JP2008128816A - Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it - Google Patents

Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it Download PDF

Info

Publication number
JP2008128816A
JP2008128816A JP2006314153A JP2006314153A JP2008128816A JP 2008128816 A JP2008128816 A JP 2008128816A JP 2006314153 A JP2006314153 A JP 2006314153A JP 2006314153 A JP2006314153 A JP 2006314153A JP 2008128816 A JP2008128816 A JP 2008128816A
Authority
JP
Japan
Prior art keywords
potential difference
current supply
terminal
measured
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006314153A
Other languages
Japanese (ja)
Inventor
Masumi Saka
真澄 坂
Yuzuru Matsuura
譲 松浦
Riaz Ahmed Sheikh
シェイク・リアズ・アーメド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006314153A priority Critical patent/JP2008128816A/en
Publication of JP2008128816A publication Critical patent/JP2008128816A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-destructive inspection device by a potential difference method that eliminates error due to the positional displacement of a current supply terminal and a potential difference measurement terminal, and reduces the error due to the displacement of the distance between the terminals, and to provide a measurement method of the non-destructive inspection capable of increasing the reproducibility and accuracy of the measurement result using it. <P>SOLUTION: The non-destructive inspection device has a plate-like base 2 that faces a structure 1 via a plurality of leg sections 7 and 8 and has a plurality of holes 23, 24, 25 and 26. The non-destructive inspection device has a pair of current supply terminals 3 and 4 disposed so that their tips can come into contact with or separate from a structure 1 surface, and a pair of potential difference measurement terminals 5 and 6 that are arranged inside or outside the space between the current supply terminals 3 and 4 and disposed so that their tips can come into contact with or separate from the structure 1 surface. The current supply terminals 3 and 4 and potential difference measurement terminals 5 and 6 are guided to the holes 23, 24, 25 and 26 in the plate-like base 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原子力プラントにおける金属円管等の構造物の非破壊検査に用いる電位差法による非破壊検査装置およびそれを用いた非破壊検査の計測方法に関し、特に計測結果の再現性と正確性を高めることができる接触電位差法による非破壊検査装置およびそれを用いた計測方法に関する。   The present invention relates to a nondestructive inspection apparatus using a potential difference method used for nondestructive inspection of a structure such as a metal tube in a nuclear power plant, and a measurement method of nondestructive inspection using the same, and in particular, the reproducibility and accuracy of measurement results are improved. The present invention relates to a non-destructive inspection apparatus using a contact potential difference method that can be enhanced and a measurement method using the same.

現在、原子力プラントにおける構造物の欠陥検査に関しては、維持基準が導入されている。構造物の健全性に影響を与えない程度の小さな欠陥を、維持基準に基づき監視しながらプラントを運転することは、経済的にも有益である。構造物に対する維持基準の適切な運用には、非破壊検査技術の高い欠陥検出、寸法評価能力が要求される。構造物の非破壊検査手法の1つとして接触電位差法がある。   Currently, maintenance standards have been introduced for defect inspection of structures in nuclear power plants. It is economically beneficial to operate the plant while monitoring small defects that do not affect the soundness of the structure based on maintenance standards. Proper operation of maintenance standards for structures requires high defect detection and dimensional evaluation capabilities with nondestructive inspection technology. One of non-destructive inspection methods for structures is a contact potential difference method.

接触電位差法とは、各端子を被測定物に押し当てて欠陥部のある場所で計測した電位差をV1、健全部で計測した電位差をV0とし、これらの差、即ちΔV=(V1−V0)を検出することで、欠陥の有無を判定する手法である。 The contact potential difference method, V 1 the potential difference measured by the location of the defective portion is pressed against the terminals on the object to be measured, the potential difference measured by the healthy portion and V 0, these differences, i.e. [Delta] V = (V 1 This is a method for determining the presence or absence of a defect by detecting -V 0 ).

直流を用いる電位差法は部材の板厚方向にも電流が流れるため、埋没き裂、裏面き裂を電流場の乱れに起因する電位差の変化として検出することができる。また同手法は、現在問題である応力腐食割れや疲労き裂といった閉じたき裂を評価できることが確認されている(例えば、特許文献1、特許文献2あるいは特許文献3参照)。しかし従来の同手法では、被検査部位が3cmないし4cm程度の厚肉の場合、き裂の存在する部材裏面までは電流が届きにくく、検出感度が不足するので、その裏面き裂の検出は容易でない。特に実際の電位差計測端子で計測される電位差は測定を繰り返すごとのばらつきが大きいという問題点がある。このばらつきは、電流供給端子及び電位差計測端子が一つのプローブに設けられ、プローブをハンドリングにより被測定物の面から持ち上げたり、被測定物の面に接触させたりするので、端子を被測定物に接触させた際にハンドリングにより生じる位置ずれによる誤差と、ハンドリングにより生じる接触姿勢の違いおよび端子に構成されたばねの機械的交差等により生じる各端子間距離のずれによる誤差が重なるためである。   In the potential difference method using direct current, a current flows also in the plate thickness direction of the member. Therefore, a buried crack and a back surface crack can be detected as a change in potential difference caused by a disturbance in the current field. Further, it has been confirmed that this method can evaluate closed cracks such as stress corrosion cracks and fatigue cracks which are currently problematic (see, for example, Patent Document 1, Patent Document 2, or Patent Document 3). However, with the conventional method, if the part to be inspected is about 3 cm to 4 cm thick, it is difficult for current to reach the back of the part where the crack exists, and detection sensitivity is insufficient. Not. In particular, there is a problem that the potential difference measured at the actual potential difference measuring terminal has a large variation every time the measurement is repeated. This variation is because the current supply terminal and the potential difference measurement terminal are provided on one probe, and the probe is lifted from the surface of the object to be measured by handling or brought into contact with the surface of the object to be measured. This is because errors due to misalignment caused by handling when they are brought into contact with errors due to differences in contact postures caused by handling and distances between terminals caused by mechanical crossing of springs formed on the terminals.

また、電流が届きにくく検出感度が不足する点については、単純に大電流を付加して検出感度を高める方法も試みられている。しかし、この場合は、端子部の発熱によりゼーベック効果に起因するノイズが発生して、検出感度を改善することができないという問題がある。
このことから、計測結果の再現性と正確性を高めるとともに検出感度を高めることができる計測手法に注目が集まっている。
As for the point that the current is difficult to reach and the detection sensitivity is insufficient, a method of simply increasing the detection sensitivity by adding a large current has been attempted. However, in this case, there is a problem that noise due to the Seebeck effect is generated due to heat generation of the terminal portion, and the detection sensitivity cannot be improved.
For this reason, attention has been focused on measurement techniques that can improve the reproducibility and accuracy of measurement results and increase the detection sensitivity.

特許第2856413号公報Japanese Patent No. 2856413 特許第3167449号公報Japanese Patent No. 3167449 特開2006−308324号公報JP 2006-308324 A

前述のように従来の技術では、電流供給端子および電位差計測端子の位置ずれによる誤差と各端子間距離のずれによる誤差とが重なるので、測定を繰り返すごとのばらつきが大きく、再現性、正確性が低く、信頼性に問題があった。   As described above, in the conventional technology, the error due to the positional deviation of the current supply terminal and the potential difference measurement terminal overlaps with the error due to the deviation of the distance between the terminals, so that there is a large variation each time the measurement is repeated, and reproducibility and accuracy are high. It was low and there was a problem with reliability.

本発明は、電流供給端子および電位差計測端子の位置ずれによる誤差をなくして、誤差の要因を各端子間距離のずれによる誤差に限定するとともに、各端子間距離のずれの要因を少なくして誤差を抑えることができる電位差法による非破壊検査装置を提供することを目的としている。
また、これを用いて計測結果の再現性、正確性を高めることができる非破壊検査の計測方法を提供することを目的としている。
The present invention eliminates the error due to the positional deviation between the current supply terminal and the potential difference measuring terminal, limits the cause of the error to the error due to the deviation between the distances between the terminals, and reduces the error due to the deviation between the distances between the terminals. An object of the present invention is to provide a nondestructive inspection apparatus using a potentiometric method capable of suppressing the above.
Moreover, it aims at providing the measuring method of the nondestructive inspection which can improve the reproducibility and accuracy of a measurement result using this.

本発明によれば、被測定物面に配置される複数の脚部を介して前記被測定物と対向し、複数の端子ガイドを有する板状土台と、先端が前記被測定物面に接離可能に設けられた対を成す電流供給端子と、該対を成す電流供給端子間の内側あるいは外側に配置され、かつ先端が前記被測定物面に接離可能に設けられた対を成す電位差計測端子とを備え、前記対を成す電流供給端子及び前記対を成す電位差計測端子が前記板状土台の各端子ガイドに案内されるようにしたことを特徴とする電位差法による非破壊検査装置が得られる。   According to the present invention, a plate-like base having a plurality of terminal guides facing the object to be measured via a plurality of legs disposed on the surface of the object to be measured, and a tip that is in contact with or separated from the surface of the object to be measured. A pair of current supply terminals that can be provided, and a potential difference measurement that is disposed inside or outside the pair of current supply terminals and that has a tip that can be contacted and separated from the surface of the object to be measured. A non-destructive inspection apparatus using a potentiometric method, wherein the pair of current supply terminals and the pair of potential difference measuring terminals are guided by the terminal guides of the plate base. It is done.

また、前記電流供給端子先端が前記被測定物面方向に突出するように前記電流供給端子にバイアスを印加する第1弾性部材を備えたことを特徴とする電位差法による非破壊検査装置を提供する。   In addition, there is provided a nondestructive inspection apparatus using a potentiometric method, comprising a first elastic member for applying a bias to the current supply terminal so that the tip of the current supply terminal protrudes in the direction of the object to be measured. .

さらに、前記電位差計測端子先端が前記被測定物面方向に突出するように前記電位差計測端子にバイアスを印加する第2弾性部材を備えたことを特徴とする電位差法による非破壊検査装置を提供する。   Furthermore, there is provided a nondestructive inspection apparatus based on a potentiometric method, comprising a second elastic member that applies a bias to the potential difference measuring terminal so that a tip of the potential difference measuring terminal protrudes in the direction of the object to be measured. .

また、前記電流供給端子先端が前記被測定物面に接触するのを阻止する第1ロック部材を備えたことを特徴とする電位差法による非破壊検査装置を提供する。   In addition, the present invention provides a nondestructive inspection apparatus using a potentiometric method, characterized in that a first lock member is provided for preventing the tip of the current supply terminal from contacting the surface of the object to be measured.

さらに、前記電位差計測端子先端が前記被測定物面に接触するのを阻止する第2ロック部材を備えたことを特徴とする電位差法による非破壊検査装置を提供する。   Further, the present invention provides a nondestructive inspection apparatus using a potential difference method, comprising a second lock member that prevents the tip of the potential difference measuring terminal from contacting the surface of the object to be measured.

また、前記対を成す電流供給端子のそれぞれが複数の電流供給端子からなることを特徴とする電位差法による非破壊検査装置を提供する。   Further, the present invention provides a nondestructive inspection apparatus using a potential difference method, wherein each of the pair of current supply terminals comprises a plurality of current supply terminals.

さらに、前記板状土台を前記被測定物面に対して垂直方向に移動可能とするZ軸ステージ、あるいは前記電流供給端子および前記電位差計測端子を前記被測定物面に対して垂直方向に移動可能とするZ軸ステージを備えたことを特徴とする電位差法による非破壊検査装置を提供する。   Further, the Z-axis stage that enables the plate base to move in a direction perpendicular to the surface of the object to be measured, or the current supply terminal and the potential difference measuring terminal to move in a direction perpendicular to the surface of the object to be measured. A non-destructive inspection apparatus using a potential difference method is provided.

また、本発明によれば、前記電位差法による非破壊検査装置を用い、被測定物面の所定の箇所に対して前記電流供給端子および前記電位差計測端子を複数回接離させて前記所定の箇所に対応する電位差を複数回計測し、計測された値の平均値を求めて前記所定の箇所の計測結果とすることを特徴とする非破壊検査の計測方法が得られる。   According to the present invention, the non-destructive inspection apparatus based on the potential difference method is used, and the current supply terminal and the potential difference measurement terminal are contacted and separated a plurality of times with respect to a predetermined location on the surface of the object to be measured. A nondestructive inspection measuring method is obtained, in which the potential difference corresponding to is measured a plurality of times, and an average value of the measured values is obtained and used as a measurement result of the predetermined portion.

本発明によれば、被測定物面に配置される複数の脚部を介して被測定物と対向する板状土台が設けられ、対を成す電流供給端子及び対を成す電位差計測端子が、板状土台の端子ガイドに案内されて被測定物面に接離可能とされているので、脚部を被測定物面に固定して端子を接離させることにより、接離のためのハンドリングが不要となる。従って、ハンドリングに伴う位置ずれがなく、それに起因する誤差がなくなる。更に、各端子間距離のずれ要因は、ハンドリングに伴う接触姿勢違いの成分がなくなり、各端子ガイドと各端子間の隙間による成分に限られる。   According to the present invention, a plate-like base facing the object to be measured is provided via a plurality of legs arranged on the surface of the object to be measured, and a pair of current supply terminals and a pair of potential difference measuring terminals are provided on the plate. Since it is guided by the terminal guide of the base and can be moved to and away from the surface of the object to be measured, handling for contact and separation is not required by fixing the leg to the surface of the object to be measured and moving the terminal to and away from the surface. It becomes. Therefore, there is no position shift due to handling, and errors caused by it are eliminated. Furthermore, the cause of the deviation of the distance between the terminals is not the component of the contact posture difference accompanying the handling, and is limited to the component due to the gap between each terminal guide and each terminal.

各端子間距離のずれが各端子ガイドと各端子の隙間成分に限られたものであれば、それによるばらつきは、端子先端の接離を複数回繰り返して計測を行い、容易に把握できる。従って、計測結果を平均化することなどにより計測結果の再現性、正確性を高めることができる。   If the deviation of the distance between the terminals is limited to the gap component between the terminal guides and the terminals, the variation due to this can be easily grasped by measuring the contact and separation of the terminal tip a plurality of times. Therefore, the reproducibility and accuracy of the measurement result can be improved by averaging the measurement result.

各端子ガイドは、端子を板状土台に対して垂直方向に案内するものが望ましい。また各端子ガイドは、端子を一定の軌跡に沿って案内するもので、孔、溝あるいはレール状ないし鞍状構成とすることが可能である。脚部の数は、被測定物面に対する板状土台の姿勢を安定化させる点で、3つが望ましい。板状土台におもりを取り付ければ、脚部の位置を安定化させるとともに板状土台の姿勢を安定に保つことができる。   Each terminal guide desirably guides the terminal in a direction perpendicular to the plate base. Each terminal guide guides the terminal along a certain trajectory, and can have a hole, groove, rail shape, or bowl-like configuration. The number of legs is preferably three in terms of stabilizing the posture of the plate-like base with respect to the surface of the object to be measured. If the weight is attached to the plate-like base, the position of the leg portion can be stabilized and the posture of the plate-like base can be kept stable.

電流供給端子先端が被測定物面方向に突出するように第1弾性部材によって電流供給端子にバイアスを印加すると、被測定物面に脚部を配置すると同時に電流供給端子先端が被測定物面に接触するとともに安定した接触圧が確保されるので、正確な計測が迅速にできる。   When a bias is applied to the current supply terminal by the first elastic member so that the tip of the current supply terminal protrudes in the direction of the object to be measured, the leg is placed on the surface of the object to be measured and at the same time the tip of the current supply terminal is on the surface of the object to be measured. Since a stable contact pressure is ensured while making contact, accurate measurement can be performed quickly.

電位差計測端子先端が被測定物面方向に突出するように第2弾性部材によって電位差計測端子にバイアスを印加すると、被測定物面に脚部を配置すると同時に電位差計測端子先端が被測定物面に接触するとともに安定した接触圧が確保されるので、正確な計測が迅速にできる。第1弾性部材および第2弾性部材としてはらせん状のばねなどが使用できる。   When a bias is applied to the potential difference measuring terminal by the second elastic member so that the tip of the potential difference measuring terminal protrudes in the direction of the object to be measured, the leg is placed on the surface of the object to be measured and at the same time the tip of the potential difference measuring terminal is on the surface of the object to be measured. Since a stable contact pressure is ensured while making contact, accurate measurement can be performed quickly. A spiral spring or the like can be used as the first elastic member and the second elastic member.

電流供給端子先端が被測定物面に接触するのを阻止する第1ロック部材を備えると、非計測時あるいは計測待機時に電流供給端子先端を被測定物面から離間させて電流供給端子先端を破損等から保護することができる。   If the first lock member that prevents the tip of the current supply terminal from contacting the surface of the object to be measured is provided, the tip of the current supply terminal is separated from the surface of the object to be measured during non-measurement or measurement standby, and the tip of the current supply terminal is damaged. Can be protected from etc.

電位差計測端子先端が被測定物面に接触するのを阻止する第2ロック部材を備えると、非計測時あるいは計測待機時に電位差計測端子先端を被測定物面から離間させて電位差計測端子先端を破損等から保護することができる。   If the second locking member that prevents the tip of the potential difference measuring terminal from contacting the surface of the object to be measured is provided, the tip of the potential difference measuring terminal is separated from the surface of the object to be measured when not measuring or waiting for measurement to break the tip of the potential difference measuring terminal. Can be protected from etc.

対を成す電流供給端子のそれぞれが複数の電流供給端子からなると、複数の電流供給端子から並列的に同時に電流を供給し、個々の電流供給端子から供給する電流は抑えながら、被測定物に大電流を供給することができる。それにより、電位差を増大させ、検出感度を高めることができる。一方、各端子部のジュール発熱量は低減される。従って、電位差計測端子に熱伝導することで発生する熱起電力に起因するノイズ発生は抑えられ、検出感度を改善することができる。さらに、ジュール発熱に伴った各端子の融解現象を防止することができる。   When each of the paired current supply terminals is composed of a plurality of current supply terminals, current is supplied simultaneously from the plurality of current supply terminals in parallel, and the current supplied from the individual current supply terminals is suppressed, while the current to be measured is large. A current can be supplied. Thereby, a potential difference can be increased and detection sensitivity can be increased. On the other hand, the amount of Joule heat generated at each terminal portion is reduced. Therefore, noise generation due to the thermoelectromotive force generated by conducting heat to the potential difference measurement terminal can be suppressed, and detection sensitivity can be improved. Furthermore, the melting phenomenon of each terminal accompanying Joule heat generation can be prevented.

板状土台を被測定物面に対して垂直方向に移動可能とするZ軸ステージを備えると、板状土台の位置をアクチュエータ等により垂直方向に制御して、各端子の接離および計測を自動化することが可能である。
また、電流供給端子および電位差計測端子を被測定物面に対して垂直方向に移動可能とするZ軸ステージを備えると、電流供給端子および電位差計測端子の位置をアクチュエータ等により垂直方向に制御して、各端子の接離および計測を自動化することが可能である。
When equipped with a Z-axis stage that allows the plate base to move in the vertical direction with respect to the surface of the object to be measured, the position of the plate base is controlled in the vertical direction by an actuator, etc. to automate the contact and separation of each terminal. Is possible.
In addition, if a Z-axis stage is provided that allows the current supply terminal and the potential difference measurement terminal to move in a direction perpendicular to the surface of the object to be measured, the positions of the current supply terminal and the potential difference measurement terminal are controlled in the vertical direction by an actuator or the like It is possible to automate contact and separation of each terminal and measurement.

これら電位差法による非破壊検査装置を用い、被測定物面の所定の箇所に対して電流供給端子および電位差計測端子を複数回接離させて所定の箇所に対応する電位差を複数回計測し、計測された値の平均値を求めて所定の箇所の計測結果とすれば、計測結果の再現性、正確性が高まり、厚肉部材裏面き裂に代表される検出感度の低い欠陥でも、検出可能となる。   Using these non-destructive inspection devices based on the potential difference method, the current supply terminal and the potential difference measurement terminal are contacted and separated multiple times with respect to a predetermined location on the surface of the object to be measured, and the potential difference corresponding to the predetermined location is measured multiple times. If the average value of the measured values is obtained and used as the measurement result at a predetermined location, the reproducibility and accuracy of the measurement result will be improved, and even a defect with low detection sensitivity typified by a crack on the back of a thick member can be detected. Become.

以下、本発明を実施するための最良の形態について、図面を用いて詳細に説明する。
図1は、本発明の電位差法による非破壊検査装置の実施の形態の原理説明図である。同図において、1は被測定物である構造物であり、ここでは金属円管の一部を示している。構造物1の大きさは厚さがt、幅がw、長さがlで、構造物1の裏面1bにはq−r平面に沿ってp−q平面即ち表面1a側に向かう幅b、深さaの半楕円状のき裂1cができている。尚、図中矢印p、矢印q、矢印rは直交座標軸を示している。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining the principle of an embodiment of a nondestructive inspection apparatus according to the potential difference method of the present invention. In the figure, reference numeral 1 denotes a structure which is an object to be measured, and here, a part of a metal circular tube is shown. The structure 1 has a thickness t, a width w, and a length l. The rear surface 1b of the structure 1 has a width b extending toward the pq plane, that is, the front surface 1a along the qr plane. A semi-elliptical crack 1c having a depth a is formed. In the figure, an arrow p, an arrow q, and an arrow r indicate orthogonal coordinate axes.

2は非破壊検査装置の板状土台で、板状土台2には対を成す電流供給端子3、4および対を成す電位差計測端子5、6が設けられている。電流供給端子3、4および電位差計測端子5、6の先端は、p軸上において各々構造物1の表面1aに接触しており、その位置はq−r平面に対して対称に配置されている。   Reference numeral 2 denotes a plate-like base of the nondestructive inspection apparatus. The plate-like base 2 is provided with a pair of current supply terminals 3 and 4 and a pair of potential difference measuring terminals 5 and 6. The tips of the current supply terminals 3 and 4 and the potential difference measurement terminals 5 and 6 are in contact with the surface 1a of the structure 1 on the p-axis, and their positions are arranged symmetrically with respect to the qr plane. .

11は非破壊検査装置の電流供給端子3、4に電流を供給する直流安定化電源、12は直流安定化電源11に直列に接続されたシャント抵抗、13はシャント抵抗12間の電位差を計測して直流安定化電源11の電流を確認するためのデジタルマルチメータ、14は電位差計測端子5、6間の電位差を計測するためのデジタルマルチメータ、15はデジタルマルチメータ14で得られた電位差の記録、平均値を求める演算処理、標準偏差を求める演算処理、比較・解析処理などを行うコンピュータである。   11 is a stabilized DC power supply for supplying current to the current supply terminals 3 and 4 of the nondestructive inspection apparatus, 12 is a shunt resistor connected in series to the DC stabilized power supply 11, and 13 is a potential difference between the shunt resistors 12. A digital multimeter for confirming the current of the DC stabilized power supply 11, 14 is a digital multimeter for measuring the potential difference between the potential difference measuring terminals 5 and 6, and 15 is a recording of the potential difference obtained by the digital multimeter 14. The computer performs arithmetic processing for obtaining an average value, arithmetic processing for obtaining a standard deviation, comparison / analysis processing, and the like.

このような非破壊検査装置を用いると、構造物1のき裂1cの部分では電位差計測端子5、6間の電位差が大きく、き裂1cから外れた部分では電位差が小さいので、それらの電位差比較によりき裂1cの有無、あるいはき裂1cの大きさの程度などを評価することができる。   When such a nondestructive inspection apparatus is used, the potential difference between the potential difference measuring terminals 5 and 6 is large at the crack 1c portion of the structure 1 and the potential difference is small at the portion away from the crack 1c. Thus, the presence or absence of the crack 1c or the size of the crack 1c can be evaluated.

図2は、図1に関連する板状土台2の要部正面図である。同図において板状土台2には先端が尖った脚部7、8および図示を省略した脚部9が構造物1側に向かって取り付けられており、脚部7、8および脚部9の高さは共にhである。従って板状土台2は構造物1の表面1aと距離hを保って平行に設けられている。   FIG. 2 is a front view of an essential part of the plate-like base 2 related to FIG. In the figure, the plate-like base 2 is attached with leg portions 7 and 8 with sharp tips and a leg portion 9 (not shown) toward the structure 1 side. Both are h. Therefore, the plate-like base 2 is provided in parallel with the surface 1a of the structure 1 while maintaining a distance h.

板状土台2には端子ガイドとしての孔23、24及び孔25、26が板状土台2に垂直にかつ図中左右対称に設けられていて、孔23、24には電流供給端子3、4が孔25、26には電位差計測端子5、6が各々設けられている。電流供給端子3、4及び電位差計測端子5、6には、各々の先端が構造物1の表面1aに接触しないように保持する端子止め33、34および端子止め35、36が取り付けられている。端子止め33、34および端子止め35、36は電流供給端子3、4および電位差計測端子5、6に対して着脱可能である。図2は、挿着した図で、計測しないときの状態である。端子止め33、34および端子止め35、36を取り外すと、電流供給端子3、4および電位差計測端子5、6の先端は構造物1の表面1aに接触し、計測が可能となる。   Holes 23 and 24 and holes 25 and 26 as terminal guides are provided in the plate-like base 2 perpendicularly to the plate-like base 2 and symmetrically in the figure. The holes 23 and 24 have current supply terminals 3 and 4. The holes 25 and 26 are provided with potential difference measuring terminals 5 and 6, respectively. Terminal stops 33, 34 and terminal stops 35, 36 are attached to the current supply terminals 3, 4 and the potential difference measuring terminals 5, 6 so that their tips are not in contact with the surface 1 a of the structure 1. The terminal stoppers 33 and 34 and the terminal stoppers 35 and 36 are detachable from the current supply terminals 3 and 4 and the potential difference measuring terminals 5 and 6. FIG. 2 is an inserted diagram and shows a state where measurement is not performed. When the terminal stoppers 33 and 34 and the terminal stoppers 35 and 36 are removed, the tips of the current supply terminals 3 and 4 and the potential difference measuring terminals 5 and 6 come into contact with the surface 1a of the structure 1 and measurement is possible.

板状土台2の左右には棚21、22が取り付けられていて、棚21、22には所定重量のおもり31、32が乗せられている。おもり31、32は、脚部7、8および9の位置を安定化させるとともに後述するばね43の反発力により板状土台2の姿勢が不安定になるのを防止する。   Shelves 21 and 22 are attached to the left and right sides of the plate-like base 2, and weights 31 and 32 having predetermined weights are placed on the shelves 21 and 22. The weights 31 and 32 stabilize the positions of the leg portions 7, 8 and 9 and prevent the posture of the plate-like base 2 from becoming unstable due to the repulsive force of the spring 43 described later.

図3は電流供給端子3と孔23との関係を説明するための説明図であり、図3(a)は孔23の要部断面図を示す。孔23は下端の厚さM1部分の径がΦ1、中間の厚さM2の部分の径がΦ2で、上端に厚さM3で径がΦ1の孔を有する蓋2aが取り付けられた構成となっている。尚、Φ1とΦ2の関係は、Φ1<Φ2である。   FIG. 3 is an explanatory diagram for explaining the relationship between the current supply terminal 3 and the hole 23, and FIG. 3A is a cross-sectional view of the main part of the hole 23. The hole 23 has a structure in which the diameter of the lower end thickness M1 portion is Φ1, the intermediate thickness M2 is Φ2, and the upper end is attached with a lid 2a having a thickness M3 and a diameter Φ1. Yes. The relationship between Φ1 and Φ2 is Φ1 <Φ2.

図3(b)は電流供給端子3の断面図を示し、電流供給端子3は径がΦ1よりわずかに小さく、円柱状のもので、下端3aが凸状になっていて、下端3aから距離L1の位置に厚さL2、径がΦ1より大きくΦ2より小さい鍔部3bが設けられている。鍔部3bの上方の距離L3の位置から所定長さのねじ3cが形成されている。   FIG. 3 (b) shows a cross-sectional view of the current supply terminal 3. The current supply terminal 3 has a diameter slightly smaller than Φ1 and is cylindrical, the lower end 3a is convex, and the distance L1 from the lower end 3a. Is provided with a flange portion 3b having a thickness L2 and a diameter larger than Φ1 and smaller than Φ2. A screw 3c having a predetermined length is formed from a position at a distance L3 above the flange 3b.

図3(c)は孔23に電流供給端子3を組み込んだ状態の要部断面図を示す。電流供給端子3の組み込みは、まず鍔部3bまでらせん状のばね43を通し、蓋2aを取り外した状態の孔23に電流供給端子3を挿入する。次に電流供給端子3の上側を蓋2aの孔に通し、蓋2aを板状土台2に一体に取り付ける。続いてねじ3cと内面にねじを形成したリング37を螺合させる。リング37の径はΦ2と略同じである。この状態では、ばね43が鍔部3bと蓋2a間で少しだけ縮んでいて、電流供給端子3の下端3aが構造物1方向に突出する。このとき、高さhと厚さM1と距離L1との関係は、L1>(M1+h)である。また距離L3と厚さL2、厚さM2、厚さM3との関係は、L3>(M2+M3)−L2である。   FIG. 3C is a cross-sectional view of the main part in a state where the current supply terminal 3 is incorporated in the hole 23. In order to incorporate the current supply terminal 3, first, the spiral spring 43 is passed to the flange 3b, and the current supply terminal 3 is inserted into the hole 23 in a state where the lid 2a is removed. Next, the upper side of the current supply terminal 3 is passed through the hole of the lid 2 a, and the lid 2 a is attached to the plate base 2 integrally. Subsequently, the screw 3c and the ring 37 formed with a screw on the inner surface are screwed together. The diameter of the ring 37 is substantially the same as Φ2. In this state, the spring 43 is slightly contracted between the flange 3b and the lid 2a, and the lower end 3a of the current supply terminal 3 protrudes toward the structure 1. At this time, the relationship between the height h, the thickness M1, and the distance L1 is L1> (M1 + h). The relationship between the distance L3 and the thickness L2, the thickness M2, and the thickness M3 is L3> (M2 + M3) −L2.

図3(d)は脚部7、8および脚部9を構造物1に載せた状態の要部断面図を示す。この状態のとき電流供給端子3の下端3aが構造物1の表面1aに接触し、計測が可能である。高さhと厚さM1と距離L1とは、L1>M1+hの関係があるので、電流供給端子3の下端3aがばね43の力に抗して押し上げられる。移動量ΔL1は、ΔL1=L1−(M1+h)の式で求められる。   FIG. 3D is a cross-sectional view of the main part in a state where the leg portions 7 and 8 and the leg portion 9 are placed on the structure 1. In this state, the lower end 3a of the current supply terminal 3 is in contact with the surface 1a of the structure 1, and measurement is possible. Since the height h, the thickness M1, and the distance L1 have a relationship of L1> M1 + h, the lower end 3a of the current supply terminal 3 is pushed up against the force of the spring 43. The movement amount ΔL1 is obtained by the equation: ΔL1 = L1− (M1 + h).

図4は電流供給端子3に端子止め33を取り付けた状態の要部断面図を示す。計測可能な状態から電流供給端子3をばね43の力に抗して更に持ち上げ、電流供給端子3の下端3aと構造物1の表面1aを離間させる。続いて蓋2aとリング37間にできた隙間に端子止め33を挿着したものである。端子止め33は所定高さのリング状スペーサで、リングの一部に開口が設けられ、この開口から電流供給端子3に挿抜可能としている。このように端子止め33を取り付けると、電流供給端子3の下端3aが構造物1の表面1aから離間した状態を安定して保つことができるので、計測待機時などに電流供給端子3の下端3aが保護される。   FIG. 4 is a cross-sectional view of the main part in a state where the terminal stopper 33 is attached to the current supply terminal 3. The current supply terminal 3 is further lifted against the force of the spring 43 from the measurable state, and the lower end 3a of the current supply terminal 3 and the surface 1a of the structure 1 are separated. Subsequently, a terminal stopper 33 is inserted into a gap formed between the lid 2 a and the ring 37. The terminal stopper 33 is a ring-shaped spacer having a predetermined height. An opening is provided in a part of the ring, and the current supply terminal 3 can be inserted and removed from this opening. When the terminal stopper 33 is attached in this way, the state where the lower end 3a of the current supply terminal 3 is stably kept away from the surface 1a of the structure 1 can be stably maintained. Is protected.

以上、図3および図4を用いて電流供給端子3と孔23との関係を説明したが、電流供給端子4と孔24の関係及び電位差計測端子5、6と孔25、26の関係も全く同要であるので、以下その説明を省略する。   As described above, the relationship between the current supply terminal 3 and the hole 23 has been described with reference to FIGS. 3 and 4. However, the relationship between the current supply terminal 4 and the hole 24 and the relationship between the potential difference measurement terminals 5 and 6 and the holes 25 and 26 are also completely different. Since it is the same, the description thereof is omitted below.

図5は、図1に関連する原理回路図であり、計測前後で安定した電流を供給するために使用されているスイッチ回路の動作を説明するためのものである。同図において、16、17はスイッチ回路あり、その他図1と同じ回路要素については同一符号を附し、その説明を省略する。また、コンピュータ15についても図示を省略する。   FIG. 5 is a principle circuit diagram related to FIG. 1 and is for explaining the operation of the switch circuit used for supplying a stable current before and after the measurement. In the figure, reference numerals 16 and 17 denote switch circuits, and the same circuit elements as those in FIG. The illustration of the computer 15 is also omitted.

微小な欠陥を検出する場合、直流安定化電源11から供給される電流は計測前後でも安定した電流でなければならない。この回路の作業手順としては、まずスイッチ回路16をON、スイッチ回路17をOFFとして電流を安定させる。電流が安定したら、スイッチ回路17をON、スイッチ回路16をOFFとして電流供給端子3、4に電流が流れるようにする。電流供給端子3、4の電流を切る際はスイッチ回路16をON、スイッチ回路17をOFFとする。計測前後で電流が安定に供給されているかは、シャント抵抗12間の電位差を計測するデジタルマルチメータ13により確認する。このように操作することにより、計測前後で安定した電流が構造物1に確実に供給され、計測結果の再現性、正確性を高めることができる。つまり、このようなスイッチ回路16、17を用いていない従来回路に比べ、スイッチ回路16、17を設けたことにより直流安定化電源11からのノイズを低減させ、計測結果の再現性、正確性を高めることができる。   When detecting a minute defect, the current supplied from the DC stabilized power supply 11 must be stable before and after measurement. As a work procedure of this circuit, first, the switch circuit 16 is turned on and the switch circuit 17 is turned off to stabilize the current. When the current is stabilized, the switch circuit 17 is turned on and the switch circuit 16 is turned off so that the current flows through the current supply terminals 3 and 4. When the current supply terminals 3 and 4 are turned off, the switch circuit 16 is turned on and the switch circuit 17 is turned off. Whether the current is stably supplied before and after the measurement is confirmed by the digital multimeter 13 that measures the potential difference between the shunt resistors 12. By operating in this way, a stable current before and after measurement is reliably supplied to the structure 1, and the reproducibility and accuracy of the measurement result can be improved. That is, compared with the conventional circuit which does not use such switch circuits 16 and 17, by providing the switch circuits 16 and 17, noise from the DC stabilized power supply 11 is reduced, and the reproducibility and accuracy of the measurement results are improved. Can be increased.

次に、本発明の電位差法による非破壊検査装置の他の実施の形態について説明する。この実施の形態の装置は、対を成す電流供給端子のそれぞれを複数の電流供給端子で構成したもので、板状土台にそれぞれ3個の電流供給端子を設けている。その他の構成については先に説明した実施の形態の装置と同様である。以下、この要部について説明する。   Next, another embodiment of the nondestructive inspection apparatus according to the potential difference method of the present invention will be described. In the apparatus of this embodiment, each pair of current supply terminals is constituted by a plurality of current supply terminals, and three current supply terminals are provided on the plate-like base. Other configurations are the same as those of the apparatus of the above-described embodiment. Hereinafter, this main part will be described.

図6は本発明の他の実施の形態の要部説明図である。図6(a)は板状土台51の要部平面図であり、板状土台51にはそれぞれ3個の電流供給端子が設けられるように、端子ガイドとしての孔62、63、64と孔65、66、67が図中左右対称に設けられ、孔68と孔69が図中左右対称に設けられている。孔62、63、64と孔65、66、67には電流供給端子52、53、54と電流供給端子55、56、57が各々取り付けられ、孔68と孔69には電位差計測端子58、59が各々取り付けられる。   FIG. 6 is an explanatory view of the main part of another embodiment of the present invention. FIG. 6A is a plan view of the main part of the plate-like base 51. The plate-like base 51 is provided with holes 62, 63, 64 and 65 as terminal guides so that three current supply terminals are provided respectively. , 66 and 67 are provided symmetrically in the figure, and the holes 68 and 69 are provided symmetrically in the figure. Current supply terminals 52, 53, 54 and current supply terminals 55, 56, 57 are attached to the holes 62, 63, 64 and holes 65, 66, 67, respectively, and potential difference measurement terminals 58, 59 are attached to the holes 68 and 69. Are attached to each.

図6(b)は板状土台51に電流供給端子52、53、54と電流供給端子55、56、57および電位差計測端子58、59を取り付けた時の要部断面図であり、孔62、63、64と孔65、66、67に電流供給端子52、53、54と電流供給端子55、56、57が取り付けられるとともに、孔68と孔69に電位差計測端子58、59が各々取り付けられる。   6B is a cross-sectional view of the main part when the current supply terminals 52, 53, 54, the current supply terminals 55, 56, 57, and the potential difference measurement terminals 58, 59 are attached to the plate-like base 51. Current supply terminals 52, 53, 54 and current supply terminals 55, 56, 57 are attached to 63, 64 and holes 65, 66, 67, and potential difference measurement terminals 58, 59 are attached to holes 68 and 69, respectively.

電流供給端子52、53、54と電流供給端子55、56、57の各々の先端は、構造物50の表面に接離可能となっている。電流供給端子52、53、54と電流供給端子55、56、57の先端を各々構造物50の表面に接触させて、3個の電流供給端子に並列的に同時に電流を供給することが可能である。構造物50にそれら全電流が供給されると、小さな抵抗値変化に対しても電流の増大に応じて大きな電位変化を発生させるので、厚肉の構造物50の部材裏面にき裂が存在する場合でも、電位差計測端子58、59により高感度に計測が可能である。   The front ends of the current supply terminals 52, 53, 54 and the current supply terminals 55, 56, 57 can be brought into contact with and separated from the surface of the structure 50. The tips of the current supply terminals 52, 53, 54 and the current supply terminals 55, 56, 57 can be brought into contact with the surface of the structure 50, respectively, and current can be supplied simultaneously to the three current supply terminals in parallel. is there. When all the currents are supplied to the structure 50, a large potential change is generated in response to an increase in current even with a small change in resistance value, so that there is a crack on the back surface of the thick structure 50 member. Even in this case, the potential difference measurement terminals 58 and 59 can be measured with high sensitivity.

しかも、各々個別電流供給端子52、53、54、55、56、57に供給する電流を増やすことがないので、各端子部のジュール発熱量が低減され、電位差計測端子58、59に熱伝導することで発生する熱起電力に起因するノイズ発生は抑えられる。   In addition, since the current supplied to the individual current supply terminals 52, 53, 54, 55, 56, 57 is not increased, the amount of Joule heat generated at each terminal portion is reduced, and the heat is conducted to the potential difference measurement terminals 58, 59. Thus, noise generation due to the thermoelectromotive force generated can be suppressed.

続いて、本発明の電位差法による非破壊検査装置の更に他の実施の形態について説明する。この実施の形態では、図示を省略したが、図1乃至図4を用いて説明した板状土台2を構造物1に対して垂直に上下動可能とするZ軸ステージに取り付けた。Z軸ステージにはリニアアクチュエータが備えられ、リニアアクチュエータが板状土台2を上下動させる構成である。リニアアクチュエータの動作により板状土台の高さを制御して、各端子と構造物1との接離を制御している。さらに、シーケンサーには各端子の接離のタイミングと計測タイミングとを同期させるプログラムを組み込んでいて、コンピュータ15でプログラムを変更することが可能である。また、シーケンサーはリレースイッチを制御するプログラムも組み込まれており、スイッチ回路の操作により安定した電流をセンサに供給できる。このようにして、計測の自動化を実現した。   Next, still another embodiment of the nondestructive inspection apparatus according to the potential difference method of the present invention will be described. In this embodiment, although not shown, the plate base 2 described with reference to FIGS. 1 to 4 is attached to a Z-axis stage that can move vertically up and down with respect to the structure 1. The Z-axis stage is provided with a linear actuator, and the linear actuator moves the plate base 2 up and down. The height of the plate-like base is controlled by the operation of the linear actuator to control the contact and separation between each terminal and the structure 1. Furthermore, the sequencer incorporates a program for synchronizing the contact timing of each terminal and the measurement timing, and the program can be changed by the computer 15. The sequencer also has a built-in program for controlling the relay switch, and can supply a stable current to the sensor by operating the switch circuit. In this way, measurement automation was realized.

図1乃至図4を用いて説明した非破壊検査装置を用いて計測したデータを表1に示す。
この計測で使用した構造物1は、l=300mm、w=300mm、t=40mmのSUS304ステンレス材であり、き裂1cの大きさはa/t=0.37、b/a=4.7である。
Table 1 shows data measured using the nondestructive inspection apparatus described with reference to FIGS.
The structure 1 used in this measurement is a SUS304 stainless steel material of l = 300 mm, w = 300 mm, t = 40 mm, and the size of the crack 1c is a / t = 0.37, b / a = 4.7. It is.

Figure 2008128816
Figure 2008128816

電流供給端子3、4より20アンペアの電流を供給し、1測定セットにつき同一箇所を各10回計測し平均値と標準偏差とを算出した。これを、6測定セット行い、各測定セットの平均値と標準偏差及び全体の平均値と標準偏差とを算出し、実験結果とした。全体の平均値と標準偏差とは、き裂なし領域において430.1μV、0.99であり、き裂ありの領域において435.6μV、0.84であり、き裂有無による電位の差は5.5μVである。この結果は、理論解析により求めた結果とよく一致するものである。   A current of 20 amperes was supplied from the current supply terminals 3 and 4, and the same portion was measured 10 times for each measurement set, and an average value and a standard deviation were calculated. This was performed for 6 measurement sets, and the average value and standard deviation of each measurement set and the overall average value and standard deviation were calculated and used as experimental results. The overall average value and standard deviation are 430.1 μV and 0.99 in the region without cracks, 435.6 μV and 0.84 in the region with cracks, and the potential difference due to the presence or absence of cracks is 5 .5 μV. This result agrees well with the result obtained by theoretical analysis.

次に、先の実施例に対して電流供給端子3、4より供給する電流を変えて計測したデータを表2に示す。   Next, Table 2 shows data measured by changing the current supplied from the current supply terminals 3 and 4 with respect to the previous embodiment.

Figure 2008128816
Figure 2008128816

この計測では、構造物1を変えることなく、電流供給端子3、4より30アンペアの電流を供給し、1測定セットにつき同一箇所を各10回計測し平均値と標準偏差とを算出した。これを、6測定セット行い、各測定セットの平均値と標準偏差及び全体の平均値と標準偏差とを算出し、実験結果とした。全体の平均値と標準偏差とは、き裂なし領域において643.5μV、0.99であり、き裂ありの領域において651.4μV、0.59であり、き裂有無による電位の差は7.9μVである。この結果は、理論解析により求めた結果とよく一致するものである。先の実施例に比べて検出感度の改善が確認できる。   In this measurement, a current of 30 amperes was supplied from the current supply terminals 3 and 4 without changing the structure 1, and the same part was measured 10 times per measurement set, and the average value and the standard deviation were calculated. This was performed for 6 measurement sets, and the average value and standard deviation of each measurement set and the overall average value and standard deviation were calculated and used as experimental results. The overall average value and standard deviation are 643.5 μV and 0.99 in the region without cracks, and 651.4 μV and 0.59 in the region with cracks. .9 μV. This result agrees well with the result obtained by theoretical analysis. The improvement in detection sensitivity can be confirmed as compared with the previous embodiment.

本発明に係わる電位差法による非破壊検査装置は、原子力プラントにおける金属円管等の構造物の非破壊検査に用いることが可能であり、配管におけるき裂や減肉など欠陥部を高精度に検出できる。   The non-destructive inspection system based on the potential difference method according to the present invention can be used for non-destructive inspection of structures such as metal pipes in nuclear power plants, and detects defective parts such as cracks and thinnings in piping with high accuracy. it can.

本発明の電位差法による非破壊検査装置の実施の形態の原理説明図である。It is principle explanatory drawing of embodiment of the nondestructive inspection apparatus by the electric potential difference method of this invention. 図1に示す電位差法による非破壊検査装置の板状土台の要部正面図である。It is a principal part front view of the plate-shaped foundation of the nondestructive inspection apparatus by the potentiometric method shown in FIG. 図2に示す電位差法による非破壊検査装置の板状土台の電流供給端子と孔との関係を説明するための説明図である。(a)は孔の要部断面図、(b)は電流供給端子の断面図、(c)は孔に電流供給端子を組み込んだ状態の要部断面図、(d)は脚部および脚部を構造物に載せた状態の要部断面図である。It is explanatory drawing for demonstrating the relationship between the electric current supply terminal and hole of the plate-shaped base of the nondestructive inspection apparatus by a potential difference method shown in FIG. (A) is a cross-sectional view of the main part of the hole, (b) is a cross-sectional view of the current supply terminal, (c) is a cross-sectional view of the main part in a state where the current supply terminal is incorporated in the hole, and (d) is the leg part and the leg part. It is principal part sectional drawing of the state which mounted on the structure. 図3に示す電位差法による非破壊検査装置の板状土台の電流供給端子に端子止めを取り付けた状態の要部断面図である。It is principal part sectional drawing of the state which attached the terminal stop to the current supply terminal of the plate-shaped base of the nondestructive inspection apparatus by the potentiometric method shown in FIG. 図1に示す電位差法による非破壊検査装置の原理回路図である。FIG. 2 is a principle circuit diagram of the nondestructive inspection apparatus using the potential difference method shown in FIG. 1. 本発明の電位差法による非破壊検査装置の他の実施の形態の要部説明図である。(a)は板状土台の要部平面図、(b)は板状土台に電流供給端子、電流供給端子および電位差計測端子を取り付けた時の要部正面図である。It is principal part explanatory drawing of other embodiment of the nondestructive inspection apparatus by the potentiometric method of this invention. (A) is a principal part top view of a plate-like base, (b) is a principal part front view when attaching a current supply terminal, a current supply terminal, and a potential difference measurement terminal to a plate-like base.

符号の説明Explanation of symbols

1、50 構造物
2、51 板状土台
3、4、52、53、54、55、56、57 電流供給端子
5、6、58、59 電位差計測端子
7、8、9 脚部
11 直流安定化電源
12 シャント抵抗
13、14 デジタルマルチメータ
15 コンピュータ
16、17 スイッチ回路
23、24、25、26、62、63、64、65、66、67、68、69 孔
33、34、35、36 端子止め
37 リング
43 ばね
DESCRIPTION OF SYMBOLS 1,50 Structure 2,51 Plate base 3,4,52,53,54,55,56,57 Current supply terminal 5,6,58,59 Potential difference measurement terminal 7,8,9 Leg 11 DC stabilization Power supply 12 Shunt resistor 13, 14 Digital multimeter 15 Computer 16, 17 Switch circuit 23, 24, 25, 26, 62, 63, 64, 65, 66, 67, 68, 69 hole 33, 34, 35, 36 Terminal stop 37 Ring 43 Spring

Claims (8)

被測定物面に配置される複数の脚部を介して前記被測定物と対向し、複数の端子ガイドを有する板状土台と、先端が前記被測定物面に接離可能に設けられた対を成す電流供給端子と、該対を成す電流供給端子間の内側あるいは外側に配置され、かつ先端が前記被測定物面に接離可能に設けられた対を成す電位差計測端子とを備え、前記対を成す電流供給端子及び前記対を成す電位差計測端子が前記板状土台の各端子ガイドに案内されるようにしたことを特徴とする電位差法による非破壊検査装置。   A plate-like base having a plurality of terminal guides facing the object to be measured via a plurality of legs arranged on the surface of the object to be measured, and a pair of tips provided to be able to contact and separate from the surface of the object to be measured A current supply terminal that forms a pair, and a potential difference measurement terminal that forms a pair that is disposed inside or outside the pair of current supply terminals and that has a tip that can be contacted and separated from the surface of the object to be measured. A non-destructive inspection apparatus using a potential difference method, wherein a pair of current supply terminals and a pair of potential difference measuring terminals are guided by each terminal guide of the plate-like base. 前記電流供給端子先端が前記被測定物面方向に突出するように前記電流供給端子にバイアスを印加する第1弾性部材を備えたことを特徴とする請求項1に記載の電位差法による非破壊検査装置。   The nondestructive inspection by the potentiometric method according to claim 1, further comprising a first elastic member that applies a bias to the current supply terminal so that a tip of the current supply terminal protrudes in a direction of the object to be measured. apparatus. 前記電位差計測端子先端が前記被測定物面方向に突出するように前記電位差計測端子にバイアスを印加する第2弾性部材を備えたことを特徴とする請求項1または請求項2に記載の電位差法による非破壊検査装置。   3. The potential difference method according to claim 1, further comprising: a second elastic member that applies a bias to the potential difference measurement terminal such that a tip of the potential difference measurement terminal protrudes in a direction of the object to be measured. Non-destructive inspection equipment. 前記電流供給端子先端が前記被測定物面に接触するのを阻止する第1ロック部材を備えたことを特徴とする請求項1乃至請求項3のいずれか1項に記載の電位差法による非破壊検査装置。   The non-destructive method according to any one of claims 1 to 3, further comprising a first lock member that prevents the tip of the current supply terminal from contacting the surface of the object to be measured. Inspection device. 前記電位差計測端子先端が前記被測定物面に接触するのを阻止する第2ロック部材を備えたことを特徴とする請求項1乃至請求項4のいずれか1項に記載の電位差法による非破壊検査装置。   5. The non-destructive method according to claim 1, further comprising a second lock member that prevents the tip of the potential difference measuring terminal from contacting the surface of the object to be measured. Inspection device. 前記対を成す電流供給端子のそれぞれが複数の電流供給端子からなることを特徴とする請求項1乃至請求項5のいずれか1項に記載の電位差法による非破壊検査装置。   6. The nondestructive inspection apparatus according to the potential difference method according to claim 1, wherein each of the pair of current supply terminals includes a plurality of current supply terminals. 前記板状土台を前記被測定物面に対して垂直方向に移動可能とするZ軸ステージ、あるいは前記電流供給端子および前記電位差計測端子を前記被測定物面に対して垂直方向に移動可能とするZ軸ステージを備えたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の電位差法による非破壊検査装置。   The Z-axis stage that enables the plate-like base to move in a direction perpendicular to the surface of the object to be measured, or the current supply terminal and the potential difference measurement terminal to be movable in a direction perpendicular to the surface of the object to be measured. The non-destructive inspection apparatus according to the potential difference method according to any one of claims 1 to 6, further comprising a Z-axis stage. 請求項1乃至請求項7に記載の電位差法による非破壊検査装置を用い、被測定物面の所定の箇所に対して前記電流供給端子および前記電位差計測端子を複数回接離させて前記所定の箇所に対応する電位差を複数回計測し、計測された値の平均値を求めて前記所定の箇所の計測結果とすることを特徴とする非破壊検査の計測方法。
The non-destructive inspection apparatus according to the potential difference method according to claim 1, wherein the current supply terminal and the potential difference measurement terminal are contacted and separated a plurality of times with respect to a predetermined location on the surface of the object to be measured. A non-destructive inspection measuring method, wherein a potential difference corresponding to a location is measured a plurality of times, an average value of the measured values is obtained and used as a measurement result of the predetermined location.
JP2006314153A 2006-11-21 2006-11-21 Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it Pending JP2008128816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314153A JP2008128816A (en) 2006-11-21 2006-11-21 Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314153A JP2008128816A (en) 2006-11-21 2006-11-21 Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it

Publications (1)

Publication Number Publication Date
JP2008128816A true JP2008128816A (en) 2008-06-05

Family

ID=39554789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314153A Pending JP2008128816A (en) 2006-11-21 2006-11-21 Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it

Country Status (1)

Country Link
JP (1) JP2008128816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device
JP2016206157A (en) * 2015-04-28 2016-12-08 日立Geニュークリア・エナジー株式会社 Coating film thickness measurement method and coating film thickness measurement device
WO2022009919A1 (en) * 2020-07-10 2022-01-13 三菱パワー株式会社 Pipe structure monitoring and inspection method, and maintenance method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167556A (en) * 1984-09-12 1986-04-07 Nichiei Kozai Kk Injection sleeve for die casting
JPS6184446A (en) * 1984-09-29 1986-04-30 Mitsubishi Motors Corp Method of setting initial hydraulic pressure in vehicle automatic speed change gear unit
JPS61264248A (en) * 1985-05-18 1986-11-22 Babcock Hitachi Kk Electric resistance measuring method
JPS62121344A (en) * 1985-11-22 1987-06-02 Hitachi Ltd Defect detecting device
JPS63191048A (en) * 1987-02-03 1988-08-08 Toshiba Corp Crack detector
JPH034261A (en) * 1989-05-31 1991-01-10 Canon Inc Device for controlling concentration of developer
JPH0323352A (en) * 1989-06-19 1991-01-31 Mitsubishi Heavy Ind Ltd Combustion chamber for rocket engine and manufacture thereof
JPH10307117A (en) * 1997-05-06 1998-11-17 Mitsubishi Heavy Ind Ltd Crack measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167556A (en) * 1984-09-12 1986-04-07 Nichiei Kozai Kk Injection sleeve for die casting
JPS6184446A (en) * 1984-09-29 1986-04-30 Mitsubishi Motors Corp Method of setting initial hydraulic pressure in vehicle automatic speed change gear unit
JPS61264248A (en) * 1985-05-18 1986-11-22 Babcock Hitachi Kk Electric resistance measuring method
JPS62121344A (en) * 1985-11-22 1987-06-02 Hitachi Ltd Defect detecting device
JPS63191048A (en) * 1987-02-03 1988-08-08 Toshiba Corp Crack detector
JPH034261A (en) * 1989-05-31 1991-01-10 Canon Inc Device for controlling concentration of developer
JPH0323352A (en) * 1989-06-19 1991-01-31 Mitsubishi Heavy Ind Ltd Combustion chamber for rocket engine and manufacture thereof
JPH10307117A (en) * 1997-05-06 1998-11-17 Mitsubishi Heavy Ind Ltd Crack measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device
JP2016206157A (en) * 2015-04-28 2016-12-08 日立Geニュークリア・エナジー株式会社 Coating film thickness measurement method and coating film thickness measurement device
WO2022009919A1 (en) * 2020-07-10 2022-01-13 三菱パワー株式会社 Pipe structure monitoring and inspection method, and maintenance method

Similar Documents

Publication Publication Date Title
KR102247989B1 (en) Resistance measuring apparatus, substrate test apparatus, test method and method of maintaining jig for test
JP5263178B2 (en) Nondestructive inspection method for steel rails for tracks
JP2006520477A (en) Two-dimensional eddy current probe and associated inspection method
JP2008243860A5 (en)
US20120225366A1 (en) Identifying fuel cell defects
KR101195678B1 (en) Inspection method and apparatus of circuit substrate
CN109556774B (en) Nondestructive monitoring system and monitoring method for residual stress in ferromagnetic steel
JP2013160761A (en) Gas turbine disc inspection using flexible eddy current array probe
JP2008128816A (en) Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it
JP2010145233A (en) Oxide film thickness measuring method
Simm et al. Investigation of the magnetic field response from eddy current inspection of defects
JP2007057547A (en) Inspection method for magnetic sensor
Marchand et al. Innovative flexible eddy current probes for the inspection of complex parts
US6888359B2 (en) Investigating current
JP2008241419A (en) Method and device for measuring nugget diameter
JP2015163902A (en) Electric inspection method and device for circuit board
CN107014288A (en) End effector flatness is verified using electrical continuity
JP4735075B2 (en) Sensor for crack depth measuring instrument and crack depth measuring instrument
JP5922383B2 (en) Wall thickness inspection method, calibration tool, and eddy current detection system
JP2008261678A (en) Inspection probe contact detection mechanism and circuit board inspection device
JP2007127552A (en) Conductive pattern inspection device
JP4789502B2 (en) Crack depth measurement technique and apparatus for deep cracks using potentiometric method
JP2015078942A (en) Leakage magnetic flux flaw detector
KR100958038B1 (en) A weld testing apparatus
JP6341693B2 (en) Substrate holding device and substrate inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090617

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Effective date: 20111213

Free format text: JAPANESE INTERMEDIATE CODE: A02