JPS5841341A - Detection of crack - Google Patents

Detection of crack

Info

Publication number
JPS5841341A
JPS5841341A JP13849181A JP13849181A JPS5841341A JP S5841341 A JPS5841341 A JP S5841341A JP 13849181 A JP13849181 A JP 13849181A JP 13849181 A JP13849181 A JP 13849181A JP S5841341 A JPS5841341 A JP S5841341A
Authority
JP
Japan
Prior art keywords
crack
potential difference
terminals
length
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13849181A
Other languages
Japanese (ja)
Inventor
Makoto Hayashi
林 眞琴
Shinji Sakata
信二 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13849181A priority Critical patent/JPS5841341A/en
Publication of JPS5841341A publication Critical patent/JPS5841341A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To detect the location of a crack and its length with high precision and easiness by providing a wiring of many lead wires at the periphery of a member where crack is liable to occur and measuring the potential differences in the lead wires and judging by comparing those differences. CONSTITUTION:In order to measure a potential V0 that becomes a reference two measurement terminals 4 are provided with a distance l between them at a part where a crack is not likely to occur, and many measurement terminals 5 are provided with a distance l among them at a part where the crack is liable to occur. A DC current is made to flow in an entire construction member 1 from a DC current source 3 through current supply terminals 2. When a crack 13 is formed in the member 1, a potential difference V that is measured by a minute current voltmeter 14 becomes larger than the potential difference V0. The potential difference V is affected by the measurement terminal distance l and the current supply terinal distance l0, but if l0 becomes large, the effect disapeears. The accuracy of measurement of the length of a crack a/W becomes hiher as the ratio of the potential difference V/V0 becomes larger. Because many wires are required as V/V0 becomes large, the l is made 1-2 times the width W of a plate.

Description

【発明の詳細な説明】 本発明は構造部材に発生したき裂を検出する方法に係り
、特にき裂位置とき裂長さを精度良く測定するのに好適
な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting a crack generated in a structural member, and particularly to a method suitable for accurately measuring the position and length of a crack.

直流ポテンシャル法によるき裂長さ検出の測定原理は導
電体中に不連続部分が存在することによって電場が乱さ
れることに起因しており、測定される電位差は被測定試
料の太きさや、不連続部分の形状に依存する。従ってき
裂長さaまたは板幅Wで無次元化したき裂長さa/Wに
対する電位差V或いはき裂がないときの電位差■。を基
準にした電位差比■/■oのマスターカーブを作成して
おけば電位差測定によりき裂長さを測定できる。
The measurement principle of crack length detection using the DC potential method is that the electric field is disturbed by the presence of discontinuities in the conductor, and the measured potential difference depends on the thickness of the sample to be measured and the discontinuity. Depends on the shape of the continuous part. Therefore, the potential difference V with respect to the crack length a or the crack length a/W made dimensionless by the plate width W, or the potential difference ■ when there is no crack. If a master curve of the potential difference ratio ■/■o is created based on , the crack length can be measured by measuring the potential difference.

このV/Voとa/Wの関係は5US304のような特
殊な材料を除けば材質や部材の厚さとは無関係であり、
部材の形状とき裂の形状及び電流入力位置と電位差測定
位置に依存する。
This relationship between V/Vo and a/W has nothing to do with the material or thickness of the member, except for special materials such as 5US304.
It depends on the shape of the member, the shape of the crack, the current input position and the potential difference measurement position.

従来の直流ポテンシャル法によるき裂長さ検出法におい
ては、き裂が測定端子間の中央にある場合を想定し、更
に端子を設けた面上にき裂があることを前提としている
。従って、き裂が端子間の中央にない場合には、き裂長
さを精度良く測れない、或いはき裂が端子を設けた面上
にあるか否かの判定ができないなどの欠点があった。
In the conventional crack length detection method using the DC potential method, it is assumed that the crack is located in the center between the measurement terminals, and it is also assumed that the crack exists on the surface where the terminals are provided. Therefore, if the crack is not located in the center between the terminals, there are drawbacks such as the inability to accurately measure the crack length or the inability to determine whether or not the crack is on the surface where the terminals are provided.

本発明の目的は、構造部材に発生したき裂の位置と長さ
を精度良く検出し得るき裂検出方法を提供することにあ
る。
An object of the present invention is to provide a crack detection method that can accurately detect the position and length of a crack that has occurred in a structural member.

本発明者等は、き裂測定用の端子間におけるき裂位置を
種々変えて電位差を測定した結果、き裂が端子間の中央
から端子に近づくと共に電位差が増加し、逆に隣の端子
間の電位差は減少すること及びき裂が端子を設けた面と
反対側の面にある場合にはき裂と向い合う端子間の電位
差は増加し、隣の端子間の電位差も増加することを突き
とめたもので、端子間の電位差を比較することによって
き裂発生位置を決定し、き裂が端子を設けた面と同じ面
にあるか否かを判断し、更にき裂長さを精度良く測り得
るようにしたことを特徴とするものである。
As a result of measuring the potential difference by changing the crack position between the terminals for crack measurement, the inventors found that as the crack approaches the terminal from the center between the terminals, the potential difference increases, and conversely, the potential difference between the adjacent terminals increases. It was found that the potential difference between terminals decreases, and that if the crack is on the opposite side to the surface where the terminal is provided, the potential difference between the terminals facing the crack increases, and the potential difference between adjacent terminals also increases. The location of the crack is determined by comparing the potential difference between the terminals, determining whether the crack is on the same surface as the terminal, and then measuring the length of the crack with precision. It is characterized by the fact that it can be obtained.

以下、本発明の一実施例を図面を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は構造部材のき裂検出装置である。き裂が発生す
る恐れのある部分とき裂が発生する恐れのない部分を含
む構造部材1全体に給電端子2を介して直流電源3から
直流電流を流す。基準となる電位差V。を測るためき裂
の発生する恐れのない部分に間隔tをおいて測定端子4
を設ける。き裂発生の恐れのある部分には等間隔tをお
いて多数の測定端子5を設ける。ここでは3箇所の電位
差を測る例を示した。各測定端子間の電位差■。。
FIG. 1 shows an apparatus for detecting cracks in structural members. A direct current is passed from a direct current power supply 3 through a power supply terminal 2 to the entire structural member 1 including a portion where a crack is likely to occur and a portion where there is no risk of cracking. Reference potential difference V. In order to measure the
will be established. A large number of measurement terminals 5 are provided at equal intervals t in areas where cracks are likely to occur. Here, an example of measuring potential differences at three locations was shown. ■Potential difference between each measurement terminal. .

V、、V2.V3はスキャナー6でコンピューター11
の指示により順次切替られて、Dパスフィルター7、プ
リアンプ8、アンプ9を通って増幅され、AD変換器1
0でディジタル化されてコンピューター11へ入力され
る。コンピューター11は測定された電位差V。、V、
、V2.V3相互の演算を行って、き裂発生位置とき裂
長さa/Wを求めCFLT12画面上に表示する。
V,,V2. V3 is scanner 6 and computer 11
is sequentially switched in accordance with the instructions of
0 and is digitized and input to the computer 11. The computer 11 calculates the measured potential difference V. ,V,
, V2. Perform V3 mutual calculation to find the crack occurrence position and crack length a/W and display them on the CFLT12 screen.

第2図は直流ポテンシャル法の測定系であポ。Figure 2 shows the measurement system of the DC potential method.

構造部材1にき裂13が形成されると微小電圧計14で
測定される電位差■は、き裂がないときの電位差V。よ
り大きくなる。測定される電位差■は測定端子間距離t
と給電端子端子間距離t。の影響を受ける。toはある
程度大きくなると電位差Vには影響しなくなる。き裂長
さa/Wの測定精度は電位差比V / V oが大きい
程良いが、tが小さい程V/V、が大きい。tを小さく
すると部材の周辺は配線だらけになるので適当な長さに
しなければならない。tとしては板幅Wの1〜2倍が良
い。
When a crack 13 is formed in the structural member 1, the potential difference ■ measured by the microvoltmeter 14 is the potential difference V when there is no crack. Become bigger. The measured potential difference ■ is the distance t between the measurement terminals.
and the distance t between the power supply terminals. be influenced by. When to becomes large to a certain extent, it no longer affects the potential difference V. The measurement accuracy of the crack length a/W is better as the potential difference ratio V/V o is larger, but the smaller t is, the larger V/V is. If t is made small, the area around the member will be full of wiring, so it must be set to an appropriate length. t is preferably 1 to 2 times the plate width W.

第3図は、銅において測定端子間距Rtを45薗とした
場合、き裂がその位置を変えたときに測定される電位差
■がどうなるかを示したものである。縦軸は電位差V1
横軸は端子間の中央からき裂までの距離りである。き裂
が端子間の中央付近にある場合には電位差Vは一定であ
るが、端子(L = 22.5 mm )に近づくと急
に増加する。このため測定された電位差Vをそのまま用
いてき裂が中央にある場合のマスターカーブによシき裂
長さを評価するとき裂長さを過大に評価することになる
。き裂が測定端子間の外に出る、即ち端子を多数設けた
場合に隣りの端子間にき裂が入ると電位差■は5特徴に
下がり、き裂がない場合の電位差■。
FIG. 3 shows what happens to the potential difference (2) measured when a crack changes its position when the distance Rt between measurement terminals in copper is set to 45 mm. The vertical axis is the potential difference V1
The horizontal axis is the distance from the center between the terminals to the crack. When the crack is located near the center between the terminals, the potential difference V is constant, but it suddenly increases as it approaches the terminals (L = 22.5 mm). For this reason, when the measured potential difference V is used as is and the crack length is evaluated based on the master curve when the crack is located at the center, the crack length will be overestimated. If a crack appears between the measurement terminals, that is, if a crack enters between adjacent terminals when a large number of terminals are provided, the potential difference (■) decreases to 5 characteristics, and the potential difference (■) when there is no crack.

より更に低い値となる。ここでき裂長さa=oranの
ときの電位差V。は435μVである。このとき隣りの
端子間の電位差は第3図から分るように、き裂がその隣
りの端子間の中央付近にあると、き裂がない場合の電位
差■。に等しい。Lが大きくなってき裂が近づいてくる
と電位差VはV。より小さくなっていく。更にLが大き
くなってt/2を越える、即ち端子間にき裂が入ってく
ると、@激に犬きくなり、中央に近づくと少し減少して
一定となる。このことよりき裂に近い2組の端子間の電
位差は互いに関連している。き裂が一方の端子間の中央
から離れて端子に近づくと、その端子間の電位差は増加
し、逆に片方の端子間の電位差は減少する。電位差の増
加と減少の傾向は良く似ている。そこでき裂のある端子
間の電位差■1とき裂に近い方の隣りの端子間の電位差
■2を足して、き裂がない離れた端子間の電位差■。を
引くと第4図に示すようにき裂の位置に拘らずほぼ一定
となる。従って(V + 十V2  VO)であればき
裂長さを精度良く検出できることになる。
The value becomes even lower. Here, the potential difference V when the crack length a=oran. is 435μV. At this time, as shown in Figure 3, the potential difference between adjacent terminals is the same as when there is no crack if the crack is near the center between the adjacent terminals. be equivalent to. As L increases and the crack approaches, the potential difference V becomes V. It becomes smaller. When L further increases and exceeds t/2, that is, when a crack enters between the terminals, it becomes sharper, and as it approaches the center, it decreases a little and becomes constant. From this, the potential differences between the two sets of terminals near the crack are related to each other. When the crack moves away from the center between one terminal and approaches the terminal, the potential difference between that terminal increases, and conversely, the potential difference between one terminal decreases. The trends of increase and decrease in potential difference are very similar. Then, add the potential difference (■1) between the terminals with the crack and the potential difference (■2) between the adjacent terminals that are closer to the crack to get the potential difference (■) between the distant terminals without the crack. When pulled, it becomes almost constant regardless of the position of the crack, as shown in Figure 4. Therefore, if (V + 10V2 VO), the crack length can be detected with high accuracy.

き裂が部材のどちら側から発生するか分らない場合もあ
る。第5図はき裂がある面とない面の両側に測定端子(
t=15m)を設けて端子間の中央にき裂をおいて測定
したときの電位差比V/v。
In some cases, it is not known which side of the component the crack will originate from. Figure 5 shows measurement terminals (
Potential difference ratio V/v when measured with a crack at the center between the terminals.

とき裂長さの関係である。き裂のある側の電位差比の方
が大きい。それゆえ単に電位差比を求めてもき裂が端子
側にあるかないかが不明の場合にはき裂長さを精確に評
価できない。き裂位置を正確に求め、き裂長さを精度良
く求めるためには第6図に示すように測定端子をき裂が
発生する部材の両側に設けねばならない。測定された電
位差からき裂があると判定された1組の向い合った端子
間の電位差の大きい方にき裂があると判断し、前述した
ようにV、、V2.Voからき裂長さを評価する。
This is the relationship between fissure length and fissure length. The potential difference ratio on the side with the crack is larger. Therefore, simply determining the potential difference ratio cannot accurately evaluate the crack length if it is unclear whether the crack is on the terminal side or not. In order to accurately determine the crack position and accurately determine the crack length, measurement terminals must be provided on both sides of the member where the crack occurs, as shown in FIG. Based on the measured potential difference, it is determined that there is a crack in the one with the larger potential difference between the pair of opposing terminals, and as described above, the crack is determined to be present in the terminal V, , V2. The crack length is evaluated from Vo.

き裂が測定端子の反対側にある場合でも測定される電位
差はき裂のある位置によって異なる。第7図は測定端子
間距離t=45mmの場合の電位差Vとき裂位置との関
係である。き裂が端子間の中央にあるとき電位差は最大
値を示し、中央から離れるにつれて減少する。隣りの端
子では逆に増えていく。そこで前述の場合と同じように
してき裂がある端子間の電位差V、と隣りの端子間の電
位差V2とき裂のない離れた端子間の電位差V。から(
v、 十V2  VO)を求めると第8図に示すように
き裂位置とは無関係にほぼ一定となる。
Even if the crack is on the opposite side of the measurement terminal, the measured potential difference differs depending on the location of the crack. FIG. 7 shows the relationship between the potential difference V and the crack position when the distance t between the measurement terminals is 45 mm. The potential difference has a maximum value when the crack is in the center between the terminals and decreases as it moves away from the center. On the contrary, it increases at the adjacent terminal. Therefore, in the same way as in the previous case, the potential difference V between terminals with a crack, the potential difference V2 between adjacent terminals, and the potential difference V between distant terminals without a crack. from(
v, 10V2 VO) is almost constant regardless of the crack position, as shown in FIG.

ここで興味深い点がある。第3図においてき裂が測定端
子を設けである面上に凍るときにはき裂のある端子間の
電位差V、はV。より大きく増加し、隣りの端子間の電
位差V2は■。より減少する。一方、第7図においてき
裂が測定端子を設けである面の反対側の面上にある場合
にはき裂と向い合う端子間の電位差V、は■。より大き
く増加し、隣りの端子間の電位差v2もV。より大きく
なることである。従って第6図に示したように部材の両
側に測定端子を設けなくとも、片側だけに設けた測定端
子間の電位差を比較することによりき裂が発生した端子
間位置とき裂長さを検出することができる。第9図に電
位差比(Vl+V2  VO)/VOとき裂長さa/W
との関係を示す。同図は測定端子間距離t=45mmの
場合である。(VI+V2  VO)/Voとa/Wと
の関係は測定端子間距離tに依存すると共に、き裂が測
定端子側にある場合とない場合で異なるので、それぞれ
の場合についてマスターカーブを作成してコンビュータ
ーに記憶させておくことが必要である。ただし測定端子
間距離tが板幅Wより犬きくなると、き裂が端子側にあ
ってもなくても(Vs + V2  VO) / Vo
とa/Wの関係はほとんど同じになるようである。
There is an interesting point here. In FIG. 3, when a crack freezes on a surface with measurement terminals, the potential difference V between the terminals with the crack is V. The potential difference V2 between adjacent terminals is ■. decrease more. On the other hand, in FIG. 7, when the crack is on the surface opposite to the surface on which the measurement terminal is provided, the potential difference V between the terminals facing the crack is ■. The potential difference v2 between adjacent terminals also increases to V. It is about becoming bigger. Therefore, as shown in Fig. 6, even if measurement terminals are not provided on both sides of the member, the position between the terminals where a crack has occurred and the length of the crack can be detected by comparing the potential difference between the measurement terminals provided on only one side. I can do it. Figure 9 shows the potential difference ratio (Vl+V2 VO)/VO and crack length a/W.
Indicates the relationship between The figure shows a case where the distance between the measurement terminals is t=45 mm. The relationship between (VI+V2 VO)/Vo and a/W depends on the distance t between the measurement terminals and differs depending on whether the crack is on the measurement terminal side or not, so create a master curve for each case. It is necessary to memorize it in the computer. However, if the distance t between the measurement terminals becomes wider than the plate width W, regardless of whether the crack is on the terminal side or not, (Vs + V2 VO) / Vo
The relationship between and a/W seems to be almost the same.

第3図において電位差v1がき裂が端子の中央付近にあ
る場合の一定値から増加し始める位置は端子間の中央か
ら約10間、言い換えれば端子から約125咽の位置か
らである。従って隣りの端子間の電位差v2がV。より
小さくなっていれば、き裂は端子から約12.Fzo+
以内にあると判断できるし、■、の増加程度、v2の減
少程度から更に詳細な位置を判定できる。これは第7図
のき裂が端子の設けである面上にない場合についても同
゛じである。ここで述べた数値は板幅W=20mのもの
に対しての値であるので、板幅が異なる場合には板幅を
補正しなければならない。
In FIG. 3, the position where the potential difference v1 starts to increase from the constant value when the crack is near the center of the terminals is about 10 points from the center between the terminals, in other words, about 125 degrees from the terminals. Therefore, the potential difference v2 between adjacent terminals is V. If the crack is smaller, the crack will be about 12mm from the terminal. Fzo+
It can be determined that the position is within the range 2, and a more detailed position can be determined from the degree of increase in ■ and the degree of decrease in v2. This also applies to the case where the crack in FIG. 7 is not on the surface where the terminal is provided. The numerical values described here are for the plate width W=20 m, so if the plate widths are different, the plate widths must be corrected.

本発明によれば直流電流を供給するためのリード線2本
と電位差を測定するための多数のリード線をき裂が発生
する恐れのある構造部材の周辺に予め配線しておき、こ
れらの電位差を測定し、それらの値を比較するだけでき
裂が発生した位置とき裂長さを容易かつ高精度に検出で
きる。従って、例えばタービン発電機フィールドコイル
エンド部のようにリテイニングリングでおおわれていて
、外から目視等でき裂長さを測定できない場合や、AE
や超音波法の素子を取付けるだけの空間がない場合に容
易にき裂を検出できる効果がある。
According to the present invention, two lead wires for supplying direct current and a number of lead wires for measuring potential differences are wired in advance around a structural member where cracks may occur, and these potential differences are wired in advance. By simply measuring and comparing these values, it is possible to easily and accurately detect the location where a crack has occurred and the length of the crack. Therefore, for example, in cases where the field coil end of a turbine generator is covered with a retaining ring and the crack length cannot be measured visually from the outside, or when the AE
It is effective in easily detecting cracks when there is not enough space to install an ultrasonic device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、構造部材のき裂検出装置のシステム図、第2
図は直流ボテン7ヤル法4端子法の測定系、第3図と第
4図は電位差とき裂位置との関係図、第5図は電位差比
とき裂長さの関係図、第6図は構造部材のき裂検出装置
の配線図及びシステム図、第7図と第8図は電位差とき
裂位置の関係図、第9図は電位差比とき裂長さの関係図
である。 ■・・・構造部材、2・・・給電端子、3・・・直流電
源、4゜5・・・測定端子、6・・・スキャナー、7・
・・ローパスフィルター、8・・・プリアンプ、9・・
・アーンプ、10・・・AD変換器、11・・・コンピ
ューター、12・・・CTtT。 第 3図 OIO2030句   9 y’lイtic  L  (mytc)0      
         20乏狼4ttL隙ア) 審60 第 7図 yl  イ’F−I  L(mm、ン さ 袈4fL tL (mm) ′@9I21 さ袋畏χツW
Figure 1 is a system diagram of the crack detection device for structural members;
The figure shows a measurement system using the DC button 7-terminal method and the four-terminal method. Figures 3 and 4 are relationship diagrams between potential difference and crack position. Figure 5 is a relationship diagram between potential difference ratio and crack length. Figure 6 is a structural member diagram. 7 and 8 are diagrams showing the relationship between potential difference and crack position, and FIG. 9 is a diagram showing the relationship between potential difference ratio and crack length. ■... Structural member, 2... Power supply terminal, 3... DC power supply, 4° 5... Measurement terminal, 6... Scanner, 7...
...Low pass filter, 8...Preamplifier, 9...
- Amplifier, 10... AD converter, 11... Computer, 12... CTtT. Figure 3 OIO2030 clause 9 y'l itic L (mytc)0
20 Hōro 4ttL gap a) umpire 60 Fig. 7 yl I'F-I L (mm, Nsa 4fL tL (mm) ′@9I21 Sabukuro χtsuW

Claims (1)

【特許請求の範囲】 1、 き裂の発生する恐れのある構造部材に直流電流を
印加し、き裂の発生する周辺及びき裂が発生する恐れの
ない部分に電位差測定のだめの端子を複数個設け、端子
間の電位差の値を比較することによりき裂長さを測定す
る方法において、前記き裂が発生する恐れのない部分に
設けた端子間の電位差を基準電位差とし、前記き裂の発
生する周辺に設けた端子間の電位差が該基準電位差と変
わらない端子間にはき裂は存在せず、該基準電位差の値
より大きくなった端子間にはき裂が存在し、しかもその
中央から該基準電位差の値より低下した測定端子間寄り
にき裂が存在すると判断すると共に、該基準電位差と、
き裂のある端子間の電位差と、該基準電位差より低下し
た端子間の電位差とからき裂長さとき裂発生位置を検出
することを特徴とするき裂検出方法。 2、特許請求の範囲第1項において、電位差測定のため
の端子をき裂が発生する恐れのある部材の両側に対峙さ
せて等間隔で設け、向い合った端子間の電位差が等しけ
ればその端子間にはき裂は存在せず、該基準電位差の値
より大きくなった端子間にはき裂が存在し、しかも向い
合った端子間の電位差の大きい側にき裂が存在すると判
断すると共に、各端子間の電位差からき裂長さとき裂発
生位置を検出することを特徴とするき裂検出方法。 3、特許請求の範囲第1項において、前記基準電位差の
値より最も大きくなった端子間には、き裂が存在し、且
つその隣りの測定端子間の電位差が前記基準電位差より
小さければき裂は端子を設けた面上に存在し、太きけれ
ばき裂は端子を設けた面と反対側の面上に存在すると判
断すると共に、前記基準電位差と、き裂のある端子間の
電位差と、前記基準電位差から変化した端子間の電位差
とからき裂長さを検出することを特徴とするき裂検出方
法。
[Claims] 1. Applying a direct current to a structural member where there is a risk of cracking, and using a plurality of terminals for measuring the potential difference around the cracking area and in areas where there is no risk of cracking. In the method of measuring the crack length by comparing the value of the potential difference between the terminals provided, the potential difference between the terminals provided in the part where there is no risk of the occurrence of the crack is used as the reference potential difference, There is no crack between the terminals where the potential difference between terminals provided at the periphery is not different from the reference potential difference, and there is a crack between the terminals where the potential difference is larger than the reference potential difference, and there is a crack from the center. It is determined that a crack exists near the measurement terminal where the value of the reference potential difference has decreased, and the reference potential difference and
A crack detection method characterized by detecting a crack length and a crack occurrence position from a potential difference between terminals with a crack and a potential difference between the terminals that is lower than the reference potential difference. 2. In claim 1, terminals for measuring potential difference are provided at equal intervals facing each other on both sides of the member where cracks may occur, and if the potential difference between the facing terminals is equal, the terminals It is determined that there is no crack between the terminals, and that a crack exists between the terminals whose potential difference is larger than the value of the reference potential difference, and that the crack exists on the side where the potential difference between the opposing terminals is larger, A crack detection method characterized by detecting the crack length and crack occurrence position from the potential difference between each terminal. 3. In claim 1, if a crack exists between the terminals where the value of the reference potential difference is the largest, and the potential difference between the adjacent measurement terminals is smaller than the reference potential difference, then the crack exists. exists on the surface where the terminal is provided, and if it is thick, it is determined that the crack exists on the surface opposite to the surface where the terminal is provided, and the reference potential difference and the potential difference between the terminals with the crack, A crack detection method characterized in that a crack length is detected from a potential difference between terminals that has changed from the reference potential difference.
JP13849181A 1981-09-04 1981-09-04 Detection of crack Pending JPS5841341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13849181A JPS5841341A (en) 1981-09-04 1981-09-04 Detection of crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13849181A JPS5841341A (en) 1981-09-04 1981-09-04 Detection of crack

Publications (1)

Publication Number Publication Date
JPS5841341A true JPS5841341A (en) 1983-03-10

Family

ID=15223339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13849181A Pending JPS5841341A (en) 1981-09-04 1981-09-04 Detection of crack

Country Status (1)

Country Link
JP (1) JPS5841341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191565A (en) * 1987-10-01 1989-04-11 Canon Inc Facsimile equipment
JPH03221855A (en) * 1990-01-26 1991-09-30 Mitsubishi Heavy Ind Ltd Method for evaluating high temperature damage of welding heat influenced part
JP2006071299A (en) * 2004-08-31 2006-03-16 Atlus:Kk Monitoring method for crack growth in actual steel structure and residual life estimation method for actual steel structure
JP2013044601A (en) * 2011-08-23 2013-03-04 Jx Nippon Oil & Energy Corp Damage estimation method for conductive material-made structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562543A (en) * 1979-06-21 1981-01-12 Chubu Electric Power Co Inc Metal peeling inspection system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562543A (en) * 1979-06-21 1981-01-12 Chubu Electric Power Co Inc Metal peeling inspection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191565A (en) * 1987-10-01 1989-04-11 Canon Inc Facsimile equipment
JPH03221855A (en) * 1990-01-26 1991-09-30 Mitsubishi Heavy Ind Ltd Method for evaluating high temperature damage of welding heat influenced part
JP2006071299A (en) * 2004-08-31 2006-03-16 Atlus:Kk Monitoring method for crack growth in actual steel structure and residual life estimation method for actual steel structure
JP4519578B2 (en) * 2004-08-31 2010-08-04 株式会社アトラス Method for monitoring crack growth and estimation of remaining life of actual steel structure
JP2013044601A (en) * 2011-08-23 2013-03-04 Jx Nippon Oil & Energy Corp Damage estimation method for conductive material-made structure

Similar Documents

Publication Publication Date Title
KR850004801A (en) Relative Distribution Device of Pulverized Coal
Shen et al. Determining the propagation angle for non-vertical surface-breaking cracks and its effect on crack sizing using an ACFM sensor
JPS5841341A (en) Detection of crack
RU2491562C1 (en) Method for testing of cable product insulation
CN105319444B (en) A kind of conductive material electrical conductivity uniformity coefficient appraisal procedure
SU578609A1 (en) Method of measuring the parameters of moving electroconductive articles
JP2003527596A (en) Method and apparatus for improving current survey
US6188217B1 (en) Inductive measurement device for determining dimensions of objects
JP3553391B2 (en) Method and apparatus for detecting deterioration of coating member
EP3748346B1 (en) Method for non-destructively examining an anode of an aluminium electrolysis cell
JPS6228654A (en) Detection of crack
JPS5869273U (en) Inspection equipment using electrical resistance method
JPS58153103A (en) Device for detecting position and configuration of metallic material
JPH0792127A (en) Method and equipment for measuring crack in insulation coating
JPS5850456A (en) Detection of crack
CN108627569B (en) Triangular surrounding excitation type eddy current sensor and coil winding method thereof
TW201812331A (en) Conductor Pattern Inspection Apparatus
JPH03110456A (en) Sensor for measuring bubble in liquid
SU1111120A1 (en) Geoelectric prospecting method
SU960630A1 (en) Electromagnetic primary measuring converter of speed
GB2215063A (en) Detecting buried conductors
SU646240A1 (en) Method of measuring particle-ridden gas media electric conductivity
Sadeghi et al. A Combined ACFM-SMFM System for Real-Time Detection and Sizing of Surface Cracks in Metals
JPS593319A (en) Liquid level detector
JPS635681B2 (en)