JPS6228654A - Detection of crack - Google Patents

Detection of crack

Info

Publication number
JPS6228654A
JPS6228654A JP16757685A JP16757685A JPS6228654A JP S6228654 A JPS6228654 A JP S6228654A JP 16757685 A JP16757685 A JP 16757685A JP 16757685 A JP16757685 A JP 16757685A JP S6228654 A JPS6228654 A JP S6228654A
Authority
JP
Japan
Prior art keywords
crack
potential difference
terminals
relationship
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16757685A
Other languages
Japanese (ja)
Other versions
JPH0545142B2 (en
Inventor
Makoto Hayashi
真琴 林
Masahiro Otaka
大高 正広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16757685A priority Critical patent/JPS6228654A/en
Publication of JPS6228654A publication Critical patent/JPS6228654A/en
Publication of JPH0545142B2 publication Critical patent/JPH0545142B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To decide whether a crack had occurred on the same side or opposite side of the probe and detect accurately the position and length of the crack, by disposing a number of probes at equal spaces, comparing potential differences between probes, and operating the results. CONSTITUTION:A DC voltage is applied to a bar member 5 from a DC stabilizer power supply. Potential differences between a number of probes disposed at equal spaces on one side of a member 5 are measured by a micro-potentiometer 6. A computer 8 compares the measured potential differences, operates the position and length a/W of each of generated cracks, and outputs them to a CRT display 9. The presence or absence of a crack is discriminated based on the ratio of the potential difference V1 to a reference potential difference V, and whether it is a front or a rear crack is decided from the sum of potential differences V2, V3 between each two probes on either side of the probe concerning the crack. The lenght and the position of the crack are operated based on the decision, reference potential difference V and the potential differences V1-V3.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属構造部材に発生したき裂を検出するき裂検
出技術に係り、特に貫通き裂位置と長さをオンラインで
精度よく検出するのに好適な方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a crack detection technique for detecting cracks generated in metal structural members, and in particular to a technique for accurately detecting the position and length of a through crack online. This invention relates to a method suitable for

〔発明の背景〕[Background of the invention]

従来のポテンシャル法によるき裂検出方法としてはいわ
ゆる4端子法と呼ばれるものがある。それは一対の給電
端子とその内側に一対の測定端子を一列に配列した探触
子を構造部材の表面を走査して、電位差分布の変化から
き裂を検出するものである。き裂の判定はき裂がないと
思われる領域における電位差を基準電位差とし、それよ
りも大きい電位差となったところにき裂があるとするも
のである。従って4端子法においては端子を部材の表面
に沿って走査しなければき裂の有無及びき裂の長さを判
定することができないという欠点があった。
As a conventional crack detection method using the potential method, there is a so-called four-terminal method. In this method, a probe having a pair of power supply terminals and a pair of measurement terminals arranged in a row inside the probe scans the surface of a structural member to detect cracks from changes in the potential difference distribution. A crack is determined by using a potential difference in a region where no crack is expected to be present as a reference potential difference, and determining that a crack exists where the potential difference is larger than that. Therefore, the four-terminal method has the disadvantage that the presence or absence of a crack and the length of the crack cannot be determined unless the terminal is scanned along the surface of the member.

〔発明の目的〕[Purpose of the invention]

本発明の目的は構造部材に生じた欠陥またはき裂の位置
と長さを給電端子および測定端子を部材表面に沿って走
査することなくオンラインで検出できる方法を提供する
ことにある。
An object of the present invention is to provide a method for detecting the position and length of a defect or crack occurring in a structural member online without scanning a power supply terminal and a measuring terminal along the surface of the member.

〔発明の概要〕[Summary of the invention]

き裂の発生は一般に形状不連続部であることが多く、不
連続部をはさんで測定端子を設けておけばき裂長さを測
定できるが、不連続部がない部材ではき裂がどこに発生
するのか不明である場合があり、また、不連続部がある
場合でもき裂を遠隔で検出しなければならないことがあ
り、本発明は測定端子を等間隔で多数配置し、多数の端
子間の電位差を比較演算することにより、き裂が端子と
同じ側にあるか、反対側にあるかの判断と、き裂の詳細
な位置と長さを精度良く検出するものである。
Cracks generally occur at discontinuities in shape, and the length of the crack can be measured by installing a measurement terminal across the discontinuities, but it is difficult to determine where cracks occur in parts without discontinuities. In some cases, it may be unclear whether or not the cracks will be detected, and even if there are discontinuities, cracks may need to be detected remotely. By comparing and calculating the potential difference, it is possible to determine whether the crack is on the same side as the terminal or on the opposite side, and to detect the detailed position and length of the crack with high accuracy.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。第1図はマルチタ
ーミナルポテンシャル法による片側貫通き裂の検出シス
テムである。板状の部材5の両端には直流電流を部材に
供給するための給電端子3が取り付けである。給電端子
3の取付けはスポット溶接でも良いし、スポット溶接が
不可能な場合には押し当てるだけで良い、直流安定化電
源1からは直流電流が供給されるが、測定端子4と被測
定部材5の材質が異なる場合には端子4と部材5の間に
熱起電力が発生し、電位差測定精度が低下し、ひいては
き裂検出精度が低下する。熱起電力を除去するための1
つの方法として供給する直流電流の極性を反転させてプ
ラスの電流を流したときの電位差からマイナスの電流を
流したときに電位差を差し引く方法がある。これは電流
を流したときの電位差には熱起電力が上乗せされる、言
い換えれば熱起電力が平均電位差として存在することに
なるので、直流電流の極性を反転させることにより熱起
電力を相殺させるのである。その直流電流の極性を反転
するのがスイッチング装置2である0部材の片側には測
定端子4が等間隔で多数取り付けである。測定端子4の
間隔としては短い方が感度が良いが、精度が劣る。従っ
て感度と精度の兼ね合いが問題であるが、有限要素法に
よる検討によれば測定端子の間隔としては部材5の板幅
W程度が最適であることが分かった。測定端子4の数は
部材5に依存するが、少なくとも5個必要である。第1
図では7個設けて、6箇所の電位差を測定できるように
した例を示した。各測定端子間の電位差Vはリード線を
介して微小電位差計6に取り込まれるが、測定端子の切
り換えは微小電位差計6に内蔵されたスキャナーで自動
的に順次行われる。微小電位差計6で測定された電位差
はA/D変換させてインターフェース7を介してコンピ
ュータ8に送り込まれる。コンピュータ8においては測
定された電位差を比較演算してき裂発生位置とき裂長さ
a/Wを求め、CRT画面。
An embodiment of the present invention will be described below. Figure 1 shows a detection system for single-sided through cracks using the multi-terminal potential method. Power supply terminals 3 for supplying direct current to the member are attached to both ends of the plate-shaped member 5. The power supply terminal 3 may be attached by spot welding, or if spot welding is not possible, it is sufficient to simply press it together. Direct current is supplied from the DC stabilized power supply 1, but the measurement terminal 4 and the member to be measured 5 If the materials of the terminals 4 and 5 are different, a thermoelectromotive force is generated between the terminal 4 and the member 5, resulting in a decrease in potential difference measurement accuracy and, in turn, a decrease in crack detection accuracy. 1 for removing thermoelectromotive force
One method is to reverse the polarity of the supplied DC current and subtract the potential difference when a negative current flows from the potential difference when a positive current flows. This means that the thermoelectromotive force is added to the potential difference when current is passed.In other words, the thermoelectromotive force exists as an average potential difference, so by reversing the polarity of the DC current, the thermoelectromotive force can be canceled out. It is. A switching device 2 is used to reverse the polarity of the direct current.A large number of measuring terminals 4 are attached at equal intervals on one side of the member. The shorter the distance between the measurement terminals 4, the better the sensitivity, but the lower the accuracy. Therefore, the balance between sensitivity and accuracy is a problem, but studies using the finite element method have revealed that the optimum spacing between the measurement terminals is about the plate width W of the member 5. The number of measurement terminals 4 depends on the member 5, but at least five are required. 1st
The figure shows an example in which seven sensors are provided so that potential differences at six locations can be measured. The potential difference V between each measurement terminal is taken into the micropotentiometer 6 via a lead wire, and the switching of the measurement terminals is automatically and sequentially performed by a scanner built into the micropotentiometer 6. The potential difference measured by the minute potentiometer 6 is A/D converted and sent to the computer 8 via the interface 7. The computer 8 compares and calculates the measured potential differences to determine the crack occurrence position and crack length a/W, and displays the results on the CRT screen.

或いはX−Yプロッター9に出力する。Alternatively, output to the X-Y plotter 9.

以下、マルチターミナルポテンシャル法によるき裂検出
方法について述べる。第2 図(a ) 、 (b )
 。
The crack detection method using the multiterminal potential method will be described below. Figure 2 (a), (b)
.

(c)は片側貫通き裂を有する板状の部材を有限要素法
により解析して得られた等電位線図である。
(c) is an equipotential diagram obtained by analyzing a plate-shaped member having a through crack on one side using the finite element method.

対称性から部材の半分についてだけ解析している。Due to symmetry, only half of the member is analyzed.

図中き裂長さは部材の板幅Wで基準化したa / Wで
示してあり、き裂先端は矢印で示した。き裂から離れた
ところでは等電位線は部材表面に対して直角であり、電
流が均一に流れていることを示している。き裂の周辺で
は等電位線は曲がりくねって電場が乱れていることが分
かる。き裂によって電場が乱される領域はき裂長さに依
存するが、き裂周辺に限られる。
In the figure, the crack length is shown in a/W standardized by the plate width W of the member, and the crack tip is indicated by an arrow. Away from the crack, the equipotential lines are perpendicular to the surface of the part, indicating that the current is flowing uniformly. It can be seen that the equipotential lines around the crack are twisted and the electric field is disturbed. The area where the electric field is disturbed by the crack depends on the crack length, but is limited to the vicinity of the crack.

第3図(a)、(b)に示したように測定端子の中央に
き裂(図(a);表面き裂2図(b);裏面き裂)をお
いたときの電位差比V/V、(V:き裂があるときの電
位差、vo:き裂がないときの電位差)とき裂長さa/
W(a:き裂長さ、W:板幅)の関係を第4図と第5図
に示す。ここで測定しているき裂は片側貫通き裂である
が、第3図(a)。
As shown in Figures 3(a) and (b), the potential difference ratio V/ V, (V: potential difference when there is a crack, vo: potential difference when there is no crack), and crack length a/
The relationship between W (a: crack length, W: plate width) is shown in FIGS. 4 and 5. The crack measured here is a one-sided penetrating crack, as shown in Figure 3(a).

(b)に示すようにき裂が測定端子と同じ側にある場合
を表面き裂、き裂が測定端子の反対側にある場合を裏面
き裂と定義する。第4図は表面き裂に対するものである
。電位差測定端子間距離Ωは10画から30mまで変え
ている。電場の乱れはき裂周辺に限定されるため端子間
距離Ωが短いほど電位差比V/V、は大きく、検出感度
の良いことが分かる。実際の測定においては微小電位差
計の分解能と被測定物の比抵抗が測定精度に影響し、ρ
はある程度大きい方が良い場合もある。また0を小さく
すれば測定端子を増やさねばならないので、実機への適
用に当っては最適端子間距離を定めなければならない。
As shown in (b), a case where the crack is on the same side as the measurement terminal is defined as a surface crack, and a case where the crack is on the opposite side of the measurement terminal is defined as a back surface crack. Figure 4 is for surface cracks. The distance Ω between the potential difference measurement terminals was varied from 10 meters to 30 meters. Since the disturbance of the electric field is limited to the vicinity of the crack, it can be seen that the shorter the distance Ω between the terminals, the larger the potential difference ratio V/V, and the better the detection sensitivity. In actual measurements, the resolution of the micropotentiometer and the specific resistance of the object to be measured affect the measurement accuracy, and ρ
In some cases, it is better to have a larger value to some extent. Furthermore, if 0 is made smaller, the number of measurement terminals must be increased, so when applying it to an actual machine, the optimum distance between the terminals must be determined.

第5図に裏面き裂の場合の電位差比V/V、とき裂長さ
a / Wの関係を示す。
FIG. 5 shows the relationship between the potential difference ratio V/V and the crack length a/W in the case of a backside crack.

表面き裂に比して裏面き裂の検出感度はかなり低い。The detection sensitivity of backside cracks is considerably lower than that of surface cracks.

測定端子を部材表面で走査することができ、表面き裂か
裏面き裂かが分かつていれば第4図あるいは第5図の電
位差比V/V、とき裂長さa / Wの関係を用いてき
裂長さを検出することができる。
If the measurement terminal can be scanned over the surface of the material and it is known whether the crack is on the surface or the back surface, then the relationship between the potential difference ratio V/V and the crack length a/W shown in Figure 4 or Figure 5 can be used. Cleft length can be detected.

しかし、実機部材では測定端子を走査してき裂長さを測
るのであれば目視でも測れるのでわざわざ測定端子を走
査する意味がない、測定端子を固定しておいてき裂長さ
を検出しなければならないが、き裂は第3図(a)、(
b)のようにいつも測定端子間の中央にあるとは限らな
いので、き裂が測定端子間の中央にない場合電位差がど
うなるか検討しておかねばならない、即ち、第6図(a
)〜(d)に示すようにき裂に対して測定端子を走査す
ることを考える。き裂と測定端子との位置関係は第6図
(a)〜(d)に示したように測定端子間の中央からき
裂までの距離をLとして定義した。従ってL=Omのと
き、き裂は測定端子間の中央にあり、L=12/2のと
きき裂は測定端子の真下にあり、L〉Q/2のときはき
裂は測定端子の外にあることになる。第7図に表面き裂
の場合を、即ち、測定端子をき裂のある面上で走査した
場合を示す。これは測定端子間距離Q=30mmであり
、き裂長さはa / W = 0 、1〜0.7である
。図の縦軸は電位差Vで横軸はき裂位[Lである。ここ
で電位差はti場解析に当っては部材の比抵抗と電流値
として単位の値を使用しているので便宜上の値である。
However, in actual machine parts, if you measure the crack length by scanning the measurement terminal, it can be measured visually, so there is no point in scanning the measurement terminal.The measurement terminal must be fixed to detect the crack length. The fissure is shown in Figure 3 (a), (
Since the crack is not always located at the center between the measurement terminals as in Figure 6 (a), it is necessary to consider what happens to the potential difference when the crack is not at the center between the measurement terminals.
) to (d), consider scanning the measurement terminal over a crack. Regarding the positional relationship between the crack and the measurement terminal, the distance from the center between the measurement terminals to the crack was defined as L, as shown in FIGS. 6(a) to 6(d). Therefore, when L=Om, the crack is in the center between the measuring terminals, when L=12/2, the crack is directly below the measuring terminals, and when L>Q/2, the crack is outside the measuring terminals. It will be in . FIG. 7 shows the case of a surface crack, that is, the case where the measurement terminal is scanned over a cracked surface. The distance between the measurement terminals Q is 30 mm, and the crack length is a/W = 0, 1 to 0.7. The vertical axis of the figure is the potential difference V, and the horizontal axis is the crack position [L]. Here, the potential difference is a convenient value because unit values are used as the specific resistance and current value of the member in the Ti field analysis.

その理由はき裂長さの評価に当っては基準電位差に対す
る電位差の比、即ち、電位差比を用いるからである。こ
のことは逆に、比抵抗は部材の材質や部材の温度に依存
するため、電位差で評価する場合には比抵抗を考慮して
き裂長さとの関係を予め求めておかねばならないのに対
して、電位差比を用いれば材質や温度を考慮する必要が
ないからである。第7図でき裂がないときの電位差v0
は150である。Lが大きくなってき裂が測定端子間の
中央から離れていくと電位差は増え、き裂が端子のほぼ
真下までくると電位差は最大値を示す。
The reason for this is that when evaluating the crack length, the ratio of the potential difference to the reference potential difference, that is, the potential difference ratio is used. Conversely, since resistivity depends on the material of the member and the temperature of the member, when evaluating by potential difference, the relationship with the crack length must be determined in advance by taking the resistivity into consideration. This is because if the ratio is used, there is no need to consider material or temperature. Potential difference v0 when there is no crack in Figure 7
is 150. As L increases and the crack moves away from the center between the measurement terminals, the potential difference increases, and when the crack reaches almost directly below the terminals, the potential difference reaches its maximum value.

LがΩ/2より大きくなってき裂が端子間の外に出ると
電位差は急激に低下し、き裂がない場合の電位差v、、
よりも更に低い値となる。端子から更に離れていくと電
位差は増加し、き裂がない場合の電位差v0に近付く。
When L becomes larger than Ω/2 and the crack goes outside between the terminals, the potential difference decreases rapidly, and the potential difference when there is no crack, v,
The value is even lower than . As the distance from the terminal increases, the potential difference increases and approaches the potential difference v0 when there is no crack.

第8図には裏面き裂の場合のき裂位!Lと電位差Vの関
係を示す。き裂が端子間の中央にあるとき電位差Vは最
大値を示し、中央から離れるにつれて単調に減少する。
Figure 8 shows the crack location in the case of a crack on the back side! The relationship between L and potential difference V is shown. The potential difference V has a maximum value when the crack is located at the center between the terminals, and decreases monotonically as it moves away from the center.

L=30mで電位差Vは基準電位差v0とほぼ等しくな
る。第7図と第8図のような電位差分布になる理由を第
9m(a)〜(Q)で説明する。(a)図は表面き裂の
場合の電位差分布、(b)図は等電位線図、(c)図は
裏面き裂の場合の電位差分布である。初めに表面き裂の
場合について説明する。端子を図面で左側から走査する
と、き裂から離れたところでは等電位線は表面に対して
直角で、等間隔に並んでいるので基準電位差v0と等し
い。太い破線で示したき裂に近付くと、き裂の口の付近
では電流が流れないため等電位線の間隔が広がっている
ので電位差は低下する。右側の端子がき裂を越えてき裂
が端子間に入ってくると、き表面に潜り込んでいる等電
位線が一度に増えるので電位差は急激に増大する。更に
右へ移動するとき裂の口付近では等電位線の間隔が広が
っているので電位差は低下する。き裂が端子間の中央に
くると電位分布はき裂をはさんで左右対称であるので電
位差は極小値を示す。端子が更に右側へ移動すれば電場
の対称性からいままでと逆の変化をすることになる。
When L=30m, the potential difference V becomes almost equal to the reference potential difference v0. The reason for the potential difference distribution as shown in FIGS. 7 and 8 will be explained in sections 9m(a) to (Q). (a) shows the potential difference distribution in the case of a surface crack, (b) shows an equipotential diagram, and (c) shows the potential difference distribution in the case of a back surface crack. First, the case of surface cracks will be explained. When the terminal is scanned from the left side in the drawing, the equipotential lines are perpendicular to the surface at a distance from the crack and are lined up at equal intervals, so they are equal to the reference potential difference v0. When approaching the crack indicated by the thick broken line, the potential difference decreases because no current flows near the crack mouth, and the distance between the equipotential lines widens. When the right terminal crosses the crack and the crack enters between the terminals, the number of equipotential lines submerged into the crack surface increases at once, so the potential difference increases rapidly. When moving further to the right, the distance between the equipotential lines becomes wider near the mouth of the fissure, so the potential difference decreases. When the crack reaches the center between the terminals, the potential difference shows a minimum value because the potential distribution is symmetrical across the crack. If the terminal moves further to the right, the symmetry of the electric field means that the change will be the opposite of what it was before.

一方、裏面き裂の場合はき裂の前方で等電位線が密にな
っているので、端子を左側から走査してくると電位差は
単調に増加して、き裂が端子間の中央にくると最大値を
とる。端子が更に右側へ移動すれば電場の対称性から単
調に減少して基準電位差に漸近する。このようにき裂位
置によって電位差は複雑に変化するので、端子を走査す
る場合でも簡単にはき裂長さを決定することはできない
On the other hand, in the case of a backside crack, the equipotential lines are dense in front of the crack, so when the terminals are scanned from the left side, the potential difference increases monotonically, and the crack comes to the center between the terminals. and takes the maximum value. If the terminal moves further to the right, the potential difference monotonically decreases due to the symmetry of the electric field and asymptotically approaches the reference potential difference. Since the potential difference changes in a complicated manner depending on the crack position, the crack length cannot be easily determined even when scanning the terminal.

き裂によって電場が乱される領域は第2図に示したよう
にき裂周辺に限られる。従って測定端子間距離Qを十分
大きくすれば、き裂の位置が多少ずれたとしても測定さ
れる電位差Vは一定である。
The area where the electric field is disturbed by the crack is limited to the area around the crack, as shown in FIG. Therefore, if the distance Q between the measurement terminals is made sufficiently large, the measured potential difference V will be constant even if the position of the crack is slightly shifted.

いま、この端子間にもう1つ測定端子を設け、2組の測
定端子で電位差を測定する場合を考える。
Now, consider the case where another measurement terminal is provided between these terminals and the potential difference is measured using two sets of measurement terminals.

き裂がある位置に存在するときの電位差をvl。The potential difference when a crack exists at a certain position is vl.

v2とする。ここでき裂がある端子間の電位差をvlと
し、き裂がないもう一方の端子間の電位差をv2 とす
る。このときV工+V、=Vである。次に、測定端子を
少しずらすと第7図あるいは第8図のように電位差は変
化する。vlがv1’ 、v。
Set it to v2. Here, let vl be the potential difference between the terminals with a crack, and let v2 be the potential difference between the other terminals without a crack. At this time, V + V, = V. Next, when the measurement terminal is slightly shifted, the potential difference changes as shown in FIG. 7 or 8. vl is v1', v.

がV 、 lに変ったとしても測定端子間距離αが十分
に大きいのでV工+v2=v1′+v2′=vとなる。
Even if it changes to V and l, the distance α between the measurement terminals is sufficiently large, so V + v2 = v1' + v2' = v.

これを具体的に第7図、第8図および第10図(a)〜
(c)で説明する。き裂の周辺に電位差測定端子を2組
配置し、き裂のある端子間の電位差をvlとし、隣の端
子間の電位差をv2 とする。
Specifically, this is shown in Figs. 7, 8, and 10 (a) to
This will be explained in (c). Two sets of potential difference measuring terminals are arranged around the crack, and the potential difference between the terminals with the crack is defined as vl, and the potential difference between the adjacent terminals is defined as v2.

表面き裂の場合き裂位置りによってvlは前述したよう
にき裂が端子間の中央、即ち、L = Omの値からL
が大きくなるにつれて増大し、L=15rm = Q 
/ 2、即ち、端子の直下で最大値をとる。
In the case of a surface crack, vl depends on the crack position, as mentioned above, when the crack is at the center between the terminals, that is, from the value of L = Om to L
increases as becomes larger, L = 15rm = Q
/2, that is, the maximum value is taken directly below the terminal.

LがQ/2より大きくなって端子間の外に出れば電位差
は急減し、き裂が更に離れるに従ってき裂がないときの
電位差v0に漸近する。一方、隣の端子間の電位差v2
とき裂位置L′との関係は第7図、第8図においてL’
=30−Lとおいて得られる。即ち、き裂が隣の端子間
の中央にあるときv2はL’ =30−L=30mにお
ける値であり、はぼき裂がないときの電位差v0に等し
い。
When L becomes larger than Q/2 and goes outside between the terminals, the potential difference decreases rapidly, and as the crack gets further apart, it approaches the potential difference v0 when there is no crack. On the other hand, the potential difference between adjacent terminals v2
The relationship between the crack position and the crack position L' is shown in FIGS. 7 and 8 as L'
=30-L. That is, when the crack is located at the center between adjacent terminals, v2 is the value at L'=30-L=30 m, and is equal to the potential difference v0 when there is no crack.

き裂が近付いてくるとv2は減少し、き裂が隣の端子の
ほぼ直下にくると最小値を示す、き裂が更に近付いて端
子間の中に入ってくると最大値を示し、端子間の中央に
近付くにつれて漸減する。き裂位置による電位差の変化
をみるとき裂が端子間の中央から離れるに伴って増加す
る分だけ、その隣の端子間の電位差は減少する傾向にあ
る。別の見方をすれば第10図(c)に示したようにき
裂の位置によって移動した斜線の部分の電位分布はき裂
から離れているために同じであることに由来し。
As the crack approaches, v2 decreases, reaching a minimum value when the crack is almost directly under the adjacent terminal, and reaching a maximum value when the crack approaches further and enters between the terminals. It gradually decreases as it approaches the middle of the range. Looking at the change in potential difference depending on the position of the crack, as the crack moves away from the center between the terminals, the potential difference between adjacent terminals tends to decrease as the crack increases. From another perspective, this is because, as shown in FIG. 10(c), the potential distribution in the shaded area that moves depending on the position of the crack is the same because it is away from the crack.

V x +V 2はき裂位置によらず一定となるように
思われる。第11図にV工とv2の和から基準電位差V
。を引いたV1+ V、 −V、とき裂位置りとの関係
を表面き裂の場合について示す。V、十V□−■。はき
裂位置によらずほぼ一定である。このことはき裂のある
端子間の電位差v1でき裂長さを求めると過大評価する
のに対して、き裂のある端子間の電位差v1とき裂に近
い方の隣の端子間の電位差v2で評価すると精度良くき
裂長さを求めることができることを示しており、本手法
が有効であることが分かる。
V x +V 2 appears to be constant regardless of the crack location. Figure 11 shows the reference potential difference V from the sum of V and v2.
. The relationship between V1+V, -V, and the crack position is shown for the case of surface cracks. V, ten V□−■. is almost constant regardless of the crack location. This means that determining the crack length using the potential difference v1 between terminals with a crack overestimates it, whereas it is estimated using the potential difference v1 between the terminals with a crack and the potential difference v2 between the adjacent terminals that are closer to the crack. This shows that the crack length can be determined with high accuracy, indicating that this method is effective.

裏面き裂の場合には第8図に示したようにき裂のある端
子間の電位差v1はき裂が端子間の中央にあるとき最大
値を示し、き製粒[Lの増大とともに単調に減少する。
In the case of a crack on the back side, as shown in Figure 8, the potential difference v1 between the cracked terminals shows the maximum value when the crack is located in the center between the terminals, and increases monotonically as L increases. Decrease.

隣の端子間の電位差v2は逆に単調に増加することが分
かる。この場合にはvlの減少傾向とv2の増加傾向は
良く似ており、第12図に示したようにV、とv2の和
から基準電位差V。を引いたv1+V2−V、はき製粒
[Lとは無関係にほぼ一定である。
It can be seen that the potential difference v2 between adjacent terminals increases monotonically. In this case, the decreasing trend of vl and the increasing trend of v2 are very similar, and as shown in FIG. 12, the reference potential difference V is determined from the sum of V and v2. subtracted v1+V2-V, which is approximately constant regardless of the granulation [L].

第11図、第12図で分かるようにき裂位置りに対して
プロットしたV工+V*  V−は全く一定という訳で
はなく、第11図の表面き裂では左上がり、第12図の
裏面き裂では左下がりとなっており、き裂が端子間の中
央にあるときの測定精度が少し下がる。これは測定端子
間距離Q=30mではき裂がa / W = 0 、7
  と深い場合には電場の乱れている領域を完全にはカ
バーしていないことを示している。即ち、第10図の中
、下段の斜線部分の電位分布がやや異なることによるも
のである。測定端子間距離をa;15■およびQ=45
Iとした場合のV工+V2−V。とき製粒[Lとの関係
を調べた結果、Q=15mではa / W = 0 、
2でもV、+V、−V、は左上がりであるが、Ω=45
mではa / W = 0 、7 でもほぼ水平な直線
となる。従って単純に精度を考えると、測定端子間距離
0としては30〜45mが適当である。しかし、Qを大
きくとると、き裂検出感度が低下し、ひいてはき裂検出
精度も低下する。第13図に表面き裂の場合の電位差比
V□+V、−V、/V、とき裂長さa/Wの関係を示す
、V工/V、とa/Wの関係に比して感度がやや低下す
る。一方、第14図に裏面き裂の場合の電位差比V1+
V2−VO/v0とき裂長さa / Wの関係を示すが
、表面き裂とは逆に感度が増加する。図中、■印はばら
つきを示している。測定端子間距離Ωが短いとばらつき
が大きくて精度が悪く、Qが長いと精度は良いが感度が
下がる。精度及び感度の両方から判断すると測定端子間
距離としてはM=20nm、即ち、板幅Wと同じ位が良
いと思われる。この表面き裂と裏面き裂に対する電位差
比V、+V、−V、/v。
As can be seen in Figures 11 and 12, V + V * V - plotted against the crack position is not constant at all; for the surface crack in Figure 11, it is upward to the left, and for the back side in Figure 12. The crack slopes downward to the left, and the measurement accuracy is slightly lower when the crack is in the center between the terminals. This means that when the distance between the measurement terminals is Q = 30 m, the crack is a / W = 0, 7
This indicates that if the depth is deep, the area where the electric field is disturbed is not completely covered. That is, this is due to the fact that the potential distribution in the lower shaded area in FIG. 10 is slightly different. The distance between the measurement terminals is a; 15■ and Q = 45
V work + V2 - V when I. When granulating [As a result of investigating the relationship with L, when Q = 15m, a / W = 0,
Even in 2, V, +V, -V are upward to the left, but Ω=45
At m, a/W = 0, and even at 7 it becomes an almost horizontal straight line. Therefore, simply considering the accuracy, 30 to 45 m is appropriate as the distance 0 between the measurement terminals. However, when Q is made large, crack detection sensitivity decreases, and crack detection accuracy also decreases. Figure 13 shows the relationship between the potential difference ratio V□+V, -V, /V and the crack length a/W in the case of a surface crack. It decreases slightly. On the other hand, Fig. 14 shows the potential difference ratio V1+ in the case of a backside crack.
The relationship between V2-VO/v0 and crack length a/W is shown, but the sensitivity increases, contrary to surface cracking. In the figure, ■ marks indicate variations. If the distance Ω between the measurement terminals is short, there will be large variations and the accuracy will be poor, and if Q is long, the accuracy will be good but the sensitivity will decrease. Judging from both accuracy and sensitivity, it seems that the distance between the measurement terminals should be M=20 nm, that is, about the same as the plate width W. The potential difference ratios V, +V, -V, /v for this surface crack and back surface crack.

とき裂長さa/Wの関係のマスターカーブは両者の関係
をn次近似して、コンピュータ8の記憶回路に記憶させ
ておく。
The master curve for the relationship between the crack length a/W is an nth-order approximation of the relationship between the two, and is stored in the storage circuit of the computer 8.

次に、き裂位置の決定法である。き裂位置の決定法とし
ては2つの方法がある。第15図の方法は表面き裂に対
するものであるが、き裂のある端子間の電位差比V工/
V、とき電位[Lとの関係をき裂長さa / W = 
0 、1  きざみで作成して、両者の関係をn次近似
し、コンピュータ8の記憶回路に記憶させておく。測定
された電位差から第13図に示したマスターカーブによ
りvlと■2、及びV。とからき裂長さa/Wを決定す
る。ところがき裂長さa/Wは0.1  で割り切れる
ような値とはならない、そこで、例えばa / W =
 2 、7  が得られた場合a / W = 0 、
2 とa / W = 0 、3 のように得られたと
き裂長さa/Wの前後のマスターカーブにき裂のある端
子間の電位差比V工/V。
Next is the method for determining the crack location. There are two methods for determining the crack location. The method shown in Fig. 15 is for surface cracks, but the potential difference ratio between terminals with cracks is
V, when the relationship between potential [L and crack length a/W =
It is created in steps of 0 and 1, and the relationship between the two is approximated to the nth order, and the result is stored in the memory circuit of the computer 8. From the measured potential difference, vl, ■2, and V are determined according to the master curve shown in Fig. 13. Determine the crack length a/W from . However, the crack length a/W is not divisible by 0.1, so for example, a/W =
If 2 and 7 are obtained, a/W = 0,
2 and a/W = 0, 3 When the master curve before and after the crack length a/W is obtained, the potential difference ratio V/V between the terminals with a crack.

を代入してき裂位置L1とL2を求め、その平均値L=
(L1+L、)/2をき裂位置とするものである。別の
方法としては同じくき裂のある端子間の電位差比V L
 / V Oとき裂位置りとの関係をき裂長さa / 
W = 0 、1  きざみで作成して、両者の関係を
n次近似し、コンピュータ8の記憶回路に記憶させてお
き、測定された電位差から第13図に示したマスターカ
ーブによりVlとv2、及びV。
Find the crack positions L1 and L2 by substituting , and the average value L=
The crack position is (L1+L,)/2. Another method is to calculate the potential difference ratio V L between terminals with cracks.
/ VO and the relationship between crack position and crack length a /
W = 0, 1 increments, the relationship between the two is approximated to the nth order, and stored in the memory circuit of the computer 8. From the measured potential difference, Vl, v2, and V.

からき裂長さa/Wを決定する。得られたa / Wに
対応する電位差比v1/v0とき裂位置りとの関係を前
記a / W = 0 、1  きざみで作成された両
者の関係から作成する。即ち、例えば第15図に示した
ようにL=2.5mm毎に電位差比V工/V、とき裂長
さa/Wの関係をn次近似して得られたき裂長さa/W
に対する電位差比V、/V、を求め、改めてき裂長さa
/Wに対する電位差比Vt/v。
Determine the crack length a/W from The relationship between the potential difference ratio v1/v0 corresponding to the obtained a/W and the crack position is created from the relationship between the two created at a/W = 0 and 1 increments. That is, as shown in FIG. 15, for example, the crack length a/W obtained by approximating the relationship between the potential difference ratio V/V and the crack length a/W every L=2.5 mm is nth order.
Find the potential difference ratio V, /V, and calculate the crack length a again.
/W to potential difference ratio Vt/v.

とき裂位置りとの関係をn次近似して、その関係に測定
された電位差V、/V、を代入することにより端子間に
おけるき裂位置を判定する。裏面き裂の場合にも第15
図のようなマスターカーブを作成すればき裂位置を判定
することができる。
The crack position between the terminals is determined by approximating the relationship between the time and the crack position to an n-th order approximation and substituting the measured potential difference V, /V into the relationship. No. 15 also applies in the case of cracks on the back side.
The crack location can be determined by creating a master curve as shown in the figure.

き裂位置の判定法としてき裂のある端子間の閘隣の端子
間の電位差を使うこともできる。即ち、き裂から遠い方
の隣の端子間の電位差v3とき裂に近い方の端子間の電
位差v2の差の基準電位差voに対する比V ’a  
V Z / V a と端子間のき裂位置りとの関係は
第16図に示すようになるので、v a  v −/ 
v n と端子間のき電位PILとの関係をn次近似し
て、コンピュータ8の記憶回路に記憶させておき、前記
電位差比V 1/ V aを用いる方法と同じ方法によ
り端子間におけるき電位[1,を判定するものである。
As a method for determining the location of a crack, it is also possible to use the potential difference between terminals adjacent to each other with a crack. That is, the ratio V'a of the difference between the potential difference v3 between the adjacent terminals farther from the crack and the potential difference v2 between the terminals closer to the crack to the reference potential difference vo.
The relationship between V Z / Va and the crack position between the terminals is shown in Figure 16, so v a v −/
The relationship between v n and the potential PIL between the terminals is approximated to the nth order and stored in the storage circuit of the computer 8, and the potential between the terminals is determined by the same method as using the potential difference ratio V 1/V a. [1, is determined.

第15図と第16図を比穀すれば分かるようにき裂位置
に対する電位差比の変化は第16図のv3とv2 を用
いる方が大きく、精度が良い。
As can be seen by comparing FIG. 15 and FIG. 16, the change in the potential difference ratio with respect to the crack position is larger when v3 and v2 in FIG. 16 are used, and the accuracy is better.

裏面き裂については表面き裂の場合とは反対にき裂に近
い方の端子間の電位差v2とき裂から遠い方の隣の端子
間の電位差v3との差を利用する。
Contrary to the case of surface cracks, for rear cracks, the difference between the potential difference v2 between the terminals closer to the crack and the potential difference v3 between the adjacent terminals farther from the crack is used.

第17図に電位差比V z −V 3 / V o と
端子間のき裂位置りとの関係を示す。両者の関係は表面
き裂の場合と異なり、はぼ比例関係にあるようである。
FIG. 17 shows the relationship between the potential difference ratio V z −V 3 /V o and the crack position between the terminals. The relationship between the two is different from that for surface cracks, and appears to be approximately proportional.

次に、表面き裂と裏面き裂の判定法について示す。第7
図、および第8図に示したように電位差分布は表面き裂
と裏面き裂では全く異なった変化をする。測定端子を走
査した場合表面き裂では電位差は基準電位差から一旦減
少した後、急激に増加して、再び漸減して極小値をとり
、変化は反転する。一方、裏面き裂の場合には電位差は
単調に増加して極大値を示して、再び単調に減少する。
Next, a method for determining surface cracks and back surface cracks will be described. 7th
As shown in the figure and FIG. 8, the potential difference distribution changes completely differently between the surface crack and the back surface crack. When the measurement terminal is scanned, the potential difference at a surface crack once decreases from the reference potential difference, then rapidly increases, then gradually decreases again to reach a minimum value, and the change is reversed. On the other hand, in the case of a backside crack, the potential difference monotonically increases, reaches a maximum value, and then monotonically decreases again.

従ってき裂のある端子間の電位差v1は常に基準電位差
v0よりも大きいのに対して、き裂のある端子間の両隣
の端子間の電位差v2 と■3は表面き裂と裏面き裂で
異なり、表面き裂ではv2とv3は両方ともに基準電位
差v0 よりも小さく。
Therefore, the potential difference v1 between the terminals with a crack is always larger than the reference potential difference v0, whereas the potential difference v2 and ■3 between the terminals on both sides of the terminal with a crack are different depending on the surface crack and the back surface crack. , for surface cracks, both v2 and v3 are smaller than the reference potential difference v0.

反対に裏面き裂ではv2とv3は両方ともに基準電位差
v0よりも大きい、従って、v2とV、の和を求めると
、表面き裂では基準電位差の2倍よりも小さく、裏面き
裂では基準電位差の2倍よりも大きいことになるので、
v2 とvつの和によって表面き裂か裏面き裂かの判定
が可能である。
On the other hand, in the case of a crack on the back side, both v2 and v3 are larger than the reference potential difference v0. Therefore, when calculating the sum of v2 and V, the sum of v2 and V is smaller than twice the reference potential difference for a crack on the back side, and the reference potential difference for a crack on the back side. Since it is larger than twice the
It is possible to determine whether it is a surface crack or a back surface crack by the sum of v2 and v.

v2とv3の判別は表面き裂ではv2がV、よりも小さ
いこと、裏面き裂ではv2がv3よりも太きことから判
別できる。
Discrimination between v2 and v3 can be made based on the fact that v2 is smaller than V in the case of a surface crack, and that v2 is thicker than v3 in the case of a back surface crack.

また、基準電位差v0については全端子間の電位差のう
ち、き裂のある端子間の電位差V□、き裂の両隣の端子
間の電位v2とv3を除いたものの平均から求めるもの
とする。
Further, the reference potential difference v0 is determined from the average of all the potential differences between the terminals, excluding the potential difference V□ between the terminals with the crack and the potentials v2 and v3 between the terminals on both sides of the crack.

実際の判別は次のようにする。まず、測定された全端子
間の電位差のうち、最大の電位差を求め、それをき裂の
ある端子間の電位差v1とする0次に、全端子間の電位
差のうち、き裂のある端子間の電位差v1とその両隣の
端子間の電位差v2と■、を除いたものの平均値で基準
電位差v0 を求める。電位差比V 1/ V oを求
めて、それが例えば1.02以上であればき裂があると
判断して、前述の方法に従って表面き裂か裏面き裂かの
判別をき裂のある端子間の両隣の端子間の電位差の和V
、 + V、が基準電位差の2倍以上か以下で行う。
The actual determination is as follows. First, find the maximum potential difference among all the measured potential differences between all the terminals, and set it as the potential difference v1 between the cracked terminals. The reference potential difference v0 is determined by the average value of the potential difference v1 between the two terminals and the potential difference v2 between the terminals on both sides thereof, excluding the potential difference v2 and . The potential difference ratio V 1/V o is determined, and if it is, for example, 1.02 or more, it is determined that there is a crack, and the terminal with the crack is determined to be a surface crack or a back surface crack according to the method described above. The sum of the potential differences between adjacent terminals V
, +V, is more than twice or less than the reference potential difference.

次に、き裂のある端子間の電位差比V 1 / v o
を表面き裂あるいは裏面き裂の電位差V工/V、とき裂
長さa/Wのマスターカーブに代入して、き裂長さa/
Wを求める。表面き裂であればき裂のある端子間の両隣
の端子間の電位差V、 、 V、から電位差比V、−V
、/V、を求め5種々のき裂長さに対するVa−V、/
V、と端子間のき9位!Lとの関係のマスターカーブを
用いてき裂長さa / Wに対応するマスターカーブを
作成し、そのマスターカーブに代入して端子間における
き9位[Lを求め、裏面き裂であればき裂のある端子間
の両隣の端子間の電位差v2、■3 から電位差比V2
− V。
Next, the potential difference ratio between the cracked terminals V 1 / v o
By substituting into the master curve of the surface crack or back surface crack potential difference V/V and the crack length a/W, the crack length a/W is obtained.
Find W. If there is a surface crack, the potential difference ratio V, -V is obtained from the potential difference V, , V, between the terminals with the crack and the terminals on both sides.
, /V, and 5 Va-V for various crack lengths, /
9th place between V and terminal! Create a master curve corresponding to the crack length a/W using the master curve of the relationship between From the potential difference v2 between a certain terminal and the terminals on both sides, ■3, the potential difference ratio V2 is obtained.
-V.

/vo を求め、V2−V、/V、 と端子間のき9位
11Lとの関係をマスターカーブを用いて前記と同じ方
法により端子間におけるき裂位置りを求めるものである
/vo is determined, and the crack position between the terminals is determined using the same method as described above using a master curve to determine the relationship between V2-V, /V, and the gap 9th position 11L between the terminals.

これらの電位差測定、最大電位差v1の判別、V、 、
V、による表面き裂、裏面き裂の判別、き裂長さの決定
、種々のき裂長さに対するV3−V。
Measurement of these potential differences, determination of the maximum potential difference v1, V, ,
Discrimination of surface cracks and back surface cracks by V, determination of crack length, V3-V for various crack lengths.

/V、あるいはv、、−■、/v0 と端子間のき裂位
置りとの関係のマスターカーブを用いてき裂長さa/W
に対応するマスターカーブを作成し、そのマスターカー
ブによる端子間におけるき裂位置の決定の一連の作業は
全て第1図に示したコンピュータ9により行われる。従
って電位差比とき裂長さの関係のマスターカーブ、及び
種々のき裂長さに対するv z  v −/ v o 
あるいはV、−V、/V。
Using the master curve of the relationship between /V, or v, -■, /v0 and the crack position between terminals, the crack length a/W is calculated.
A series of operations of creating a master curve corresponding to the above and determining the crack position between the terminals using the master curve are all performed by the computer 9 shown in FIG. Therefore, the master curve of the relationship between potential difference ratio and crack length, and v z v −/vo for various crack lengths.
Or V, -V, /V.

と端子間のき9位flLとの関係のマスターカーブは予
めコンピュータ9の内部記憶装置に入力しておくか、あ
るいはプログラムの中に包含させておく、また、直流電
源1から供給される直流電流の極性を反転するスイッチ
ング装置2の制御もコンピュータ8により行われる。
A master curve for the relationship between the 9th position flL between The computer 8 also controls the switching device 2 for reversing the polarity of the signal.

次に、第1図の測定システムを用いて板[20I、板厚
8I、長さ400+mの板状試験片にき裂を模擬したス
リットを入れて、前記の方法の検証を実施した。用いた
材料はステンレス鋼5US304、炭素鋼5S41、お
よび電気鋼の3種類である。測定結果を第18図から第
21図に示す。
Next, using the measurement system shown in FIG. 1, a slit simulating a crack was made in a plate-shaped test piece of plate [20I, thickness 8I, length 400+m], and the above method was verified. Three types of materials were used: stainless steel 5US304, carbon steel 5S41, and electrical steel. The measurement results are shown in FIGS. 18 to 21.

第18図は表面き裂の場合の測定されたき裂長さと実際
のき裂長さの対応を示したものである。両者は非常に良
く一致することが分かる。測定精度はa/Wで±0.0
5程度であり、a / W = 0.05という浅いき
裂でも十分な精度で検出できる。第19図は測定端子間
におけるき裂位置の測定値と実際の値との比較である。
FIG. 18 shows the correspondence between the measured crack length and the actual crack length in the case of a surface crack. It can be seen that the two agree very well. Measurement accuracy is ±0.0 in a/W
5, and even shallow cracks of a/W = 0.05 can be detected with sufficient accuracy. FIG. 19 is a comparison between the measured value and the actual value of the crack position between the measurement terminals.

測定精度は±I閏程度であり、端子間距離20mnから
みると良い精度である。第20図と第21図は裏面き裂
の場合である6き裂長さの精度は表面き裂と同等である
が、き裂位置精度はやや低下する。このように本方法に
よれば測定端子を多数並べておくだけで表面き裂と裏面
き裂の判別ができ、き裂長さとき裂位置を精度良く検出
できる。
The measurement accuracy is on the order of ±I leap, which is good considering the distance between the terminals of 20 mm. Figures 20 and 21 show the case of a backside crack.6 The accuracy of the crack length is the same as that of the front side crack, but the crack position accuracy is slightly lower. In this way, according to this method, it is possible to distinguish between surface cracks and back surface cracks simply by arranging a large number of measurement terminals, and the crack length and crack position can be detected with high accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば測定端子を走査しなくとも、測定端子を
多数波べておき、それらの端子間の電位差を比較演算す
ることにより表面き裂と裏面き裂の判別ができ、き裂長
さとき裂位置を精度良く検出できるので、オンラインで
き裂を検出できるという効果がある。
According to the present invention, surface cracks and back surface cracks can be determined by arranging a large number of measurement terminals and calculating the potential difference between them without scanning the measurement terminals. Since the fissure position can be detected with high accuracy, there is an effect that the fissure can be detected online.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第21図は本発明のき裂検出方法の説明図で
、第1図はマルチターミナルポテンシャル法による貫通
き裂の検出装置のブロック図、第2図(a)〜(c)は
片側貫通き裂を有する部材の有限要素法解析による等電
位線図、第3図(a)。 (b)は表面き裂と裏面き裂の定義を示す図、第4図は
き裂を端子間の中央においたときの表面き裂の場合の電
位差比とき裂長さの関係図、第5図はき裂を端子間の中
央においたときの裏面き裂の場合の電位差比とき裂長さ
の関係図、第6図(a)〜(d)はき製粒!Lの定義を
示す図、第7図は表面き裂について測定端子を走査した
ときの電位差の変化を示す図、第8図は裏面き裂につい
て測定端子を走査とだときの電位差の変化を示す図、第
9図(a)〜(Q)は測定端子を走査したときの電位差
の変化を説明する図、第10図(a)〜(c)はマルチ
ターミナルポテンシャル法の基本原理を示す図、第11
図及び第12図はそれぞれ表面き裂と裏面き裂における
き裂のある端子間の両隣の端子間の電位差の和から基準
電位差を引いた電位差とき裂位置との関係を示す図、第
13図と第14図はそれぞれ表面き裂と裏面き裂におけ
るき裂のある端子間の両隣の端子間の電位差の和から基
準電位差を引いた電位差とき裂長さとの関係を示す図、
第15図はき裂のある端子間の電位差比とき裂位置との
関係を示す図、第16図は表面き裂におけるき裂のある
端子間の隣のき裂から遠い方の端子間の電位差からき裂
に近い方の端子間の電位差を引いた電位差と基準電位差
との比とき裂位置との関係を示す図、第17図は裏面き
裂におけるき裂のある端子間の隣のき裂に近い方の端子
間の電位差からき裂から遠い方の端子間の電位差を引い
た電位差と基準電位差との比とき裂位置との関係を示す
図、第18図は表面き裂におけるき裂長さの測定値と実
際のき裂長さの比較を示す図、第19図はき裂位置の測
定値と実際の位置との比較を示す図、第20図は裏面き
裂におけるき裂長さの測定値と実際のき裂長さの比較を
示す図、第21図はき裂位置の測定値と実際の位置との
比較を示す図である。 1・・・直流安定化電源、2・・・スイチツング装置、
3・・・給電端子、4・・・測定端子、5・・・被測定
部材、6・・・微小電位差計、7・・・インターフェー
ス、8・・・コンピュータ、9・・・X−Yプロッター
、1o・・・き裂。 tZ図 4/1す、2 It/f区1.4 f 3 図 電、/i遁比(V〆ろ) 電佐4比成 tJp差1 電位差7 電住疾   陥−b 唯1ニイ9ン」蛙と一一ニ レイナシ2−VI/ンシ電
4文差上乙    区−皓−ん抄 冨 75 図 =裂装置L(/77t/WL) 第1乙図 巴裂装置L(侃処ン 石!7図 工  裂 イ立 IL(りη/?7t)藁/g 図 罵 /9 図
Figures 1 to 21 are explanatory diagrams of the crack detection method of the present invention, Figure 1 is a block diagram of a through crack detection device using the multi-terminal potential method, and Figures 2 (a) to (c) are FIG. 3(a) is an equipotential diagram obtained by finite element analysis of a member having a one-sided through crack. (b) is a diagram showing the definition of surface cracks and back surface cracks, Figure 4 is a diagram showing the relationship between potential difference ratio and crack length in the case of a surface crack when the crack is placed in the center between terminals, and Figure 5 Figure 6 (a) to (d) shows the relationship between the potential difference ratio and the crack length in the case of a crack on the back surface when the crack is placed in the center between the terminals. A diagram showing the definition of L, Figure 7 is a diagram showing the change in potential difference when scanning the measurement terminal for a surface crack, and Figure 8 is a diagram showing the change in potential difference when scanning the measurement terminal for a rear surface crack. Figures 9 (a) to (Q) are diagrams explaining changes in potential difference when scanning the measurement terminals, Figures 10 (a) to (c) are diagrams illustrating the basic principle of the multi-terminal potential method, 11th
12 and 12 are diagrams showing the relationship between the potential difference obtained by subtracting the reference potential difference from the sum of the potential differences between the terminals with the crack and the terminals on both sides of the terminal with the crack, respectively, and the crack position in the case of surface cracks and back surface cracks, respectively. and FIG. 14 are diagrams showing the relationship between the potential difference obtained by subtracting the reference potential difference from the sum of the potential differences between the terminals with the crack and the terminals on both sides of the terminal with the crack and the crack length in the case of surface cracks and back surface cracks, respectively.
Figure 15 is a diagram showing the relationship between the potential difference ratio between cracked terminals and the crack position, and Figure 16 is a diagram showing the potential difference between terminals with a crack in a surface crack between terminals that are far from the adjacent crack. Figure 17 shows the relationship between the ratio of the potential difference obtained by subtracting the potential difference between the terminals closer to the crack and the reference potential difference and the crack position. A diagram showing the relationship between the ratio of the potential difference obtained by subtracting the potential difference between the terminals far from the crack from the potential difference between the terminals nearer to the reference potential difference and the crack position. Figure 18 shows the relationship between the crack position and the measurement of the crack length in a surface crack. Figure 19 is a diagram showing a comparison between the measured value and the actual crack length, Figure 20 is a diagram showing the comparison between the measured value and the actual crack position, and Figure 20 is the comparison between the measured value and the actual crack length for a crack on the back side. FIG. 21 is a diagram showing a comparison between the measured value of the crack position and the actual position. 1... DC stabilized power supply, 2... Switching device,
3... Power supply terminal, 4... Measurement terminal, 5... Member to be measured, 6... Minute potentiometer, 7... Interface, 8... Computer, 9... X-Y plotter , 1o...Crack. tZ figure 4/1su, 2 It/f section 1.4 f 3 Zuden, /i ton ratio (V〆ro) Densa 4 ratio tJp difference 1 Potential difference 7 Denshu disease fall-b only 1 Nii 9n ” Frog and 11-ni Reinashi 2-VI/Nshiden 4 sentence difference 75 Figure = Ripping device L (/77t/WL) Figure 1 Parting device L (Kanjo stone !7 Art Crafts I Stand IL (riη/?7t) Straw/g Figure Abusive /9 Figure

Claims (1)

【特許請求の範囲】 1、部材表面に相互に離間した1組の給電端子対により
直流電流を印加し、該給電端子対の間において電位差測
定端子対を設けて電位差を測定し、該電位差から欠陥の
形状を検出する方法において、測定端子を等間隔で複数
個設け、測定端子間の電位差を比較演算することにより
、電位差が最大である端子間とはその両隣の端子間の電
位差を除いた全電位差の平均値を求め、該平均値を基準
電位差とし、前記最大の電位差の基準電位差に対する比
が限界値より大きければその端子間にき裂が存在し、き
裂が表面き裂か裏面き裂かはき裂の存在する端子間の両
隣の端子間の電位差の和で判定し、端子間におけるき裂
の位置は表面き裂の場合、電位差の最小の端子間寄りに
き裂が存在すると判断し、裏面き裂の場合、電位差の大
きい方の端子間寄りにき裂が存在すると判断すると共に
、前記基準電位差と、き裂のある端子間の電位差と、き
裂の両隣の端子間の電位差とからき裂長さとき裂発生位
置を検出することを特徴とするき裂検出法。 2、特許請求の範囲第1項記載の方法において測定端子
の間隔を部材の板幅と等しくしたことを特徴とするき裂
検出法。 3、特許請求の範囲第1項記載の方法において給電端子
を両端の測定端子から少なくとも部材の板幅の2倍離し
たことを特徴とするき裂検出法。 4、特許請求の範囲第1項記載の方法においてき裂のあ
る端子間の電位差にき裂に近い隣の端子間の電位差を加
算し、更にそれから基準電位差を引算した電位差の基準
電位差に対する電位差比によりき裂深さを検出すること
を特徴とするき裂検出法。 5、特許請求の範囲第1項の方法においてき裂のある端
子間の両隣の端子間の電位差の和が基準電位差の2倍以
下であればき裂は端子を設けた面と同じ面上に存在し、
2倍以上であればき裂は端子を設けた面と反対側の面上
に存在すると判定することを特徴とするき裂検出法。 6、特許請求の範囲第1項記載の方法において予め有限
要素法により電場を解析して求められた電位差分布を基
にして得られたき裂のある端子間の電位差と端子間にお
けるき裂位置との関係により端子間におけるき裂位置を
決定することを特徴とするき裂検出法。 7、特許請求の範囲第6項記載の方法においてき裂のあ
る端子間の電位差比とき裂位置との関係をき裂長さの部
材の板幅に対する比を0.1きざみで作成して、両者の
関係をn次近似し、得られたき裂長さの部材の板幅に対
する比の前後の関係を用いてき裂位置を求め、それらの
平均を端子間におけるき裂位置と判定することを特徴と
するき裂検出法。 8、特許請求の範囲第6項記載の方法においてき裂のあ
る端子間の電位差比とき裂位置との関係をき裂長さの部
材の板幅に対する比を0.1きざみで作成して、両者の
関係をn次近似しておき、得られたき裂長さの部材の板
幅に対する比に対応する電位差比とき裂位置との関係を
前記0.1きざみで作成された両者の関係から作成し、
その関係にき裂にある端子間の電位差を代入することに
より端子間におけるき裂位置を判定することを特徴とす
るき裂検出法。 9、特許請求の範囲第1項記載の方法において予め有限
要素法により電場を解析して求められた電位差分布を基
にして得られたき裂のある端子間の両隣の電位差のうち
き裂に近い端子間の電位差とき裂から遠い端子間の電位
差の差と端子間におけるき裂位置との関係により端子間
におけるき裂位置を決定することを特徴とするき裂検出
法。 10、特許請求の範囲第9項記載の方法においてき裂の
ある端子間の両隣の電位差のうちき裂に近い端子間の電
位差とき裂から遠い端子間の電位差の差と端子間におけ
るき裂位置との関係をき裂長さの部材の板幅に対する比
が0.1きざみで作成して、両者の関係をn次近似して
おき、得られたき裂長さの部材の板幅に対する比の前後
の関係を用いてき裂位置を求め、それらの平均を端子間
におけるき裂位置と判定することを特徴とするき裂検出
法。 11、特許請求の範囲第9項記載の方法においてき裂の
ある端子間の両隣の電位差のうちき裂に近い端子間の電
位差とき裂から遠い端子間の電位差の差と端子間におけ
るき裂位置との関係をき裂長さの部材の板幅に対する比
が0.1きざみで作成して、両者の関係をn次近似して
おき、得られたき裂長さの部材の板幅に対する比に対応
する電位差比とき裂位置との関係を前記0.1きざみで
作成された両者の関係から作成し、その関係にき裂のあ
る端子間の両隣電位差を代入することにより端子間にお
けるき裂位置を判定することを特徴とするき裂検出法。
[Claims] 1. Apply direct current to the surface of the member through a pair of power supply terminals spaced apart from each other, and measure the potential difference by providing a pair of potential difference measuring terminals between the pair of power supply terminals, and measure the potential difference from the potential difference. In the method of detecting the shape of a defect, multiple measurement terminals are provided at equal intervals and the potential difference between the measurement terminals is compared and calculated, and the potential difference between the terminals with the maximum potential difference is excluded from the potential difference between the terminals on both sides. The average value of all potential differences is determined, and the average value is used as a reference potential difference. If the ratio of the maximum potential difference to the reference potential difference is larger than the limit value, a crack exists between the terminals, and the crack is a surface crack or a back surface crack. The presence of a crack is determined by the sum of the potential differences between the terminals on both sides of the terminal where the crack exists.If the crack is a surface crack, the location of the crack between the terminals is determined by the sum of the potential differences between the terminals where the potential difference is the smallest. In the case of a crack on the back side, it is determined that the crack exists between the terminals with a larger potential difference, and the reference potential difference, the potential difference between the terminals with the crack, and the terminals on both sides of the crack are determined. A crack detection method characterized by detecting the crack length and crack initiation position from the potential difference. 2. A crack detection method according to claim 1, characterized in that the distance between the measurement terminals is made equal to the plate width of the member. 3. A crack detection method according to claim 1, characterized in that the power supply terminal is separated from the measurement terminals at both ends by at least twice the plate width of the member. 4. In the method described in claim 1, the potential difference with respect to the reference potential difference of the potential difference obtained by adding the potential difference between adjacent terminals near the crack to the potential difference between the terminals with the crack, and further subtracting the reference potential difference from the potential difference. A crack detection method characterized by detecting the crack depth based on the ratio. 5. In the method set forth in claim 1, if the sum of the potential differences between the terminals on both sides of the cracked terminal is less than twice the reference potential difference, the crack is located on the same surface as the surface on which the terminal is provided. exists,
A crack detection method characterized by determining that a crack exists on a surface opposite to a surface on which a terminal is provided if the difference is twice or more. 6. The potential difference between the terminals with a crack and the position of the crack between the terminals obtained based on the potential difference distribution obtained by analyzing the electric field in advance by the finite element method in the method described in claim 1. A crack detection method characterized by determining the crack position between terminals based on the relationship. 7. In the method described in claim 6, the relationship between the potential difference ratio between cracked terminals and the crack position is determined by creating a ratio of the crack length to the plate width of the member in steps of 0.1. The relationship is approximated to the nth order, the crack position is determined using the relationship between the ratio of the obtained crack length to the plate width of the member, and the average of these is determined to be the crack position between the terminals. Crack detection method. 8. In the method described in claim 6, the relationship between the potential difference ratio between cracked terminals and the crack position is determined by creating a ratio of the crack length to the plate width of the member in 0.1 increments, and comparing both. The relationship is approximated to the n-th order, and the relationship between the potential difference ratio corresponding to the ratio of the obtained crack length to the plate width of the member and the crack position is created from the relationship between the two created in steps of 0.1,
A crack detection method characterized by determining the position of a crack between terminals by substituting the potential difference between the terminals in the crack into the relationship. 9. Among the potential differences on both sides between terminals with a crack, which are obtained based on the potential difference distribution obtained by analyzing the electric field in advance by the finite element method in the method described in claim 1, the potential difference is close to the crack. A crack detection method characterized by determining a crack position between terminals based on the relationship between the potential difference between the terminals, the potential difference between terminals far from the crack, and the crack position between the terminals. 10. In the method described in claim 9, among the potential differences on both sides between terminals with a crack, the difference between the potential difference between the terminals close to the crack and the potential difference between the terminals far from the crack, and the crack position between the terminals The relationship between the crack length and the plate width of the member is created in increments of 0.1, and the relationship between the two is approximated to the nth order. A crack detection method characterized by determining the crack position using a relationship and determining the average of the crack positions as the crack position between terminals. 11. In the method described in claim 9, among the potential differences on both sides between terminals with a crack, the difference between the potential difference between the terminals close to the crack and the potential difference between the terminals far from the crack, and the crack position between the terminals The relationship between the crack length and the plate width of the member is created in increments of 0.1, the relationship between the two is approximated to the nth order, and the relationship corresponds to the ratio of the obtained crack length to the plate width of the member. The relationship between the potential difference ratio and the crack position is created from the relationship created in steps of 0.1, and the crack position between the terminals is determined by substituting the potential difference on both sides between the terminals with the crack into that relationship. A crack detection method characterized by:
JP16757685A 1985-07-31 1985-07-31 Detection of crack Granted JPS6228654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16757685A JPS6228654A (en) 1985-07-31 1985-07-31 Detection of crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16757685A JPS6228654A (en) 1985-07-31 1985-07-31 Detection of crack

Publications (2)

Publication Number Publication Date
JPS6228654A true JPS6228654A (en) 1987-02-06
JPH0545142B2 JPH0545142B2 (en) 1993-07-08

Family

ID=15852304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16757685A Granted JPS6228654A (en) 1985-07-31 1985-07-31 Detection of crack

Country Status (1)

Country Link
JP (1) JPS6228654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217304A (en) * 1991-08-02 1993-06-08 The United States Of America As Represented By The United States Department Of Energy Electrical network method for the thermal or structural characterization of a conducting material sample or structure
WO2010073167A1 (en) 2008-12-25 2010-07-01 Tofas Turk Otomobil Fabrikasi Anonim Sirketi Electrical warning system for a robotic arm
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217304A (en) * 1991-08-02 1993-06-08 The United States Of America As Represented By The United States Department Of Energy Electrical network method for the thermal or structural characterization of a conducting material sample or structure
WO2010073167A1 (en) 2008-12-25 2010-07-01 Tofas Turk Otomobil Fabrikasi Anonim Sirketi Electrical warning system for a robotic arm
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device

Also Published As

Publication number Publication date
JPH0545142B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
JPH0514224B2 (en)
JP4904489B2 (en) Damage detection apparatus and damage detection method
KR20080008689A (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
Kumar et al. Evaluation of welding skill using probability density distributions and neural network analysis
EP1965206A1 (en) Corrosion evaluation device, and corrosion evaluation method
JPS6228654A (en) Detection of crack
JP2006200992A (en) Circuit pattern inspection device and its method
JP4822545B2 (en) Nugget diameter measuring method and nugget diameter measuring apparatus
CN111398409A (en) Underwater conductive metal material crack section reconstruction method based on alternating current electromagnetic field
CN112964212B (en) Method for checking coating thickness by using coating thickness detector
EP3748346B1 (en) Method for non-destructively examining an anode of an aluminium electrolysis cell
RU2171469C1 (en) Technology of nondestructive test of quality of object and gear for its implementation
JP4568623B2 (en) Short detection device
JPS643071Y2 (en)
JPH04551B2 (en)
JP2879065B2 (en) Method and apparatus for detecting short circuit between electrodes
JPS5841341A (en) Detection of crack
JP3950713B2 (en) Circuit wiring inspection method and apparatus
JPS61237045A (en) Defect detector
JPS58196450A (en) Detection of crack shape
KR200227179Y1 (en) Right Angle Bend Crack Detector
JPH0470561A (en) Method and apparatus for detecting heterogeneous layer in metal
JPH0244019B2 (en)
JPH028257B2 (en)
JPS61292546A (en) Detection for shape of surface crack