JP2014126375A - Hardening quality inspection device - Google Patents

Hardening quality inspection device Download PDF

Info

Publication number
JP2014126375A
JP2014126375A JP2012281035A JP2012281035A JP2014126375A JP 2014126375 A JP2014126375 A JP 2014126375A JP 2012281035 A JP2012281035 A JP 2012281035A JP 2012281035 A JP2012281035 A JP 2012281035A JP 2014126375 A JP2014126375 A JP 2014126375A
Authority
JP
Japan
Prior art keywords
voltage
current application
current
quenching
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012281035A
Other languages
Japanese (ja)
Other versions
JP6074256B2 (en
Inventor
Masatoshi Mizutani
政敏 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2012281035A priority Critical patent/JP6074256B2/en
Publication of JP2014126375A publication Critical patent/JP2014126375A/en
Application granted granted Critical
Publication of JP6074256B2 publication Critical patent/JP6074256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hardening quality inspection device capable of highly accurately inspecting a hardening quality of an inspection object by nondestructive inspection.SOLUTION: This hardening quality inspection device includes: a power source 2 for applying a current via probes 3, 3 for current application; a pair of probes 4, 4 for voltage measurement for making the pair of probes 4, 4 for voltage application contact two points different from the probes 3, 3 for voltage application in the surface of an inspection object 1 applied with the current by the power source 2 and for measuring the voltage between these two points; and quality measurement means 12 for measuring the hardening quality of the inspection object 1 from the voltage measured by the probes 4, 4 for voltage measurement. The inspection object 1 is provided with current application position changing means for changing a position to be applied with the current by the probes 3, 3 for current application.

Description

この発明は、例えば、軸受および軸受部品などの転動装置部品における表面硬度および焼入れ深さなどの焼入れ品質を検査する焼入れ品質検査装置に関する。   The present invention relates to a quenching quality inspection apparatus for inspecting quenching quality such as surface hardness and quenching depth in rolling device parts such as bearings and bearing parts.

軸受などの転動部品には焼入れ処理や焼戻し処理が施される。これらの処理の中でも、高周波焼入れ処理や、浸炭処理、浸炭窒化処理などの表面硬化処理では、品質保証のために表面硬化層の検査が行われる。この検査では、実際の製品を切断して、その切断面上で、製品表面から深さ方向に硬度を測定して硬化層の深さを測定している。また、製品を切断することができないものでは、テストピースに製品と同じ炉で熱処理を施し、そのテストピースを切断して前記と同様に硬化層深さを測定して、製品の硬化層深さの保証を行っている。   A rolling part such as a bearing is subjected to a quenching process and a tempering process. Among these processes, in the surface hardening process such as induction hardening process, carburizing process, carbonitriding process, etc., the surface hardened layer is inspected for quality assurance. In this inspection, an actual product is cut and the depth of the cured layer is measured by measuring the hardness in the depth direction from the product surface on the cut surface. If the product cannot be cut, the test piece is heat-treated in the same furnace as the product, the test piece is cut, and the cured layer depth is measured in the same manner as described above. The guarantee is made.

製品を切断する破壊検査では、この検査により製品が破棄されるため、マテリアルコストが大きくなる問題がある。また、製品の切断、および硬度計による深さ方向の硬度測定に時間がかかり、工数が大きくなる問題点もある。
製品を切断することができないものは、実際の製品の検査ではないため、保証精度が悪い等の問題点がある。
In the destructive inspection for cutting a product, the product is discarded by this inspection, and there is a problem that the material cost is increased. In addition, there is a problem that it takes time to cut the product and to measure the hardness in the depth direction using a hardness meter, which increases the number of steps.
Since the product that cannot be cut is not an actual product inspection, there are problems such as poor guarantee accuracy.

このため、焼入れ硬化層を非破壊で検査する方法が提案されている(特許文献1,2)。その中に、測定対象に複数の探針を押し当て、通電用探針から電流を流し、他の探針間の電圧を測定する電位差法がある。この方法は、材料の透磁率や導電率が焼入れにより変化することを利用している。   For this reason, the method of inspecting a hardening hardening layer nondestructively is proposed (patent documents 1 and 2). Among them, there is a potential difference method in which a plurality of probes are pressed against a measurement object, a current is supplied from an energization probe, and a voltage between other probes is measured. This method utilizes the fact that the magnetic permeability and conductivity of the material change due to quenching.

特開2009−047664号公報JP 2009-047664 A 特開2010−243173号公報JP 2010-243173 A

しかし、導電率、透磁率は、測定対象の測定場所によりばらつきがある。このため、探針を押し当てる場所により測定電圧が変化し、焼入れ品質測定精度が悪くなる問題点がある。   However, the conductivity and permeability vary depending on the measurement location of the measurement object. For this reason, there is a problem that the measurement voltage varies depending on the place where the probe is pressed, and the quenching quality measurement accuracy is deteriorated.

この発明の目的は、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる焼入れ品質検査装置を提供することである。   An object of the present invention is to provide a quenching quality inspection apparatus capable of accurately inspecting the quenching quality of an inspection object by nondestructive inspection.

この発明の焼入れ品質検査装置は、検査対象物1の表面に接触させた電流印加用探針3,3を介して電流を印加する電源2と、
この電源2により電流が印加された前記検査対象物1の表面における、前記電流印加用探針3,3とは異なる2点に接触させて、この2点間の電圧を測定する一対の電圧測定用探針4,4と、
これら電圧測定用探針4,4で測定された電圧から前記検査対象物1の焼入れ品質を測定する品質測定手段12と、
を備えた焼入れ品質検査装置において、
前記検査対象物1に対して、前記電流印加用探針3,3により電流を印加する位置を変化させる電流印加位置変化手段10,10Aを設けたことを特徴とする。
A quenching quality inspection apparatus according to the present invention includes a power source 2 for applying a current via current application probes 3 and 3 brought into contact with the surface of an inspection object 1;
A pair of voltage measurements in which the surface of the inspection object 1 to which a current is applied by the power source 2 is brought into contact with two points different from the current application probes 3 and 3 and the voltage between the two points is measured. Probes 4 and 4,
Quality measuring means 12 for measuring the quenching quality of the inspection object 1 from the voltages measured by the voltage measuring probes 4 and 4;
In quenching quality inspection equipment with
Current application position changing means 10 and 10A for changing the position to which current is applied by the current application probes 3 and 3 for the inspection object 1 are provided.

この構成によると、検査対象物1の表面に電流印加用探針3,3を接触させ、電源2から電流印加用探針3,3を介して電流を流す。この状態において、検査対象物1の表面に接触させた一対の電圧測定用探針4,4により2点間の電圧つまり電位差を測定する。品質測定手段12は、測定された電圧から検査対象物1の焼入れ品質を測定する。
検査対象物1に一定の電流を印加したとき、電圧測定用探針4,4間の電圧は、測定対象となる位置の導電率、透磁率により変化する。
焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度などの焼入れ品質によって前記2点間の電圧が変化する。したがって、前記2点間の電圧を測定することで、焼入れ品質に関する情報を得ることができる。この場合に、電流印加位置変化手段10,10Aは、検査対象物1に対して、前記電流印加用探針3,3による電流を印加する位置を変化させる。品質測定手段12は、これら変化させた位置でそれぞれ測定した電圧に基づき、焼入れ品質に関する情報を得ることで、測定場所による導電率や透磁率のばらつきの影響を小さくすることができる。
According to this configuration, the current application probes 3 and 3 are brought into contact with the surface of the inspection object 1, and a current is supplied from the power source 2 through the current application probes 3 and 3. In this state, the voltage, that is, the potential difference between the two points is measured by the pair of voltage measuring probes 4 and 4 brought into contact with the surface of the inspection object 1. The quality measuring means 12 measures the quenching quality of the inspection object 1 from the measured voltage.
When a constant current is applied to the inspection object 1, the voltage between the voltage measuring probes 4 and 4 changes depending on the conductivity and magnetic permeability at the position to be measured.
The permeability and conductivity of the steel material change due to quenching. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the voltage between the two points varies depending on the quenching quality such as quenching hardness. Therefore, information on the quenching quality can be obtained by measuring the voltage between the two points. In this case, the current application position changing means 10, 10 </ b> A changes the position where the current application probe 3, 3 applies the current to the inspection object 1. The quality measuring unit 12 obtains information on the quenching quality based on the voltages respectively measured at the changed positions, thereby reducing the influence of variation in conductivity and magnetic permeability depending on the measurement location.

前記品質測定手段12は、前記電流印加位置変化手段10,10Aにより複数測定した位置の電圧を、平均する機能を有するものとしても良い。このように複数測定した位置での電圧の平均をとることで、測定場所による導電率や透磁率のばらつきの影響を小さくし、非破壊検査の検査精度を、簡易に向上させることができる。   The quality measuring means 12 may have a function of averaging voltages at positions measured by the current application position changing means 10 and 10A. By taking the average of the voltages at a plurality of measured positions in this way, the influence of variation in conductivity and magnetic permeability depending on the measurement location can be reduced, and the inspection accuracy of nondestructive inspection can be easily improved.

前記電流印加位置変化手段10は、前記検査対象物1に対して、前記電圧測定用探針4,4により電圧を測定する位置を変化させる手段を有するものとしても良い。この場合、検査対象物1に対して、電圧測定用探針4,4を手動で変化させる必要なく、各測定場所での電圧を簡易に且つ確実に測定し得る。   The current application position changing means 10 may have means for changing the position at which the voltage is measured by the voltage measuring probes 4, 4 with respect to the inspection object 1. In this case, the voltage at each measurement location can be measured easily and reliably without the need to manually change the voltage measurement probes 4 and 4 with respect to the inspection object 1.

前記電流印加位置変化手段10は、前記電流印加用探針3,3と前記電圧測定用探針4,4とを一体で回転自在としたものであっても良い。この場合、電流印加用探針3,3については、少なくとも一対の電流印加用探針3,3があれば足り、部品点数の低減を図れ、製造コストの低減を図れる。
前記電流印加位置変化手段10は、前記電流印加用探針3,3と前記電圧測定用探針4,4とを一体としたヘッド8を回転させるものとしても良い。この場合、電流印加用探針3,3と電圧測定用探針4,4とを別々に取り扱う必要がなく、測定の作業性を高めることができる。
The current application position changing means 10 may be configured such that the current application probes 3 and 3 and the voltage measurement probes 4 and 4 are integrally rotatable. In this case, it is sufficient for the current application probes 3 and 3 to have at least a pair of current application probes 3 and 3, which can reduce the number of parts and reduce the manufacturing cost.
The current application position changing means 10 may be configured to rotate a head 8 in which the current application probes 3 and 3 and the voltage measurement probes 4 and 4 are integrated. In this case, it is not necessary to handle the current application probes 3 and 3 and the voltage measurement probes 4 and 4 separately, and the measurement workability can be improved.

前記電流印加用探針3,3を複数対設け、前記電流印加位置変化手段10Aは、電流を印加する電流印加用探針対を切替えるものであっても良い。この場合、複数対の電流印加用探針3,3のうち、所定の電流印加用探針3,3間に別々に順次電流を印加することで、検査対象物1に対して、電圧測定用探針4,4による電圧を測定する位置を変化させ得る。
前記電圧測定用探針4,4を複数対設け、前記電流印加位置変化手段10Aは、電流を印加する電流印加用探針対を切替えると共に、電圧を測定する電圧測定用探針対を切替えるものであっても良い。この場合、電圧の測定位置を変化させるとき、電流印加用探針対および電圧測定用探針対を検査対象物1の表面から都度離す必要がなく、ヘッド8を回転させる例よりもより簡便に各測定場所での電圧を測定し得る。
A plurality of pairs of the current application probes 3 and 3 may be provided, and the current application position changing means 10A may switch a current application probe pair to which a current is applied. In this case, among the plurality of pairs of current application probes 3, 3, voltage is applied to the object 1 to be inspected by sequentially applying current separately between the predetermined current application probes 3, 3. The position for measuring the voltage by the probes 4 and 4 can be changed.
A plurality of pairs of the voltage measuring probes 4 and 4 are provided, and the current application position changing means 10A switches the current applying probe pair for applying a current and switches the voltage measuring probe pair for measuring a voltage. It may be. In this case, when changing the voltage measurement position, it is not necessary to separate the current application probe pair and the voltage measurement probe pair from the surface of the inspection object 1 each time, and it is simpler than the example in which the head 8 is rotated. The voltage at each measurement location can be measured.

前記電流を印加する電流印加用探針対と、電圧を測定する電圧測定用探針対とは、これら探針の長手方向から見て、直線に並び、且つ、外側の2つの探針が電流印加用探針対であり、内側の2つの探針が電圧測定用探針対であっても良い。   The current application probe pair for applying the current and the voltage measurement probe pair for measuring the voltage are arranged in a straight line when viewed from the longitudinal direction of the probes, and the two outer probes are arranged in the current direction. An application probe pair, and the two inner probes may be voltage measurement probe pairs.

前記焼入れ品質として、前記検査対象物1の表面硬度および焼入れ深さの少なくとも一つを検査するものであっても良い。
前記品質測定手段12は、前記検査対象物1の表面硬度および焼入れ深さの少なくとも一つが、定められた値を下回るときに焼入れ異常と判定する判定部6aを有するものとしても良い。このように判定部6aを設けることで、品質異常の判定が容易に且つ客観的に行える。
As the quenching quality, at least one of the surface hardness and the quenching depth of the inspection object 1 may be inspected.
The quality measuring unit 12 may include a determination unit 6a that determines that quenching is abnormal when at least one of the surface hardness and the quenching depth of the inspection object 1 falls below a predetermined value. Thus, by providing the determination part 6a, quality abnormality determination can be performed easily and objectively.

この発明の焼入れ品質検査装置は、検査対象物の表面に接触させた電流印加用探針を介して電流を印加する電源と、この電源により電流が印加された前記検査対象物の表面における、前記電流印加用探針とは異なる2点に接触させて、この2点間の電圧を測定する一対の電圧測定用探針と、これら電圧測定用探針で測定された電圧から前記検査対象物の焼入れ品質を測定する品質測定手段とを備えた焼入れ品質検査装置において、
前記検査対象物に対して、前記電流印加用探針により電流を印加する位置を変化させる電流印加位置変化手段を設けた。このため、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる。
The quenching quality inspection apparatus according to the present invention includes a power source that applies a current via a current application probe brought into contact with the surface of the inspection object, and the surface of the inspection object to which a current is applied by the power source. A pair of voltage measurement probes for measuring the voltage between the two points in contact with two points different from the current application probe, and the voltage measured by these voltage measurement probes, In a quenching quality inspection apparatus equipped with a quality measuring means for measuring quenching quality,
Current application position changing means for changing a position to apply a current to the inspection object by the current application probe is provided. For this reason, the quenching quality of the inspection object can be accurately inspected by nondestructive inspection.

この発明の第1の実施形態に係る焼入れ品質検査装置の基本構造を示すブロック図である。It is a block diagram which shows the basic structure of the hardening quality inspection apparatus which concerns on 1st Embodiment of this invention. 同焼入れ品質検査装置の要部の拡大図である。It is an enlarged view of the principal part of the quenching quality inspection apparatus. 同焼入れ品質検査装置の要部の平面図である。It is a top view of the principal part of the quenching quality inspection apparatus. 同焼入れ品質検査装置のヘッドと検査対象物との位置関係を示す図である。It is a figure which shows the positional relationship of the head and inspection target object of the quenching quality inspection apparatus. この発明の他の実施形態に係る焼入れ品質検査装置の要部の平面図である。It is a top view of the principal part of the quenching quality inspection apparatus which concerns on other embodiment of this invention. 同焼入れ品質検査装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the quenching quality inspection apparatus. 同焼入れ品質検査装置のヘッドと検査対象物との位置関係を示す図である。It is a figure which shows the positional relationship of the head and inspection target object of the quenching quality inspection apparatus. 前記いずれかの焼入れ品質検査装置の一使用例を示す図である。It is a figure which shows one usage example of the said quenching quality inspection apparatus.

この発明の第1の実施形態に係る焼入れ品質検査装置を図1ないし図4と共に説明する。以下の説明は、焼入れ品質検査方法についての説明をも含む。先ず、この実施形態に係る焼入れ品質検査装置の基本構造について説明する。
図1に示すように、この焼入れ品質検査方法は、検査対象物1の表面に、後述する直流電位差法または交流電位差法により電流を印加し、その検査対象物1の表面における、任意の2点間の電圧つまり電位差を測定することで、焼入れ品質を検査する。検査対象物1は、焼入れ処理が施された例えば軸受や軸受部品などの鋼材製品である。ただし、これらの鋼材製品に限定されるものではない。
A quenching quality inspection apparatus according to a first embodiment of the present invention will be described with reference to FIGS. The following description also includes a description of the quenching quality inspection method. First, the basic structure of the quenching quality inspection apparatus according to this embodiment will be described.
As shown in FIG. 1, this quenching quality inspection method applies current to the surface of the inspection object 1 by a direct current potential method or an alternating current potential method, which will be described later, and two arbitrary points on the surface of the inspection object 1. The quenching quality is inspected by measuring the voltage or potential difference between them. The inspection object 1 is a steel product such as a bearing or a bearing component that has been subjected to a quenching process. However, it is not limited to these steel products.

検査対象物1に印加する電流は、後述する交流電流または直流電流である。電源2から一対の電流印加用探針3,3を介して検査対象物1に電流を印加する。この電流が印加された検査対象物1の表面における、前記電流印加用探針3とは異なる2点に、一対の電圧測定用探針4,4を接触させてこの2点間の電圧を、電圧測定部5で測定する。測定された電圧は、信号処理部6で処理され検査対象物1の焼入れ品質が評価され、表示装置7で評価結果が表示される。   The current applied to the inspection object 1 is an alternating current or a direct current described later. A current is applied to the inspection object 1 from the power source 2 through the pair of current application probes 3 and 3. A pair of voltage measurement probes 4 and 4 are brought into contact with two points different from the current application probe 3 on the surface of the inspection object 1 to which the current is applied, and a voltage between the two points is obtained. Measurement is performed by the voltage measuring unit 5. The measured voltage is processed by the signal processing unit 6, the quenching quality of the inspection object 1 is evaluated, and the evaluation result is displayed on the display device 7.

検査対象物1に一定の電流を印加したとき、電圧測定用探針4,4間の電圧は、検査対象物1の測定場所の導電率、透磁率により変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
ただし、fは交流電流の周波数、σは導電率、μは透磁率である。
When a constant current is applied to the inspection object 1, the voltage between the voltage measuring probes 4, 4 changes depending on the conductivity and permeability of the measurement object 1 at the measurement location. Here, the depth δ through which the current flows is expressed by the following equation (1).
δ = √ (1 / πfσμ) (1)
Where f is the frequency of the alternating current, σ is the conductivity, and μ is the magnetic permeability.

鋼材製品は焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度などの焼入れ品質によって前記2点間の電圧が変化する。したがって、前記2点間の電圧を測定することで、焼入れ品質に関する情報を得ることができる。   The permeability and conductivity of steel products change due to quenching of steel products. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the voltage between the two points varies depending on the quenching quality such as quenching hardness. Therefore, information on the quenching quality can be obtained by measuring the voltage between the two points.

一方(1)式から、検査対象物1を流れる交流電流の侵入深さδは、交流電流の周波数fにより変化する。前記周波数fを変化させることで、交流電流の侵入深さδを変え得る。したがって、交流電流の侵入深さδを変えながら、2点間の電圧を測定することにより、焼入れ硬度について焼入れ深さ方向の分布を検査することができる。すなわち、例えば、検査対象物1に高周波交流電流を印加したときは、表皮効果により電流は、検査対象物1の表面近傍しか流れることができないので、検査対象物1の焼入れによる表面硬度などの表面情報を得ることができる。
検査対象物1に直流電流または低周波交流電流を印加したときは、電流が検査対象物1の内部まで流れるようになり、検査対象物1の焼入れによる焼入れ深さなどの内部情報を得ることができる。
On the other hand, from equation (1), the penetration depth δ of the alternating current flowing through the inspection object 1 varies depending on the frequency f of the alternating current. The penetration depth δ of the alternating current can be changed by changing the frequency f. Therefore, by measuring the voltage between two points while changing the penetration depth δ of the alternating current, the quenching hardness distribution in the quenching depth direction can be inspected. That is, for example, when a high-frequency alternating current is applied to the inspection object 1, the current can flow only near the surface of the inspection object 1 due to the skin effect, and thus the surface such as the surface hardness due to quenching of the inspection object 1. Information can be obtained.
When a direct current or a low-frequency alternating current is applied to the inspection object 1, the current flows to the inside of the inspection object 1, and internal information such as a quenching depth by quenching the inspection object 1 can be obtained. it can.

直流電位差法は、検査対象物1に直流電流を印加する方法で、電圧測定用探針4,4間の電圧の大きさを測定する。
交流電位差法は、検査対象物1に交流電流を印加する方法で、電圧測定用探針4,4間の電圧の振幅と電流との位相差を測定する。
交流電位差法は、振幅と位相を測定することができ、さらに位相検波をすることで、ノイズの影響を受けにくくなるので、直流電位差法より精度が高い測定が可能である。
実際の測定では、焼入れ深さや表面硬度を変えた試料を測定して検量線をあらかじめ作成し、検査対象物1の測定結果と前記検量線とを比較することで、この検査対象物1の焼入れ深さや表面硬度を推定する。
The DC potential difference method is a method in which a DC current is applied to the inspection object 1, and the magnitude of the voltage between the voltage measuring probes 4 and 4 is measured.
The AC potential difference method is a method in which an AC current is applied to the inspection object 1, and the phase difference between the voltage amplitude and the current between the voltage measuring probes 4 and 4 is measured.
In the AC potential difference method, amplitude and phase can be measured, and further, phase detection makes it less susceptible to noise, so measurement with higher accuracy than the DC potential difference method is possible.
In actual measurement, a calibration curve is prepared in advance by measuring a sample with different quenching depth and surface hardness, and the quenching of the inspection object 1 is performed by comparing the measurement result of the inspection object 1 with the calibration curve. Estimate depth and surface hardness.

図1に示すように、この焼入れ品質検査装置は、ヘッド8と、測定装置9と、表示装置7と、電流印加位置変化手段10(図2)とを有する。ヘッド8は、一対の電流印加用深針3,3と一対の電圧測定用深針4,4とをハウジング11により一体としたものである。これらのうち電流印加用深針3,3は、検査対象物1の表面に接触させて測定装置9の電源2から前記検査対象物1に電流を印加する。電圧測定用深針4,4は、電流が印加された検査対象物1の表面における、前記電流印加用深針3,3とは異なる2点に接触させて、この2点間の電圧を測定するようになっている。   As shown in FIG. 1, this quenching quality inspection apparatus has a head 8, a measuring device 9, a display device 7, and a current application position changing means 10 (FIG. 2). The head 8 is formed by integrating a pair of current application deep needles 3 and 3 and a pair of voltage measurement deep needles 4 and 4 through a housing 11. Among these, the current application deep needles 3 and 3 are brought into contact with the surface of the inspection object 1 and apply a current to the inspection object 1 from the power source 2 of the measuring device 9. The voltage measuring deep needles 4 and 4 are brought into contact with two points different from the current applying deep needles 3 and 3 on the surface of the inspection object 1 to which a current is applied, and the voltage between the two points is measured. It is supposed to be.

図2に示すように、電流印加用深針対3,3と電圧測定用深針対4,4とは、所定距離離隔して平行に配置され、図3に示すように、これら深針3,4の長手方向から見て、直線に並び、且つ、外側の2つの深針が電流印加用深針対3,3で内側の2つの深針が電圧測定用深針対4,4となるように配置されている。図2に示すように、各電流印加用深針3、各電圧測定用深針4はそれぞれ棒状に形成され、各深針3,4の一端部がハウジング11の端面から突出して検査対象物1の表面に接触する。   As shown in FIG. 2, the current application deep needle pairs 3 and 3 and the voltage measurement deep needle pairs 4 and 4 are arranged in parallel at a predetermined distance, and as shown in FIG. , 4 are arranged in a straight line when viewed from the longitudinal direction, and the outer two deep needles are the current application deep needle pairs 3 and 3, and the inner two deep hands are the voltage measurement deep needle pairs 4 and 4. Are arranged as follows. As shown in FIG. 2, each current application deep needle 3 and each voltage measurement deep needle 4 are each formed in a bar shape, and one end of each deep needle 3, 4 protrudes from the end face of the housing 11 to be inspected 1. Contact the surface of the.

図1に示すように、各電流印加用深針3の他端部が、測定装置9の電源2に接続され、各電圧測定用深針4の他端部が、測定装置9における後述の電圧測定部5に接続されている。
測定装置9は、電源2と、品質測定手段12とを有する。
電源2として例えば、交流電源が用いられる。電源2は、例えば、周波数可変の発振回路と、この発振回路から出力された交流電流を増幅して検査対象物1に電流を印加する増幅回路とを含む。発振回路は、品質測定手段12の信号処理部6に接続され、この信号処理部6からの指示により周波数および振幅を変化させる。なお前記交流電源を用いて検査対象物1に直流電流を印加することも可能である。
As shown in FIG. 1, the other end of each current application deep needle 3 is connected to the power source 2 of the measuring device 9, and the other end of each voltage measuring deep needle 4 is connected to a voltage described later in the measuring device 9. It is connected to the measurement unit 5.
The measuring device 9 has a power source 2 and quality measuring means 12.
For example, an AC power source is used as the power source 2. The power source 2 includes, for example, a variable frequency oscillation circuit and an amplification circuit that amplifies an alternating current output from the oscillation circuit and applies a current to the inspection object 1. The oscillation circuit is connected to the signal processing unit 6 of the quality measuring unit 12 and changes the frequency and amplitude in accordance with an instruction from the signal processing unit 6. It is also possible to apply a direct current to the inspection object 1 using the alternating current power source.

品質測定手段12は、一対の電圧測定用深針4,4間の電位差つまり電圧を測定する電圧測定部5と、この電圧測定部5で測定された電圧から検査対象物1の焼入れ品質を測定する信号処理部6とを有する。
信号処理部6は、前記焼入れ品質として、検査対象物1の表面硬度および焼入れ深さの少なくとも一つを、各品質項目毎に電圧値と、各品質項目毎の設定品質値との関係に照らして推定する。信号処理部6は、判定部6aと、周波数変更指令部6bと、後述する電流印加位置変更指令部6cとを有する。
The quality measuring unit 12 measures the potential difference between the pair of voltage measuring deep needles 4, 4, that is, the voltage measuring unit 5 that measures the voltage, and the quenching quality of the inspection object 1 from the voltage measured by the voltage measuring unit 5. And a signal processing unit 6.
The signal processing unit 6 determines at least one of the surface hardness and the quenching depth of the inspection object 1 as the quenching quality in light of the relationship between the voltage value for each quality item and the set quality value for each quality item. To estimate. The signal processing unit 6 includes a determination unit 6a, a frequency change command unit 6b, and a current application position change command unit 6c described later.

判定部6aは、測定した検査対象物1の表面硬度および焼入れ深さの少なくとも一つが、定められた値(設定品質値)を下回るとき、焼入れ異常と判定する。判定部6aは、電圧測定部5で測定された電圧に比例する表面硬度等を算出する例えば電子回路等からなる。この判定部6aは、前記電圧に基づく信号と、表面硬度,焼入れ深さとの関係を演算式またはテーブル等で設定した図示外の関係設定手段を有し、測定した電圧に基づく信号を、前記関係設定手段に照らし検査対象物1の表面硬度または焼入れ深さを算出する。前記設定品質値は、種々の試験等により適宜設定される閾値であり、書換え可能な記憶媒体等に記憶される。   The determination unit 6a determines that quenching is abnormal when at least one of the measured surface hardness and quenching depth of the inspection object 1 is lower than a predetermined value (set quality value). The determination unit 6a includes, for example, an electronic circuit that calculates surface hardness and the like proportional to the voltage measured by the voltage measurement unit 5. This determination unit 6a has a relationship setting means (not shown) in which the relationship between the signal based on the voltage, the surface hardness, and the quenching depth is set by an arithmetic expression or a table, and the signal based on the measured voltage The surface hardness or quenching depth of the inspection object 1 is calculated in light of the setting means. The set quality value is a threshold value appropriately set by various tests or the like, and is stored in a rewritable storage medium or the like.

周波数変更指令部6bは、電源2の前記発振回路に交流信号の周波数および振幅を可変設定する指令を与える。周波数変更指令部6bにより、交流信号が例えば1kHz以上20kHz以下の高周波となるように電源2に指令を与えることで、検査対象物1の焼入れによる表面硬度などの表面情報を判定部6aで得ることが可能となる。周波数変更指令部6bにより、交流信号が例えば1Hz以上100Hz以下の低周波となるように電源2に指令を与えることで、検査対象物1の焼入れ深さなどの内部情報を判定部6aで得ることが可能となる。
なお周波数変更指令部6bは、例えば、周波数を変える変更幅、頻度、変更の繰り返し周期等の規則等が、目的とする焼入れ品質の種類や、検査対象物1の種類等に応じて複数種類設定されていて、適宜の入力により任意の規則が選択可能なものとしても良い。
The frequency change command unit 6 b gives a command to variably set the frequency and amplitude of the AC signal to the oscillation circuit of the power supply 2. The determination unit 6a obtains surface information such as surface hardness due to quenching of the inspection object 1 by giving a command to the power source 2 so that the AC signal has a high frequency of, for example, 1 kHz to 20 kHz by the frequency change command unit 6b. Is possible. The determination unit 6a obtains internal information such as the quenching depth of the inspection object 1 by giving a command to the power supply 2 so that the AC signal has a low frequency of, for example, 1 Hz to 100 Hz by the frequency change command unit 6b. Is possible.
The frequency change command unit 6b sets, for example, a plurality of types of rules such as a change width, a frequency, a change repetition period, and the like for changing the frequency according to the type of intended quenching quality, the type of the inspection object 1, and the like. In addition, any rule may be selected by appropriate input.

測定装置9には、図示外の駆動回路を介して表示装置7が接続される。この表示装置7は、例えば、液晶ディスプレイ、有機ELディスプレイ、CRTディスプレイ、プリンタ等によって実現される。この表示装置7は、品質測定手段12の測定した焼入れ品質を表示する。   The display device 7 is connected to the measuring device 9 via a drive circuit (not shown). The display device 7 is realized by, for example, a liquid crystal display, an organic EL display, a CRT display, a printer, or the like. The display device 7 displays the quenching quality measured by the quality measuring means 12.

図2に示すように、電流印加位置変化手段10は、検査対象物1に対して、電流印加用探針3,3による印加する位置を変化させるものである。電流印加位置変化手段10は、前記ヘッド8をその回転軸心回りに回転させるヘッド回転部13と、例えばスリップリングやロータコネクタなどの端子14とを有する。ヘッド回転部13は例えばモータからなり、このヘッド回転部13の先端に、端子14を介してヘッド8が固着されている。したがって、電流印加位置変化手段10により、電流印加用探針3,3と電圧測定用探針4,4とは一体で回転自在となっている。   As shown in FIG. 2, the current application position changing means 10 changes the position applied by the current application probes 3, 3 with respect to the inspection object 1. The current application position changing means 10 includes a head rotating unit 13 that rotates the head 8 about its rotation axis, and a terminal 14 such as a slip ring or a rotor connector. The head rotating unit 13 is made of, for example, a motor, and the head 8 is fixed to the tip of the head rotating unit 13 via a terminal 14. Therefore, the current application position changing means 10 allows the current application probes 3 and 3 and the voltage measurement probes 4 and 4 to rotate integrally.

ヘッド回転部13に、信号処理部6における電流印加位置変更指令部6c(図1)が接続され、この電流印加位置変更指令部6cは、ヘッド8をその回転軸心回りに定められた角度回転駆動させる回転指令を前記ヘッド8に与える。図4に示すように、電流印加位置変更指令部6cからの回転指令に基づき、検査対象物1に対しヘッド8を相対的に回転させ、検査対象物1の表面における複数位置の電圧を測定し得る。   A current application position change command unit 6c (FIG. 1) in the signal processing unit 6 is connected to the head rotation unit 13, and the current application position change command unit 6c rotates the head 8 at an angle determined about its rotation axis. A rotation command to be driven is given to the head 8. As shown in FIG. 4, based on the rotation command from the current application position change command unit 6 c, the head 8 is rotated relative to the inspection object 1 to measure voltages at a plurality of positions on the surface of the inspection object 1. obtain.

図1、図2に示すように、信号処理部6における判定部6aは、電流印加位置変化手段10により複数測定した位置の電圧を平均する機能を有する。例えば、検査対象物1に対しヘッド8を対向させた任意の位置にて、一対の電圧測定用探針4,4で電圧を測定した後、検査対象物1に対するヘッド8の位置を変化させずに、同ヘッド8を検査対象物1の表面から離して、ヘッド回転部13によりヘッド8を決められた角度回転させる。その後、ヘッド8を再び検査対象物1の表面に接触させて一対の電圧測定用探針4,4で電圧を測定する。このようにヘッド8をその軸心回りに回転させつつ、各回転角度毎に電圧測定用探針4,4間に流れる電圧を測定し、これら測定値の平均値を判定部6aにて演算するようになっている。   As shown in FIGS. 1 and 2, the determination unit 6 a in the signal processing unit 6 has a function of averaging voltages at positions measured by the current application position changing means 10. For example, after measuring the voltage with the pair of voltage measuring probes 4 and 4 at an arbitrary position where the head 8 is opposed to the inspection object 1, the position of the head 8 with respect to the inspection object 1 is not changed. Then, the head 8 is moved away from the surface of the inspection object 1 and the head 8 is rotated by a predetermined angle by the head rotating unit 13. Thereafter, the head 8 is brought into contact with the surface of the inspection object 1 again, and the voltage is measured by the pair of voltage measuring probes 4 and 4. In this way, while rotating the head 8 around its axis, the voltage flowing between the voltage measuring probes 4 and 4 is measured at each rotation angle, and the average value of these measured values is calculated by the determination unit 6a. It is like that.

作用効果について説明する。
検査対象物1の表面に電流印加用探針3,3を接触させ、電源2から電流印加用探針3,3を介して電流を流す。この状態において、検査対象物1の表面に接触させた一対の電圧測定用探針4,4により2点間の電圧つまり電位差を測定する。品質測定手段12は、測定された電圧から検査対象物1の焼入れ品質を測定する。
検査対象物1に一定の電流を印加したとき、電圧測定用探針4,4間の電圧は、測定対象となる位置の導電率、透磁率により変化する。
The effect will be described.
The current application probes 3 and 3 are brought into contact with the surface of the inspection object 1, and a current is supplied from the power source 2 through the current application probes 3 and 3. In this state, the voltage between two points, that is, the potential difference is measured by the pair of voltage measuring probes 4 and 4 brought into contact with the surface of the inspection object 1. The quality measuring means 12 measures the quenching quality of the inspection object 1 from the measured voltage.
When a constant current is applied to the inspection object 1, the voltage between the voltage measuring probes 4 and 4 changes depending on the conductivity and magnetic permeability at the position to be measured.

焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度などの焼入れ品質によって前記2点間の電圧が変化する。したがって、前記2点間の電圧を測定することで、焼入れ品質に関する情報を得ることができる。この場合に、電流印加位置変化手段10は、検査対象物1に対して、前記電流印加用探針3,3による電流を印加する位置を変化させる。品質測定手段12は、これら変化させた位置でそれぞれ測定した電圧に基づき、焼入れ品質に関する情報を得ることで、測定場所による導電率や透磁率のばらつきの影響を小さくすることができる。   The permeability and conductivity of the steel material change due to quenching. Generally, the higher the hardness of a steel material by quenching, the smaller the permeability and conductivity. For this reason, the voltage between the two points varies depending on the quenching quality such as quenching hardness. Therefore, information on the quenching quality can be obtained by measuring the voltage between the two points. In this case, the current application position changing means 10 changes the position to which the current is applied to the inspection object 1 by the current application probes 3 and 3. The quality measuring unit 12 obtains information on the quenching quality based on the voltages respectively measured at the changed positions, thereby reducing the influence of variation in conductivity and magnetic permeability depending on the measurement location.

品質測定手段12は、電流印加位置変化手段10により複数測定した位置の電圧を平均する。このように複数測定した位置での電圧の平均をとることで、測定場所による導電率や透磁率のばらつきの影響を小さくし、非破壊検査の検査精度を、簡易に向上させることができる。
電流印加位置変化手段10は、検査対象物1に対して、電圧測定用探針4,4による電圧を測定する位置を変化させる機能を有する。この場合、検査対象物1に対して、電圧測定用探針4,4を手動で変化させる必要なくモータからなるヘッド回転部13で駆動させることができるため、各測定場所での電圧を簡易に且つ確実に測定し得る。
The quality measuring means 12 averages the voltages at the positions measured by the current application position changing means 10. By taking the average of the voltages at a plurality of measured positions in this way, the influence of variation in conductivity and magnetic permeability depending on the measurement location can be reduced, and the inspection accuracy of nondestructive inspection can be easily improved.
The current application position changing means 10 has a function of changing the position at which the voltage is measured by the voltage measuring probes 4 and 4 with respect to the inspection object 1. In this case, the voltage measuring probes 4 and 4 can be driven with respect to the inspection object 1 by the head rotating unit 13 made of a motor without the need to manually change the voltage, so that the voltage at each measurement location can be easily set. And it can be measured reliably.

電流印加位置変化手段10は、電流印加用探針3,3と電圧測定用探針4,4とを一体で回転自在としたため、電流印加用探針については、少なくとも一対の電流印加用探針3,3があれば足り、部品点数の低減を図れ、製造コストの低減を図れる。
前記電流印加位置変化手段10は、電流印加用探針3と電圧測定用探針4とを一体としたヘッド8を回転させるものとしたため、電流印加用探針3と電圧測定用探針4とを別々に取り扱う必要がなく、測定の作業性を高めることができる。
In the current application position changing means 10, the current application probes 3, 3 and the voltage measurement probes 4, 4 are integrally rotatable, so that at least a pair of current application probes is used as the current application probe. 3 and 3 are sufficient, the number of parts can be reduced, and the manufacturing cost can be reduced.
Since the current application position changing means 10 rotates the head 8 in which the current application probe 3 and the voltage measurement probe 4 are integrated, the current application probe 3 and the voltage measurement probe 4 It is not necessary to handle each separately, and the workability of measurement can be improved.

他の実施形態について説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, the same reference numerals are given to the portions corresponding to the matters described in the preceding forms in each embodiment, and the overlapping description is omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

図5は、この発明の他の実施形態に係る焼入れ品質検査装置の要部の平面図である。図6は、同焼入れ品質検査装置の概念構成を示すブロック図である。図7は、同焼入れ品質検査装置のヘッド8と検査対象物1との位置関係を示す図である。図5に示すように、電流印加用探針3を複数対設け、電圧測定用探針4を複数対設け、図6に示すように、電流印加位置変化手段10Aは、電流を印加する電流印加用探針対3,3を切替えると共に、電圧を測定する電圧測定用探針対4,4を切替えるものであっても良い。この例では、前述のヘッド回転部が設けられていない。   FIG. 5 is a plan view of the main part of a quenching quality inspection apparatus according to another embodiment of the present invention. FIG. 6 is a block diagram showing a conceptual configuration of the quenching quality inspection apparatus. FIG. 7 is a diagram showing a positional relationship between the head 8 and the inspection object 1 of the quenching quality inspection apparatus. As shown in FIG. 5, a plurality of pairs of current application probes 3 are provided and a plurality of pairs of voltage measurement probes 4 are provided. As shown in FIG. 6, the current application position changing means 10A applies a current application for applying a current. The probe pairs 3 and 3 may be switched, and the voltage measurement probe pairs 4 and 4 for measuring the voltage may be switched. In this example, the above-described head rotating unit is not provided.

図5に示すように、ヘッド8には、電流印加用深針3と電圧測定用深針4とが、円周上に複数対(この例ではそれぞれ四対)設けられている。各対の電流印加用深針3,3間の中心と、各対の電圧測定用深針4,4の中心とが、ヘッド8の中心に一致するように配置されている。ヘッド8の端面における外周側に、電流印加用深針3が円周方向一定間隔(この例では45度間隔)おきに配置され、同ヘッド8の端面における内周側でこれら電流印加用深針3と同位相の位置に電圧測定用深針4が円周方向一定間隔おきに配置される。   As shown in FIG. 5, the head 8 is provided with a plurality of pairs (four pairs in this example) of current application deep needles 3 and voltage measurement deep needles 4 on the circumference. The center between each pair of current application deep needles 3 and 3 and the center of each pair of voltage measurement deep needles 4 and 4 are arranged to coincide with the center of the head 8. Current application deep needles 3 are arranged on the outer peripheral side of the end face of the head 8 at regular intervals in the circumferential direction (in this example, 45 degrees), and these current application deep needles are arranged on the inner peripheral side of the end face of the head 8. 3, voltage measuring deep needles 4 are arranged at regular intervals in the circumferential direction.

電流印加位置変化手段10Aは、対角となる電流印加用深針3,3に電流を流し、これらの電流印加用深針3,3と同位相にある対角の電圧測定用深針4,4間の電圧を測定し得るように探針対を順次に切替える。この電流印加位置変化手段10Aは、電流を流す電流印加用深針3,3、電圧を測定する電圧測定用深針4,4をそれぞれ切替えるスイッチ15,16からなる。電流印加位置変更指令部6c(図1)は、電流を流すべき一対の電流印加用深針3,3に電流を流すように、スイッチ15に切替指令を与える。これと共に、電流印加位置変更指令部6c(図1)は、電圧を測定すべき一対の電圧測定用深針4,4を測定可能に、スイッチ16に切替指令を与える。   The current application position changing means 10A causes a current to flow through the diagonal current application deep needles 3 and 3, and the diagonal voltage measurement deep needles 4 in phase with the current application deep needles 3 and 3. The probe pairs are sequentially switched so that the voltage between the four can be measured. The current application position changing means 10A includes current application deep needles 3 and 3 for passing current, and switches 15 and 16 for switching voltage measurement deep hands 4 and 4 for measuring voltage, respectively. The current application position change command unit 6c (FIG. 1) gives a switch command to the switch 15 so that the current flows through the pair of current application deep needles 3 and 3 through which the current should flow. At the same time, the current application position change command unit 6c (FIG. 1) gives a switch command to the switch 16 so that the pair of voltage measuring deep hands 4 and 4 whose voltages are to be measured can be measured.

この構成によると、複数対の電流印加用探針3,3のうち、所定の電流印加用探針3,3間に別々に順次電流を印加することで、検査対象物1に対して、電圧測定用探針4,4による電圧を測定する位置を変化させ得る。品質測定手段12は、電流印加位置変化手段10Aにより複数測定した位置の電圧を平均する。このように複数測定した位置での電圧の平均をとることで、測定場所による導電率や透磁率のばらつきの影響を小さくし、非破壊検査の検査精度を、簡易に向上させることができる。この例では、電圧の測定位置を変化させるとき、ヘッド8を検査対象物1の表面から都度離す必要がなく、第1の実施形態よりもより簡便に各測定場所での電圧を測定し得る。   According to this configuration, a voltage is applied to the inspection object 1 by sequentially applying current between the predetermined current application probes 3 and 3 among the plurality of pairs of current application probes 3 and 3. The position where the voltage is measured by the measurement probes 4 and 4 can be changed. The quality measuring means 12 averages the voltages at the positions measured by the current application position changing means 10A. By taking the average of the voltages at a plurality of measured positions in this way, the influence of variation in conductivity and magnetic permeability depending on the measurement location can be reduced, and the inspection accuracy of nondestructive inspection can be easily improved. In this example, when the voltage measurement position is changed, the head 8 does not need to be separated from the surface of the inspection object 1 each time, and the voltage at each measurement location can be measured more easily than in the first embodiment.

図8は、前記焼入れ品質検査装置を使用して行う非破壊検査の一例を示す。ここでは、軸受の内輪21の転走面21aの焼入れ品質を検査する。回転軸22の小径部に内輪21が嵌合され、この回転軸22は図示外の駆動源により軸線L1回りに回転可能に構成されている。ヘッド進退駆動源23の先端部に、ヘッ8を固定する固定部材22が設けられ、固定部材22に固定されたヘッド8がヘッド進退駆動源23の駆動により軸線L1方向に平行に移動可能に構成される。ヘッド進退駆動源23として、流体圧シリンダや、モータとボールねじ機構から成るもの等を適用し得る。   FIG. 8 shows an example of a nondestructive inspection performed using the quenching quality inspection apparatus. Here, the quenching quality of the rolling surface 21a of the inner ring 21 of the bearing is inspected. An inner ring 21 is fitted to a small diameter portion of the rotating shaft 22, and the rotating shaft 22 is configured to be rotatable around the axis L <b> 1 by a driving source (not shown). A fixing member 22 for fixing the head 8 is provided at the tip of the head advance / retreat driving source 23, and the head 8 fixed to the fixing member 22 is configured to be movable in the direction of the axis L1 by driving the head advance / retreat drive source 23. Is done. As the head advance / retreat drive source 23, a fluid pressure cylinder, a motor and a ball screw mechanism, or the like can be applied.

固定部材22がヘッド8を適当な押し付け力で転走面21aに押し付ける。回転軸L1を回転させヘッド8を移動させることで、内輪21の転走面21aの全周面にヘッド8を摺動させて周上全ての箇所または数箇所の焼入れ品質を検査し得る。この場合、表示装置7(図1、図6)によりオンライン上で焼入れ品質を全数検査できるので、品質保証能力を高めることができる。なお、ヘッド進退駆動源23、固定部材22等を設けることなくヘッド8を例えば手動により移動させて、転走面21a等の焼入れ品質を検査しても良い。   The fixing member 22 presses the head 8 against the rolling surface 21a with an appropriate pressing force. By rotating the rotating shaft L1 and moving the head 8, the head 8 can be slid on the entire peripheral surface of the rolling surface 21a of the inner ring 21, and the quenching quality can be inspected at all or several places on the circumference. In this case, since all the quenching quality can be inspected online by the display device 7 (FIGS. 1 and 6), the quality assurance capability can be enhanced. Note that the head 8 may be moved manually, for example, without providing the head advance / retreat drive source 23, the fixing member 22 or the like, and the quenching quality of the rolling surface 21a or the like may be inspected.

1…検査対象物
2…電源
3…電流印加用深針
4…電圧測定用深針
8…ヘッド
10,10A…電流印加位置変化手段
12…品質測定手段
13…ヘッド回転部
DESCRIPTION OF SYMBOLS 1 ... Inspection object 2 ... Power supply 3 ... Current application deep needle 4 ... Voltage measurement deep needle 8 ... Head 10, 10A ... Current application position changing means 12 ... Quality measurement means 13 ... Head rotating part

Claims (10)

検査対象物の表面に接触させた電流印加用探針を介して電流を印加する電源と、
この電源により電流が印加された前記検査対象物の表面における、前記電流印加用探針とは異なる2点に接触させて、この2点間の電圧を測定する一対の電圧測定用探針と、
これら電圧測定用探針で測定された電圧から前記検査対象物の焼入れ品質を測定する品質測定手段と、
を備えた焼入れ品質検査装置において、
前記検査対象物に対して、前記電流印加用探針により電流を印加する位置を変化させる電流印加位置変化手段を設けたことを特徴とする焼入れ品質検査装置。
A power supply for applying a current via a current application probe brought into contact with the surface of the inspection object;
A pair of voltage measuring probes for contacting the two points different from the current applying probe on the surface of the inspection object to which a current is applied by the power source and measuring a voltage between the two points;
Quality measuring means for measuring the quenching quality of the inspection object from the voltage measured by these voltage measuring probes,
In quenching quality inspection equipment with
A quenching quality inspection apparatus, comprising: a current application position changing means for changing a position to which a current is applied to the inspection object by the current application probe.
請求項1記載の焼入れ品質検査装置において、前記品質測定手段は、前記電流印加位置変化手段により複数測定した位置の電圧を、平均する機能を有する焼入れ品質検査装置。   2. The quenching quality inspection apparatus according to claim 1, wherein the quality measuring means has a function of averaging voltages at positions measured by the current application position changing means. 請求項1または請求項2記載の焼入れ品質検査装置において、前記電流印加位置変化手段は、前記検査対象物に対して、前記電圧測定用探針により電圧を測定する位置を変化させる手段を有する焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 1 or 2, wherein the current application position changing means includes means for changing a position at which a voltage is measured by the voltage measuring probe with respect to the inspection object. Quality inspection device. 請求項1ないし請求項3のいずれか1項に記載の焼入れ品質検査装置において、前記電流印加位置変化手段は、前記電流印加用探針と前記電圧測定用探針とを一体で回転自在としたものである焼入れ品質検査装置。   The quenching quality inspection device according to any one of claims 1 to 3, wherein the current application position changing means integrally rotates the current application probe and the voltage measurement probe. Quenching quality inspection equipment. 請求項4に記載の焼入れ品質検査装置において、前記電流印加位置変化手段は、前記電流印加用探針と前記電圧測定用探針とを一体としたヘッドを回転させるヘッド回転部を含む焼入れ品質検査装置。   5. The quenching quality inspection apparatus according to claim 4, wherein the current application position changing means includes a head rotating unit that rotates a head in which the current application probe and the voltage measurement probe are integrated. apparatus. 請求項1ないし請求項3のいずれか1項に記載の焼入れ品質検査装置において、前記電流印加用探針を複数対設け、前記電流印加位置変化手段は、電流を印加する電流印加用探針対を切替えるものである焼入れ品質検査装置。   4. The quenching quality inspection apparatus according to claim 1, wherein a plurality of pairs of the current application probes are provided, and the current application position changing unit is configured to apply a current application probe pair. Quenching quality inspection device that switches between 請求項6に記載の焼入れ品質検査装置において、前記電圧測定用探針を複数対設け、前記電流印加位置変化手段は、電流を印加する電流印加用探針対を切替えると共に、電圧を測定する電圧測定用探針対を切替えるものである焼入れ品質検査装置。   7. The quenching quality inspection apparatus according to claim 6, wherein a plurality of pairs of the voltage measuring probes are provided, and the current application position changing means switches the current application probe pairs to which the current is applied and also measures the voltage. Quenching quality inspection device that switches the probe pair for measurement. 請求項1ないし請求項7のいずれか1項に記載の焼入れ品質検査装置において、前記電流を印加する電流印加用探針対と、電圧を測定する電圧測定用探針対とは、これら探針の長手方向から見て、直線に並び、且つ、外側の2つの探針が電流印加用探針対であり、内側の2つの探針が電圧測定用探針対である焼入れ品質検査装置。   The quenching quality inspection apparatus according to any one of claims 1 to 7, wherein the current application probe pair for applying the current and the voltage measurement probe pair for measuring the voltage are the probe. The quenching quality inspection apparatus in which the two outer probes are current application probe pairs and the inner two probes are voltage measurement probe pairs, which are arranged in a straight line when viewed from the longitudinal direction. 請求項1ないし請求項8のいずれか1項に記載の焼入れ品質検査装置において、前記焼入れ品質として、前記検査対象物の表面硬度および焼入れ深さの少なくとも一つを検査する焼入れ品質検査装置。   The quenching quality inspection apparatus according to any one of claims 1 to 8, wherein the quenching quality inspection apparatus inspects at least one of a surface hardness and a quenching depth of the inspection object as the quenching quality. 請求項9に記載の焼入れ品質検査装置において、前記品質測定手段は、前記検査対象物の表面硬度および焼入れ深さの少なくとも一つが、定められた値を下回るときに焼入れ異常と判定する判定部を有する焼入れ品質検査装置。   The quenching quality inspection apparatus according to claim 9, wherein the quality measuring means includes a determination unit that determines that quenching is abnormal when at least one of the surface hardness and the quenching depth of the inspection object is lower than a predetermined value. Having quenching quality inspection equipment.
JP2012281035A 2012-12-25 2012-12-25 Quenching quality inspection equipment Expired - Fee Related JP6074256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281035A JP6074256B2 (en) 2012-12-25 2012-12-25 Quenching quality inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281035A JP6074256B2 (en) 2012-12-25 2012-12-25 Quenching quality inspection equipment

Publications (2)

Publication Number Publication Date
JP2014126375A true JP2014126375A (en) 2014-07-07
JP6074256B2 JP6074256B2 (en) 2017-02-01

Family

ID=51406004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281035A Expired - Fee Related JP6074256B2 (en) 2012-12-25 2012-12-25 Quenching quality inspection equipment

Country Status (1)

Country Link
JP (1) JP6074256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897734A (en) * 2015-04-28 2015-09-09 石家庄铁道大学 System and method for real-time measurement of water content in soil in geotechnical structure object

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237045A (en) * 1985-04-15 1986-10-22 Hitachi Ltd Defect detector
JPS6214051A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Defect detector for pipe joints
JPS6228654A (en) * 1985-07-31 1987-02-06 Hitachi Ltd Detection of crack
JPS6247544A (en) * 1985-08-27 1987-03-02 Nippon Kokan Kk <Nkk> Measuring instrument for electric potential difference
JPS6279157U (en) * 1985-11-05 1987-05-20
US4764970A (en) * 1985-04-15 1988-08-16 Hitachi, Ltd. Method and apparatus for detecting cracks
JPH02205766A (en) * 1989-02-06 1990-08-15 Hitachi Ltd Generator inspecting apparatus
JPH05322829A (en) * 1991-05-22 1993-12-07 Nippon Steel Corp Nondestructive method for measuring transverse fatigue cracking in rail
JP2008128816A (en) * 2006-11-21 2008-06-05 Tohoku Univ Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it
JP2009047664A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method and apparatus for nondestructive measurement
JP2010243173A (en) * 2009-04-01 2010-10-28 Ntn Corp Device and method for inspecting hardening quality

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237045A (en) * 1985-04-15 1986-10-22 Hitachi Ltd Defect detector
US4764970A (en) * 1985-04-15 1988-08-16 Hitachi, Ltd. Method and apparatus for detecting cracks
JPS6214051A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Defect detector for pipe joints
JPS6228654A (en) * 1985-07-31 1987-02-06 Hitachi Ltd Detection of crack
JPS6247544A (en) * 1985-08-27 1987-03-02 Nippon Kokan Kk <Nkk> Measuring instrument for electric potential difference
JPS6279157U (en) * 1985-11-05 1987-05-20
JPH02205766A (en) * 1989-02-06 1990-08-15 Hitachi Ltd Generator inspecting apparatus
JPH05322829A (en) * 1991-05-22 1993-12-07 Nippon Steel Corp Nondestructive method for measuring transverse fatigue cracking in rail
JP2008128816A (en) * 2006-11-21 2008-06-05 Tohoku Univ Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it
JP2009047664A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method and apparatus for nondestructive measurement
JP2010243173A (en) * 2009-04-01 2010-10-28 Ntn Corp Device and method for inspecting hardening quality

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897734A (en) * 2015-04-28 2015-09-09 石家庄铁道大学 System and method for real-time measurement of water content in soil in geotechnical structure object

Also Published As

Publication number Publication date
JP6074256B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP2010164306A (en) Method and device for hardened depth
JP6010606B2 (en) Improvements in sensors
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP2014066733A (en) Surface characteristic inspection device and surface characteristic inspection method
JP5149562B2 (en) Nondestructive measuring method and nondestructive measuring device
JP2014055941A (en) Prediction method for progression degree of fatigue or remaining life of rolling bearing
JP6074256B2 (en) Quenching quality inspection equipment
WO2010140525A1 (en) Hardening quality inspection device and hardening quality inspection method
JP2012063296A (en) Barkhausen noise inspection device
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP2010243173A (en) Device and method for inspecting hardening quality
JP4831298B2 (en) Hardening depth measuring device
JP2013224916A (en) Grinding burn determination device and grinding burn determination method
JP2004309355A (en) Hardening depth measuring apparatus of steel material
JP2011257223A (en) Hardening quality inspection device
JP2011252787A (en) Hardening quality inspection device
JP2010230484A (en) Device and method of detecting grinding burning
JP2020024173A (en) Magnetic sensor device
WO2020255476A1 (en) Rolling machine element fatigue diagnosis method and rolling machine element fatigue diagnosis system
JPH0989845A (en) Method and equipment for nondestructive inspection of hardening depth
JP6601599B1 (en) Rolling part inspection method and rolling part inspection apparatus
JP2014126376A (en) Hardening quality inspection device and hardening quality inspection method
JP2012008057A (en) Barkhausen noise inspection device
Yang et al. Application of a specialized capacitance probe in bearing diagnosis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170106

R150 Certificate of patent or registration of utility model

Ref document number: 6074256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees