JP2014126376A - Hardening quality inspection device and hardening quality inspection method - Google Patents

Hardening quality inspection device and hardening quality inspection method Download PDF

Info

Publication number
JP2014126376A
JP2014126376A JP2012281085A JP2012281085A JP2014126376A JP 2014126376 A JP2014126376 A JP 2014126376A JP 2012281085 A JP2012281085 A JP 2012281085A JP 2012281085 A JP2012281085 A JP 2012281085A JP 2014126376 A JP2014126376 A JP 2014126376A
Authority
JP
Japan
Prior art keywords
quenching
voltage
quality
inspection object
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012281085A
Other languages
Japanese (ja)
Inventor
Masatoshi Mizutani
政敏 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2012281085A priority Critical patent/JP2014126376A/en
Publication of JP2014126376A publication Critical patent/JP2014126376A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hardening quality inspection device and a hardening quality inspection method capable of improving the inspection accuracy of the hardening quality of an inspection object by correcting a measurement value having variations due to a material charge in nondestructive inspection.SOLUTION: This quality inspection device includes: a power source 2; voltage measurement means 11 for measuring a voltage generated by an inspection object 1 applied with the current by the power source 2; and quality measurement means 12 for measuring a hardening quality of the inspection object 1 from the voltage measured by the voltage measurement means 11. The quality measurement means 12 includes: a previous processing value storage part 15 for storing the measurement value by the voltage measurement means 11 before the hardening processing of the inspection object 1; a post-processing value storage part 16 for storing the measurement value after the hardening processing; and a determination part 17 for determining the hardening quality by comparing each measurement value of before and after the hardening processing stored respectively.

Description

この発明は、例えば、軸受および軸受部品などの転動装置部品における表面硬度および焼入れ深さなどの焼入れ品質を検査する焼入れ品質検査装置および焼入れ品質検査方法に関する。   The present invention relates to a quenching quality inspection apparatus and a quenching quality inspection method for inspecting quenching quality such as surface hardness and quenching depth in rolling device parts such as bearings and bearing parts.

軸受などの転動部品には焼入れ処理や焼戻し処理が施される。これらの処理の中でも、高周波焼入れ処理や、浸炭処理、浸炭窒化処理などの表面硬化処理では、品質保証のために表面硬化層の検査が行われる。この検査では、実際の製品を切断して、その切断面上で、製品表面から深さ方向に硬度を測定して硬化層の深さを測定している。また、製品を切断することができないものでは、テストピースに製品と同じ炉で熱処理を施し、そのテストピースを切断して前記と同様に硬化層深さを測定して、製品の硬化層深さの保証を行っている。   A rolling part such as a bearing is subjected to a quenching process and a tempering process. Among these processes, in the surface hardening process such as induction hardening process, carburizing process, carbonitriding process, etc., the surface hardened layer is inspected for quality assurance. In this inspection, an actual product is cut and the depth of the cured layer is measured by measuring the hardness in the depth direction from the product surface on the cut surface. If the product cannot be cut, the test piece is heat-treated in the same furnace as the product, the test piece is cut, and the cured layer depth is measured in the same manner as described above. The guarantee is made.

製品を切断する破壊検査では、この検査により製品が破棄されるため、マテリアルコストが大きくなる問題がある。また、製品の切断、および硬度計による深さ方向の硬度測定に時間がかかり、工数が大きくなる問題点もある。
製品を切断することができないものは、実際の製品の検査ではないため、保証精度が悪い等の問題点がある。
In the destructive inspection for cutting a product, the product is discarded by this inspection, and there is a problem that the material cost is increased. In addition, there is a problem that it takes time to cut the product and to measure the hardness in the depth direction using a hardness meter, which increases the number of steps.
Since the product that cannot be cut is not an actual product inspection, there are problems such as poor guarantee accuracy.

このため、焼入れ硬化層を非破壊で検査する方法が提案されている(特許文献1〜4)。その中で、焼入れによる透磁率、導電率などの電磁気的性質の変化を利用した方法が提案されている。   For this reason, the method of test | inspecting a hardening hardening layer nondestructively is proposed (patent documents 1-4). Among them, a method using a change in electromagnetic properties such as magnetic permeability and conductivity by quenching has been proposed.

特開2004−309355号公報JP 2004-309355 A 特開2010−243173号公報JP 2010-243173 A 特開2004−108873号公報JP 2004-108873 A 特開2008−32677号公報JP 2008-32677 A

しかし、材料の電磁気的性質の変化を利用した非破壊検査方法では、同じ材質の鋼種でも、メーカ、製造工場、処理日、処理炉などを示す材料チャージにより、導電率、透磁率がばらつき、焼入れ品質検査精度が悪くなる問題点がある。   However, in the nondestructive inspection method using the change in the electromagnetic properties of the material, the conductivity and permeability vary depending on the material charge indicating the manufacturer, manufacturing factory, processing date, processing furnace, etc. There is a problem that the quality inspection accuracy deteriorates.

この発明の目的は、非破壊検査において、材料チャージによる測定値のばらつきを補正して、検査対象物の焼入れ品質の検査精度の向上を図ることができる焼入れ品質検査装置および焼入れ品質検査方法を提供することである。   An object of the present invention is to provide a quenching quality inspection apparatus and a quenching quality inspection method that can improve the inspection accuracy of the quenching quality of an inspection object by correcting variations in measured values due to material charge in nondestructive inspection. It is to be.

この発明の焼入れ品質検査装置は、検査対象物1に電流または磁束を印加する電源2と、
この電源2により電流または磁束が印加された前記検査対象物1が発する電圧を測定する電圧測定手段11と、
この電圧測定手段11で測定された電圧から前記検査対象物1の焼入れ品質を測定する品質測定手段12と、
を備えた焼入れ品質検査装置において、
前記品質測定手段12は、
前記検査対象物1を焼入れ処理する前の前記電圧測定手段11による測定値を記憶する処理前値記憶部15と、
焼入れ処理した後の前記電圧測定手段11による測定値を記憶する処理後値記憶部16と、
これら処理前値記憶部15および処理後値記憶部16にそれぞれ記憶された焼入れ処理前後の各測定値を比較して焼入れ品質を判定する判定部17と、
を有することを特徴とする。
A quenching quality inspection apparatus according to the present invention includes a power source 2 for applying a current or a magnetic flux to an inspection object 1,
Voltage measuring means 11 for measuring a voltage generated by the inspection object 1 to which a current or magnetic flux is applied by the power source 2;
Quality measuring means 12 for measuring the quenching quality of the inspection object 1 from the voltage measured by the voltage measuring means 11,
In quenching quality inspection equipment with
The quality measuring means 12 includes
A pre-processing value storage unit 15 for storing a measurement value obtained by the voltage measuring unit 11 before quenching the inspection object 1;
A post-processing value storage unit 16 for storing a measured value by the voltage measuring means 11 after the quenching process;
A determination unit 17 that compares the measured values before and after the quenching process stored in the pre-processing value storage unit 15 and the post-processing value storage unit 16 to determine quenching quality;
It is characterized by having.

この構成によると、電源2から検査対象物1に電流または磁束を印加する。この状態において、電圧測定手段11は、前記検査対象物1が発する電圧を測定する。品質測定手段12は、測定された電圧から検査対象物1の焼入れ品質を測定する。
検査対象物1は同じ材質の鋼材でも、いわゆる材料チャージにより導電率、透磁率がばらつき、焼入れ品質検査精度が悪くなる。
According to this configuration, current or magnetic flux is applied from the power source 2 to the inspection object 1. In this state, the voltage measuring means 11 measures the voltage generated by the inspection object 1. The quality measuring means 12 measures the quenching quality of the inspection object 1 from the measured voltage.
Even if the inspection object 1 is the same steel material, electrical conductivity and magnetic permeability vary due to so-called material charging, and the quenching quality inspection accuracy deteriorates.

そこで、品質測定手段12における処理前値記憶部15は、検査対象物1を焼入れ処理する前の電圧測定手段11による測定値を記憶し、処理後値記憶部16は、同検査対象物1を焼入れ処理した後の電圧測定手段11による測定値を記憶する。品質測定手段12における判定部17は、それぞれ記憶された焼入れ処理前後の各測定値を比較することで、材料チャージによる測定値のばらつきを補正して焼入れ品質を精度良く判定することができる。これにより、非破壊検査において、検査対象物1の焼入れ品質の検査精度の向上を図ることができる。   Therefore, the pre-processing value storage unit 15 in the quality measurement unit 12 stores the measurement value obtained by the voltage measurement unit 11 before quenching the inspection object 1, and the post-processing value storage unit 16 stores the inspection object 1. The measured value by the voltage measuring means 11 after quenching is stored. The determination unit 17 in the quality measuring unit 12 can compare the stored measurement values before and after the quenching process, thereby correcting the variation in the measurement value due to the material charge and accurately determining the quenching quality. Thereby, in the nondestructive inspection, the inspection accuracy of the quenching quality of the inspection object 1 can be improved.

前記判定部17は、焼入れ処理する前の測定値と焼入れ処理した後の測定値との差を用いて焼入れ品質を判定するものとしても良い。同じ材質の鋼材から成る検査対象物1について、例えば、材料チャージを複数種類変えたものを準備し、測定値の変化量を確認したところ、焼入れ処理する前後の測定値の変化量と検量線との差を、焼入れ処理した後の測定値と検量線との差よりも小さくし得る。このように材料チャージの影響を補正して焼入れ品質を判定することができる。
前記「検量線」とは、例えば、焼入れ深さや表面硬度を変えて予め作成し、検査対象物1の測定結果と比較する基準となる線である。測定結果と検量線との差が大きければ大きい程、測定誤差が大きい。
The said determination part 17 is good also as what determines quenching quality using the difference of the measured value before quenching, and the measured value after quenching. For the inspection object 1 made of the same steel material, for example, when a plurality of types of material charges are changed and the amount of change in the measured value is confirmed, the amount of change in the measured value before and after quenching and the calibration curve Can be made smaller than the difference between the measured value after the quenching treatment and the calibration curve. Thus, quenching quality can be determined by correcting the influence of material charge.
The “calibration curve” is, for example, a reference line that is prepared in advance by changing the quenching depth and the surface hardness and is compared with the measurement result of the inspection object 1. The greater the difference between the measurement result and the calibration curve, the greater the measurement error.

前記判定部17は、焼入れ処理した後の測定値を、焼入れ処理する前の測定値で除した測定値の変化率を用いて焼入れ品質を判定するものとしても良い。この場合も、同じ材質の鋼材から成る検査対象物1について、例えば、材料チャージを複数種類変えたものを準備し、測定値の変化率を確認したところ、焼入れ処理する前後の測定値の変化率と検量線との差を、焼入れ処理した後の測定値と検量線との差よりも小さくし得る。このように材料チャージの影響を補正して焼入れ品質を判定することができる。   The determination unit 17 may determine the quenching quality using a rate of change of a measured value obtained by dividing a measured value after quenching by a measured value before quenching. Also in this case, for the inspection object 1 made of the same steel material, for example, a material with a plurality of different material charges is prepared and the change rate of the measured value is confirmed. The change rate of the measured value before and after quenching is confirmed. And the calibration curve can be made smaller than the difference between the measured value after quenching and the calibration curve. Thus, quenching quality can be determined by correcting the influence of material charge.

前記電源2は、前記検査対象物1の表面に接触させた電流印加用探針3,3を介して電流を印加するものであり、前記電圧測定手段11は、前記電源2により電流が印加された前記検査対象物1の表面における、前記電流印加用探針3,3とは異なる2点に接触させて、この2点間の電圧を測定する一対の電圧測定用探針4,4を含むものであっても良い。この場合、検査対象物1の表面に電流印加用探針3,3を接触させ、電源2から電流印加用探針3,3を介して電流を流す。この状態において、検査対象物1の表面に接触させた一対の電圧測定用探針4,4により2点間の電圧を測定する。品質測定手段12は、測定された電圧から検査対象物1の焼入れ品質を測定する。   The power source 2 applies a current through current application probes 3 and 3 brought into contact with the surface of the inspection object 1, and the voltage measuring unit 11 is applied with a current by the power source 2. And a pair of voltage measuring probes 4 and 4 for measuring the voltage between the two points different from the current applying probes 3 and 3 on the surface of the inspection object 1. It may be a thing. In this case, the current application probes 3 and 3 are brought into contact with the surface of the inspection object 1, and a current is supplied from the power source 2 through the current application probes 3 and 3. In this state, the voltage between the two points is measured by the pair of voltage measuring probes 4 and 4 brought into contact with the surface of the inspection object 1. The quality measuring means 12 measures the quenching quality of the inspection object 1 from the measured voltage.

検査対象物1に一定の電流を印加したとき、電圧測定用探針4,4間の電圧は、測定対象となる位置の導電率、透磁率により変化する。
焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度などの焼入れ品質によって前記2点間の電圧が変化する。したがって、前記2点間の電圧を測定することで、焼入れ品質に関する情報を得ることができる。
When a constant current is applied to the inspection object 1, the voltage between the voltage measuring probes 4 and 4 changes depending on the conductivity and magnetic permeability at the position to be measured.
The permeability and conductivity of the steel material change due to quenching. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the voltage between the two points varies depending on the quenching quality such as quenching hardness. Therefore, information on the quenching quality can be obtained by measuring the voltage between the two points.

前記品質測定手段12は、前記電圧測定用探針4,4で測定された電圧の振幅、および、印加電流と前記測定された電圧との位相のいずれか一方または両方を、前記測定値として、焼入れ品質を測定するものとしても良い。例えば、交流電位差法により位相検波を使用することで、振幅と位相を測定することができ、さらにノイズの影響を受けにくくなる。したがって、交流電位差法は直流電位差法より精度の高い測定が可能である。
前記品質測定手段12は、前記一対の電圧測定用探針4,4間の電圧における、前記検査対象物1に印加した印加電流と同相成分、および直交成分を検出する電圧測定部5を有するものとしても良い。電圧測定部5は、これら同相成分および直交成分から、測定電圧の振幅、および、印加電流と測定電圧との位相を得ることができる。
The quality measuring means 12 uses either or both of the amplitude of the voltage measured by the voltage measuring probes 4 and 4 and the phase of the applied current and the measured voltage as the measured value. It is good also as what measures quenching quality. For example, by using phase detection by the AC potential difference method, the amplitude and phase can be measured, and further, it is less susceptible to noise. Therefore, the AC potential difference method can measure with higher accuracy than the DC potential difference method.
The quality measuring unit 12 includes a voltage measuring unit 5 that detects an in-phase component and a quadrature component applied to the inspection object 1 in the voltage between the pair of voltage measuring probes 4 and 4. It is also good. The voltage measurement unit 5 can obtain the amplitude of the measurement voltage and the phase between the applied current and the measurement voltage from the in-phase component and the quadrature component.

前記電源2は、前記検査対象物1の表面に対向させた励磁コイル19を介して磁束を印加するものであり、前記電圧測定手段11は、前記電源2により磁束が印加された前記検査対象物1の表面に対向させた検出コイル20で前記検査対象物1の励磁時に発生する電圧を検出するものであっても良い。この場合、励磁コイル19に電源から交流電流を流して検査対象物1に磁束を印加する。その際に検出コイル20に誘導させる電圧を検出する。品質測定手段12は、この電圧から焼入れ品質に対する情報を得ることができる。   The power source 2 applies a magnetic flux through an exciting coil 19 opposed to the surface of the inspection object 1, and the voltage measuring unit 11 is configured to apply the magnetic field to the inspection object to which the magnetic power is applied. The voltage generated when the inspection object 1 is excited may be detected by the detection coil 20 opposed to the surface of the inspection object 1. In this case, an alternating current is supplied from the power source to the exciting coil 19 to apply a magnetic flux to the inspection object 1. At that time, the voltage induced in the detection coil 20 is detected. The quality measuring means 12 can obtain information on the quenching quality from this voltage.

前記品質測定手段12は、前記検出コイル20で検出された電圧の振幅、および、前記励磁コイル19の電圧と前記検出された電圧との位相を、前記測定値として、焼入れ品質を測定するものとしても良い。検出コイル20の電圧は、励磁コイル19の電圧を参照信号として位相検波され、検出コイル20の電圧の振幅、および、励磁コイル電圧に対する位相がそれぞれ検出される。補正方法その他は、前記の交流電位差法と同様である。
前記品質測定手段12は、前記検出コイル20で検出された電圧における、前記励磁コイル19の電圧と同相成分、および直交成分を検出する電圧測定部5を有するものとしても良い。電圧測定部5は、これら同相成分および直交成分から、測定電圧の振幅、および、印加電流と測定電圧との位相を得ることができる。
The quality measuring means 12 measures quenching quality using the amplitude of the voltage detected by the detection coil 20 and the phase of the voltage of the excitation coil 19 and the detected voltage as the measured values. Also good. The voltage of the detection coil 20 is phase-detected using the voltage of the excitation coil 19 as a reference signal, and the amplitude of the voltage of the detection coil 20 and the phase with respect to the excitation coil voltage are detected. The correction method and others are the same as those of the AC potential difference method.
The quality measuring unit 12 may include a voltage measuring unit 5 that detects an in-phase component and a quadrature component of the voltage detected by the detection coil 20 with the voltage of the excitation coil 19. The voltage measurement unit 5 can obtain the amplitude of the measurement voltage and the phase between the applied current and the measurement voltage from the in-phase component and the quadrature component.

前記品質測定手段12は、前記焼入れ品質として、前記検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを検査するものとしても良い。   The quality measuring means 12 may inspect at least one of the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth of the inspection object 1 as the quenching quality.

この発明の焼入れ品質検査方法は、
検査対象物1に電流または磁束を印加する印加過程と、
電流または磁束が印加された前記検査対象物1が発する電圧を測定する電圧測定過程と、
この電圧測定過程で測定された電圧から前記検査対象物1の焼入れ品質を測定する品質測定過程と、
を備えた焼入れ品質検査方法において、
前記電圧測定過程は、前記検査対象物1を焼入れ処理する前の測定値を記憶する処理前値記憶過程と、焼入れ処理した後の測定値を記憶する処理後値記憶過程とを含み、
前記品質測定過程は、これら処理前値記憶過程および処理後値記憶過程にてそれぞれ記憶された焼入れ処理前後の各測定値を比較して焼入れ品質を判定する判定過程を有することを特徴とする。
品質測定過程における判定過程では、それぞれ記憶された焼入れ処理前後の各測定値を比較することで、材料チャージの影響を補正して焼入れ品質を判定する。これにより、非破壊検査において、検査対象物1の焼入れ品質の検査精度の向上を図ることができる。
The quenching quality inspection method of this invention is
An application process of applying a current or magnetic flux to the inspection object 1,
A voltage measurement process for measuring a voltage generated by the inspection object 1 to which a current or a magnetic flux is applied;
A quality measurement process for measuring the quenching quality of the inspection object 1 from the voltage measured in the voltage measurement process;
In the quenching quality inspection method with
The voltage measurement process includes a pre-process value storage process for storing a measurement value before quenching the inspection object 1 and a post-process value storage process for storing a measurement value after quenching,
The quality measurement process includes a determination process for comparing the measured values before and after the quenching process stored in the pre-processing value storage process and the post-processing value storage process to determine the quenching quality.
In the determination process in the quality measurement process, the stored quality values before and after the quenching process are compared, thereby correcting the influence of the material charge and determining the quenching quality. Thereby, in the nondestructive inspection, the inspection accuracy of the quenching quality of the inspection object 1 can be improved.

この発明の焼入れ品質検査装置は、検査対象物に電流または磁束を印加する電源と、この電源により電流または磁束が印加された前記検査対象物が発する電圧を測定する電圧測定手段と、この電圧測定手段で測定された電圧から前記検査対象物の焼入れ品質を測定する品質測定手段とを備えた焼入れ品質検査装置において、前記品質測定手段は、前記検査対象物を焼入れ処理する前の前記電圧測定手段による測定値を記憶する処理前値記憶部と、焼入れ処理した後の前記電圧測定手段による測定値を記憶する処理後値記憶部と、これら処理前値記憶部および処理後値記憶部にそれぞれ記憶された焼入れ処理前後の各測定値を比較して焼入れ品質を判定する判定部とを有する。このため、非破壊検査において、材料チャージによる測定値のばらつきを補正して、検査対象物の焼入れ品質の検査精度の向上を図ることができる。   A quenching quality inspection apparatus according to the present invention includes a power source for applying a current or a magnetic flux to an inspection object, a voltage measuring means for measuring a voltage generated by the inspection object to which a current or a magnetic flux is applied by the power source, and the voltage measurement. In the quenching quality inspection apparatus comprising quality measurement means for measuring the quenching quality of the inspection object from the voltage measured by the means, the quality measurement means includes the voltage measurement means before quenching the inspection object. Stored in the pre-processing value storage unit for storing the measurement value obtained by the process, the post-processing value storage unit for storing the measurement value obtained by the voltage measurement means after quenching, and the pre-processing value storage unit and the post-processing value storage unit. A determination unit that compares the measured values before and after the quenching process to determine the quenching quality. For this reason, in the nondestructive inspection, it is possible to improve the inspection accuracy of the quenching quality of the inspection object by correcting the variation of the measured value due to the material charge.

この発明の焼入れ品質検査方法は、検査対象物に電流または磁束を印加する印加過程と、電流または磁束が印加された前記検査対象物が発する電圧を測定する電圧測定過程と、この電圧測定過程で測定された電圧から前記検査対象物の焼入れ品質を測定する品質測定過程とを備えた焼入れ品質検査方法において、前記電圧測定過程は、前記検査対象物を焼入れ処理する前の測定値を記憶する処理前値記憶過程と、焼入れ処理した後の測定値を記憶する処理後値記憶過程とを含み、前記品質測定過程は、これら処理前値記憶過程および処理後値記憶過程にてそれぞれ記憶された焼入れ処理前後の各測定値を比較して焼入れ品質を判定する判定過程を有する。このため、非破壊検査において、材料チャージによる測定値のばらつきを補正して、検査対象物の焼入れ品質の検査精度の向上を図ることができる。   The quenching quality inspection method of the present invention includes an application process for applying a current or a magnetic flux to an inspection object, a voltage measurement process for measuring a voltage generated by the inspection object to which a current or a magnetic flux is applied, and a voltage measurement process. A quenching quality inspection method comprising a quality measurement process for measuring a quenching quality of the inspection object from a measured voltage, wherein the voltage measurement process is a process of storing a measurement value before quenching the inspection object Including a pre-value storage process and a post-process value storage process for storing a measured value after quenching, and the quality measurement process includes quenching stored in the pre-process value storage process and post-process value storage process, respectively. It has the determination process which compares each measured value before and behind processing, and determines quenching quality. For this reason, in the nondestructive inspection, it is possible to improve the inspection accuracy of the quenching quality of the inspection object by correcting the variation of the measured value due to the material charge.

この発明の第1の実施形態に係る焼入れ品質検査装置の基本構造を示すブロック図である。It is a block diagram which shows the basic structure of the hardening quality inspection apparatus which concerns on 1st Embodiment of this invention. 同焼入れ品質検査装置で検査対象物に電流を印加した場合の、印加電流と測定電圧とを示す図である。It is a figure which shows an applied electric current and a measurement voltage at the time of applying an electric current to an inspection target object with the quenching quality inspection apparatus. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する振幅を交流電位差法で測定した結果を示す図である。It is a figure which shows the result of having prepared the test object which changed multiple types of material charge, and having measured the amplitude with respect to the hardening depth by the alternating current potential difference method. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する位相を交流電位差法で測定した結果を示す図である。It is a figure which shows the result of having prepared the test target object which changed multiple types of material charge, and having measured the phase with respect to the hardening depth by the alternating current potential difference method. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する振幅の変化量を示す図である。It is a figure which shows the variation | change_quantity of the amplitude with respect to the hardening depth by preparing the test target object which changed multiple types of material charges. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する位相の変化量を示す図である。It is a figure which shows the variation | change_quantity of the phase with respect to the quenching depth by preparing the test target object which changed multiple types of material charges. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する振幅の変化率を示す図である。It is a figure which shows the change rate of the amplitude with respect to the hardening depth by preparing the test object which changed multiple types of material charges. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する位相の変化率を示す図である。It is a figure which shows the change rate of the phase with respect to the hardening depth by preparing the test target object which changed multiple types of material charges. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する、測定電圧の直交成分/同相成分の結果を示す図である。It is a figure which shows the result of the orthogonal component / in-phase component of a measurement voltage with respect to the quenching depth by preparing an inspection object in which a plurality of types of material charges are changed. 材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する、測定電圧の直交成分/同相成分の変化率を示す図である。It is a figure which shows the change rate of the orthogonal component / in-phase component of a measurement voltage with respect to the quenching depth by preparing an inspection object in which a plurality of types of material charges are changed. この発明の他の実施形態に係る焼入れ品質検査装置の基本構造を示すブロック図である。It is a block diagram which shows the basic structure of the hardening quality inspection apparatus which concerns on other embodiment of this invention. 前記いずれかの焼入れ品質検査装置の一使用例を示す図である。It is a figure which shows one usage example of the said quenching quality inspection apparatus.

この発明の第1の実施形態に係る焼入れ品質検査装置を図1ないし図10と共に説明する。以下の説明は、焼入れ品質検査方法についての説明をも含む。先ず、この実施形態に係る焼入れ品質検査装置の基本構造について説明する。
図1に示すように、この焼入れ品質検査方法は、検査対象物1の表面に、後述する直流電位差法または交流電位差法により電流を印加し(印加過程)、その検査対象物1の表面における、任意の2点間の電圧つまり電位差を測定することで(電圧測定過程)、焼入れ品質を検査する(品質測定過程)。検査対象物1は、例えば軸受や軸受部品などの鋼材製品である。ただし、これらの鋼材製品に限定されるものではない。
A quenching quality inspection apparatus according to a first embodiment of the present invention will be described with reference to FIGS. The following description also includes a description of the quenching quality inspection method. First, the basic structure of the quenching quality inspection apparatus according to this embodiment will be described.
As shown in FIG. 1, in this quenching quality inspection method, a current is applied to the surface of the inspection object 1 by a direct current potential method or an alternating current potential method described later (application process), and the surface of the inspection object 1 is The quenching quality is inspected (quality measurement process) by measuring the voltage, that is, the potential difference between any two points (voltage measurement process). The inspection object 1 is a steel product such as a bearing or a bearing part. However, it is not limited to these steel products.

検査対象物1に印加する電流は、後述する交流電流または直流電流である。電源2から一対の電流印加用探針3,3を介して検査対象物1に電流を印加する。この電流が印加された検査対象物1の表面における、前記電流印加用探針3とは異なる2点に、一対の電圧測定用探針4,4を接触させてこの2点間の電圧を、電圧測定部5で測定する。測定された電圧は、信号処理部6で処理され検査対象物1の焼入れ品質が評価され、表示装置7で評価結果が表示される。   The current applied to the inspection object 1 is an alternating current or a direct current described later. A current is applied to the inspection object 1 from the power source 2 through the pair of current application probes 3 and 3. A pair of voltage measurement probes 4 and 4 are brought into contact with two points different from the current application probe 3 on the surface of the inspection object 1 to which the current is applied, and a voltage between the two points is obtained. Measurement is performed by the voltage measuring unit 5. The measured voltage is processed by the signal processing unit 6, the quenching quality of the inspection object 1 is evaluated, and the evaluation result is displayed on the display device 7.

検査対象物1に一定の電流を印加したとき、電圧測定用探針4,4間の電圧は、検査対象物1の測定場所の導電率、透磁率により変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
ただし、fは交流電流の周波数、σは導電率、μは透磁率である。
When a constant current is applied to the inspection object 1, the voltage between the voltage measuring probes 4, 4 changes depending on the conductivity and permeability of the measurement object 1 at the measurement location. Here, the depth δ through which the current flows is expressed by the following equation (1).
δ = √ (1 / πfσμ) (1)
Where f is the frequency of the alternating current, σ is the conductivity, and μ is the magnetic permeability.

鋼材製品は焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度などの焼入れ品質によって前記2点間の電圧が変化する。したがって、前記2点間の電圧を測定することで、焼入れ品質に関する情報を得ることができる。   The permeability and conductivity of steel products change due to quenching of steel products. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the voltage between the two points varies depending on the quenching quality such as quenching hardness. Therefore, information on the quenching quality can be obtained by measuring the voltage between the two points.

一方(1)式から、検査対象物1を流れる交流電流の侵入深さδは、交流電流の周波数fにより変化する。前記周波数fを変化させることで、交流電流の侵入深さδを変え得る。したがって、交流電流の侵入深さδを変えながら、2点間の電圧を測定することにより、焼入れ硬度について焼入れ深さ方向の分布を検査することができる。すなわち、例えば、検査対象物1に高周波交流電流を印加したときは、表皮効果により電流は、検査対象物1の表面近傍しか流れることができないので、検査対象物1の焼入れによる表面硬度などの表面情報を得ることができる。
検査対象物1に直流電流または低周波交流電流を印加したときは、電流が検査対象物1の内部まで流れるようになり、検査対象物1の焼入れによる焼入れ深さなどの内部情報を得ることができる。
On the other hand, from equation (1), the penetration depth δ of the alternating current flowing through the inspection object 1 varies depending on the frequency f of the alternating current. The penetration depth δ of the alternating current can be changed by changing the frequency f. Therefore, by measuring the voltage between two points while changing the penetration depth δ of the alternating current, the quenching hardness distribution in the quenching depth direction can be inspected. That is, for example, when a high-frequency alternating current is applied to the inspection object 1, the current can flow only near the surface of the inspection object 1 due to the skin effect, and thus the surface such as the surface hardness due to quenching of the inspection object 1. Information can be obtained.
When a direct current or a low-frequency alternating current is applied to the inspection object 1, the current flows to the inside of the inspection object 1, and internal information such as a quenching depth by quenching the inspection object 1 can be obtained. it can.

直流電位差法は、検査対象物1に直流電流を印加する方法で、電圧測定用探針4,4間の電圧の大きさを測定する。
ここで図2は、この焼入れ品質検査装置で検査対象物に電流を印加した場合の、印加電流と測定電圧とを示す図である。交流電位差法は、検査対象物1に交流電流を印加する方法で、同図2に示すように、電圧測定用探針4,4間の電圧も交流電圧となり、電圧測定部 (図1)にて、測定電圧の振幅と、印加電流と測定電圧との位相差(単に「位相」という場合がある)を測定する。
The DC potential difference method is a method in which a DC current is applied to the inspection object 1, and the magnitude of the voltage between the voltage measuring probes 4 and 4 is measured.
Here, FIG. 2 is a diagram showing an applied current and a measured voltage when a current is applied to an inspection object with this quenching quality inspection apparatus. The AC potential difference method is a method in which an AC current is applied to the object 1 to be inspected. As shown in FIG. 2, the voltage between the voltage measuring probes 4 and 4 also becomes an AC voltage, and the voltage measuring unit (FIG. 1) Then, the amplitude of the measurement voltage and the phase difference (sometimes simply referred to as “phase”) between the applied current and the measurement voltage are measured.

振幅と位相の測定には、後述する位相検波を使用する。
交流電位差法は、位相検波を使用することで、振幅と位相を測定することができ、さらにノイズの影響を受けにくくなるので、直流電位差法より精度が高い測定が可能である。
実際の測定では、焼入れ深さや表面硬度を変えた試料を測定して検量線をあらかじめ作成し、検査対象物1の測定結果と前記検量線とを比較することで、この検査対象物1の焼入れ深さや表面硬度を推定する。
For amplitude and phase measurement, phase detection, which will be described later, is used.
The AC potential difference method can measure the amplitude and phase by using phase detection, and is less susceptible to noise. Therefore, the AC potential difference method can measure with higher accuracy than the DC potential difference method.
In actual measurement, a calibration curve is prepared in advance by measuring a sample with different quenching depth and surface hardness, and the quenching of the inspection object 1 is performed by comparing the measurement result of the inspection object 1 with the calibration curve. Estimate depth and surface hardness.

図1に示すように、この焼入れ品質検査装置は、ヘッド8と、測定装置9と、表示装置7とを有する。
ヘッド8について説明する。
ヘッド8は、一対の電流印加用探針3,3と一対の電圧測定用探針4,4とをハウジング10により一体としたものである。これらのうち電流印加用探針3,3は、検査対象物1の表面に接触させて測定装置9の電源2から前記検査対象物1に電流を印加する。電圧測定手段11における電圧測定用探針4,4は、電流が印加された検査対象物1の表面における、前記電流印加用探針3,3とは異なる2点に接触させて、この2点間の電圧を測定するようになっている。
As shown in FIG. 1, the quenching quality inspection device includes a head 8, a measuring device 9, and a display device 7.
The head 8 will be described.
The head 8 is a unit in which a pair of current application probes 3 and 3 and a pair of voltage measurement probes 4 and 4 are integrated by a housing 10. Among these, the current application probes 3 and 3 are brought into contact with the surface of the inspection object 1 and apply a current to the inspection object 1 from the power source 2 of the measuring device 9. The voltage measuring probes 4 and 4 in the voltage measuring means 11 are brought into contact with two points different from the current applying probes 3 and 3 on the surface of the inspection object 1 to which a current is applied. The voltage between them is measured.

電流印加用探針対3,3と電圧測定用探針対4,4とは、所定距離離隔して平行に配置され、且つ、これら探針3,4の長手方向から見て直線に並ぶように配置されている。また、ヘッド8において最も離隔した外側の2つの探針が電流印加用探針対3,3で、内側の2つの探針が電圧測定用探針対4,4となるように配置されている。各電流印加用深針3、各電圧測定用深針4はそれぞれ棒状に形成され、各深針3,4の一端部がハウジング10の端面から突出して検査対象物1の表面に接触する。
各電流印加用探針3の他端部が、測定装置9の電源2に接続され、各電圧測定用探針4の他端部が、測定装置9における後述の電圧測定部5に接続されている。
The current application probe pairs 3 and 3 and the voltage measurement probe pairs 4 and 4 are arranged in parallel at a predetermined distance, and are arranged in a straight line when viewed from the longitudinal direction of the probes 3 and 4. Is arranged. Further, the two outermost probes in the head 8 are arranged to be the current application probe pairs 3 and 3, and the two inner probes are arranged to be the voltage measurement probe pairs 4 and 4. . Each current application deep needle 3 and each voltage measurement deep needle 4 are each formed in a bar shape, and one end of each deep needle 3, 4 protrudes from the end face of the housing 10 and contacts the surface of the inspection object 1.
The other end of each current application probe 3 is connected to the power source 2 of the measuring device 9, and the other end of each voltage measuring probe 4 is connected to a voltage measuring unit 5 described later in the measuring device 9. Yes.

測定装置9などについて説明する。
測定装置9は、電源2と、電圧測定部5と、品質測定手段12とを有する。
電源2として例えば、交流電源が用いられる。電源2は、例えば、周波数可変の発振回路と、この発振回路から出力された交流電流を増幅して検査対象物1に電流を印加する増幅回路とを含む。前記発振回路は、品質測定手段12における周波数変更指令部13に接続され、この周波数変更指令部13からの指示により周波数および振幅を変化させる。なお前記交流電源を用いて検査対象物1に直流電流を印加することも可能である。
The measuring device 9 will be described.
The measuring device 9 includes a power source 2, a voltage measuring unit 5, and quality measuring means 12.
For example, an AC power source is used as the power source 2. The power source 2 includes, for example, a variable frequency oscillation circuit and an amplification circuit that amplifies an alternating current output from the oscillation circuit and applies a current to the inspection object 1. The oscillation circuit is connected to the frequency change command unit 13 in the quality measuring unit 12 and changes the frequency and amplitude according to an instruction from the frequency change command unit 13. It is also possible to apply a direct current to the inspection object 1 using the alternating current power source.

電圧測定部5は、一対の電圧測定用探針4,4間の電圧を測定する。
品質測定手段12は、信号処理部6と、前記周波数変更指令部13とを有する。信号処理部6は、電圧測定部5で測定された電圧から検査対象物1の焼入れ品質を測定する。
信号処理部6は、前記焼入れ品質として、検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを、各品質項目毎に測定値と、各品質項目毎の設定品質値との関係に照らして推定する。
The voltage measuring unit 5 measures the voltage between the pair of voltage measuring probes 4 and 4.
The quality measuring unit 12 includes a signal processing unit 6 and the frequency change command unit 13. The signal processing unit 6 measures the quenching quality of the inspection object 1 from the voltage measured by the voltage measuring unit 5.
The signal processing unit 6 uses, as the quenching quality, at least one of the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth of the inspection object 1 for each quality item, and for each quality item. Estimated according to the relationship with the set quality value.

信号処理部6は、位相検波回路14と、処理前値記憶部15と、処理後値記憶部16と、判定部17とを有する。位相検波回路14は、電圧測定部5の後段に接続されると共に電源2に接続される。この位相検波回路14は、検査対象物1に印加する電流信号を参照信号とし、測定電圧の振幅、および、印加電流と測定電圧との位相を求める。具体的には、位相検波回路14は、検査対象物1に印加する電流信号を参照信号とし、電圧測定用探針4,4で測定された電圧における、前記参照信号に対する同相成分V、および直交成分V(同相成分と90°位相差がある成分)を検出する。測定電圧Vの振幅は、同相成分Vの二乗に直交成分Vの二乗を加えた値の平方根をとる(√(V +V ))ことで得られる。印加電流に対する測定電圧の位相は、直交成分Vを同相成分Vで除した値の逆正接関数を求める(tan−1(V/V))ことで得られる。 The signal processing unit 6 includes a phase detection circuit 14, a pre-processing value storage unit 15, a post-processing value storage unit 16, and a determination unit 17. The phase detection circuit 14 is connected to the subsequent stage of the voltage measurement unit 5 and to the power supply 2. The phase detection circuit 14 uses the current signal applied to the inspection object 1 as a reference signal, and obtains the amplitude of the measurement voltage and the phase between the applied current and the measurement voltage. Specifically, the phase detection circuit 14 uses the current signal applied to the inspection object 1 as a reference signal, and the in-phase component V 1 with respect to the reference signal in the voltage measured by the voltage measuring probes 4 and 4, and A quadrature component V 2 (a component having a 90 ° phase difference from the in-phase component) is detected. The amplitude of the measurement voltage V is obtained by taking the square root of the value obtained by adding the square of the quadrature component V 2 to the square of the in-phase component V 1 (√ (V 1 2 + V 2 2 )). The phase of the measured voltage with respect to the applied current can be obtained by obtaining an arctangent function of a value obtained by dividing the quadrature component V 2 by the in-phase component V 1 (tan −1 (V 2 / V 1 )).

処理前値記憶部15は、検査対象物1を焼入れ処理する前の、測定電圧の振幅、および、印加電流に対する測定電圧の位相を記憶する(処理前値記憶過程)。処理後値記憶部16は、検査対象物1を焼入れ処理した後の、測定電圧の振幅、および、印加電流に対する測定電圧の位相を記憶する(処理後値記憶過程)。これら記憶部15,16は、例えば、ROMなどのメモリによって実現され、測定値である振幅および位相を書換え可能に記憶する。
判定部17は、処理前値記憶部15および処理後値記憶部16にそれぞれ記憶された焼入れ処理前後の各測定値を比較して焼入れ品質を判定する(判定過程)。
The pre-processing value storage unit 15 stores the amplitude of the measurement voltage and the phase of the measurement voltage with respect to the applied current before quenching the inspection object 1 (pre-processing value storage process). The post-processing value storage unit 16 stores the amplitude of the measurement voltage and the phase of the measurement voltage with respect to the applied current after quenching the inspection object 1 (post-processing value storage process). These storage units 15 and 16 are realized by a memory such as a ROM, for example, and store the amplitude and phase as measured values so as to be rewritable.
The determination unit 17 compares the measured values before and after the quenching process respectively stored in the pre-processing value storage unit 15 and the post-processing value storage unit 16 to determine quenching quality (determination process).

測定装置9には、図示外の駆動回路を介して表示装置7が接続される。この表示装置7は、例えば、液晶ディスプレイ、有機ELディスプレイ、CRTディスプレイ、プリンタ等によって実現される。この表示装置7は、品質測定手段12の測定した焼入れ品質を表示する。   The display device 7 is connected to the measuring device 9 via a drive circuit (not shown). The display device 7 is realized by, for example, a liquid crystal display, an organic EL display, a CRT display, a printer, or the like. The display device 7 displays the quenching quality measured by the quality measuring means 12.

ここで図3は、材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する振幅を交流電位差法で測定した結果を示す図であり、図4は、材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する位相を交流電位差法で測定した結果を示す図である。図3,図4の電圧測定時において、周波数変更指令部13(図1)からの指示に基づく、印加電流の周波数は、渦電流の影響を無視できるくらいの低周波である。図3,図4中の実線は、測定値から求めた検量線Lである。検量線Lと測定値との差が測定の誤差になる。   Here, FIG. 3 is a diagram showing a result of preparing an inspection object in which a plurality of types of material charges are changed and measuring the amplitude with respect to the quenching depth by the AC potential difference method, and FIG. 4 is a diagram in which a plurality of types of material charges are changed. It is a figure which shows the result of having prepared the test target object and having measured the phase with respect to the hardening depth by the alternating current potential difference method. 3 and 4, the frequency of the applied current based on the instruction from the frequency change command unit 13 (FIG. 1) is low enough to ignore the effect of eddy current. The solid line in FIGS. 3 and 4 is a calibration curve L obtained from the measured values. The difference between the calibration curve L and the measured value becomes a measurement error.

この交流電位差法での試験では、検査対象物1として、同じ材質の鋼材で、材料チャージを変えたものを3種類準備した。図3,図4では、丸印、四角印、三角印のプロットをそれぞれ材料チャージの種類が異なる第1,第2,第3の材料チャージとした。図5〜図10についても同じ。
図3,図4の測定結果によると、材料チャージにより測定値が検量線Lに対してばらつき、そのため焼入れ深さの推定精度が悪くなっている。
なお直流電位差法を使用した場合は、交流電位差法の振幅に相当する電圧の大きさのみ測定できる。直流電位差法の電圧の測定結果は、交流電位差法の周波数が低く渦電流の影響を無視できる場合の同相成分Vの測定結果と同等になる。
In this test using the alternating current potential difference method, three types of the inspection object 1 were prepared using the same steel material with different material charges. In FIGS. 3 and 4, the plots of the circle mark, the square mark, and the triangle mark are the first, second, and third material charges having different material charge types. The same applies to FIGS.
According to the measurement results of FIG. 3 and FIG. 4, the measured value varies with respect to the calibration curve L due to the material charge, so that the estimation accuracy of the quenching depth is deteriorated.
When the DC potential difference method is used, only the voltage magnitude corresponding to the amplitude of the AC potential difference method can be measured. The voltage measurement result of the DC potential difference method is equivalent to the measurement result of the in-phase component V 1 when the frequency of the AC potential difference method is low and the influence of the eddy current can be ignored.

図5は、材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する振幅の変化量を示す図であり、図6は、材料チャージを複数種類変えた検査対象物を準備し、焼入れ深さに対する位相の変化量を示す図である。以下、図1も参照しつつ説明する。焼入れ深さに対する測定値の変化量とは、焼入れ処理前後の測定値の差であり、この例では|焼入れ後の測定値−焼入れ前の測定値|である。   FIG. 5 is a diagram illustrating the amount of change in amplitude with respect to the quenching depth by preparing an inspection object in which a plurality of types of material charges are changed, and FIG. 6 is a diagram in which an inspection object in which a plurality of types of material charges are changed is prepared. It is a figure which shows the variation | change_quantity of the phase with respect to quenching depth. Hereinafter, description will be given with reference to FIG. The amount of change in the measured value with respect to the quenching depth is the difference between the measured values before and after the quenching treatment. In this example, it is | measured value after quenching−measured value before quenching |.

図5では、判定部17が、処理後値記憶部16に記憶された焼入れ処理後の測定電圧の振幅から、処理前値記憶部15に記憶された焼入れ処理前の測定電圧の振幅を減じた値の絶対値を演算することで、焼入れ深さに対する振幅の変化量を得る。判定部17は、この振幅の変化量を用いて焼入れ品質を判定し得る。例えば、判定部17は、検量線Lに対する前記振幅の変化量と、表面硬度,深さ方向の焼入れ硬度分布、および焼入れ深さとの関係を、演算式またはテーブル等で設定した図示外の関係設定手段を有する。   In FIG. 5, the determination unit 17 subtracts the amplitude of the measurement voltage before the quenching process stored in the pre-processing value storage unit 15 from the amplitude of the measurement voltage after the quenching process stored in the post-processing value storage unit 16. By calculating the absolute value of the value, the amount of change in amplitude with respect to the quenching depth is obtained. The determination unit 17 can determine the quenching quality using the change amount of the amplitude. For example, the determination unit 17 sets the relationship between the amount of change in the amplitude with respect to the calibration curve L, the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth by an arithmetic expression or a table or the like, which is not illustrated. Have means.

この場合、判定部17は、検量線Lに対する振幅の変化量を、前記関係設定手段に照らして検査対象物1の表面硬度,深さ方向の焼入れ硬度分布、および焼入れ深さのいずれか一つを算出する。その後、判定部17は、算出した表面硬度,深さ方向の焼入れ硬度分布、および焼入れ深さのいずれか一つが、定められた値(設定品質値)を下回るとき焼入れ異常と判定し、表示装置7にその旨出力する。前記設定品質値は、試験やシミュレーション等により適宜に設定される閾値である。   In this case, the determination unit 17 determines the amount of change in the amplitude with respect to the calibration curve L as one of the surface hardness of the inspection object 1, the quenching hardness distribution in the depth direction, and the quenching depth in light of the relationship setting means. Is calculated. Thereafter, the determination unit 17 determines that the quenching is abnormal when any one of the calculated surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth falls below a predetermined value (set quality value), and the display device This is output to 7. The set quality value is a threshold value that is appropriately set by testing, simulation, or the like.

図6では、判定部17が、処理後値記憶部16に記憶された焼入れ処理後の印加電流に対する測定電圧の位相から、処理前値記憶部15に記憶された焼入れ処理前の印加電流に対する測定電圧の位相を減じた値の絶対値を演算することで、焼入れ深さに対する位相の変化量を得る。判定部17は、この位相の変化量を用いて焼入れ品質を判定し得る。この判定方法は、前述の振幅の変化量の場合と同様である。
図5,図6に示すように、振幅、位相共に前述の変化量を用いることで、材料チャージによる測定値のばらつきを補正して、検査対象物1の焼入れ品質の検査精度の向上を図れる。
In FIG. 6, the determination unit 17 measures the applied current before the quenching process stored in the pre-processing value storage unit 15 from the phase of the measured voltage with respect to the applied current after the quenching process stored in the post-processing value storage unit 16. By calculating the absolute value of the value obtained by subtracting the phase of the voltage, the amount of phase change with respect to the quenching depth is obtained. The determination unit 17 can determine the quenching quality using the phase change amount. This determination method is the same as that in the case of the amplitude variation described above.
As shown in FIGS. 5 and 6, by using the above-described changes in both amplitude and phase, it is possible to correct the variation in the measured value due to the material charge and improve the inspection accuracy of the quenching quality of the inspection object 1.

図7は、材料チャージを複数種類変えた検査対象物1を準備し、焼入れ深さに対する振幅の変化率を示す図であり、図8は、材料チャージを複数種類変えた検査対象物1を準備し、焼入れ深さに対する位相の変化率を示す図である。焼入れ深さに対する測定値の変化率とは、焼入れ処理前後の測定値の変化率であり、この例では焼入れ処理した後の測定値を、焼入れ処理する前の測定値で除した値である。   FIG. 7 is a diagram showing the inspection object 1 in which a plurality of types of material charges are changed, and showing the rate of change in amplitude with respect to the quenching depth, and FIG. 8 is the preparation of the inspection object 1 in which a plurality of types of material charges are changed. It is a figure which shows the change rate of the phase with respect to quenching depth. The rate of change of the measured value with respect to the quenching depth is the rate of change of the measured value before and after the quenching treatment, and in this example, is a value obtained by dividing the measured value after the quenching treatment by the measured value before the quenching treatment.

図7では、判定部17が、処理後値記憶部16に記憶された焼入れ処理後の測定電圧の振幅を、処理前値記憶部15に記憶された焼入れ処理前の測定電圧の振幅で除すことで、焼入れ深さに対する振幅の変化率を得る。判定部17は、この振幅の変化率を用いて焼入れ品質を判定し得る。例えば、判定部17は、検量線Lに対する前記振幅の変化率と、表面硬度,深さ方向の焼入れ硬度分布、および焼入れ深さとの関係を設定した前記と同様の関係設定手段を有し、検量線Lに対する振幅の変化率を、前記関係設定手段に照らして検査対象物1の表面硬度,深さ方向の焼入れ硬度分布、および焼入れ深さのいずれか一つを算出する。その後、判定部17は、算出した表面硬度,深さ方向の焼入れ硬度分布、および焼入れ深さのいずれか一つが、設定品質値を下回るとき焼入れ異常と判定し、表示装置7にその旨出力する。   In FIG. 7, the determination unit 17 divides the amplitude of the measurement voltage after the quenching process stored in the post-processing value storage unit 16 by the amplitude of the measurement voltage before the quenching process stored in the pre-processing value storage unit 15. Thus, the change rate of the amplitude with respect to the quenching depth is obtained. The determination unit 17 can determine the quenching quality using the change rate of the amplitude. For example, the determination unit 17 includes a relationship setting unit similar to the above in which the relationship between the rate of change of the amplitude with respect to the calibration curve L, the surface hardness, the quenching hardness distribution in the depth direction, and the quenching depth is set. The change rate of the amplitude with respect to the line L is calculated from any one of the surface hardness of the inspection object 1, the quenching hardness distribution in the depth direction, and the quenching depth in light of the relationship setting means. After that, when any one of the calculated surface hardness, quenching hardness distribution in the depth direction, and quenching depth is lower than the set quality value, the determining unit 17 determines that the quenching is abnormal, and outputs the result to the display device 7. .

図8では、判定部17が、焼入れ処理後の印加電流に対する測定電圧の位相を、焼入れ処理前の印加電流に対する測定電圧の位相で除すことで、焼入れ深さに対する位相の変化率を得る。判定部17は、この位相の変化率を用いて焼入れ品質を判定し得る。この判定方法は、前述の振幅の変化率の場合と同様である。
図7,図8に示すように、同じ材質の鋼材から成る検査対象物1について、材料チャージを複数種類変えたものを準備し、測定値の変化率を確認したところ、焼入れ処理前後の測定値の変化率と検量線との差を、焼入れ処理した後の測定値と検量線との差よりも小さくし得る。
以上説明したように、振幅、位相共に前述の変化率を用いることで、材料チャージによる測定値のばらつきを補正して、検査対象物1の焼入れ品質の検査精度の向上を図れる。
In FIG. 8, the determination unit 17 obtains the rate of change in phase with respect to the quenching depth by dividing the phase of the measured voltage with respect to the applied current after the quenching process by the phase of the measured voltage with respect to the applied current before the quenching process. The determination unit 17 can determine the quenching quality using the phase change rate. This determination method is the same as in the case of the above-described amplitude change rate.
As shown in FIG. 7 and FIG. 8, the inspection object 1 made of the same steel material was prepared by changing a plurality of types of material charges, and the rate of change in the measured value was confirmed. The difference between the change rate and the calibration curve can be made smaller than the difference between the measured value after quenching and the calibration curve.
As described above, by using the above-described rate of change for both the amplitude and phase, it is possible to correct the variation in the measured value due to the material charge and improve the inspection accuracy of the quenching quality of the inspection object 1.

測定値を補正するにあたり、検査対象物の材料により最適な補正方法が異なるため、実際の検量線Lを作成する際に、例えば、検量線Lに対する誤差が最も小さくなる図5乃至図8の少なくともいずれか一つの補正方法を選択する。
なお直流電位差法では、電圧の大きさのデータで同様の補正を行うことができる。
In correcting the measurement value, the optimum correction method differs depending on the material of the inspection object. Therefore, when the actual calibration curve L is created, for example, at least the error in the calibration curve L is minimized. Select one of the correction methods.
In the DC potential difference method, the same correction can be performed with the voltage magnitude data.

図9は、材料チャージを複数種類変えた検査対象物1を準備し、焼入れ深さに対する、測定電圧の直交成分/同相成分の結果を示す図であり、図10は、材料チャージを複数種類変えた検査対象物1を準備し、焼入れ深さに対する、測定電圧の直交成分/同相成分の変化率を示す図である。
図9では、図3,図4にデータを示した検査対象物1の焼入れ深さに対する、測定電圧の直交成分Vを、同相成分Vで除した結果を示している。
FIG. 9 is a diagram showing the result of the orthogonal component / in-phase component of the measured voltage with respect to the quenching depth by preparing the inspection object 1 in which a plurality of types of material charges are changed, and FIG. It is a figure which shows the change rate of the orthogonal component / in-phase component of the measurement voltage with respect to the quenching depth by preparing the inspection object 1.
FIG. 9 shows the result of dividing the orthogonal component V 2 of the measurement voltage by the in-phase component V 1 with respect to the quenching depth of the inspection object 1 whose data is shown in FIGS.

これに対して図10では、判定部17が、焼入れ処理後における直交成分Vを同相成分Vで除した値を、焼入れ処理前における直交成分Vを同相成分Vで除した値で除すことで、直交成分/同相成分の変化率を得る。判定部17は、この直交成分/同相成分の変化率を用いて焼入れ品質を判定し得る。同図に示すように、直交成分/同相成分の変化率を用いることで、材料チャージによる測定値のばらつきを小さくして、検査対象物1の焼入れ品質の検査精度の向上を図れる。
以上説明した振幅、位相、直交成分V/同相成分Vなどの中で、どの測定値を使用するかは、検査対象物1の材料や熱処理方法により異なるので、適時最適なものを選定する。換言すれば、検査対象物1の材料や熱処理方法に応じて、材料チャージによる測定値のばらつきを最も小さくする測定値を選定し得る。
In contrast, in FIG. 10, the determination unit 17 is a value obtained by dividing the quadrature component V 2 after the quenching process by the in-phase component V 1 , and a value obtained by dividing the quadrature component V 2 before the quenching process by the in-phase component V 1. By dividing, the rate of change of the quadrature component / in-phase component is obtained. The determination unit 17 can determine the quenching quality using the rate of change of the orthogonal component / in-phase component. As shown in the figure, by using the change rate of the quadrature component / in-phase component, it is possible to reduce the variation in the measured value due to the material charge and improve the inspection accuracy of the quenching quality of the inspection object 1.
Of the amplitude, phase, quadrature component V 2 / in-phase component V 1, and the like described above, which measurement value is used depends on the material of the inspection object 1 and the heat treatment method. . In other words, the measurement value that minimizes the variation in the measurement value due to the material charge can be selected according to the material of the inspection object 1 and the heat treatment method.

作用効果について説明する。
検査対象物1の表面に電流印加用探針3,3および電圧測定用探針4,4を接触させ、電源2から電流印加用探針3,3を介して電流を流す。この状態で、電圧測定用探針4,4および電圧測定部5により、探針4,4を接触させた2点間の電圧を測定する。品質測定手段12は、測定された電圧から検査対象物1の焼入れ品質を測定する。
検査対象物1は同じ材質の鋼材でも、材料チャージにより導電率、透磁率がばらつき、焼入れ品質検査精度が悪くなる。
The effect will be described.
The current application probes 3 and 3 and the voltage measurement probes 4 and 4 are brought into contact with the surface of the inspection object 1, and a current is supplied from the power source 2 through the current application probes 3 and 3. In this state, the voltage between the two points where the probes 4 and 4 are brought into contact is measured by the voltage measuring probes 4 and 4 and the voltage measuring unit 5. The quality measuring means 12 measures the quenching quality of the inspection object 1 from the measured voltage.
Even if the inspection object 1 is a steel material of the same material, the conductivity and the magnetic permeability vary due to the material charge, and the quenching quality inspection accuracy deteriorates.

そこで、処理前値記憶部15は焼入れ処理前の測定値を記憶し、処理後値記憶部16は焼入れ処理後の測定値を記憶する。判定部17は、それぞれ記憶された焼入れ処理前後の各測定値を演算することで、材料チャージによる測定値のばらつきを補正して焼入れ品質を精度良く判定することができる。これにより、非破壊検査において、検査対象物1の焼入れ品質の検査精度の向上を図ることができる。
またこの例では、交流電位差法により位相検波を使用することで、振幅と位相を測定することができ、さらにノイズの影響を受けにくくなる。したがって、交流電位差法は直流電位差法より精度の高い測定が可能である。
Therefore, the pre-processing value storage unit 15 stores the measurement value before the quenching process, and the post-processing value storage unit 16 stores the measurement value after the quenching process. The determination unit 17 can accurately determine the quenching quality by calculating the measured values before and after the quenching process stored therein, thereby correcting variations in the measured values due to the material charge. Thereby, in the nondestructive inspection, the inspection accuracy of the quenching quality of the inspection object 1 can be improved.
Also, in this example, the amplitude and phase can be measured by using phase detection by the AC potential difference method, and further, it is less susceptible to noise. Therefore, the AC potential difference method can measure with higher accuracy than the DC potential difference method.

他の実施形態について説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, the same reference numerals are given to the portions corresponding to the matters described in the preceding forms in each embodiment, and the overlapping description is omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

図11は、この発明の他の実施形態に係る焼入れ品質検査装置の基本構造を示すブロック図である。この例は、電磁誘導による焼入れ品質検査装置を示す。同焼入れ品質検査装置のヘッド8は、ボビン18の凹形状部18a,18bにそれぞれ巻かれた励磁コイル19と検出コイル20とを備えている。これらコイル19,20はヘッド8の軸心に同心に配置され、且つ、ボビン18の長手方向の一方側と他方側とに分かれて配置されている。電圧測定時には、検査対象物1の表面に対して、ヘッド先端の表面が平行または略平行となるように対向して配置される。励磁コイル19および検出コイル20は、例えば、モールド材などにより一体に設けられて図示外の有底状のケーシングに収容されている。これらコイル19,20のうち励磁コイル19が前記ケーシング内の底部付近に配置され、検出コイル20がケーシングの開放端部付近つまり検査対象物1に臨むように配置される。   FIG. 11 is a block diagram showing a basic structure of a quenching quality inspection apparatus according to another embodiment of the present invention. This example shows a quench quality inspection apparatus using electromagnetic induction. The head 8 of the quenching quality inspection apparatus includes an excitation coil 19 and a detection coil 20 wound around the concave portions 18a and 18b of the bobbin 18, respectively. The coils 19 and 20 are arranged concentrically with the axis of the head 8 and are arranged separately on one side and the other side in the longitudinal direction of the bobbin 18. At the time of voltage measurement, it is arranged so as to face the surface of the inspection object 1 so that the surface of the head tip is parallel or substantially parallel. The excitation coil 19 and the detection coil 20 are integrally provided by, for example, a molding material and are accommodated in a bottomed casing (not shown). Among these coils 19 and 20, the exciting coil 19 is disposed near the bottom of the casing, and the detection coil 20 is disposed near the open end of the casing, that is, facing the inspection object 1.

電源2は、励磁コイル19に接続され、同励磁コイル19に交流磁界を発生させる交流電流を供給する。励磁コイル19は、検査対象物1を交流磁界により励磁する。これにより検査対象物1に磁束を印加し得る。その際に検出コイル20に誘導される電圧を、電圧測定部5で測定するようになっている。
検出コイル20に誘導される電圧は、検査対象物1の透磁率、導電率により変化するので、この電圧から焼入れ品質に対する情報を得ることができる。検出コイル20の電圧は、励磁コイル19の電圧を参照信号として位相検波され、検出コイル20の電圧の振幅、および励磁コイル電圧に対する位相が検出される。補正方法その他は、前述の交流電位差法と同様である。
この場合にも、焼入れ処理前後の各測定値を比較することで、材料チャージによる測定値のばらつきを補正して焼入れ品質を精度良く判定することができる。
The power source 2 is connected to the exciting coil 19 and supplies an alternating current that generates an alternating magnetic field to the exciting coil 19. The exciting coil 19 excites the inspection object 1 with an alternating magnetic field. Thereby, the magnetic flux can be applied to the inspection object 1. At this time, a voltage induced in the detection coil 20 is measured by the voltage measuring unit 5.
Since the voltage induced in the detection coil 20 varies depending on the magnetic permeability and conductivity of the inspection object 1, information on the quenching quality can be obtained from this voltage. The voltage of the detection coil 20 is phase-detected using the voltage of the excitation coil 19 as a reference signal, and the amplitude of the voltage of the detection coil 20 and the phase with respect to the excitation coil voltage are detected. The correction method and others are the same as those in the above-described AC potential difference method.
Also in this case, by comparing the measured values before and after the quenching treatment, it is possible to correct the variation in the measured values due to the material charge and accurately determine the quenching quality.

図12は、前記いずれかの焼入れ品質検査装置を使用して行う非破壊検査の一例を示す。ここでは、軸受の内輪21の転走面21aの焼入れ品質を検査する。回転軸22の小径部に内輪21が嵌合され、この回転軸22は図示外の駆動源により軸線L1回りに回転可能に構成されている。ヘッド進退駆動源23の先端部に、ヘッ8を固定する固定部材24が設けられ、固定部材24に固定されたヘッド8がヘッド進退駆動源23の駆動により軸線L1方向に平行に移動可能に構成される。ヘッド進退駆動源23として、流体圧シリンダや、モータとボールねじ機構から成るもの等を適用し得る。   FIG. 12 shows an example of a nondestructive inspection performed using any one of the quenching quality inspection apparatuses. Here, the quenching quality of the rolling surface 21a of the inner ring 21 of the bearing is inspected. An inner ring 21 is fitted to a small diameter portion of the rotating shaft 22, and the rotating shaft 22 is configured to be rotatable around the axis L <b> 1 by a driving source (not shown). A fixing member 24 for fixing the head 8 is provided at the tip of the head advance / retreat drive source 23, and the head 8 fixed to the fixation member 24 is configured to be movable in parallel to the direction of the axis L1 by driving the head advance / retreat drive source 23. Is done. As the head advance / retreat drive source 23, a fluid pressure cylinder, a motor and a ball screw mechanism, or the like can be applied.

回転軸L1を回転させヘッド8を移動させることで、内輪21の転走面21aの全周面にヘッド8を摺動させて周上全ての箇所または数箇所の焼入れ品質を検査し得る。この場合、表示装置7(図1、図11)によりオンライン上で焼入れ品質を全数検査できるので、品質保証能力を高めることができる。なお、ヘッド進退駆動源23、固定部材24等を設けることなくヘッド8を例えば手動により移動させて、転走面21a等の焼入れ品質を検査しても良い。   By rotating the rotating shaft L1 and moving the head 8, the head 8 can be slid on the entire peripheral surface of the rolling surface 21a of the inner ring 21, and the quenching quality can be inspected at all or several places on the circumference. In this case, since all the quenching quality can be inspected online by the display device 7 (FIGS. 1 and 11), the quality assurance capability can be enhanced. Note that the head 8 may be moved manually, for example, without providing the head advance / retreat drive source 23, the fixing member 24, etc., and the quenching quality of the rolling surface 21a etc. may be inspected.

1…検査対象物
2…電源
3…電流印加用探針
4…電圧測定用探針
11…電圧測定手段
12…品質測定手段
15…処理前値記憶部
16…処理後値記憶部
17…判定部
19…励磁コイル
20…検出コイル
DESCRIPTION OF SYMBOLS 1 ... Inspection object 2 ... Power supply 3 ... Current application probe 4 ... Voltage measurement probe 11 ... Voltage measurement means 12 ... Quality measurement means 15 ... Pre-processing value storage unit 16 ... Post-processing value storage unit 17 ... Determination unit 19 ... Excitation coil 20 ... Detection coil

Claims (11)

検査対象物に電流または磁束を印加する電源と、
この電源により電流または磁束が印加された前記検査対象物が発する電圧を測定する電圧測定手段と、
この電圧測定手段で測定された電圧から前記検査対象物の焼入れ品質を測定する品質測定手段と、
を備えた焼入れ品質検査装置において、
前記品質測定手段は、
前記検査対象物を焼入れ処理する前の前記電圧測定手段による測定値を記憶する処理前値記憶部と、
焼入れ処理した後の前記電圧測定手段による測定値を記憶する処理後値記憶部と、
これら処理前値記憶部および処理後値記憶部にそれぞれ記憶された焼入れ処理前後の各測定値を比較して焼入れ品質を判定する判定部と、
を有することを特徴とする焼入れ品質検査装置。
A power source for applying current or magnetic flux to the object to be inspected;
Voltage measuring means for measuring a voltage generated by the inspection object to which current or magnetic flux is applied by the power source;
Quality measuring means for measuring the quenching quality of the inspection object from the voltage measured by the voltage measuring means;
In quenching quality inspection equipment with
The quality measuring means includes
A pre-processing value storage unit for storing a measurement value by the voltage measuring means before quenching the inspection object;
A post-processing value storage unit for storing a measured value by the voltage measuring means after quenching;
A determination unit that determines the quenching quality by comparing the measured values before and after the quenching process stored in the pre-processing value storage unit and the post-processing value storage unit, respectively,
A quenching quality inspection device characterized by comprising:
請求項1記載の焼入れ品質検査装置において、前記判定部は、焼入れ処理する前の測定値と焼入れ処理した後の測定値との差を用いて焼入れ品質を判定する焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 1, wherein the determination unit determines quenching quality using a difference between a measured value before quenching and a measured value after quenching. 請求項1記載の焼入れ品質検査装置において、前記判定部は、焼入れ処理した後の測定値を、焼入れ処理する前の測定値で除した測定値の変化率を用いて焼入れ品質を判定する焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 1, wherein the determination unit determines the quenching quality using a rate of change of the measured value obtained by dividing the measured value after the quenching process by the measured value before the quenching process. Inspection device. 請求項1ないし請求項3のいずれか1項に記載の焼入れ品質検査装置において、前記電源は、前記検査対象物の表面に接触させた電流印加用探針を介して電流を印加するものであり、前記電圧測定手段は、前記電源により電流が印加された前記検査対象物の表面における、前記電流印加用探針とは異なる2点に接触させて、この2点間の電圧を測定する一対の電圧測定用探針を含む焼入れ品質検査装置。   The quenching quality inspection apparatus according to any one of claims 1 to 3, wherein the power source applies a current through a current application probe brought into contact with the surface of the inspection object. The voltage measuring means is configured to contact a pair of points different from the current application probe on the surface of the inspection object to which a current is applied by the power source, and measure a voltage between the two points. Hardening quality inspection device including a voltage measuring probe. 請求項4に記載の焼入れ品質検査装置において、前記品質測定手段は、前記電圧測定用探針で測定された電圧の振幅、および、印加電流と前記測定された電圧との位相のいずれか一方または両方を、前記測定値として、焼入れ品質を測定する焼入れ品質検査装置。   5. The quenching quality inspection apparatus according to claim 4, wherein the quality measuring means includes one of an amplitude of a voltage measured by the voltage measuring probe and a phase of an applied current and the measured voltage, or A quenching quality inspection device that measures quenching quality using both as the measured values. 請求項5に記載の焼入れ品質検査装置において、前記品質測定手段は、前記一対の電圧測定用探針間の電圧における、前記検査対象物に印加した印加電流と同相成分、および直交成分を検出する電圧測定部を有する焼入れ品質検査装置。   6. The quenching quality inspection apparatus according to claim 5, wherein the quality measuring means detects an in-phase component and a quadrature component applied to the inspection object in a voltage between the pair of voltage measuring probes. A quenching quality inspection device having a voltage measuring section. 請求項1ないし請求項3のいずれか1項に記載の焼入れ品質検査装置において、前記電源は、前記検査対象物の表面に対向させた励磁コイルを介して磁束を印加するものであり、前記電圧測定手段は、前記電源により磁束が印加された前記検査対象物の表面に対向させた検出コイルで前記検査対象物の励磁時に発生する電圧を検出するものである焼入れ品質検査装置。   The quenching quality inspection apparatus according to any one of claims 1 to 3, wherein the power source applies a magnetic flux through an exciting coil opposed to a surface of the inspection object, and the voltage The quenching quality inspection apparatus, wherein the measuring means detects a voltage generated when the inspection object is excited by a detection coil opposed to the surface of the inspection object to which magnetic flux is applied by the power source. 請求項7に記載の焼入れ品質検査装置において、前記品質測定手段は、前記検出コイルで検出された電圧の振幅、および、前記励磁コイルの電圧と前記検出された電圧との位相を、前記測定値として、焼入れ品質を測定する焼入れ品質検査装置。   8. The quenching quality inspection apparatus according to claim 7, wherein the quality measuring means determines the amplitude of the voltage detected by the detection coil and the phase of the voltage of the excitation coil and the detected voltage as the measured value. As a quench quality inspection device that measures quench quality. 請求項8に記載の焼入れ品質検査装置において、前記品質測定手段は、前記検出コイルで検出された電圧における、前記励磁コイルの電圧と同相成分、および直交成分を検出する電圧測定部を有する焼入れ品質検査装置。   9. The quenching quality inspection apparatus according to claim 8, wherein the quality measuring means has a voltage measuring unit that detects a voltage component in-phase and a quadrature component with respect to the voltage of the excitation coil in the voltage detected by the detection coil. Inspection device. 請求項1ないし請求項9のいずれか1項に記載の焼入れ品質検査装置において、前記品質測定手段は、前記焼入れ品質として、前記検査対象物の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを検査する焼入れ品質検査装置。   The quenching quality inspection apparatus according to any one of claims 1 to 9, wherein the quality measuring means includes, as the quenching quality, surface hardness of the inspection object, quenching hardness distribution in the depth direction, and quenching. Quenching quality inspection device that inspects at least one of the depths. 検査対象物に電流または磁束を印加する印加過程と、
電流または磁束が印加された前記検査対象物が発する電圧を測定する電圧測定過程と、
この電圧測定過程で測定された電圧から前記検査対象物の焼入れ品質を測定する品質測定過程と、
を備えた焼入れ品質検査方法において、
前記電圧測定過程は、前記検査対象物を焼入れ処理する前の測定値を記憶する処理前値記憶過程と、焼入れ処理した後の測定値を記憶する処理後値記憶過程とを含み、
前記品質測定過程は、これら処理前値記憶過程および処理後値記憶過程にてそれぞれ記憶された焼入れ処理前後の各測定値を比較して焼入れ品質を判定する判定過程を有することを特徴とする焼入れ品質検査方法。
An application process of applying a current or magnetic flux to the inspection object;
A voltage measurement process for measuring a voltage generated by the inspection object to which current or magnetic flux is applied;
A quality measurement process for measuring the quenching quality of the inspection object from the voltage measured in the voltage measurement process;
In the quenching quality inspection method with
The voltage measurement process includes a pre-process value storage process for storing a measurement value before quenching the inspection object, and a post-process value storage process for storing a measurement value after quenching,
The quality measurement process includes a determination process for determining the quenching quality by comparing the measured values before and after the quenching process stored in the pre-processing value storage process and the post-processing value storage process, respectively. Quality inspection method.
JP2012281085A 2012-12-25 2012-12-25 Hardening quality inspection device and hardening quality inspection method Pending JP2014126376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281085A JP2014126376A (en) 2012-12-25 2012-12-25 Hardening quality inspection device and hardening quality inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281085A JP2014126376A (en) 2012-12-25 2012-12-25 Hardening quality inspection device and hardening quality inspection method

Publications (1)

Publication Number Publication Date
JP2014126376A true JP2014126376A (en) 2014-07-07

Family

ID=51406005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281085A Pending JP2014126376A (en) 2012-12-25 2012-12-25 Hardening quality inspection device and hardening quality inspection method

Country Status (1)

Country Link
JP (1) JP2014126376A (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266185A (en) * 1979-02-16 1981-05-05 Dover & Partners Limited Probes and apparatus for and methods of measuring crack depths
JPS59197846A (en) * 1983-04-25 1984-11-09 Akai Bussan Kk Non-destructive identifying method of steel kind of rolling steel for structure
JPH03221855A (en) * 1990-01-26 1991-09-30 Mitsubishi Heavy Ind Ltd Method for evaluating high temperature damage of welding heat influenced part
JPH04208837A (en) * 1990-12-05 1992-07-30 Mitsubishi Heavy Ind Ltd Method for evaluating fatigue of machine parts
WO2003046587A1 (en) * 2001-11-28 2003-06-05 Chikayoshi Sumi Method for estimating conductivity or permittivity, method for estimating current density vector, and apparatus using the same
JP2004108873A (en) * 2002-09-17 2004-04-08 Toyota Motor Corp Non-destructive measuring method for quenched surface hardness/depth and its device
JP2004309355A (en) * 2003-04-08 2004-11-04 Denshi Jiki Kogyo Kk Hardening depth measuring apparatus of steel material
JP2008032677A (en) * 2006-05-26 2008-02-14 Nsk Ltd Method and device for inspecting rolling device component
JP2009031224A (en) * 2007-07-30 2009-02-12 Toyota Motor Corp Eddy current sensor, quench depth inspection apparatus, and quench depth inspection method
JP2009036682A (en) * 2007-08-02 2009-02-19 Toyota Motor Corp Eddy current sensor, and device and method for inspecting depth of hardened layer
JP2009133686A (en) * 2007-11-29 2009-06-18 Sinto Brator Co Ltd Inside inspection device of metal product by eddy current and inside inspection method
WO2010044338A1 (en) * 2008-10-14 2010-04-22 Necソフト株式会社 Information providing device, information providing method, and recording medium
JP2010243173A (en) * 2009-04-01 2010-10-28 Ntn Corp Device and method for inspecting hardening quality
WO2011093039A1 (en) * 2010-01-27 2011-08-04 株式会社クラレ Raw milk inspection method and raw milk inspection device
JP2011185623A (en) * 2010-03-05 2011-09-22 Toyota Central R&D Labs Inc Device for evaluation of surface treatment
JP2012063181A (en) * 2010-09-14 2012-03-29 Delta Tooling Co Ltd Hardening state inspection device and hardening state inspection method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266185A (en) * 1979-02-16 1981-05-05 Dover & Partners Limited Probes and apparatus for and methods of measuring crack depths
JPS59197846A (en) * 1983-04-25 1984-11-09 Akai Bussan Kk Non-destructive identifying method of steel kind of rolling steel for structure
US4567427A (en) * 1983-04-25 1986-01-28 Samtec Company Limited Method non-destructively identifying different kinds of rolled steel for structural purposes
JPH03221855A (en) * 1990-01-26 1991-09-30 Mitsubishi Heavy Ind Ltd Method for evaluating high temperature damage of welding heat influenced part
JPH04208837A (en) * 1990-12-05 1992-07-30 Mitsubishi Heavy Ind Ltd Method for evaluating fatigue of machine parts
WO2003046587A1 (en) * 2001-11-28 2003-06-05 Chikayoshi Sumi Method for estimating conductivity or permittivity, method for estimating current density vector, and apparatus using the same
JP2004108873A (en) * 2002-09-17 2004-04-08 Toyota Motor Corp Non-destructive measuring method for quenched surface hardness/depth and its device
JP2004309355A (en) * 2003-04-08 2004-11-04 Denshi Jiki Kogyo Kk Hardening depth measuring apparatus of steel material
JP2008032677A (en) * 2006-05-26 2008-02-14 Nsk Ltd Method and device for inspecting rolling device component
JP2009031224A (en) * 2007-07-30 2009-02-12 Toyota Motor Corp Eddy current sensor, quench depth inspection apparatus, and quench depth inspection method
JP2009036682A (en) * 2007-08-02 2009-02-19 Toyota Motor Corp Eddy current sensor, and device and method for inspecting depth of hardened layer
JP2009133686A (en) * 2007-11-29 2009-06-18 Sinto Brator Co Ltd Inside inspection device of metal product by eddy current and inside inspection method
WO2010044338A1 (en) * 2008-10-14 2010-04-22 Necソフト株式会社 Information providing device, information providing method, and recording medium
JP2010243173A (en) * 2009-04-01 2010-10-28 Ntn Corp Device and method for inspecting hardening quality
WO2011093039A1 (en) * 2010-01-27 2011-08-04 株式会社クラレ Raw milk inspection method and raw milk inspection device
JP2011185623A (en) * 2010-03-05 2011-09-22 Toyota Central R&D Labs Inc Device for evaluation of surface treatment
JP2012063181A (en) * 2010-09-14 2012-03-29 Delta Tooling Co Ltd Hardening state inspection device and hardening state inspection method

Similar Documents

Publication Publication Date Title
JP2010164306A (en) Method and device for hardened depth
KR101388773B1 (en) Eddy current measuring sensor and inspection method using this eddy current measuring sensor
JP6104161B2 (en) Surface characteristic evaluation apparatus and surface characteristic evaluation method
JP6289732B2 (en) Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
US8593137B2 (en) Eddy current sensor and eddy current measurement method
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
TWI645188B (en) Surface characteristics inspection method and surface characteristics inspection apparatus
US9304108B2 (en) Quenching depth measurement method and quenching depth measurement apparatus
TW201530108A (en) Surface property inspection device and surface property inspection method
JP2007040865A (en) Nondestructive measuring method for determining depth of hardened layer, unhardened state and foreign material
JP2011185623A (en) Device for evaluation of surface treatment
JP2009047664A (en) Method and apparatus for nondestructive measurement
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP6285893B2 (en) Method for measuring hardness of steel plate after quenching
JP2012063296A (en) Barkhausen noise inspection device
WO2020183908A1 (en) Method for nondestructive assessment of steel
JP5557645B2 (en) Barkhausen noise inspection system
US20120068696A1 (en) Apparatus for evaluating hardening quality and method thereof
KR20180034629A (en) Surface property inspection method and surface property inspection device of steel products
JP2014126376A (en) Hardening quality inspection device and hardening quality inspection method
JP6074256B2 (en) Quenching quality inspection equipment
JP2002014081A (en) Method and device for measuring hardness penetration
JP2007064817A (en) Quenching depth measuring instrument
JP2011257223A (en) Hardening quality inspection device
JP2011252787A (en) Hardening quality inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704