JP2008241419A - Method and device for measuring nugget diameter - Google Patents

Method and device for measuring nugget diameter Download PDF

Info

Publication number
JP2008241419A
JP2008241419A JP2007081354A JP2007081354A JP2008241419A JP 2008241419 A JP2008241419 A JP 2008241419A JP 2007081354 A JP2007081354 A JP 2007081354A JP 2007081354 A JP2007081354 A JP 2007081354A JP 2008241419 A JP2008241419 A JP 2008241419A
Authority
JP
Japan
Prior art keywords
probe
voltage
nugget
steel material
needles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007081354A
Other languages
Japanese (ja)
Other versions
JP4822545B2 (en
Inventor
Satoshi Akamatsu
里志 赤松
Shigehiro Iwata
成弘 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denshijiki Industry Co Ltd
Original Assignee
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denshijiki Industry Co Ltd filed Critical Denshijiki Industry Co Ltd
Priority to JP2007081354A priority Critical patent/JP4822545B2/en
Publication of JP2008241419A publication Critical patent/JP2008241419A/en
Application granted granted Critical
Publication of JP4822545B2 publication Critical patent/JP4822545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring nugget diameter capable of simply and precisely measuring the nugget diameter formed on the spot-welded steel material. <P>SOLUTION: The diameter of the nugget formed on the steel material by the spot welding is obtained as follows: by using the searching probe provided with a pair of current electrode needles and a pair of voltage electrode needles, the surface of the steel is scanned along a prescribed line; according to the scanning, from the profile of the voltage variation detected by the pair of voltage electrode needles, two singular points exceeding the detection voltage at the part out of the welding region on the steel material are detected; and from the scanning position where the singular points are detected the diameter of the nugget formed on the steel material by the spot welding is obtained. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、スポット溶接により鋼材に形成されるナゲットの径を高精度に非破壊検査することのできるナゲット径測定方法およびナゲット径測定装置に関する。   The present invention relates to a nugget diameter measuring method and a nugget diameter measuring apparatus capable of nondestructively inspecting the diameter of a nugget formed on a steel material by spot welding.

鋼材Aにおける焼き入れ層Bの深さdを検出する手段として、例えば図6に示すように鋼材表面の任意の2点間に電流Iを流す一対の電流電極針1a,1bと上記電流Iによって前記鋼材Aに生じる表面電位の差(電圧)V1,V2を検出する少なくとも一対の電圧電極針2a,2b,3a,3bとを備えた探針プローブを用いた非接触検査法が知られている(例えば特許文献1を参照)。この探針プローブを用いた非接触検査法は6探針法と称され、前述した各電極針間の距離S,r1,r2と前記電位差V1,V2との情報に従い、鋼材Aに生起された電位分布と前記鋼材(母材)Aおよび焼き入れ層Bの各抵抗率ρo,ρとの関係に従って焼き入れ層Bの深さdを算出するものである。   As means for detecting the depth d of the hardened layer B in the steel material A, for example, as shown in FIG. 6, a pair of current electrode needles 1 a and 1 b that pass a current I between any two points on the surface of the steel material and the current I A non-contact inspection method using a probe having at least a pair of voltage electrode needles 2a, 2b, 3a, 3b for detecting a difference (voltage) V1, V2 in the surface potential generated in the steel material A is known. (For example, refer to Patent Document 1). This non-contact inspection method using the probe probe is called a six-probe method, and is generated in the steel material A according to the information on the distances S, r1, r2 between the electrode needles and the potential differences V1, V2. The depth d of the hardened layer B is calculated according to the relationship between the electric potential distribution and the resistivity ρo, ρ of the steel material (base material) A and the hardened layer B.

また最近では上述した6探針法を応用してスポット溶接した鋼材におけるナゲットの径を計測することが試みられている。尚、上記ナゲットとは2枚の鋼材を重ね合わせてスポット溶接により接合した際、そのスポット溶接部分において2枚の鋼材が互いに溶融固化した塊部分を指す。
特開2004−39355号公報
Recently, an attempt has been made to measure the diameter of the nugget in the steel material spot-welded by applying the above-described 6-probe method. The nugget refers to a lump portion in which two steel materials are melted and solidified at the spot welded portion when two steel materials are overlapped and joined by spot welding.
JP 2004-39355 A

ところで従来のナゲット径計測においては、専ら、前述した探針プローブを用いた検査部位を、鋼材AにおけるナゲットNの形成領域を横切るように走査し、一対の電圧電極針2a,2bを介して検出される電圧V1の変化の様子を、その走査方向に亘って検出している。そして、例えば図7に示すように求められる検出電圧変化のプロフィールを所定の閾値THにて弁別し、これによって検出される上記プロフィールの幅WをナゲットNの径Dとして求めている。しかし上述した如くして求められるプロフィールの幅Wは、概ねナゲットNの径Dを表しているに過ぎない。しかも上記閾値THをどの程度に設定するかによってその計測値(ナゲット径D)が変化すると言う課題が残される。   By the way, in the conventional nugget diameter measurement, the inspection site using the probe probe described above is scanned across the formation region of the nugget N in the steel material A and detected via the pair of voltage electrode needles 2a and 2b. The change of the voltage V1 is detected over the scanning direction. Then, for example, as shown in FIG. 7, a detected voltage change profile obtained is discriminated by a predetermined threshold TH, and the width W of the profile detected thereby is obtained as the diameter D of the nugget N. However, the width W of the profile obtained as described above generally only represents the diameter D of the nugget N. Moreover, there remains a problem that the measured value (nugget diameter D) varies depending on how much the threshold TH is set.

本発明はこのような事情を考慮してなされたもので、その目的は、スポット溶接された鋼材におけるナゲットの径を簡易に、しかも精度良く非破壊検査することのできるナゲット径測定方法およびナゲット径測定装置を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to provide a nugget diameter measuring method and nugget diameter that can easily and accurately nondestructively inspect the diameter of a nugget in a spot-welded steel material. It is to provide a measuring device.

上述した目的を達成するべく本発明に係るナゲット径測定方法は、
<A> 計測対象物である鋼材表面の任意の2点間に一定の電流または電圧を加える一対の電極針および上記電流または電圧によって前記鋼材に生じる表面電位を検出する少なくとも一対の電圧電極針を備えた探針プローブを用いて、スポット溶接された鋼材の表面を所定のラインに沿って走査し、
<B> この走査に伴って前記一対の電圧電極針により検出される電圧の前記走査方向に亘る変化のプロフィールから、その電圧が前記鋼材におけるスポット溶接領域を外れた部位での検出電圧を超える2つの特異点を検出し、これらの特異点を検出した走査位置から前記スポット溶接により前記鋼材に形成されたナゲットの径を求める
ことを特徴としている。
In order to achieve the above object, the nugget diameter measuring method according to the present invention is:
<A> A pair of electrode needles that apply a constant current or voltage between any two points on the surface of the steel material that is a measurement object, and at least a pair of voltage electrode needles that detect a surface potential generated in the steel material by the current or voltage. Using the provided probe, scan the surface of the spot-welded steel along a predetermined line,
<B> From the profile of the change in the scanning direction of the voltage detected by the pair of voltage electrode needles with this scanning, the voltage exceeds the detection voltage at the site outside the spot welding region in the steel 2 One singular point is detected, and the diameter of the nugget formed on the steel material by the spot welding is obtained from the scanning position where these singular points are detected.

具体的には、例えば前記探針プローブによる走査ラインを前記鋼材のスポット溶接領域の中心を横切る直線として設定した場合には、前記ナゲットの径を前記走査ラインにおいて検出された2つの特異点間の距離として求めることを特徴とする。或いは前記探針プローブによる走査ラインを、互いに交差して前記鋼材のスポット溶接領域をそれぞれ横切る2つの直線として設定した場合には、前記ナゲットの径を上記各走査ラインにおいてそれぞれ検出された特異点の中の少なくとも3つの特異点の検出位置により決定される前記ナゲットの外形形状を示す円の径として求めることを特徴としている。   Specifically, for example, when the scanning line by the probe is set as a straight line crossing the center of the spot welding region of the steel material, the diameter of the nugget is between two singular points detected in the scanning line. It is obtained as a distance. Alternatively, when the scanning lines by the probe are set as two straight lines crossing each other and crossing the spot welding region of the steel material, the diameter of the nugget is determined by each of the detected singular points in each scanning line. It is characterized in that it is obtained as a diameter of a circle indicating the outer shape of the nugget determined by the detection positions of at least three singular points.

ちなみに前記探針プローブは、例えば複数の探触針を一定のピッチで直線上に配列したものであって、この探針プローブによる前記鋼材の走査は、上記複数の探触針の中から前記一対の電極針および前記一対の電圧電極針として用いる探触針をそれぞれ選択すると共に、前記電極針および前記電圧電極針として選択する探触針をその配列方向に順次切り換えて行われる。   Incidentally, the probe probe is, for example, a plurality of probe needles arranged on a straight line at a constant pitch, and the scanning of the steel material by the probe probe is performed from the plurality of probe needles. The electrode needles and the probe needles to be used as the pair of voltage electrode needles are respectively selected, and the electrode needles and the probe needles to be selected as the voltage electrode needles are sequentially switched in the arrangement direction.

また本発明に係るナゲット径測定装置は、
<a> 複数の探触針を一定のピッチで直線上に配列した探針プローブと、
<b> この探針プローブにおける複数の探触針の中から一対の電極針および一対の電圧電極針として用いる探触針をそれぞれ選択すると共に、前記電極針および前記電圧電極針として選択する探触針をその配列方向に順次切り換えるプローブ走査手段と、
<c> 前記一対の電極針を介して鋼材に一定の電流または電圧を印加する共に、この電流または電圧によって前記鋼材に生じる表面電圧を前記一対の電圧電極針を介して検出する鋼材検査手段と、
<d> 前記プローブ走査手段による前記探触針の走査に伴って上記鋼材検査手段にて検出された電圧の上記走査方向に亘る変化のプロフィールから上記電圧が前記鋼材のスポット溶接領域を外れた部位での検出電圧を超える2つの特異点を検出する解析手段と、
<e> この解析手段により求められた上記特異点の前記走査方向における検出位置からスポット溶接により前記鋼材に形成されたナゲットの径を求めるナゲット径算出手段と
を具備したことを特徴としている。
The nugget diameter measuring apparatus according to the present invention is
<a> a probe having a plurality of probes arranged on a straight line at a constant pitch;
<b> A probe to be used as a pair of electrode needles and a pair of voltage electrode needles is selected from a plurality of probe needles in the probe probe, and a probe to be selected as the electrode needle and the voltage electrode needle is selected. Probe scanning means for sequentially switching the needles in the arrangement direction;
<c> Steel material inspection means for applying a constant current or voltage to the steel material through the pair of electrode needles and detecting a surface voltage generated in the steel material by the current or voltage through the pair of voltage electrode needles. ,
<d> The portion where the voltage deviates from the spot welding region of the steel material from the profile of the change in the scanning direction of the voltage detected by the steel material inspection means as the probe scanning means scans the probe An analysis means for detecting two singular points exceeding the detection voltage at
<e> Nugget diameter calculating means for obtaining the diameter of the nugget formed on the steel material by spot welding from the detected position in the scanning direction of the singular point obtained by the analyzing means.

特に前記探針プローブとして、複数の探触針をそれぞれ一定のピッチで直線配列した2組の探触針アレイを、互いに交差させて設けたものを用いることを特徴としている。   In particular, the probe probe is characterized in that a probe array in which a plurality of probe needles are linearly arranged at a constant pitch and provided so as to cross each other is used.

本発明に係るナゲット径測定方法においては、上述したように一対の電極針および一対の電圧電極針を備えた探針プローブを用いて、スポット溶接された鋼材の表面を所定のラインに沿って走査することで、この走査に伴って前記一対の電圧電極針により検出される電圧の前記走査方向に亘る変化のプロフィール(電位分布)が求められる。その上で走査方向における前記検出電圧の変化のプロフィールを解析したところ、特に前記鋼材におけるスポット溶接領域を外れた部位での検出電圧を超えて変化する2つの特異点が存在することに着目している。   In the nugget diameter measuring method according to the present invention, as described above, the surface of the spot-welded steel material is scanned along a predetermined line by using a probe having a pair of electrode needles and a pair of voltage electrode needles. As a result, a profile (potential distribution) of change in the scanning direction of the voltage detected by the pair of voltage electrode needles along with the scanning is obtained. Then, when the profile of the change in the detection voltage in the scanning direction was analyzed, it was noted that there exist two singular points that change in excess of the detection voltage at a part outside the spot welding region in the steel material. Yes.

そしてこれらの特異点の電圧は、専ら、ナゲットの形成領域における電位勾配が比較的急峻であり、これに対してナゲットが形成されていなす領域での電位勾配が比較的緩慢であることに起因して、ナゲットのエッジを挟む部位間での電位勾配が急激であり、この急峻な電位勾配によって生じているとの考察結果に基づいてなされている。そこで本発明においては上記プロフィールにおける上述した特異点を検出し、例えば2つの特異点間の幅(距離)をナゲットの径として検出することで、スポット溶接により鋼材に形成されたナゲットの径を簡易に精度良く、しかも再現性良く計測し得るものとなっている。   The voltage at these singular points is mainly due to the fact that the potential gradient in the nugget formation region is relatively steep, whereas the potential gradient in the region where the nugget is not formed is relatively slow. Thus, the potential gradient between the parts sandwiching the nugget edge is steep, and this is based on the result of consideration that it is caused by this steep potential gradient. Therefore, in the present invention, the above-described singular point in the profile is detected, for example, the width (distance) between two singular points is detected as the diameter of the nugget, thereby simplifying the diameter of the nugget formed on the steel material by spot welding. Therefore, it is possible to measure with high accuracy and reproducibility.

また本発明に係るナゲット径測定装置は、複数の探触針を一定のピッチで直線上に配列した探針プローブを用い、この探針プローブにおける複数の探触針の中から一対の電極針および一対の電圧電極針として用いる探触針をそれぞれ選択すると共に、前記電極針および前記電圧電極針として選択する探触針をその配列方向に順次切り換えることで探針プローブを走査するプローブ走査手段と、この走査に連動して前記一対の電流電極針を介して鋼材に一定の電流または電圧を加えると共に、この電流または電圧によって前記鋼材に生じる表面電位を前記一対の電圧電極針を介して検出する鋼材検査手段とを備えるので、計測対象物である鋼材を簡易に走査することができる。   The nugget diameter measuring apparatus according to the present invention uses a probe probe in which a plurality of probe needles are arranged in a straight line at a constant pitch, and a pair of electrode needles and Probe scanning means for scanning the probe probe by selecting the probe needles to be used as a pair of voltage electrode needles and sequentially switching the electrode needles and the probe needles to be selected as the voltage electrode needles in the arrangement direction; A steel material that applies a constant current or voltage to the steel material through the pair of current electrode needles in conjunction with the scanning and detects a surface potential generated in the steel material by the current or voltage through the pair of voltage electrode needles. Since the inspection means is provided, it is possible to easily scan the steel material that is the measurement object.

しかも上述した走査によって求められる電圧の上記走査方向に亘る変化のプロフィールから上記電圧が前記鋼材のスポット溶接領域を外れた部位での検出電圧を超える点を特異点として検出し(解析手段)、この解析手段により求められた2つの特異点の前記走査方向における検出位置から、スポット溶接により前記鋼材に形成されたナゲットの径を求めるので(ナゲット径算出手段)、簡易な構成でありながらナゲット径を精度良く、しかも再現性良く検出することができる。   Moreover, the point where the voltage exceeds the detection voltage at the part out of the spot welding region of the steel material is detected as a singular point from the profile of the change in the scanning direction of the voltage obtained by the scanning described above (analysis means), Since the diameter of the nugget formed on the steel material by spot welding is obtained from the detection position in the scanning direction of the two singular points obtained by the analyzing means (nugget diameter calculating means), the nugget diameter can be determined with a simple configuration. It can be detected with high accuracy and reproducibility.

換言すれば探針プローブの電気的な走査と、検出された電圧変化のプロフィールに対する簡易な解析処理だけで、スポット溶接により鋼材に形成されたナゲットの径を簡易に精度良く、しかも再現性良く計測することができる等の実用上多大なる効果が奏せられる。   In other words, the diameter of the nugget formed on the steel material by spot welding can be easily and accurately measured with high reproducibility, simply by electrical scanning of the probe and simple analysis of the detected voltage change profile. It is possible to achieve a great effect in practical use.

以下、図面を参照して本発明の実施形態に係るナゲット径測定方法およびナゲット径測定装置について説明する。
本発明に係るナゲット径測定方法は、例えば2枚の鋼材Aを重ね合わせて、その重ね合わせ部をスポット溶接したときに生じるナゲットNの径を上記鋼材の表面から非破壊検査により計測するものであって、例えば図1に示すように構成されたナゲット径測定装置を用いて実施される。
Hereinafter, a nugget diameter measuring method and a nugget diameter measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
The nugget diameter measuring method according to the present invention measures, for example, the diameter of nugget N generated by superposing two steel materials A and spot welding the overlapped portion from the surface of the steel material by nondestructive inspection. For example, the nugget diameter measuring apparatus configured as shown in FIG. 1 is used.

このナゲット径測定装置は、概略的には複数(例えば10〜20本)の探触針11を一定のピッチ、例えば1mmピッチで直線配列してアレイ構造化した探針プローブ12と、この探針プローブ12における複数の探触針11の中から一対の電流電極針Ia,Ibおよび一対の電圧電極針Va,Vbとして用いる探触針11をそれぞれ選択する電子スイッチ13と、この電子スイッチ13の作動を制御して前記電流電極針Ia,Ibおよび前記電圧電極針Va,Vbとして選択する探触針11をその配列方向に順次切り換える走査制御部(プローブ走査手段)14とを備える。   This nugget diameter measuring apparatus generally includes a probe probe 12 in which a plurality of (for example, 10 to 20) probe needles 11 are linearly arranged at a constant pitch, for example, 1 mm, to form an array structure, and the probe. An electronic switch 13 for selecting the probe 11 to be used as the pair of current electrode needles Ia and Ib and the pair of voltage electrode needles Va and Vb from among the plurality of probe needles 11 in the probe 12, and the operation of the electronic switch 13 And a scanning control unit (probe scanning means) 14 for sequentially switching the probe needles 11 selected as the current electrode needles Ia and Ib and the voltage electrode needles Va and Vb in the arrangement direction.

前記一対の電流電極針Ia,Ibは、例えば前記鋼材に電流Iを流すことで該鋼材に、その内部抵抗に応じた電位分布を生起する為のものであって、前記一対の電圧電極針Va,Vbは上記電流Iによって前記鋼材に生じる表面電位を検出する為のものである。尚、前記一対の電流電極針Ia,Ibを介して一定の電流Iを流すことに代えて、一対の電流電極針Ia,Ib間に一定の電圧Eを印加して前記鋼材に、その内部抵抗に応じた電位分布を生起するようにしても良い。   The pair of current electrode needles Ia and Ib are for generating a potential distribution corresponding to the internal resistance of the steel material by causing the current I to flow through the steel material, for example, and the pair of voltage electrode needles Va , Vb is for detecting the surface potential generated in the steel material by the current I. Instead of passing a constant current I through the pair of current electrode needles Ia and Ib, a constant voltage E is applied between the pair of current electrode needles Ia and Ib to cause the internal resistance to the steel material. A potential distribution according to the above may be generated.

ちなみに上記電流電極針Ia,Ibおよび前記電圧電極針Va,Vbの選択は、上述した複数(n本)の探触針11の配列順序を#1,#2,#3,#4,#5〜#nとした場合、例えば#1,#4の探触針11を電流電極針Ia,Ibとし、#2,#3の探触針11を電圧電極針Va,Vbとして用いるように、連続する4本の探触針11を1組として捉え、その外側の2本を電流電極針Ia,Ib、内側の2本を電圧電極針Va,Vbとしてそれぞれ選択することによって行われる。そしてこの探針プローブ12の走査は、上述したように選択する探触針11の組を[#1,#2,#3,#4]から[#2,#3,#4,#5]へと変更し、次いで[#3,#4,#5,#6]へと変更すると言う手順を繰り返すことにより、探触針11を順次1本ずつシフトさせて行われる。   Incidentally, the selection of the current electrode needles Ia, Ib and the voltage electrode needles Va, Vb is performed by changing the arrangement order of the plurality (n) of probe needles 11 to # 1, # 2, # 3, # 4, # 5. To #n, for example, the probe needles # 1 and # 4 are used as current electrode needles Ia and Ib, and the probe needles # 2 and # 3 are used as voltage electrode needles Va and Vb. The four probe needles 11 are regarded as one set, and the two outside electrodes are selected as current electrode needles Ia and Ib, and the two inside electrodes are selected as voltage electrode needles Va and Vb. The scanning of the probe 12 is performed by changing the set of the probes 11 to be selected as described above from [# 1, # 2, # 3, # 4] to [# 2, # 3, # 4, # 5]. The probe 11 is sequentially shifted one by one by repeating the procedure of changing to [# 3, # 4, # 5, # 6] and then changing to [# 3, # 4, # 5, # 6].

このようにして選択される一対の電流電極針Ia,Ibとしての2本の探触針11は直流電源15に接続される。また一対の電圧電極針Va,Vbは電圧検出器16に接続される。即ち、上述した探針プローブ12は、検査対象物である鋼材Aの表面に複数の探触針11を一括して接触させて該鋼材Aの非破壊検査に供せられるものであって、前記一対の電流電極針Ia,Ibは鋼材Aとの接触点間に、例えば前述した直流電源15から一定の電圧Eを印加することで、その間に前記鋼材Aの内部抵抗に応じた電流Iを流す役割を担う。尚、前述したように一対の電流電極針Ia,Ibを介して前記直流電源15から鋼材Aに一定の電流Iを流すようにしても良い。また前記一対の電圧電極針Va,Vbは、上述した一対の電流電極針Ia,Ib間に加えられた一定の電圧Eまたは一定の電流Iによって鋼材Aの内部に生じる電位分布を、該電圧電極針Va,Vb間に生じる電圧Vとして検出する役割を担い、この電圧が前記電圧検出器16にて検出される。これらの直流電源15および電圧検出器16は、探針プローブ12を用いて鋼材Aの内部状況に応じて変化する情報を求める鋼材検査手段としての役割を担う。   The two probe needles 11 as the pair of current electrode needles Ia and Ib selected in this way are connected to the DC power supply 15. The pair of voltage electrode needles Va and Vb are connected to the voltage detector 16. That is, the probe probe 12 described above is used for nondestructive inspection of the steel material A by bringing the plurality of probe needles 11 into contact with the surface of the steel material A, which is an object to be inspected. The pair of current electrode needles Ia and Ib applies a constant voltage E from, for example, the DC power supply 15 described above between the contact points with the steel material A, so that a current I corresponding to the internal resistance of the steel material A flows between them. Take a role. As described above, a constant current I may flow from the DC power source 15 to the steel material A through the pair of current electrode needles Ia and Ib. Further, the pair of voltage electrode needles Va and Vb has a potential distribution generated in the steel material A by the constant voltage E or the constant current I applied between the pair of current electrode needles Ia and Ib. The voltage detector 16 plays a role of detecting the voltage V generated between the hands Va and Vb, and the voltage detector 16 detects the voltage. The DC power supply 15 and the voltage detector 16 serve as a steel material inspection unit that uses the probe probe 12 to obtain information that changes according to the internal state of the steel material A.

本発明に係るナゲット径測定装置は、上述した探針プローブ11とその駆動手段に加えて、前述したプローブ走査に連動して前記電圧電極針Va,Vbを介して検出された電圧Vを順次記録し、その電圧変化のプロフィール(電圧変化パターン)を上記走査方向に亘って求めるメモリ17を備える。そして本装置の特徴的な処理機能である特異点検出手段(解析手段)18は、上記メモリ17に求められた検出電圧の走査方向に亘る変化のプロフィールを解析し、その電圧Vが前記鋼材Aのスポット溶接領域(ナゲット形成領域)を外れた部位での検出電圧Voを超える2つの特異点Xa,Xbを検出しており、ナゲット径算出手段19は、上記特異点検出手段(解析手段)18により求められた2つの特異点Xa,Xbの前記鋼材Aの表面における検出位置間の距離Lとして、スポット溶接により前記鋼材Aに形成されたナゲットNの径Dを求めている。   The nugget diameter measuring apparatus according to the present invention sequentially records the voltage V detected via the voltage electrode needles Va and Vb in conjunction with the probe scanning described above in addition to the probe probe 11 and its driving means. And a memory 17 for obtaining a profile (voltage change pattern) of the voltage change over the scanning direction. Then, the singular point detection means (analysis means) 18 which is a characteristic processing function of this apparatus analyzes the profile of the change in the scanning direction of the detection voltage obtained in the memory 17, and the voltage V is the steel material A. The two singular points Xa and Xb exceeding the detection voltage Vo at the part out of the spot welding region (nugget formation region) of the above are detected, and the nugget diameter calculation means 19 is the singular point detection means (analysis means) 18 The diameter D of the nugget N formed on the steel material A by spot welding is obtained as the distance L between the detected positions on the surface of the steel material A at the two singular points Xa and Xb obtained by the above.

即ち、スポット溶接された鋼材Aの表面を、前述した探針プローブ11を用いてそのスポット溶接領域(ナゲット形成領域)を横切って走査したとき、該プローブ11によって検出される電圧Vは、スポット溶接領域(ナゲット形成領域)とこのスポット溶接領域(ナゲット形成領域)から外れた領域とで異なり、例えば図2に示すように変化する。具体的には上記検出電圧Vは、その走査線上の両端部であるスポット溶接領域(ナゲット形成領域)から外れた領域においては或る一定の電圧Voとなり、走査線上の中央部であるスポット溶接領域(ナゲット形成領域)においては、ナゲットNの中心部程その電圧が上記電圧Voよりも低くなる。特にナゲットNのエッジ部においては、スポット溶接領域(ナゲット形成領域)での電位分布と、上記スポット溶接領域(ナゲット形成領域)から外れた領域での電位分布の異なりに起因して、その検出電圧は前記一定電圧Voよりも若干高くなる。   That is, when the surface of the spot-welded steel A is scanned across the spot welding region (nugget formation region) using the probe probe 11 described above, the voltage V detected by the probe 11 is the spot welding. The region (nugget formation region) differs from the region outside the spot welding region (nugget formation region), and changes as shown in FIG. 2, for example. Specifically, the detection voltage V becomes a certain voltage Vo in a region deviating from the spot welding region (nugget formation region) at both ends on the scanning line, and the spot welding region at the center on the scanning line. In the (nugget formation region), the voltage of the central portion of the nugget N becomes lower than the voltage Vo. In particular, at the edge portion of the nugget N, the detected voltage is caused by the difference between the potential distribution in the spot welding region (nugget formation region) and the potential distribution in the region outside the spot welding region (nugget formation region). Is slightly higher than the constant voltage Vo.

前述した特異点検出手段(解析手段)18は、スポット溶接領域(ナゲット形成領域)から外れた領域において検出される一定電圧Voよりも若干高くなる電圧が検出された位置を図2に示すように特異点Xa,Xbとして検出しており、ナゲット径算出手段19は上記2つの特異点Xa,XbがそれぞれナゲットNのエッジ位置を示していることに着目して、上記特異点Xa,Xbの検出位置間の距離LとしてそのナゲットNの径Dを求めている。   As shown in FIG. 2, the singular point detection means (analysis means) 18 detects the position where a voltage slightly higher than the constant voltage Vo detected in the area outside the spot welding area (nugget formation area) is detected. The nugget diameter calculating means 19 detects the singular points Xa and Xb by paying attention to the fact that the two singular points Xa and Xb indicate the edge positions of the nugget N, respectively. The diameter D of the nugget N is obtained as the distance L between the positions.

今少し詳しく説明すると、2枚の鋼板を重ね合わせてスポット溶接すると、そのスポット溶接領域においては上記2枚の鋼板が溶融固化して一体化してナゲットNを形成する。従ってのこのナゲットNの形成領域における鋼板Aの厚みは、上記2枚の鋼板が重なり合って一体化した厚みとなる。しかし上記ナゲットNの形成領域から外れた領域においては上記2枚の鋼板が単に重なり合っているだけであり、これらの鋼板は物理的には離れていると看做し得る。これ故、前述した一対の電流電極針Ia,Ibから前記鋼材Aに一定の電圧Eを印加したとき、或いは一対の電流電極針Ia,Ib間に一定の電流Iを流したときに該鋼材Aに生じる電位分布は、前記電流電極針Ia,Ibの接触位置が鋼材Aのどの領域であるかによって異なる。即ち、鋼材Aに生じる電位分布は、例えば図3(a)〜(d)に模式的に示すように電流電極針Ia,Ibの位置とナゲットNの形成領域との位置関係によって異なる。   More specifically, when two steel plates are overlapped and spot-welded, the two steel plates are melted and solidified in the spot welding region to form a nugget N. Therefore, the thickness of the steel sheet A in the nugget N formation region is a thickness in which the two steel sheets are overlapped and integrated. However, in the region outside the nugget N formation region, the two steel plates simply overlap each other, and it can be considered that these steel plates are physically separated. Therefore, when a constant voltage E is applied to the steel material A from the pair of current electrode needles Ia and Ib, or when a constant current I is passed between the pair of current electrode needles Ia and Ib, the steel material A The electric potential distribution generated in is different depending on which region of the steel A the contact position of the current electrode needles Ia and Ib is. That is, the potential distribution generated in the steel material A differs depending on the positional relationship between the positions of the current electrode needles Ia and Ib and the nugget N formation region, for example, as schematically shown in FIGS.

具体的には一対の電流電極針Ia,IbをナゲットNの形成領域から外れた領域に位置付けた場合には、専ら、該電流電極針Ia,Ibが接触した表面側の鋼材中だけに電界が形成されるので、図3(a)に示すように表面側の鋼材にだけ電位分布が生じる。しかも電界の形成幅が狭く、電界生成領域での内部抵抗が大きいので、鋼材Aに生じる電位分布の様子を示す等電位線は、例えば図3(a)に示すように略一定間隔で密となる。これ故、前記一対の電流電極針Ia,Ib間に設けられた一対の電圧電極針Va,Vbによって検出される電位差(電圧)は高くなる。このような鋼材Aの一対の電流電極針Ia,Ib間における電位分布の形成状態は、前記電流電極針Ia,Ibの位置を徐々にずらしながら、その一方がナゲットNのエッジ位置に掛かる状態まで移動させた場合にも、図3(b)に示すように殆ど変わることがない。従って一対の電流電極針Ia,IbをナゲットNの形成領域から外れた領域において移動させても、一対の電圧電極針Va,Vbによって検出される電位差(電圧)は殆ど変化することがなく、表面側の鋼材の内部抵抗だけに依存して或る程度高い一定の電圧Voとして検出される。   Specifically, when the pair of current electrode needles Ia and Ib is positioned in a region outside the nugget N formation region, an electric field is generated only in the steel on the surface side where the current electrode needles Ia and Ib are in contact. Therefore, as shown in FIG. 3A, a potential distribution is generated only in the steel material on the surface side. Moreover, since the formation width of the electric field is narrow and the internal resistance in the electric field generating region is large, the equipotential lines indicating the state of the potential distribution generated in the steel material A are dense at substantially constant intervals, for example, as shown in FIG. Become. Therefore, the potential difference (voltage) detected by the pair of voltage electrode needles Va and Vb provided between the pair of current electrode needles Ia and Ib becomes high. The state of formation of the potential distribution between the pair of current electrode needles Ia and Ib of the steel material A is such that the position of the current electrode needles Ia and Ib is gradually shifted while one of the current electrode needles Ia and Ib is applied to the edge position of the nugget N. Even when it is moved, it hardly changes as shown in FIG. Therefore, even if the pair of current electrode needles Ia and Ib is moved in a region outside the nugget N formation region, the potential difference (voltage) detected by the pair of voltage electrode needles Va and Vb hardly changes, and the surface It is detected as a constant voltage Vo that is somewhat higher depending only on the internal resistance of the side steel.

これに対して一対の電流電極針Ia,Ibの一方が、図3(c)に示すようにナゲットNのエッジを跨いでナゲットNの形成領域に位置付けられると、電流電極針Ia,Ib間に形成される電界はナゲットNを介して裏面側の鋼材にまで拡がる。そしてナゲットNの形成領域においては電界の形成幅が広くなり、その内部抵抗も小さくなるので、ナゲットNの形成領域における電位分布の様子を示す等電位線は、例えば図3(c)に示すように粗くなる。しかしナゲットNの形成領域から外れた周辺領域においては、表面側の鋼材と裏面側の鋼材との間に隙間(空間)が存在するので(表裏の鋼材を一体化するナゲットNが存在しないので)、上述した如く裏面側にまで拡がった電界は表面側の鋼材まで延びることはない。   On the other hand, when one of the pair of current electrode needles Ia and Ib is positioned in the nugget N formation region across the edge of the nugget N as shown in FIG. The formed electric field extends to the steel material on the back side through the nugget N. In the nugget N formation region, the formation width of the electric field is widened and the internal resistance is also reduced. Therefore, an equipotential line indicating the potential distribution in the nugget N formation region is, for example, as shown in FIG. It becomes rough. However, in the peripheral region outside the nugget N formation region, there is a gap (space) between the steel material on the front side and the steel material on the back side (because there is no nugget N that integrates the front and back steel materials). As described above, the electric field extending to the back surface side does not extend to the steel material on the front surface side.

そして鋼材A内に形成される電位分布は、図3(c)に示すようにナゲットNのエッジを境として大きく変化し、ナゲットNの形成領域においては等電位線の間隔が粗くなり、ナゲットNの形成領域から外れた周辺領域においては上記ナゲットNの形成領域においては等電位線の間隔が粗くなった分、その等電位線の間隔が前述した図3(a)(b)にそれぞれ示す等電位線の間隔よりも狭くなる。この結果、ナゲットNのエッジを跨いで位置付けられる一対の電圧電極針Va,Vbにて検出される電圧が前述した一定電圧Voを超えて高くなることがある。特に前記ナゲットNのエッジを横切って前記一対の電圧電極針Va,Vbによる電圧検出位置を移動させた場合、上述した如く等電位線の間隔がより密に狭まった領域の電圧を検出することになるので、その検出電圧が前述した一定電圧Voよりも僅かではあるが高くなることになる。   The potential distribution formed in the steel material A changes greatly at the edge of the nugget N as shown in FIG. 3C. In the nugget N formation region, the equipotential line interval becomes rough, and the nugget N In the peripheral region outside the formation region of the nugget N, the equipotential line interval in the nugget N formation region is increased, so that the equipotential line interval is shown in FIGS. 3A and 3B, respectively. It becomes narrower than the interval between the potential lines. As a result, the voltage detected by the pair of voltage electrode needles Va and Vb positioned across the edge of the nugget N may become higher than the above-described constant voltage Vo. In particular, when the voltage detection position by the pair of voltage electrode needles Va and Vb is moved across the edge of the nugget N, as described above, the voltage in a region where the interval between equipotential lines is narrowed is detected. Therefore, the detected voltage is slightly higher than the above-described constant voltage Vo.

その後、一対の電流電極針Ia,IbがナゲットNの形成領域に位置付けられた場合には、例えば図3(d)に示すように鋼材Aの電流電極針Ia,Ib間に形成される電位分布の等電位線はナゲットNを介して裏面側の鋼材にまで幅広く拡がり、その等電位線の間隔が粗くなる。そして電流電極針Ia,Ibの近傍領域においてのみ、その周囲の影響を受けて等電位線の間隔が若干狭くなる。この結果、前述した一対の電圧電極針Va,Vbは、ナゲットNの形成領域における等電位線の間隔が広い電位分布の領域の電位差を検出することになるので、その検出電圧は前述した一定電圧Voよりも低くなる。このようにして一対の電圧電極針Va,Vbにて検出される電圧が最も低くなる位置は、ナゲットNのエッジの影響が最も少なくなる該ナゲットNの中心である。   Thereafter, when the pair of current electrode needles Ia and Ib is positioned in the nugget N formation region, the potential distribution formed between the current electrode needles Ia and Ib of the steel material A as shown in FIG. These equipotential lines spread widely through the nugget N to the steel material on the back surface side, and the interval between the equipotential lines becomes rough. Only in the vicinity of the current electrode needles Ia and Ib, the interval between the equipotential lines is slightly narrowed due to the influence of the surroundings. As a result, the pair of voltage electrode needles Va and Vb described above detects the potential difference in the potential distribution region where the equipotential lines in the nugget N formation region are widely spaced. It becomes lower than Vo. Thus, the position where the voltage detected by the pair of voltage electrode needles Va and Vb is the lowest is the center of the nugget N where the influence of the edge of the nugget N is minimized.

この結果、前述した探針プローブ11にてナゲットNの形成領域を横切って走査し、その電圧変化(表面電位分布)を検出した場合、前述した図2に示すようにナゲットNの形成領域に対応してその検出電圧が低くなり、ナゲットNのエッジにおいてその検出電圧が、ナゲットNの周囲にて検出される電圧Voよりも若干高くなる。そしてこの検出電圧が周囲電圧Voよりも若干高くなる位置、つまり検出電圧の変化プロフィール(変化パターン)における上述した特異点は、ナゲットNのエッジ位置を示していることになる。   As a result, when the probe probe 11 scans across the nugget N formation region and detects the voltage change (surface potential distribution), it corresponds to the nugget N formation region as shown in FIG. Then, the detection voltage becomes lower, and the detection voltage at the edge of the nugget N becomes slightly higher than the voltage Vo detected around the nugget N. The position where the detection voltage is slightly higher than the ambient voltage Vo, that is, the above-described singular point in the change profile (change pattern) of the detection voltage indicates the edge position of the nugget N.

本発明に係るナゲット径測定方法およびナゲット径測定装置は上述した考察に立脚してなされており、図4にその概略的な処理手順を示すように前述した探針プローブ11を用いてスポット溶接した鋼材AのナゲットNの形成位置を横切るように走査することにより開始される[ステップS1]。好ましくは探針プローブ11による走査は、ナゲットNの形成領域の中心を通るようにして行われる。この探針プローブ11の走査は、前述したように探針プローブ11を構成する複数本の探触針11を電気的にその接続を順次切り替えることにより行われる。   The nugget diameter measuring method and the nugget diameter measuring apparatus according to the present invention are based on the above-described consideration, and spot welding is performed using the probe probe 11 described above as shown in FIG. It starts by scanning across the formation position of the nugget N of the steel material A [step S1]. Preferably, scanning with the probe 11 is performed so as to pass through the center of the nugget N formation region. The scanning of the probe 11 is performed by sequentially switching the connection of the plurality of probes 11 constituting the probe 11 as described above.

しかる後、上記探針プローブ11の走査によって検出される電圧を、その走査に連動して展開することで電圧変化のプロフィール(変化パターン)をその走査方向に亘って検出し[ステップS2]、前述したようにナゲットNの周辺部において検出される電圧Voよりも若干高い電圧となる2つの特異点Xa,Xbを検出する[ステップS3]。そしてこれらの特異点Xa,Xb間の距離Lと、探針プローブ11による鋼材Aの走査幅との関係から上記特異点Xa,Xb間の距離Lに相当するナゲットNの径Dを求める[ステップS4]。   Thereafter, a voltage change profile (change pattern) is detected in the scanning direction by developing the voltage detected by the scanning of the probe 11 in conjunction with the scanning [Step S2]. As described above, the two singular points Xa and Xb having a voltage slightly higher than the voltage Vo detected at the periphery of the nugget N are detected [step S3]. Then, the diameter D of the nugget N corresponding to the distance L between the singular points Xa and Xb is obtained from the relationship between the distance L between these singular points Xa and Xb and the scanning width of the steel material A by the probe probe 11 [Step] S4].

尚、ナゲットNの形成領域の中心を通るように前記探針プローブ11による鋼材Aの走査位置を設定することが困難な場合には、例えば複数の探触針をそれぞれ一定のピッチで直線配列した2組の探触針アレイ21,22を互いに交差させて設けた探針プローブを用い、図5に示すように上記2組の探触針アレイにて鋼材Aのスポット溶接領域(ナゲット形成領域)をそれぞれ横切って走査するようにすれば良い。そしてこれらの2組の探触針アレイにてそれぞれ検出される特異点(ナゲットNのエッジ位置)xa,xb,ya,ybの中の少なくとも3つの特異点の検出位置からナゲットNの外形形状を示す円を求め、この円の径としてナゲット径Dを求めるようにすれば良い。但し、この場合、2組の探触針アレイが互いに干渉しないように、その駆動・走査を制御することは勿論のことである。   If it is difficult to set the scanning position of the steel material A by the probe probe 11 so as to pass through the center of the nugget N formation region, for example, a plurality of probe needles are linearly arranged at a constant pitch. Spot probe regions (nugget formation regions) of the steel material A are used in the above-mentioned two sets of probe arrays as shown in FIG. 5 using probe probes provided by crossing two sets of probe arrays 21 and 22 with each other. It is sufficient to scan across each. Then, the outer shape of the nugget N is determined from the detection positions of at least three singular points among the singular points (edge positions of the nugget N) xa, xb, ya, yb detected by these two sets of probe arrays. The circle shown may be obtained, and the nugget diameter D may be obtained as the diameter of this circle. However, in this case, it goes without saying that the driving and scanning are controlled so that the two probe arrays do not interfere with each other.

以上説明したようにしてナゲットNの径Dを計測する本発明方法および装置によれば、ナゲット領域を走査したときに得られる電圧変化の特異点に着目しているので、ナゲットNの径Dを簡易に、しかも精度良く計測することができる。しかも従来のようにナゲット領域を走査したときに得られる電圧変化のパターンを、図7に示したように或る閾値THで弁別してナゲット径を求めるものとは異なるので計測値に対する信頼性が高く、しかも計測再現性も高い等の効果が奏せられる。   According to the method and apparatus of the present invention for measuring the diameter D of the nugget N as described above, the focus is on the singular point of the voltage change obtained when the nugget region is scanned. Simple and accurate measurement is possible. Moreover, since the voltage change pattern obtained when the nugget region is scanned as in the prior art is different from the case where the nugget diameter is obtained by discriminating with a certain threshold TH as shown in FIG. 7, the reliability of the measured value is high. In addition, effects such as high measurement reproducibility can be achieved.

尚、本発明は上述した実施形態に限定されるものではない。例えば探針プローブ11の構成、つまり複数本の探触針12の数やその配列ピッチ等は、要求される測定仕様に応じて設定すれば良いものである。また2つの特異点Xa,Xbの間隔と、その電圧プロフィールのボトム点をなすナゲットNの中心位置とを基準にしてナゲットNの径を最定義することも勿論可能である。また電圧検出器16の出力をパーソナルコンピュータ(PC)に取り込み、前述した処理をソフトウェア的に実行することも勿論可能である。また前述した2組の探触針アレイ21,22については、必ずしもその探触針11の配列方向を互いに直交させて設ける必要はない。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, the configuration of the probe 11, that is, the number of the plurality of probes 12 and the arrangement pitch thereof may be set according to the required measurement specifications. It is of course possible to redefine the diameter of the nugget N based on the interval between the two singular points Xa and Xb and the center position of the nugget N forming the bottom point of the voltage profile. Of course, the output of the voltage detector 16 can be taken into a personal computer (PC) and the above-described processing can be executed by software. Further, the two pairs of probe needle arrays 21 and 22 described above are not necessarily provided so that the arrangement directions of the probe needles 11 are orthogonal to each other. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係るナゲット径測定方法を実施するナゲット径測定装置の概略構成図。The schematic block diagram of the nugget diameter measuring apparatus which enforces the nugget diameter measuring method which concerns on one Embodiment of this invention. スポット溶接した鋼材を走査して求められる電位分布の変化パターンの例と、この変化パターンにおける特異点とナゲット径との関係を示す図。The figure which shows the example of the change pattern of the electrical potential distribution calculated | required by scanning the spot-welded steel materials, and the relationship between the singular point and nugget diameter in this change pattern. 走査位置よって変化する鋼材内部の電位分布の様子を模式的に示す図。The figure which shows typically the mode of the electric potential distribution inside the steel materials which changes with scanning positions. 本発明に係るナゲット径測定方法の概略的な処理手順を示す図。The figure which shows the rough process sequence of the nugget diameter measuring method which concerns on this invention. 2組の探触針アレイを用いたナゲット径計測の原理を説明する為の図。The figure for demonstrating the principle of the nugget diameter measurement using two sets of probe needle arrays. 6探針法による鋼材内部の状態検出の原理を説明する為の図。The figure for demonstrating the principle of the state detection of the inside of steel materials by a six-probe method. 従来の一般的なナゲット径計測の測定原理を説明する為の図。The figure for demonstrating the measurement principle of the conventional general nugget diameter measurement.

符号の説明Explanation of symbols

11 探針プローブ
12 探触針
13 電子スイッチ
14 走査制御部
15 直流電源
16 電圧検出器
17 メモリ
18 特異点検出部
19 ナゲット径算出部
21,22 探触針アレイ
Ia,Ib 電流電極針
Va,Vb 電圧電極針
DESCRIPTION OF SYMBOLS 11 Probe probe 12 Probe 13 Electronic switch 14 Scan control part 15 DC power supply 16 Voltage detector 17 Memory 18 Singular point detection part 19 Nugget diameter calculation part 21, 22 Probe array Ia, Ib Current electrode needle Va, Vb Voltage electrode needle

Claims (6)

鋼材表面の任意の2点間に一定の電流または電圧を印加する一対の電極針および上記電流または電圧によって前記鋼材に生じる表面電位を検出する少なくとも一対の電圧電極針を備えた探針プローブを用いて、スポット溶接された鋼材の表面を所定のラインに沿って走査し、
この走査に伴って前記一対の電圧電極針により検出される電圧の前記走査方向に亘る変化のプロフィールから、その電圧が前記鋼材におけるスポット溶接領域を外れた部位での検出電圧を超える2つの特異点を検出し、これらの特異点を検出した走査位置から前記スポット溶接により前記鋼材に形成されたナゲットの径を求めることを特徴とするナゲット径測定方法。
Using a probe probe provided with a pair of electrode needles for applying a constant current or voltage between any two points on the surface of the steel material and at least a pair of voltage electrode needles for detecting a surface potential generated in the steel material by the current or voltage Scan the surface of the spot-welded steel along a predetermined line,
From the profile of the change in the scanning direction of the voltage detected by the pair of voltage electrode needles along with this scanning, two singular points where the voltage exceeds the detected voltage at the site outside the spot welding region in the steel material The nugget diameter measuring method is characterized in that the diameter of the nugget formed on the steel material by the spot welding is obtained from the scanning position where these singular points are detected.
前記探針プローブによる走査ラインは、前記鋼材のスポット溶接領域の中心を横切る直線として設定されるものであって、
前記ナゲットの径は、前記走査ラインにおいて検出された2つの特異点間の距離として求められる請求項1に記載のナゲット径測定方法。
The scanning line by the probe probe is set as a straight line across the center of the spot welding region of the steel material,
The nugget diameter measuring method according to claim 1, wherein the diameter of the nugget is obtained as a distance between two singular points detected in the scanning line.
前記探針プローブによる走査ラインは、互いに交差して前記鋼材のスポット溶接領域をそれぞれ横切る2つの直線として設定されるものであって、
前記ナゲットの径は、上記各走査ラインにおいてそれぞれ検出された特異点の中の少なくとも3つの特異点の検出位置により決定される前記ナゲットの外形形状を示す円の径として求められる請求項1に記載のナゲット径測定方法。
The scanning line by the probe probe is set as two straight lines crossing each other and crossing each spot welding region of the steel material,
2. The diameter of the nugget is obtained as a diameter of a circle indicating an outer shape of the nugget determined by detection positions of at least three singular points among the singular points detected in each scanning line. Nugget diameter measurement method.
前記探針プローブは、複数の探触針を一定のピッチで直線配列したものであって、
前記探針プローブによる前記鋼材の走査は、上記複数の探触針の中から前記一対の電極針および前記一対の電圧電極針として用いる探触針をそれぞれ選択すると共に、前記電極針および前記電圧電極針として選択する探触針をその配列方向に順次切り換えて行われるものである請求項1に記載のナゲット径測定方法。
The probe probe is a linear arrangement of a plurality of probe needles at a constant pitch,
The scanning of the steel material by the probe probe selects the probe needles to be used as the pair of electrode needles and the pair of voltage electrode needles from the plurality of probe needles, respectively, and the electrode needles and the voltage electrodes The nugget diameter measuring method according to claim 1, wherein the probe is selected by sequentially switching probe needles to be selected as needles in the arrangement direction.
複数の探触針を一定のピッチで直線配列した探針プローブと、
この探針プローブにおける複数の探触針の中から一対の電極針および一対の電圧電極針として用いる探触針をそれぞれ選択すると共に、前記電極針および前記電圧電極針として選択する探触針をその配列方向に順次切り換えるプローブ走査手段と、
前記一対の電極針を介して鋼材に一定の電流または電圧を加えると共に、この電流または電圧によって前記鋼材に生じる表面電位を前記一対の電圧電極針にて検出する鋼材検査手段と、
前記プローブ走査手段による前記探触針の走査に伴って上記鋼材検査手段にて検出された電圧の上記走査方向に亘る変化のプロフィールから上記電圧が前記鋼材のスポット溶接領域を外れた部位での検出電圧を超える2つの特異点を検出する解析手段と、
この解析手段により求められた上記特異点の前記走査方向における検出位置からスポット溶接により前記鋼材に形成されたナゲットの径を求めるナゲット径算出手段と
を具備したことを特徴とするナゲット径測定装置。
A probe probe in which a plurality of probe needles are linearly arranged at a constant pitch;
A probe to be used as a pair of electrode needles and a pair of voltage electrode needles is selected from a plurality of probe needles in the probe probe, and the probe to be selected as the electrode needle and the voltage electrode needle is Probe scanning means for sequentially switching in the arrangement direction;
A steel material inspection means for applying a constant current or voltage to the steel material through the pair of electrode needles, and detecting a surface potential generated in the steel material by the current or voltage with the pair of voltage electrode needles,
Detection at a site where the voltage deviates from the spot welding region of the steel material from the profile of change in the scanning direction of the voltage detected by the steel material inspection means as the probe scanning means scans the probe. An analysis means for detecting two singularities exceeding the voltage;
1. A nugget diameter measuring device comprising: a nugget diameter calculating means for obtaining a diameter of a nugget formed on the steel material by spot welding from a detected position in the scanning direction of the singular point obtained by the analyzing means.
前記探針プローブは、複数の探触針をそれぞれ一定のピッチで直線配列した2組の探触針アレイを、互いに交差させて設けたものである請求項5に記載のナゲット径測定装置。   6. The nugget diameter measuring apparatus according to claim 5, wherein the probe probe is provided by crossing two sets of probe arrays in which a plurality of probe needles are linearly arranged at a constant pitch.
JP2007081354A 2007-03-27 2007-03-27 Nugget diameter measuring method and nugget diameter measuring apparatus Active JP4822545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081354A JP4822545B2 (en) 2007-03-27 2007-03-27 Nugget diameter measuring method and nugget diameter measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081354A JP4822545B2 (en) 2007-03-27 2007-03-27 Nugget diameter measuring method and nugget diameter measuring apparatus

Publications (2)

Publication Number Publication Date
JP2008241419A true JP2008241419A (en) 2008-10-09
JP4822545B2 JP4822545B2 (en) 2011-11-24

Family

ID=39912961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081354A Active JP4822545B2 (en) 2007-03-27 2007-03-27 Nugget diameter measuring method and nugget diameter measuring apparatus

Country Status (1)

Country Link
JP (1) JP4822545B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266299A (en) * 2009-05-14 2010-11-25 Pulstec Industrial Co Ltd Spot welding inspecting apparatus and spot welding inspection method
JP2013180332A (en) * 2012-03-02 2013-09-12 Satoshi Shimamoto Method and apparatus for evaluating spot welding fixing strength
JP2016044998A (en) * 2014-08-20 2016-04-04 国立大学法人東北大学 Measuring method for contact dimension between steel sheets/plates, and measuring device for contact dimension between steel sheets/plates
JP2020176294A (en) * 2019-04-17 2020-10-29 日本製鉄株式会社 Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil
WO2023063083A1 (en) * 2021-10-11 2023-04-20 日置電機株式会社 Measuring device, measuring system, and measuring method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225162A (en) * 1987-03-16 1988-09-20 Hitachi Ltd Apparatus for inspecting defect of piping
JPH02245649A (en) * 1989-03-17 1990-10-01 Res Dev Corp Of Japan Non-destructive inspection by potential difference method
JPH0368850A (en) * 1989-08-08 1991-03-25 Nkk Corp Method and apparatus for measuring si concentration of steel material
JPH03110459A (en) * 1989-09-25 1991-05-10 Hitachi Ltd Spot welding inspection device
JPH03233352A (en) * 1990-02-09 1991-10-17 Toyota Motor Corp Inspecting method for spot weld zone
JPH06109684A (en) * 1992-09-25 1994-04-22 Res Dev Corp Of Japan Method for non-destructive inspection of three-dimensional crack by dc potential difference method
JPH07130293A (en) * 1993-10-29 1995-05-19 Sony Corp Non-destructive inspection method for welded member
JPH09216071A (en) * 1996-02-07 1997-08-19 Matsushita Electric Ind Co Ltd Control device of resistance welding equipment
WO2003027661A1 (en) * 2001-09-25 2003-04-03 Daihatsu Motor Co., Ltd. Non-destructive inspection method
JP2004309355A (en) * 2003-04-08 2004-11-04 Denshi Jiki Kogyo Kk Hardening depth measuring apparatus of steel material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225162A (en) * 1987-03-16 1988-09-20 Hitachi Ltd Apparatus for inspecting defect of piping
JPH02245649A (en) * 1989-03-17 1990-10-01 Res Dev Corp Of Japan Non-destructive inspection by potential difference method
JPH0368850A (en) * 1989-08-08 1991-03-25 Nkk Corp Method and apparatus for measuring si concentration of steel material
JPH03110459A (en) * 1989-09-25 1991-05-10 Hitachi Ltd Spot welding inspection device
JPH03233352A (en) * 1990-02-09 1991-10-17 Toyota Motor Corp Inspecting method for spot weld zone
JPH06109684A (en) * 1992-09-25 1994-04-22 Res Dev Corp Of Japan Method for non-destructive inspection of three-dimensional crack by dc potential difference method
JPH07130293A (en) * 1993-10-29 1995-05-19 Sony Corp Non-destructive inspection method for welded member
JPH09216071A (en) * 1996-02-07 1997-08-19 Matsushita Electric Ind Co Ltd Control device of resistance welding equipment
WO2003027661A1 (en) * 2001-09-25 2003-04-03 Daihatsu Motor Co., Ltd. Non-destructive inspection method
JP2004309355A (en) * 2003-04-08 2004-11-04 Denshi Jiki Kogyo Kk Hardening depth measuring apparatus of steel material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266299A (en) * 2009-05-14 2010-11-25 Pulstec Industrial Co Ltd Spot welding inspecting apparatus and spot welding inspection method
JP2013180332A (en) * 2012-03-02 2013-09-12 Satoshi Shimamoto Method and apparatus for evaluating spot welding fixing strength
JP2016044998A (en) * 2014-08-20 2016-04-04 国立大学法人東北大学 Measuring method for contact dimension between steel sheets/plates, and measuring device for contact dimension between steel sheets/plates
JP2020176294A (en) * 2019-04-17 2020-10-29 日本製鉄株式会社 Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil
JP7269472B2 (en) 2019-04-17 2023-05-09 日本製鉄株式会社 Method for inspecting electrodeposition drum material for manufacturing metal foil or electrodeposition drum for manufacturing metal foil
WO2023063083A1 (en) * 2021-10-11 2023-04-20 日置電機株式会社 Measuring device, measuring system, and measuring method

Also Published As

Publication number Publication date
JP4822545B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
EP2866026B1 (en) Eddy current testing probe and eddy current testing method
JP4822545B2 (en) Nugget diameter measuring method and nugget diameter measuring apparatus
Tsukada et al. A magnetic flux leakage method using a magnetoresistive sensor for nondestructive evaluation of spot welds
JP5263178B2 (en) Nondestructive inspection method for steel rails for tracks
JP2007147525A (en) Method of evaluating lift-off amount between eddy current flaw detecting probe and inspected object, and evaluation device therefor, eddy current flaw detection method, and eddy current flaw detector
KR102640756B1 (en) Welding state detection method and welding state detection device
JP5149562B2 (en) Nondestructive measuring method and nondestructive measuring device
KR20100067618A (en) Circuit pattern inspection device and circuit pattern inspection method thereof
CN107271485B (en) Non-contact quality control of fiber composite materials
KR20070044647A (en) Nondestructive inspection system of spot welding
KR101390385B1 (en) Method for evaluating welding quality of nut projection welding
CN108982601A (en) A kind of solder joint detection device and method
JP2013019841A (en) Defect evaluation method for structure
JP4807281B2 (en) Hardening pattern inspection method and inspection apparatus
JP4756224B1 (en) Spot welding inspection equipment
JP2004184306A (en) Method for inspecting butt-welded part of steel sheet
JP4568128B2 (en) Steel plate butt weld inspection device and inspection method using this device
CN108982651A (en) Exchange leakage field sensor based on ferromagnetic butt plates welding seam crack detection and the method using its progress crack detection
US5747989A (en) Apparatus for non-destructively detecting a nugget for spot welding
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
JP2007064817A (en) Quenching depth measuring instrument
JP5922383B2 (en) Wall thickness inspection method, calibration tool, and eddy current detection system
JP4789502B2 (en) Crack depth measurement technique and apparatus for deep cracks using potentiometric method
JP2011203055A (en) Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width
JP2007317303A (en) Inspection method, and inspection device of magneto-optical effect head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4822545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250