JPH04208837A - Method for evaluating fatigue of machine parts - Google Patents

Method for evaluating fatigue of machine parts

Info

Publication number
JPH04208837A
JPH04208837A JP40538690A JP40538690A JPH04208837A JP H04208837 A JPH04208837 A JP H04208837A JP 40538690 A JP40538690 A JP 40538690A JP 40538690 A JP40538690 A JP 40538690A JP H04208837 A JPH04208837 A JP H04208837A
Authority
JP
Japan
Prior art keywords
fatigue
potential difference
fatigue damage
damaged
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40538690A
Other languages
Japanese (ja)
Inventor
Nobuhiko Nishimura
宣彦 西村
Fujimitsu Masuyama
不二光 増山
Masahiro Baba
馬田 政寛
Toshiyuki Imazato
敏幸 今里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP40538690A priority Critical patent/JPH04208837A/en
Publication of JPH04208837A publication Critical patent/JPH04208837A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect a fatigue accumulated in machine parts so as to prevent the occurrence of an accident caused by the fatigue by measuring the fatigue accumulated in the machine parts and electrical potential of the parts. CONSTITUTION:After a fatigue test piece 7 with a notch is prepared, platinum wires of current input terminals l and 2 are spot-welded to two points in the axial direction and platinum wires 3 and 4 and 5 and 6 for measuring the potential differences of a damaged and non-damaged sections are spot-welded between the two points. At the time of fatigue tests, an alternating current is made to flow between the terminals 1 and 2 and the ratio ED/EO of the potential difference ED between the terminals 3 and 4 to the potential difference EO between the terminals 5 and 6 is calculated after measuring the potential differences ED and EO. When the value is compared with a real degree of fatigue obtained from Formula I, it becomes clear that the value monotonously increases. Therefore, when the ratio ED/EO is appropriately standardized, the ratio well coincides with the real degree of fatigue.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は繰り返し歪を受ける機械
部品の供用中検査に適用される非破壊検査法に関する。 [0002] 【従来の技術】繰り返し歪による機械部品の疲労損傷検
出法としては疲労損傷の結果発生する疲労き裂を超音波
探傷法、浸透探傷法等の非破壊欠陥検査法によって検出
する手法が多用されていた。 [0003]
FIELD OF THE INVENTION The present invention relates to a non-destructive testing method applied to in-service testing of mechanical parts subjected to repeated strain. [0002] [Prior Art] As a method for detecting fatigue damage in mechanical parts due to repeated strain, there is a method of detecting fatigue cracks generated as a result of fatigue damage using non-destructive defect inspection methods such as ultrasonic flaw detection and penetrant flaw detection. It was used a lot. [0003]

【発明が解決しようとする課題】しかるに上述した欠陥
に着目した手法では、欠陥の検出下限以下の欠陥を検出
できない上に、欠陥を検出するために該機械部品表面の
酸化層等をグラインダ等で除去する必要があった。繰り
返し歪による疲労損傷は、表面き裂の発生、伝播によっ
て進行するが、表面を研磨すると疲労損傷蓄積の過程と
して発生した微小な表面き裂を除去してしまうことから
損傷の程度を低く見積る可能性があるとともに早期損傷
の評価ができない可能性があった。 [0004]さらに1機械部品における疲労損傷は溶接
止端部等の形状不連続部に位置することが多いことから
、このような位置ではグラインダ等による表面層の除去
量が多くなり上述した問題点が助長されていた。 [0005]
[Problems to be Solved by the Invention] However, with the above-mentioned method that focuses on defects, it is not possible to detect defects that are below the lower limit of defect detection, and in addition, in order to detect defects, it is necessary to remove the oxidized layer on the surface of the mechanical component using a grinder or the like. It needed to be removed. Fatigue damage caused by repeated strain progresses through the generation and propagation of surface cracks, but polishing the surface removes minute surface cracks that occur during the fatigue damage accumulation process, making it possible to underestimate the extent of damage. In addition to this, there was a possibility that early damage could not be evaluated. [0004]Furthermore, since fatigue damage in mechanical parts is often located at discontinuous parts such as weld toes, the amount of surface layer removed by grinders etc. increases at such locations, which causes the above-mentioned problems. was being encouraged. [0005]

【課題を解決するための手段】上記事情に鑑み、本発明
は以下を特徴とする。まず、本発明者らは、疲労損傷を
受けた機械部品の表面を研削する必要がある上述した方
法にかわって電気ポテンシャル法に着目した。すなわち
、該機械部品の疲労損傷の蓄積が問題となる位置に一定
電流を流すと疲労損傷の蓄積に伴って発生する表面き裂
によって電位差が大きくなることを見出した。しかし、
電気抵抗法として実用化されている直流四端子法では、
実機械部品において疲労損傷の蓄積が問題となる形状不
連続部に対して、測定位置のずれによって測定値のばら
つきが生じることから、電極端子を該機械部品に常設す
るようにした。また、熱起電力、ノイズによる測定電位
の誤差の影響を抑制するために交流電流を測定するよう
にした。さらに、疲労損傷の蓄積が局所的であることを
利用して電流入力端子間の損傷部と非損傷部の電位差を
測定し、非損傷部の電位差に対する損傷部の電位差の比
によって疲労損傷を評価するようにした。 [0006]
[Means for Solving the Problems] In view of the above circumstances, the present invention has the following features. First, the present inventors focused on the electric potential method in place of the above-mentioned method, which requires grinding the surface of a mechanical component that has suffered fatigue damage. In other words, it has been found that when a constant current is applied to a location of the mechanical component where the accumulation of fatigue damage is a problem, the potential difference increases due to surface cracks that occur as fatigue damage accumulates. but,
In the DC four-terminal method, which has been put into practical use as an electrical resistance method,
For shape discontinuities in actual mechanical parts where accumulation of fatigue damage is a problem, measurement values vary due to deviations in measurement positions, so electrode terminals are permanently installed on the mechanical parts. In addition, alternating current was measured in order to suppress the effects of error in measured potential due to thermoelectromotive force and noise. Furthermore, taking advantage of the fact that fatigue damage accumulates locally, the potential difference between the damaged and undamaged parts between the current input terminals is measured, and fatigue damage is evaluated by the ratio of the potential difference in the damaged part to the potential difference in the undamaged part. I decided to do so. [0006]

【作用】本発明方法によれば、疲労損傷の蓄積に伴う電
位差の変化を利用したことによって、機械部品表面を研
磨することなく測定することができるから、表面を研磨
することによる表面き裂の除去の影響がなく、微小な表
面き裂を検出できるようになる。また、レプリカ法のよ
うに多くの工程を必要とすることなく、電位差を測定す
るだけで簡便に評価できるようになる。さらに、入力電
流として交流電流を用いて、位相検波できるようにした
こと、電流入力端子、電位差測定端子を常設したこと、
さらに同一電流入力端子間の損傷部と非損傷部の2個所
の電位差を測定し、その比によって損傷評価することに
したことから、電気ポテーシャル測定値の誤差に及ぼす
測定位置のずれ、温度、ノイズ、熱起電力の影響を抑制
することができ、測定精度を向上させることができる。 [0007]
[Operation] According to the method of the present invention, measurement can be performed without polishing the surface of mechanical parts by utilizing the change in potential difference accompanying the accumulation of fatigue damage. It becomes possible to detect minute surface cracks without the effects of removal. Furthermore, unlike the replica method, it does not require many steps and can be easily evaluated by simply measuring the potential difference. Furthermore, it is now possible to perform phase detection using alternating current as the input current, and a current input terminal and potential difference measurement terminal are permanently installed.
Furthermore, we decided to measure the potential difference between the damaged and non-damaged parts of the same current input terminal, and evaluate the damage based on the ratio. Therefore, it was determined that the difference in measurement position, temperature, and noise that affect the error in electrical potential measurement values were determined. , the influence of thermoelectromotive force can be suppressed, and measurement accuracy can be improved. [0007]

【実施例】以下、本発明における実施例を図面等を参照
して説明する。まず、図1に示す切欠付疲労試験片を作
製した。該試験片には標点間をはさむ試験片の軸方向の
2点に電流入力用の端子として白金線]、及び2をスポ
ット溶接し、また該電流入力端子1及び2間の線分上の
切欠きを含む領域及び切欠きを含まない領域に、それぞ
れ損傷部及び非損傷部の電位差測定用の白金線3.4及
び5.6をスポット溶接した。まず、該試験片7につい
て室温で疲労試験を行い、破断繰り返し数Nfを求めた
。 次に、図2に示す交流電位差測定装置を試作し、別途作
製した試験片8において0.INfごとに試験を中断し
て損傷部(白金線5.6間)及び非損傷部(白金線3.
4間)の電位差、それぞれEo及びEoを測定した。 [0008] Eo 、 Eo、及びE D / E 
o と疲労損傷度(中断繰り返し数/破断繰り返し数N
fとの関係を求めて、図3に示す。Eo及びEDの測定
値はばらつきが大きいのに対し、Eo /Eoは疲労損
傷度に対して単調に増加しており、疲労損傷部の絶対値
の測定と比較して精度の高い非破壊疲労損傷評価法であ
ると考えられた。そこで、実機械部品への有効性を検証
するために、図4に示す火力発電用ボイラの管寄せ管台
部9を模擬した試験片の疲労試験を行い、これを中断し
た試験片について本発明方法による疲労損傷評価を行っ
た。試験片を図4に示すが、疲労試験は該管台部10に
図中に、併示した矢印方向11に一定の引張、圧縮歪を
与えることによって行った。上記試験を試験前及び25
00回、5000回、7500回の繰り返しで中断した
試験片の電位差測定を行った。電位差測定位置の詳細を
示すため図4A部近傍拡大図を図5に示す。図5におい
て符号1〜6は図1同様に白金線の電極を示す。また、
非損傷部及び損傷部の電位差EO,ED の測定値、E
D /EO、並びに図3をもとに評価した本発明方法に
よる疲労損傷評価結果及び試験片の破壊繰り返し数(9
360回)から数式1によって求めた。       
            **[0009]
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. First, a notched fatigue test piece shown in FIG. 1 was prepared. Platinum wires] and 2 were spot welded to the test piece as terminals for current input at two points in the axial direction of the test piece sandwiching the gauge points, and a Platinum wires 3.4 and 5.6 for measuring the potential difference in the damaged and non-damaged parts were spot welded to the region including the notch and the region not including the notch, respectively. First, a fatigue test was conducted on the test piece 7 at room temperature, and the number of repeated fractures Nf was determined. Next, an AC potential difference measuring device shown in FIG. 2 was prototyped, and a separately prepared test piece 8 was used. The test was interrupted at every INf, and the damaged part (platinum wire 5.6) and the undamaged part (platinum wire 3.6) were examined.
4) potential differences, Eo and Eo, respectively, were measured. [0008] Eo, Eo, and E D/E
o and fatigue damage degree (number of interruption cycles/number of repeated ruptures N
The relationship with f is determined and shown in FIG. While the measured values of Eo and ED have large dispersion, Eo /Eo increases monotonically with the degree of fatigue damage, and is a highly accurate non-destructive fatigue damage measurement compared to measuring the absolute value of the fatigue damage area. It was considered to be an evaluation method. Therefore, in order to verify the effectiveness of the application to actual machine parts, a fatigue test was conducted on a test piece simulating the header nozzle section 9 of a thermal power boiler shown in FIG. Fatigue damage evaluation was conducted using this method. A test piece is shown in FIG. 4, and the fatigue test was conducted by applying constant tensile and compressive strain to the nozzle stub 10 in the direction 11 of the arrow shown in the figure. The above test was carried out before the test and at 25
Potential difference measurements were performed on the test piece with interruptions after 00, 5,000, and 7,500 repetitions. In order to show the details of the potential difference measurement position, an enlarged view of the vicinity of the part A in FIG. 4 is shown in FIG. In FIG. 5, numerals 1 to 6 indicate platinum wire electrodes as in FIG. Also,
The measured value of the potential difference EO, ED between the undamaged part and the damaged part, E
D/EO, fatigue damage evaluation results by the method of the present invention evaluated based on Fig. 3, and the number of fracture cycles of the test piece (9
360 times) using Formula 1.
**[0009]

【数1】 中断繰り遅し数 (0,2500,5000,7500
回)真の疲労損傷度= 試験片のa1膿り遮し数(9360回)[00101各
中断繰り返し数の時の疲労損傷度を表1に示す。   
                   ※※[001
1]
[Equation 1] Number of interruption repeats (0,2500,5000,7500
times) True degree of fatigue damage = Number of a1 interruptions of the test piece (9360 times) [00101 Table 1 shows the degree of fatigue damage at each number of interruptions.
※※[001
1]

【表1】 [0012]なお、図3における試験前のED/EOと
本試験の試験前のED /EOは異なることから、各中
断時のED /EOを試験前のEo /Eoで除して規
格化した値で損傷評価した。本発明方法によって評価し
た疲労損傷度は真の疲労損傷度と良く一致しており本発
明方法によって精度良く疲労損傷度を評価できることが
確認できた。 [0013,1 【発明の効果]上述したように、本発明方法によれば供
用中の機械部品に蓄積される疲労損傷を電気ポテンシャ
ルを測定するだけで精度良く検出することができるよう
になり、供用中の機械部品の疲労損傷の蓄積による事故
を未然に防ぐことができるようになるとともに、該機械
部品の安定運用機間を延長することができ設備の有効活
用を促進できるようになった。
[Table 1] [0012] Since the ED/EO before the test in Figure 3 is different from the ED /EO before the test in this test, the ED /EO at each interruption was divided by the Eo /Eo before the test. Damage was evaluated using the normalized value. The degree of fatigue damage evaluated by the method of the present invention was in good agreement with the true degree of fatigue damage, and it was confirmed that the degree of fatigue damage could be evaluated accurately by the method of the present invention. [0013,1] [Effects of the Invention] As described above, according to the method of the present invention, fatigue damage accumulated in mechanical parts in service can be detected with high accuracy simply by measuring the electrical potential. It has become possible to prevent accidents due to the accumulation of fatigue damage of mechanical parts in service, and it has also become possible to extend the period of stable operation of the mechanical parts, thereby promoting effective utilization of equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例に係る切欠付疲労試験片の
概略図である。
FIG. 1 is a schematic diagram of a notched fatigue test piece according to a first embodiment of the present invention.

【図2】本発明の実施例に係る電位差測定装置のブロッ
ク図である。                   
  ★★
FIG. 2 is a block diagram of a potential difference measuring device according to an embodiment of the present invention.
★★

【図3】本発明の実施例に係る電位差測定結果
を示す模式図である。
FIG. 3 is a schematic diagram showing potential difference measurement results according to an example of the present invention.

【図4】本発明の実施例に係る実機モデル疲労試験片の
模式図である。
FIG. 4 is a schematic diagram of an actual model fatigue test piece according to an example of the present invention.

【図5】本発明の実施例に係る実機モデル疲労試験片の
電極装着状況を示す図4A部近傍拡大模式図である。
FIG. 5 is an enlarged schematic diagram of the vicinity of the part in FIG. 4A showing the electrode attachment state of the actual model fatigue test piece according to the example of the present invention.

【符号の説明】[Explanation of symbols]

1 電流入力端子用白金線 2 電流入力端子用白金線 3 損傷部の電位差測定端子用白金線 4 損傷部の電位差測定端子用白金線 5 非損傷部の電位差測定端子用白金線6 非損傷部の
電位差測定端子用白金線7 切欠付疲労試験片 8 切欠付疲労試験片 9 火力発電用ボイラ管寄せ管台を模擬した実体モデル
疲労試験片 10 管台 11 実体モデル疲労試験片の歪負荷方向
1 Platinum wire for current input terminal 2 Platinum wire for current input terminal 3 Platinum wire for potential difference measurement terminal in damaged part 4 Platinum wire for potential difference measurement terminal in damaged part 5 Platinum wire for potential difference measurement terminal in undamaged part 6 Platinum wire for potential difference measurement terminal in undamaged part Platinum wire for potential difference measurement terminal 7 Fatigue test piece with notch 8 Fatigue test piece with notch 9 Real model fatigue test piece 10 simulating a boiler header header for thermal power generation Nozzle head 11 Strain loading direction of the real model fatigue test piece

【図2】 (72)発明者 今里 敏幸 長崎重砲の浦町1番1号 三菱重工業株式%式%[Figure 2] (72) Inventor Toshiyuki Imazato Nagasaki Heavy Artillery No. 1-1 Uramachi Mitsubishi Heavy Industries Stock % Formula %

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機械部品の疲労損傷を評価する方法におい
て、該機械部品の損傷部分を含む領域と非損傷部分を含
む領域に交流電流を流し、損傷部分及び非損傷部分の電
位差を測定し、あらかじめ作成しておいた非損傷部分の
電位差に対する損傷部分の電位差の比と疲労損傷度(運
転開始から調査時点までの歪繰り返し数/運転開始から
破壊までの歪繰り返し数)との関係を用いて該機械部品
の非損傷部分の電位差に対する損傷部分の電位差の比の
測定値から該機械部品の疲労損傷度を評価することを特
徴とする機械部品の疲労損傷評価方法。
Claims: 1. A method for evaluating fatigue damage of a mechanical component, comprising: passing an alternating current through a region including a damaged portion and a region including an undamaged portion of the mechanical component, and measuring a potential difference between the damaged portion and the undamaged portion; Using the relationship created in advance between the ratio of the potential difference of the damaged part to the potential difference of the undamaged part and the degree of fatigue damage (number of strain repetitions from the start of operation to the time of investigation/number of repetitions of strain from the start of operation to failure) 1. A method for evaluating fatigue damage of a mechanical component, characterized in that the degree of fatigue damage of the mechanical component is evaluated from a measured value of a ratio of a potential difference of a damaged part to a potential difference of an undamaged part of the mechanical component.
JP40538690A 1990-12-05 1990-12-05 Method for evaluating fatigue of machine parts Pending JPH04208837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40538690A JPH04208837A (en) 1990-12-05 1990-12-05 Method for evaluating fatigue of machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40538690A JPH04208837A (en) 1990-12-05 1990-12-05 Method for evaluating fatigue of machine parts

Publications (1)

Publication Number Publication Date
JPH04208837A true JPH04208837A (en) 1992-07-30

Family

ID=18514989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40538690A Pending JPH04208837A (en) 1990-12-05 1990-12-05 Method for evaluating fatigue of machine parts

Country Status (1)

Country Link
JP (1) JPH04208837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308544A (en) * 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The Crack development monitoring device and method by potential difference method
JP2006071299A (en) * 2004-08-31 2006-03-16 Atlus:Kk Monitoring method for crack growth in actual steel structure and residual life estimation method for actual steel structure
JP2014126376A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device and hardening quality inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308544A (en) * 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The Crack development monitoring device and method by potential difference method
JP2006071299A (en) * 2004-08-31 2006-03-16 Atlus:Kk Monitoring method for crack growth in actual steel structure and residual life estimation method for actual steel structure
JP4519578B2 (en) * 2004-08-31 2010-08-04 株式会社アトラス Method for monitoring crack growth and estimation of remaining life of actual steel structure
JP2014126376A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device and hardening quality inspection method

Similar Documents

Publication Publication Date Title
KR0151852B1 (en) Non-destructive examination of a part
CN106041343B (en) A kind of method for being used to monitor the change of solder bonding metal connection resistance on-line
CN112975215A (en) Method for characterizing a weld
JPH04208837A (en) Method for evaluating fatigue of machine parts
JPH11104848A (en) Spot welding electrode inspecting method, its device and spot welding equipment
Sodsai et al. Detection of corrosion under coated surface by Eddy current testing method
JP5718190B2 (en) Defect estimation method for structures made of conductive materials
JP2975039B2 (en) Detecting device for abnormal winding of winding coil for motor
JP2010032457A (en) Insulation inspecting apparatus and technique
CN109884129B (en) Device and method for detecting thermite welding quality of steel rail
JP2643000B2 (en) High-temperature damage evaluation method for weld heat affected zone
JP3901854B2 (en) Quality inspection method for friction welding parts
JP2540630B2 (en) Method of evaluating remaining life of ferritic heat resistant steel
US7253632B2 (en) Method for qualifying joints and contacts of electric circuits
JP4789502B2 (en) Crack depth measurement technique and apparatus for deep cracks using potentiometric method
EP1691207A1 (en) Method for qualifying joints and contacts of electric circuits
JP7459835B2 (en) Evaluation method for steel pipe joints
TWI325496B (en)
JP2013044601A (en) Damage estimation method for conductive material-made structure
JP5739649B2 (en) Crack inspection method for pipe welds and crack inspection apparatus for pipe welds
JP2006118902A (en) Flaw height evaluation method by eddy current flaw detection method
JP3384373B2 (en) Piezoelectric element electrical / mechanical damage detection method and piezoelectric element inspection device
JPS62108154A (en) Method for diagnosing weld zone in flash butt welding
RU2381494C2 (en) Method for integrated flaw detection of alloy-steel turbomachine blades
Weischedel Quantitative in-service inspection of wire ropes: applications and theory

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990608