置であって、
    各スパンにおける障害の発生を検出する障害検出手段と、
    前記障害の発生が検出された場合、当該障害が発生したスパンが形成する経路を、当該スパンを迂回する経路に切り替える経路切替手段と、
    を備え、
    前記判定手段は、
    前記経路の切り替えが完了した直後に、前記判定を行なうように構成された判定装置。
  7. 請求項1乃至請求項6のいずれか一項に記載の判定装置であって、
    少なくとも1つの経路に対して、前記複数の波長のいずれの光信号も新たに伝送不能であると判定された場合、その旨を通知する通知手段を備える判定装置。
  8. 請求項1乃至請求項7のいずれか一項に記載の判定装置であって、
    前記伝送装置の少なくとも一部を構成する判定装置。
  9. 通信網を構成する複数の伝送装置のうちの、当該通信網において隣接する2つの伝送装置間の区間であるスパンが連結されることにより、又は、単一のスパンにより、当該通信網において形成される、複数の異なる経路が複数の異なる波長に対してそれぞれ設定可能に構成され、且つ、各波長の光信号を、当該波長に対して設定された経路を介して伝送するように構成された光波長分割多重通信システムを制御するための判定方法であって、
    前記複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用される場合に、当該スパンにより形成される経路のうちの、当該経路を形成するスパンの数であるスパン数が所定の上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する、判定方法。
  10. 通信網を構成する複数の伝送装置のうちの、当該通信網において隣接する2つの伝送装置間の区間であるスパンが連結されることにより、又は、単一のスパンにより、当該通信網において形成される、複数の異なる経路が複数の異なる波長に対してそれぞれ設定可能に構成され、且つ、各波長の光信号を、当該波長に対して設定された経路を介して伝送するように構成された光波長分割多重通信システムを制御するための判定プログラムであって、
    前記複数の波長のうちのある波長の光信号を伝送するために、あるスパンが新たに使用される場合に、当該スパンにより形成される経路のうちの、当該経路を形成するスパンの数であるスパン数が所定の上限スパン数以下である経路のみに対して、少なくとも1つの波長の光信号を新たに伝送可能であるか否かを判定する、処理をコンピュータに実行させるための判定プログラム。
JP2013006313A 2013-01-17 2013-01-17 判定装置、判定方法、及び、判定プログラム Expired - Fee Related JP6056494B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013006313A JP6056494B2 (ja) 2013-01-17 2013-01-17 判定装置、判定方法、及び、判定プログラム
US14/100,140 US9509435B2 (en) 2013-01-17 2013-12-09 Determination device and determination method
EP13198026.0A EP2757716A3 (en) 2013-01-17 2013-12-18 Determination device and determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006313A JP6056494B2 (ja) 2013-01-17 2013-01-17 判定装置、判定方法、及び、判定プログラム

Publications (2)

Publication Number Publication Date
JP2014138300A true JP2014138300A (ja) 2014-07-28
JP6056494B2 JP6056494B2 (ja) 2017-01-11

Family

ID=49999667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006313A Expired - Fee Related JP6056494B2 (ja) 2013-01-17 2013-01-17 判定装置、判定方法、及び、判定プログラム

Country Status (3)

Country Link
US (1) US9509435B2 (ja)
EP (1) EP2757716A3 (ja)
JP (1) JP6056494B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10097303B2 (en) * 2015-10-01 2018-10-09 Kimon Papakos Methods and apparatus for using an embedded optical signal source within an optical node to locate problematic optical spans
US10200121B2 (en) 2017-06-14 2019-02-05 At&T Intellectual Property I, L.P. Reachability determination in wavelength division multiplexing network based upon fiber loss measurements
US11863230B2 (en) * 2020-02-13 2024-01-02 Nippon Telegraph And Telephone Corporation Communication apparatus and error detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036412A (ja) * 2005-07-25 2007-02-08 Hitachi Communication Technologies Ltd 光通信網、ノード装置および経路故障救済方法
JP2009118101A (ja) * 2007-11-05 2009-05-28 Fujitsu Ltd 光波長多重伝送装置
JP2010062647A (ja) * 2008-09-01 2010-03-18 Hitachi Communication Technologies Ltd 監視制御装置およびそのプログラム
WO2010032844A1 (ja) * 2008-09-19 2010-03-25 日本電信電話株式会社 帯域可変通信装置及び帯域可変通信方法
JP2010154162A (ja) * 2008-12-25 2010-07-08 Fujitsu Ltd ネットワーク設計装置およびネットワーク設計方法
JP2011041103A (ja) * 2009-08-14 2011-02-24 Hitachi Ltd トランスポート制御サーバ、トランスポート制御システム及び予備パス設定方法
JP2012191271A (ja) * 2011-03-08 2012-10-04 Fujitsu Ltd 伝送品質判定方法、伝送経路選択方法及びその装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030117950A1 (en) * 2001-12-26 2003-06-26 Huang Gail G Link redial for mesh protection
JP3906227B2 (ja) 2005-01-28 2007-04-18 株式会社東芝 光通信システムとそのパス設定方法およびノード装置
US7590353B2 (en) * 2005-08-31 2009-09-15 Fujitsu Limited System and method for bandwidth allocation in an optical light-trail
JP4024265B2 (ja) 2005-12-05 2007-12-19 沖電気工業株式会社 ノード、光通信ネットワーク、光パス予約方法及びプログラム
JP5602229B2 (ja) * 2009-07-31 2014-10-08 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー 複合型光アド−ドロップ多重ネットワークおよびそのための波長割り当て
US8385751B2 (en) * 2009-12-10 2013-02-26 Infinera Corporation Optical transmitter adaptation to network topology
JP5447046B2 (ja) * 2010-03-18 2014-03-19 富士通株式会社 光ネットワーク設計装置、光ネットワーク設計方法、および光ネットワーク設計プログラム
US9077481B2 (en) * 2010-08-24 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for dynamic wavelength allocation in wavelength switched optical networks
US8649683B2 (en) * 2011-06-15 2014-02-11 Verizon Patent And Licensing Inc. Light path characterization, traffic protection, and wavelength defragmentation
EP2727298B1 (en) * 2011-07-07 2016-05-18 Huawei Technologies Co., Ltd. Impairment aware path computation element method and system
EP2745440B1 (en) * 2011-09-29 2016-12-14 Telefonaktiebolaget LM Ericsson (publ) Adding new alternative paths for restoration in wson network
EP2904723A1 (en) * 2012-10-03 2015-08-12 Telefonaktiebolaget L M Ericsson (Publ) Optical path validation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036412A (ja) * 2005-07-25 2007-02-08 Hitachi Communication Technologies Ltd 光通信網、ノード装置および経路故障救済方法
JP2009118101A (ja) * 2007-11-05 2009-05-28 Fujitsu Ltd 光波長多重伝送装置
JP2010062647A (ja) * 2008-09-01 2010-03-18 Hitachi Communication Technologies Ltd 監視制御装置およびそのプログラム
WO2010032844A1 (ja) * 2008-09-19 2010-03-25 日本電信電話株式会社 帯域可変通信装置及び帯域可変通信方法
JP2010154162A (ja) * 2008-12-25 2010-07-08 Fujitsu Ltd ネットワーク設計装置およびネットワーク設計方法
JP2011041103A (ja) * 2009-08-14 2011-02-24 Hitachi Ltd トランスポート制御サーバ、トランスポート制御システム及び予備パス設定方法
JP2012191271A (ja) * 2011-03-08 2012-10-04 Fujitsu Ltd 伝送品質判定方法、伝送経路選択方法及びその装置

Also Published As

Publication number Publication date
US9509435B2 (en) 2016-11-29
EP2757716A3 (en) 2017-08-23
EP2757716A2 (en) 2014-07-23
US20140199061A1 (en) 2014-07-17
JP6056494B2 (ja) 2017-01-11

Similar Documents

Publication Publication Date Title
CN107113194B (zh) 用于路由器维护的方法和装置
US20210058157A1 (en) Multi-layer network system and path setting method in multi-layer network
US8908502B2 (en) Communication system, node device, communication method in the communication system, and program
JP6891922B2 (ja) 光ネットワーク管理装置
US7852752B2 (en) Method and apparatus for designing backup communication path, and computer product
US20110044163A1 (en) Communication network system, communication device, route design device, and failure recovery method
US9130668B2 (en) Signalling in optical transmission networks
EP2632081B1 (en) Path switch-back method and apparatus in transport network
US20100128611A1 (en) Transmitting apparatus, alarm control method, and computer product
JP2007028386A (ja) シグナリング装置
US8165016B2 (en) Method and apparatus for setting communication paths in a network
CN112040352B (zh) 路径切换方法、装置、设备及可读存储介质
JP6056494B2 (ja) 判定装置、判定方法、及び、判定プログラム
US9590736B2 (en) Using floating transport card for best effort traffic
CN104604191A (zh) 通信设备、通信系统、用于确定路径的方法和程序
JP2006135945A (ja) パス設定装置、パス設定システム、及び、それらのパス設定方法
EP3188540A1 (en) Channel management in wireless networks
JP2017220772A (ja) 制御装置、光伝送システムおよび光伝送システムの制御方法
JP2009188673A (ja) 伝送装置およびパス設定方法
US7804788B2 (en) Ring type network system including a function of setting up a path
JP2005286736A (ja) 波長切替制御方法、可変波長伝送装置および可変波長伝送システム
EP2928090A1 (en) Optical network element, electric network element and signaling establishment method when electric relay is in electric network element
EP2234329A1 (en) The method and device for protecting the shared channel in the optical transmission system
KR101587258B1 (ko) 보호 절체 방법 및 장치
EP2983317B1 (en) Controlling method, controller, and node in transport network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees