JP2014127539A - 電子装置の冷却装置 - Google Patents

電子装置の冷却装置 Download PDF

Info

Publication number
JP2014127539A
JP2014127539A JP2012282025A JP2012282025A JP2014127539A JP 2014127539 A JP2014127539 A JP 2014127539A JP 2012282025 A JP2012282025 A JP 2012282025A JP 2012282025 A JP2012282025 A JP 2012282025A JP 2014127539 A JP2014127539 A JP 2014127539A
Authority
JP
Japan
Prior art keywords
refrigerant
chamber
container
boiling chamber
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012282025A
Other languages
English (en)
Other versions
JP6179099B2 (ja
Inventor
Nobuyuki Hayashi
信幸 林
Teru Nakanishi
輝 中西
Yasuhiro Yoneda
泰博 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012282025A priority Critical patent/JP6179099B2/ja
Publication of JP2014127539A publication Critical patent/JP2014127539A/ja
Application granted granted Critical
Publication of JP6179099B2 publication Critical patent/JP6179099B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】冷却装置を小型かつ簡単な構成にし、発熱体を効率良く冷却する。
【解決手段】冷却装置20は、冷媒が収容された蒸発容器24を有する。蒸発容器24内は、隔壁36によって沸騰室41と凝縮室42とに区画されている。沸騰室41は、中央の下側に配置され、冷媒が発熱体の熱を受けて蒸発し易くなっている。凝縮室42は、沸騰室41の上方と側方に形成されており、上面部31Aで冷媒の蒸気が熱交換することによって液化し易くなっている。液化した冷媒は、凝縮室42の側方に導かれ、液溜まり40を形成する。液溜まり40の冷媒は多孔質部材35の毛細管現象によって中央の沸騰室41に吸い込まれる。
【選択図】図2

Description

本発明は、電子装置の冷却装置に関する。
電子装置には、半導体素子が形成されたチップで発生した熱を冷却する冷却装置を搭載したものがある。冷却装置は、チップに密着して配置された密閉容器内に冷媒を封入し、冷媒の蒸発と凝縮を利用してチップで発生した熱を移動させ、外部に放出させるように構成されている。
ここで、このタイプの冷却装置では、チップで発生した熱が密閉容器に伝達されると、密閉容器内の冷媒が蒸発する。冷媒が蒸発するときに気化熱が奪われることによってチップが冷却される。一方、蒸発して蒸気となった冷媒は、上昇気流を形成して密閉容器の上側の壁面に到達する。密閉容器の上部には、放熱用のフィンが形成されているので、冷媒の蒸気が密閉容器の上側の壁面で冷却される。そして、冷媒の蒸気が冷却されることによって凝縮し、液状の冷媒に戻る。液状の冷媒は、密閉容器の下面に滴下し、再びチップの熱によって蒸発させられる。このようにして冷媒が蒸発と凝縮を繰り返すことによってチップの熱を放熱用のフィンに伝達し、フィンを通して外部に熱が放出される。
ところが、従来の密閉容器内で蒸発と凝縮を行わせる構造では、蒸発した冷媒が上昇する流れと、凝縮した冷媒か下降する流れが1つの空間内で混在することになる。このために、熱輸送量の増加に伴って蒸気流速が増加すると、下降する冷媒の流れが蒸発に伴って上昇する冷媒の流れのせん断力によって吹き戻され、不連続な流れになったり、冷媒を還流できなくなったりすることがある。この場合には、密閉容器の下部に液状の冷媒が存在しないドライアウト現象が生じる可能性があった。
そこで、従来では、発熱体に密着させられる冷媒槽と、冷媒を凝縮させる凝縮器とを別体で構成することで、ドライアウト現象を防止している。例えば、従来の冷却装置では、発熱体に密着させられる冷媒槽と、冷媒槽で沸騰気化した冷媒蒸気を外部流体との熱交換によって冷却する凝縮器とが備えられている。冷媒槽は、凸部を有し、凸部の上端面に蒸気流出口が形成されている。凝縮器は、蒸気流出口に連結されるヘッダを有する。ヘッダの左右の側面のそれぞれからは、複数のチューブが延びている。チューブは、ヘッダの高さ方向に沿って並んで配置され、各チューブの先端は、冷媒槽に接続されている。さらに、複数のチューブは、複数の放熱フィンで接続されている。このように構成することによって、冷媒槽と凝縮器の間で冷媒を循環し易くなる。
また、別の冷却装置では、冷媒容器の上面に複数の挿入孔を形成し、冷媒容器の上方にヘッダタンクを配置している。冷媒容器において冷媒が沸騰する領域の上方には、チューブが配置されている。チューブの下端は、沸騰した冷媒を収集し易いように流路断面積が大きくなっている。そして、チューブの上端は、ヘッダタンクに接続されている。さらに、冷媒容器において冷媒が沸騰する領域の外側には、複数のチューブが挿入孔に挿入されている。複数のチューブは垂直に延び、ヘッダタンクに接続されている。この冷却装置では、沸騰した冷媒の殆どが、下端が幅広になったチューブに集中して流れ込んでヘッダタンクに導かれる。ヘッダタンクに流れ込んだ冷媒は、外側のチューブを通って冷媒容器に戻される過程で外気によって冷却されて凝縮する。ヘッダタンクと冷媒容器を接続するチューブをヘッダタンクの下面に接続したので、ヘッダタンクの高さを低くできる。
特願2002−203933号公報 特願2003−130561号公報
しかしながら、冷媒容器と凝縮器を分離させた構造では、装置構成が複雑になると共に、装置の小型化が困難であった。また、冷媒を還流させるためにチューブを左右に2列に配置したり、ヘッダタンクの一部のみにチューブを配置したりする場合には、冷媒の流れが限定されるので冷却効率を向上させることが困難であった。
この発明は、このような事情に鑑みてなされたものであり、冷却装置を小型かつ簡単な構成にし、発熱体を効率良く冷却できるようにすることを目的とする。
実施形態の一観点によれば、電子装置の発熱体の上方に配置され、冷媒が封入された密閉容器と、前記密閉容器内に配置され、前記密閉容器を前記発熱体からの熱によって冷媒を蒸発させる沸騰室と、前記沸騰室の上方に配置され冷媒を熱交換によって凝縮させる凝縮室に区画し、前記密閉容器の内側の側面より外径が小さい側壁部と、前記側壁部から斜め上方に向かって環状に延び傾斜部を有する隔壁と、を含むことを特徴とする電子装置の冷却装置が提供される。
蒸発容器内の空間を隔壁で沸騰室と凝縮室に区画したので、装置構成を小型化、及び簡略化できる。蒸発流と、液化して下方に落ちる液還流との混在を抑制できるので、蒸発量が多くなってもドライアウトを防止でき、発熱体を効率良く冷却できる。
図1は、本発明の第1の実施の形態に係る電子装置の概略構成の一例を示す断面図である。 図2は、本発明の第1の実施の形態に係る電子装置の蒸発容器の一例の一部を拡大して示す断面図である。 図3は、本発明の第1の実施の形態に係る電子装置の蒸発容器の隔壁の一例を示す図である。 図4は、本発明の第1の実施の形態に係る電子装置の蒸発容器の一例のA−A線に沿った断面図である。 図5は、本発明の第1の実施の形態に係る電子装置の蒸発容器の一例のB−B線に沿った断面図である。 図6は、本発明の第1の実施の形態に係る電子装置の蒸発容器の一例のC−C線に沿った断面図である。 図7は、本発明の第2の実施の形態に係る電子装置の蒸発容器の一例の断面図である。 図8は、本発明の第2の実施の形態に係る電子装置の蒸発容器の一例における図7のD矢視図であって、蒸気孔を拡大して示す平面図である。 図9は、本発明の第2の実施の形態の変形例に係る電子装置の蒸発容器の一例の断面図である。 図10は、本発明の第2の実施の形態の変形例に係る電子装置の蒸発容器の一例における図9のE矢視図であって、蒸気孔を拡大して示す平面図である。 図11は、本発明の第3の実施の形態に係る電子装置の蒸発容器の一例の断面図である。 図12は、本発明の第4の実施の形態に係る電子装置の蒸発容器の一例の一部を拡大して示す断面図である。 図13は、本発明の第4の実施の形態に係る電子装置の蒸発容器の隔壁の一例を示す図である。 図14は、本発明の第5の実施の形態に係る電子装置の蒸発容器の一例を示す図である。 図15は、本発明の第5の実施の形態に係る電子装置の隔壁と柱の配置の一例を示す図である。
発明の目的及び利点は、請求の範囲に具体的に記載された構成要素及び組み合わせによって実現され達成される。
前述の一般的な説明及び以下の詳細な説明は、典型例及び説明のためのものであって、本発明を限定するためのものではない。
(第1の実施の形態)
図1に示すように、電子装置1は、第1の基板2上にハンダバンプ3を介して第2の基板5が電気的に接続されている。さらに、第2の基板5には、発熱体であるチップ7や電子部品8が実装されている。チップ7は、内部に半導体素子が形成されており、第2の基板5の不図示の電極にハンダバンプ9を用いて電気的に接続されている。さらに、第2の基板5とチップ7の間には、アンダーフィル剤10が注入され、凝固させてある。そして、チップ7や電子部品8の上部には、冷却装置20が設置されている。
冷却装置20は、チップ7や電子部品8のそれぞれに密着させられる複数の第1の放熱部材21を有し、第1の放熱部材21の上にヒートスプレッダ22、第2の放熱部材23、冷媒を密閉した密閉容器である蒸発容器24が順番に設置されている。
第1の放熱部材21は、例えば、In−10Agなどの熱伝導性に優れる材料から製造されおり、チップ7や電子部品8のなどの発熱体の上面を覆い、かつ密着するようなシート形状になっている。
ヒートスプレッダ22は、Cu又はAlを用いて製造されており、下面に第1の放熱部材21が密着させられ、上面に第2の放熱部材23が密着させられている。
第2の放熱部材23には、例えば、In−10Agなどの熱伝導性に優れる材料のシートや、グリースなどが用いられる。第2の放熱材料23は、ヒートスプレッダ22と蒸発容器24を熱的に密着させる役割を担っている。
図1と、図1の一部を拡大した図2とに示すように、蒸発容器24は、外形が円柱形を有する中空の容器本体31と、容器本体31の上面部31Aから垂直上向きに延びる複数の放熱フィン32とを有する。さらに、容器本体31の底部31Bには、凹部33が形成されている。凹部33は、中央が最も低くなるようなテーパを有する。
ここで、容器本体31内には、冷媒と、多孔質部材35と、隔壁36とが収容されている。冷媒は、例えば、水やフロンなどが用いられ、予め設定された量が容器本体31の内部空間に封入されている。
多孔質部材35は、冷媒を浸透させることができる構造、例えば、Cuなどの金属の焼結体からなり、容器本体31の底部31Bに配置されている。多孔質部材35の下面は、容器本体31の底部31Bの凹部33の形状に合わせて中央が下向きに最も突出する円錐形状になっている。一方、多孔質部材35の上面は、平面になっている。
多孔質部材35の上には、隔壁36が配置されている。隔壁36は、容器本体31の内部空間を沸騰室41(気化室)と凝縮室42とに区画している。より詳細には、図1、図2と、図3に示すように、隔壁36は、円環状の側壁部37と、側壁部37の上端から一体に延び、中央かつ上方に向かって傾斜する上壁部38(傾斜部)とを有する。このような隔壁36は、例えば、アルミニウムや銅、セラミックスや樹脂を用いて製造されている。
さらに、図2と、図1のA−A線に沿った断面図である図4に示すように、側壁部37は、容器本体31の側部31Cの内周面から所定距離だけ内側に配置されている。これによって、容器本体31の側部31Cと隔壁36、及び多孔質部材35とによって区画される空間が、円環状に形成される。この円環状の空間は、液状の冷媒を溜め置くことが可能な液溜まり40(冷媒貯溜部)になる。
ここで、側壁部37は、外側面がチップ7や電子部品8などの発熱体、及びヒートスプレッダ22を囲む領域と同一又は、さらに外側に配置される大きさを有する。即ち、側壁部37の外径は、発熱体、及びヒートスプレッダ22を囲む領域の外径以上の大きさを有する。このために、発熱体からの熱は、沸騰室41内の多孔質部材35に主に伝達される。従って、液溜まり40は、ヒートスプレッダ22の上方から外れた位置に配置され、ヒートスプレッダ22からの熱が直接に液溜まり40に伝達されないようになっている。
また、図2と、図1のB−B線に沿った断面図である図5に示すように、隔壁36の上壁部38の最上端は、容器本体31の上面部31Aより下方に配置されており、中央には沸騰室41と凝縮室42を連通させる蒸気孔39が形成されている。
そして、図2と、図1のC−C線に沿った断面図である図6に示すように、凝縮室42の上面部31Aは、平面になっており、複数のフィン51,52(リブ)が突設されている。フィン51は、凝縮室42の中心から放射状に等間隔に、8本形成されている。フィン52は、フィン51の間に1つずつ等間隔に8本形成されている。複数のフィン51,52は、凝縮室42の上面部31Aの中央付近から放射状に延び、凝縮室42の上面部31Aと側部31Cの隅部で折り曲げられて、側部31Cに沿って下向きに延設されている。フィン51,52の下端は、多孔質部材35の上方、又は接触する位置まで延びている。
次に、電子装置1及び冷却装置20の作用について説明する。
電子装置1のチップ7や電子部品8が発熱すると、その熱が第1の放熱部材21と、ヒートスプレッダ22と、第2の放熱部材23とを介して、蒸発容器24に伝達される。発熱体からの熱は、主に直上の沸騰室41内の多孔質部材35に伝達され、沸騰室41内の多孔質部材35に吸収されている冷媒を加熱する。ここで、沸騰室41内の冷媒は、多孔質部材35によって表面積が大きくなっているので蒸発し易くなっている。このために、発熱体からの熱を吸収することによって沸騰室41内の冷媒が蒸発して、図2の矢印AR1に示すような蒸発流(沸騰流路)として上昇気流を形成する。冷媒が蒸発することによって、発熱体の熱と冷媒との間で熱交換が行われ、発熱体の熱が吸収され、結果的に発熱体が冷却される。また、冷媒が蒸発することによって、沸騰室41内の圧力が高まり、蒸発流が隔壁36の上壁部38の傾斜に沿って中央の蒸気孔39に導かれ、蒸気孔39から凝縮室42に噴出される。
凝縮室42内に噴出した冷媒の蒸気流は、図2の矢印AR2に示すように中央から外周に向けて拡散しつつ、上面部31Aに到達する。これは、隔壁36の上壁部38が傾斜していることによって、蒸気孔39とその直上の上面部31Aとの間の空間に比べて、その周囲の空間の方が広くなり、冷媒の蒸気が中央から外側に向けて流れ易くなっているためである。さらに、容器本体31及び隔壁36が断面視で円環形状を有するために、冷媒の蒸気が方向を規制されることなく、全周に拡散され易くなっているためである。
容器本体31の上面部31Aに到達した冷媒の蒸気は、上面部31Aやフィン51,52によって冷却される。これは、沸騰室41の上面部31Aが、放熱フィン32の下に直接に配置されているためである。そして、冷媒の蒸気は、容器本体31の上面部31Aとの間で熱交換することによって凝縮熱を外部に放出する。その結果、冷媒が凝縮して液化する。また、冷媒の液化に伴って、凝縮室42内の圧力が低下する。
凝縮室42内で液化した冷媒は、矢印AR3に示すような液還流を形成する。矢印AR3に示す液還流では、液状の冷媒がフィン51,52をガイドにして側部31Cの内周面を経て、側部31Cと隔壁36、及び多孔質部材35で区画されている液溜まり40に導かれる。また、一部の冷媒は、液滴として上面部31Aから隔壁36の上壁部38に落下する。隔壁36の上壁部38は、中央から外周部に向かって下向きに傾斜しているので、隔壁36上に落下する冷媒の液還流は、矢印AR4に示すように隔壁36の外周に導かれ、液溜まり40に落下する。
ここで、液溜まり40の冷媒は、多孔質部材35を通して沸騰室41に導かれる。これは、沸騰室41内での冷媒の蒸発に伴って多孔質部材35内で毛細管現象が発生し、図2の矢印AR5に示すように液溜まり40内の冷媒が多孔質部材35を通して沸騰室41内に吸い込まれるためである。また、容器本体31の底部31Bが中央に向かって下がっているので、相対的に高い位置にある液溜まり40から冷媒が沸騰室41に導かれ易くなっている。そして、沸騰室41内に吸い込まれた冷媒は、発熱体からの熱によって再び蒸発させられ、蒸気孔39を通って凝縮室42に導かれる。このようにして、この電子装置1では、冷却装置20において冷媒が沸騰室41と凝縮室42と循環することにより、発熱体の熱が放熱フィン32に伝達されて発熱体が冷却される。
以上、説明したように、この冷却装置では、隔壁36を用いることによって蒸発容器24内の1つの空間を沸騰室41と凝縮室42とに区画したので、装置構成を小型化、及び簡略化できる。冷媒が加熱によって蒸発することで形成される蒸発流と、冷媒が冷却されることによって液化して下方に落ちる液還流とを分離することが可能になるので、蒸発流と液還流の干渉を大幅に低減できるので、沸騰室41の蒸発熱から凝縮室42の凝縮熱への伝熱効率が向上し、蒸発容器24の熱ムラが少なくなって熱抵抗を低減できる。さらに、蒸発室41の圧力を高く維持でき、凝縮室42の圧力が低い状態を持続できるので、蒸発流と液還流を安定的に形成できるので、熱輸送限界が高まると共に、ドライアウトを防止できる。
また、沸騰室41を発熱体の上方に配置したので熱の伝達効率が良く、冷媒が蒸発し易くなる。また、隔壁36の中央に蒸気孔39を設けたので、沸騰室41内の蒸気を勢い良く凝縮室42の上面部31Aに噴き付けることが可能になり、放熱フィン32との熱交換の効率が向上する。ここにおいて、蒸発容器24及び隔壁36の断面形状を円環形にしたので、冷媒の蒸気を放射状に噴出し易いので、冷媒の蒸気と上面部31A及びフィン51,52の接触面積を大きくでき、熱交換効率が向上する。
さらに、隔壁36の上壁部38が中央に向かって上がるように傾斜しているので、沸騰室41内の蒸気を蒸気孔39に導き易くなっている。一方、凝縮室42側からみると、隔壁36の上壁部38が外側に向かって下がるように傾斜しているので、上面部31Aで気化した冷媒がそのまま滴下しても沸騰室41に直接戻らずに、液溜まり40に導くことが可能になる。発熱体からの熱が中央に比べて伝達し難い蒸発容器24の外周部に液溜まり40を形成したので、凝縮室42における冷媒の蒸発を低減できる。多孔質部材35の毛細管現象を用いて液溜まり40の冷媒を沸騰室41に導くようにしたので、冷媒のドライアウトを防止できる。蒸発容器24及び多孔質部材35の底部を中央が下がる傾斜にしたので、液溜まり40の冷媒を沸騰室41に導き易くなっている。
ここで、多孔質部材35の外径を隔壁36の側壁部37の外径と一致させても良い。また、蒸発容器24は四角形やその他の多角形でも良い。この場合、隔壁36の側壁部37の断面形状は、円形のリングであることが望ましいが、四角やその他の多角形の環状でも良い。
さらに、フィン51,52は、蒸気の冷媒との接触面積を増大させ、熱交換の効率を向上させる形状であれば良い。このために、蒸発容器24は、フィン51,52の代わり、又はこれに加えて、溝や突起を形成しても良い。
(第2の実施の形態)
第2の実施の形態について図面を参照して詳細に説明する。第1の実施の形態と同じ構成要素には、同一の符号を付している。また、第1の実施の形態と重複する説明は省略する。
図7に蒸発容器の断面を示すと共に、図8に図7のD矢視の一部拡大図を示すように、電子装置1の冷却装置20は、蒸発容器24内に隔壁36Aを有する。隔壁36Aは、円環状の側壁部37と、上壁部38とを有し、上壁部38の中央部には複数の蒸気孔60が形成されている。蒸気孔60は、例えば、中央の1個とその外周に等間隔に4個の合計5個形成されている。5つの蒸気孔60の開口面積の合計値は、第1の実施の形態の蒸気孔39の面積より小さくなっている。しかしながら、蒸気孔60の合計面積は、蒸気孔39と同じでも良い。
この冷却装置20では、蒸気孔60がノズルの役割を果たすので、図7の矢印AR6に蒸気流の一例を示すように、冷媒の蒸気が沸騰室41から凝縮室42に勢い良く噴出する。これによって、蒸発容器24の上面部31A及びフィン51,52に冷媒の蒸気を確実に噴き付けることが可能になり、熱交換の効率がさらに向上する。また、蒸気孔60の開口面積の合計値を第1の実施の形態の蒸気孔39より小さくした場合には、蒸気孔60を通って逆流する冷媒の量をさらに減少できる。
ここで、図9の隔壁の一部拡大図と、図10の隔壁の中央部分の平面図を参照して第2の実施形態の隔壁の変形例を説明する。
隔壁36Bは、上壁部38の中央に4つの蒸気孔61が形成されている。各蒸気孔61は、凝縮室42側の開口が沸騰室41側の開口よりも外側に向かうように傾斜している。蒸気孔61の開口面積の合計値は、第1の実施の形態の蒸気孔39の面積より小さくなっている。しかしながら、蒸気孔60の合計面積は、蒸気孔39と同じでも良い。
この隔壁36Bでは、図9の矢印AR7に蒸気流の一例を示すように、冷媒の蒸気が勢い良く、かつ蒸気孔61の外側のフィン51,52に向けて噴き付けられる。また、蒸気孔60を通って逆流する冷媒を減少できる。
(第3の実施の形態)
第3の実施の形態について図面を参照して詳細に説明する。第1、第2の実施の形態と同じ構成要素には、同一の符号を付している。また、第1、第2の実施の形態と重複する説明は省略する。
図11に示すように、蒸発容器24は、容器本体31と隔壁36とによって形成される沸騰室41の上面が中央から外周に向けて下がるような傾斜面71を有する。これに伴ってフィン51,52も容器本体31の中央から側面に向かって下がるように傾斜している。
この蒸発容器24では、沸騰室41に導かれた冷媒の蒸気が上面部31Aやフィン51,52で液化した後、矢印AR8に液還流の一例を示すように、傾斜面71に沿って流れる。傾斜面71の傾斜によって、液状の冷媒が容器本体31の側部31Cに流れ易くなるので、冷媒の滴下が減少する。これによって、液化した冷媒をより確実に、かつ速やかに液溜まり40に集めることができる。ここで、蒸気孔60は、蒸気孔39や蒸気孔61でも良い。
(第4の実施の形態)
第4の実施の形態について図面を参照して詳細に説明する。第1〜第3の実施の形態と同じ構成要素には、同一の符号を付している。また、第1〜第3の実施の形態と重複する説明は省略する。
図12に一部拡大図を示すように、蒸発容器24の容器本体31は、底部31Fに中央が突出するような凸部81が形成されている。さらに凸部81の上に多孔質部材82が配置されている。多孔質部材82は、下側が凸部81の形状に倣った凹形状を有し、上面が平面になっている。さらに、多孔質部材82の上には、隔壁85が配置されている。
図12と図13に示すように、隔壁85は、中央に円筒状の側壁部86を有し、側壁部86の上端からは、上壁部87(傾斜部)が一体に延びている。上壁部87は、側壁部86の外径を拡げ、かつ外周が上向きに開くような円環形状に形成されている。上壁部87の中央には、開口部88が形成されている。開口部88の大きさは、側壁部86の内径の大きさに略等しい。
隔壁85によって容器本体31は、沸騰室91と凝縮室92とに区画される。沸騰室91は、容器本体31の側部31Cの下側、底部31F、隔壁85で囲まれる領域から形成される。凝縮室92は、沸騰室91の上側の領域と、隔壁85で囲まれた領域から形成される。凝縮室92の上面には、複数のフィン93が形成されている。フィン93は、中心から放射状に延び、かつ沸騰室91の上方には配置されていない。そして、隔壁85の円筒形の側壁部86に冷媒の液溜まり96が形成されている。
発熱体からの熱が蒸発容器31に伝達されると、底部31Fが薄い外周部分の多孔質部材82内の冷媒が液溜まり96内の冷媒より加熱され易いことから蒸発し、矢印AR11に示すような上昇気流(蒸気流)を形成する。冷媒の蒸気は、隔壁85の上壁部87の外周と、容器本体31の側部31Cとの間の隙間から矢印AR12に液還流の一例を示すように凝縮室92に流入し、凝縮室92の上面部31A又はフィン93で凝縮する。凝縮した冷媒は、隔壁85の上壁部87に主に滴下する。上壁部87は、中央が下がっているので、矢印AR13に液還流の一例を示すように、隔壁85に滴下した冷媒の液滴が、中央の側壁部86内に流れ込み、液溜まり96を形成する。液溜まり96内の冷媒は、容器本体31の底部31Fの傾斜によって沸騰室91に流れ込むと共に、多孔質部材82の毛細管現象によって吸い込まれる。
この冷却装置20では、蒸発容器31の外周に沸騰室91を配置した構成において、第1の実施の形態と同様の効果が得られる。
(第5の実施の形態)
第5の実施の形態について図面を参照して詳細に説明する。第1〜第4の実施の形態と同じ構成要素には、同一の符号を付している。また、第1〜第4の実施の形態と重複する説明は省略する。
図14の断面図に示すように、容器本体31の底部31Bには、凹部33を有する。凹部33は、粗面加工によって底部31Bの内面の表面積が増大させられている。さらに、凹部33上には、複数の柱100が固定されており、柱100の上に隔壁36が配置されている。図15に隔壁36と柱100の配置の一例を示すように、柱100は、円柱形状を有し、所定の間隔で配置されている。隔壁36は、柱100に不図示の手段で固定されている。これによって凹部33と柱100と隔壁36との間に空間が複数形成される。その各々の空間が、冷媒が通流可能な流路101になる。図14に示すように、冷媒102は、底部31Bを覆い、かつ沸騰室41及び液溜まり40が連続して満たされる量が注入されている。
発熱体からの熱は、容器本体31の底部31Bに伝達され、沸騰室41内の冷媒102を主に加熱する。底部31Bの上面は粗面加工されており、表面積が大きくなっているので、冷媒102が容易に沸騰して矢印AR1に示すような蒸気流を形成する。一方、凝縮室42内で凝縮し、矢印AR3及び矢印AR4に示すように液溜まり40に還流した液状の冷媒102は、矢印AR5に示すように流路101を通って沸騰室41に導かれ、再び沸騰させられる。
この実施の形態では、多孔質部材を有しない構成においても第1の実施の形態と同様の効果が得られる。同様に、第2〜第4の実施の形態においても多孔質部材を有しない構成にすることが可能である。ここで、柱100の大きさや、形状、数、配置は、図15に限定されない。また、隔壁36の側壁部37に柱100を一体に形成しても良い。さらに、柱100の代わりに、側壁部37の一部を切り欠いて流路101を形成することも可能である。
ここで挙げた全ての例及び条件的表現は、発明者が技術促進に貢献した発明及び概念を読者が理解するのを助けるためのものであり、ここで具体的に挙げたそのような例及び条件に限定することなく解釈するものであり、また、明細書におけるそのような例の編成は本発明の優劣を示すこととは関係ない。本発明の実施形態を詳細に説明したが、本発明の精神及び範囲から逸脱することなく、それに対して種々の変更、置換及び変形を施すことができる。
以下に、前記の実施の形態の特徴を付記する。
(付記1) 電子装置の発熱体の上方に配置され、冷媒が封入された密閉容器と、前記密閉容器内に配置され、前記密閉容器を前記発熱体からの熱によって冷媒を蒸発させる沸騰室と、前記沸騰室の上方に配置され冷媒を熱交換によって凝縮させる凝縮室に区画し、前記密閉容器の内側の側面より外径が小さい側壁部と、前記側壁部から斜め上方に向かって環状に延び傾斜部を有する隔壁と、を含むことを特徴とする電子装置の冷却装置。
(付記2) 前記密閉容器の底部に配置され、冷媒が浸透可能で前記凝縮室から前記蒸発室に冷媒を供給する多孔質部材をさらに有することを特徴とする付記1に記載の電子装置の冷却装置。
(付記3) 前記隔壁の前記側壁部内に前記沸騰室が配置され、前記傾斜部は前記沸騰室を覆い、中央に前記沸騰室と前記凝縮室を連通させる孔が形成されていることを特徴とする付記1又は請求項2に記載の電子装置の冷却装置。
(付記4) 前記凝縮室は、前記沸騰室の上方及び外側に形成されていることを特徴とする付記1乃至付記3のいずれか一項に記載の電子装置の冷却装置。
(付記5) 前記側壁部の外周であって、前記発熱体の上方から外れた位置に前記凝縮室で凝縮した冷媒を一時的に保持する液溜まりが形成されていることを特徴とする付記1乃至付記4のいずれか一項に記載の電子装置の冷却装置。
(付記6) 前記孔は複数、かつ上部が外側に向けて傾斜していることを特徴とする付記1乃至付記5のいずれか一項に記載の電子装置の冷却装置。
(付記7) 前記凝縮室の上面部に複数のフィンを有し、前記複数のフィンは、前記凝縮室の中心から外側に向かって放射状に配置されていることを特徴とする付記1乃至付記6のいずれか一項に記載の電子装置の冷却装置。
(付記8) 前記凝縮室の上面は、前記凝縮室の中心から外周にかけて下がるように傾斜していることを特徴とする付記1乃至付記6のいずれか一項に記載の電子装置の冷却装置。
(付記9) 前記沸騰室の底面は、中央が凹となるように傾斜していることを特徴とする付記1乃至付記8のいずれか一項に記載の電子装置の冷却装置。
(付記10)
付記1乃至付記9のいずれか一項に記載の電子装置の冷却装置と、前記発熱体と、前記発熱体を実装した基板と、を含むことを特徴とする電子装置。
1 電子装置
2 第1の基板
5 第2の基板
20 冷却装置
7 チップ(発熱体)
8 電子部品(発熱体)
24 蒸発容器(密閉容器)
35 多孔質部材
36,85 隔壁
37,86 側壁部
38,87 上壁部(傾斜部)
39 孔
40 液溜まり
41,91 沸騰室
42,92 凝縮室
51,52 フィン

Claims (5)

  1. 電子装置の発熱体の上方に配置され、冷媒が封入された密閉容器と、
    前記密閉容器内に配置され、前記密閉容器を前記発熱体からの熱によって冷媒を蒸発させる沸騰室と、前記沸騰室の上方に配置され冷媒を熱交換によって凝縮させる凝縮室に区画し、前記密閉容器の内側の側面より外径が小さい側壁部と、前記側壁部から斜め上方に向かって環状に延び傾斜部を有する隔壁と、
    を含むことを特徴とする電子装置の冷却装置。
  2. 前記隔壁の前記側壁部内に前記沸騰室が配置され、前記傾斜部は前記沸騰室を覆い、中央に前記沸騰室と前記凝縮室を連通させる孔が形成されていることを特徴とする請求項1に記載の電子装置の冷却装置。
  3. 前記凝縮室は、前記沸騰室の上方及び外側に形成されていることを特徴とする請求項1又は請求項2に記載の電子装置の冷却装置。
  4. 前記側壁部の外周であって、前記発熱体の上方から外れた位置に前記凝縮室で凝縮した冷媒を一時的に保持する液溜まりが形成されていることを特徴とする請求項1乃至請求項3のいずれか一項に記載の電子装置の冷却装置。
  5. 前記沸騰室の底面は、中央が凹となるように傾斜していることを特徴とする請求項1乃至請求項4のいずれか一項に記載の電子装置の冷却装置。
JP2012282025A 2012-12-26 2012-12-26 電子装置の冷却装置 Active JP6179099B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282025A JP6179099B2 (ja) 2012-12-26 2012-12-26 電子装置の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282025A JP6179099B2 (ja) 2012-12-26 2012-12-26 電子装置の冷却装置

Publications (2)

Publication Number Publication Date
JP2014127539A true JP2014127539A (ja) 2014-07-07
JP6179099B2 JP6179099B2 (ja) 2017-08-16

Family

ID=51406823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282025A Active JP6179099B2 (ja) 2012-12-26 2012-12-26 電子装置の冷却装置

Country Status (1)

Country Link
JP (1) JP6179099B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117332A (ja) * 2017-12-27 2019-07-18 セイコーエプソン株式会社 プロジェクター
WO2019221474A1 (ko) * 2018-05-16 2019-11-21 한온시스템 주식회사 냉각 장치
WO2020209138A1 (ja) * 2019-04-11 2020-10-15 古河電気工業株式会社 冷却装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123252A (ja) * 1982-12-28 1984-07-17 Toshiba Corp 凝縮装置
JPH10256445A (ja) * 1997-03-07 1998-09-25 Denso Corp 沸騰冷却装置及びその製造方法
JP2000074536A (ja) * 1998-08-31 2000-03-14 Denso Corp 沸騰冷却装置
JP2002141449A (ja) * 2000-10-31 2002-05-17 Denso Corp 沸騰冷却器
US20050019234A1 (en) * 2003-07-21 2005-01-27 Chin-Kuang Luo Vapor-liquid separating type heat pipe device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123252A (ja) * 1982-12-28 1984-07-17 Toshiba Corp 凝縮装置
JPH10256445A (ja) * 1997-03-07 1998-09-25 Denso Corp 沸騰冷却装置及びその製造方法
JP2000074536A (ja) * 1998-08-31 2000-03-14 Denso Corp 沸騰冷却装置
JP2002141449A (ja) * 2000-10-31 2002-05-17 Denso Corp 沸騰冷却器
US20050019234A1 (en) * 2003-07-21 2005-01-27 Chin-Kuang Luo Vapor-liquid separating type heat pipe device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117332A (ja) * 2017-12-27 2019-07-18 セイコーエプソン株式会社 プロジェクター
JP7192209B2 (ja) 2017-12-27 2022-12-20 セイコーエプソン株式会社 プロジェクター
WO2019221474A1 (ko) * 2018-05-16 2019-11-21 한온시스템 주식회사 냉각 장치
US11792963B2 (en) 2018-05-16 2023-10-17 Hanon Systems Cooling apparatus
WO2020209138A1 (ja) * 2019-04-11 2020-10-15 古河電気工業株式会社 冷却装置
JP2020173072A (ja) * 2019-04-11 2020-10-22 古河電気工業株式会社 冷却装置
US11337336B2 (en) 2019-04-11 2022-05-17 Furukawa Electric Co., Ltd. Cooling device

Also Published As

Publication number Publication date
JP6179099B2 (ja) 2017-08-16

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US8550150B2 (en) Loop heat pipe
US5396947A (en) Radiating device
US20120186784A1 (en) Micro vapor chamber
JP2016092173A (ja) 蒸発器、冷却装置、及び電子機器
JP2006170602A (ja) 熱輸送装置
US20110000649A1 (en) Heat sink device
TWI778292B (zh) 冷卻裝置及使用冷卻裝置之冷卻系統
US20140311176A1 (en) Phase transfer heat dissipating device and phase transfer heat dissipating system
JPH0878588A (ja) 沸騰冷却装置
JP2006503436A (ja) 板型熱伝達装置及びその製造方法
JP2010251755A (ja) 放熱装置
JP2015132399A (ja) ベーパーチャンバー
US11051427B2 (en) High-performance electronics cooling system
JP2003130561A (ja) 沸騰冷却装置
JP6179099B2 (ja) 電子装置の冷却装置
US10349556B2 (en) Cooling device and electronic device using same
JP6070036B2 (ja) ループ型サーモサイフォン及び電子機器
US10597286B2 (en) Monolithic phase change heat sink
TW201319509A (zh) 氣液循環散熱裝置
US3598178A (en) Heat pipe
WO2016051569A1 (ja) 蒸発器、冷却装置及び電子装置
JP2000074536A (ja) 沸騰冷却装置
US20080308257A1 (en) Heat dissipating assembly
KR102183239B1 (ko) Tgp 유닛, tgp 유닛 일체형 히트싱크 및 tgp 유닛의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150