JP2016044998A - Measuring method for contact dimension between steel sheets/plates, and measuring device for contact dimension between steel sheets/plates - Google Patents

Measuring method for contact dimension between steel sheets/plates, and measuring device for contact dimension between steel sheets/plates Download PDF

Info

Publication number
JP2016044998A
JP2016044998A JP2014167293A JP2014167293A JP2016044998A JP 2016044998 A JP2016044998 A JP 2016044998A JP 2014167293 A JP2014167293 A JP 2014167293A JP 2014167293 A JP2014167293 A JP 2014167293A JP 2016044998 A JP2016044998 A JP 2016044998A
Authority
JP
Japan
Prior art keywords
contact
potential difference
measuring
steel plates
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014167293A
Other languages
Japanese (ja)
Other versions
JP6236610B2 (en
Inventor
泰成 燈明
Yasunari Tomyo
泰成 燈明
洋一 松井
Yoichi Matsui
洋一 松井
長谷川 雄大
Takehiro Hasegawa
雄大 長谷川
哲志 小原
Tetsushi Obara
哲志 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Motor East Japan Inc
Original Assignee
Tohoku University NUC
Toyota Motor East Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toyota Motor East Japan Inc filed Critical Tohoku University NUC
Priority to JP2014167293A priority Critical patent/JP6236610B2/en
Publication of JP2016044998A publication Critical patent/JP2016044998A/en
Application granted granted Critical
Publication of JP6236610B2 publication Critical patent/JP6236610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method and a measuring device for contact dimensions between steel sheets/plates that can more accurately measure the contact dimension in a shorter period of time.SOLUTION: Paired electrodes 11a and 11b are brought into contact with the respective surfaces of two steel sheets/plates 1a and 1b, and a direct current is caused to flow between the two electrodes 11a and 11b by potential difference measuring means 12, which measures the potential difference ΔV between the electrodes 11a and 11b at the time. Memory means 27 keeps in store the contact dimension C between the steel sheets/plates 1a and 1b and the potential difference ΔV between the electrodes 11a and 11b, measured in advance by numerical analysis or measurement with the electric resistivity rates ρ of the respective contact parts between the electrodes 11a and 11b and the steel sheets/plates 1a and 1b taken into consideration. Contact dimension calculating means 28 figures out the contact dimension C between the steel sheets/plates 1a and 1b from the potential difference ΔV measured by the potential difference measuring means 12 on the basis of the relationship between the contact dimension C stored in the memory means 27 and the potential difference ΔV.SELECTED DRAWING: Figure 1

Description

本発明は、2枚の鋼板間の接触寸法を測定する鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置に関する。   The present invention relates to a method for measuring a contact dimension between steel plates for measuring a contact dimension between two steel plates, and an apparatus for measuring a contact dimension between steel plates.

自動車や家電製品などの構造材料として鋼板が広く利用されており、その鋼板の接合には、抵抗溶接の一種であり、迅速で安価なスポット溶接が一般的に用いられている。例えば、自動車では、1台あたり数千のスポット溶接部が存在している。従来、このようなスポット溶接部などの鋼板間の接触部の品質や寸法を評価するために、超音波を使用する方法(例えば、特許文献1参照)や、電位差を測定する方法などが利用されている。   Steel plates are widely used as structural materials for automobiles, home appliances, etc., and joining of the steel plates is a kind of resistance welding, and quick and inexpensive spot welding is generally used. For example, in an automobile, thousands of spot welds exist per vehicle. Conventionally, in order to evaluate the quality and dimensions of contact portions between steel plates such as spot welds, a method using ultrasonic waves (for example, see Patent Document 1), a method of measuring a potential difference, and the like have been used. ing.

電位差を測定して鋼板間の接触部の品質や寸法を評価する方法としては、例えば、鋼板表面の任意の2点間に一定の電流または電圧を印加する一対の電極針と、その電流または電圧によって鋼板に生じる表面電位を検出する一対の電圧電極針とを備えた探針プローブを用い、スポット溶接された鋼材の表面を所定のラインに沿って走査したときに検出される表面電位の変化に基づいて、鋼材に形成されたナゲット(接触部)の径を求めるもの(例えば、特許文献2参照)や、スポット溶接した溶接領域とそこから離れた非溶接領域とに、それぞれ探針プローブを当接させて電気抵抗を測定し、それらの電気抵抗の比に基づいて接合強度を評価するもの(例えば、特許文献3参照)がある。   As a method of measuring the potential difference and evaluating the quality and dimensions of the contact portion between the steel plates, for example, a pair of electrode needles that apply a constant current or voltage between any two points on the steel plate surface, and the current or voltage By using a probe probe having a pair of voltage electrode needles for detecting the surface potential generated on the steel sheet by the use of a probe probe, the surface potential change detected when the surface of the spot welded steel material is scanned along a predetermined line Based on this, the probe is applied to the nugget (contact part) diameter formed on the steel (see, for example, Patent Document 2), the spot welded area and the non-welded area away from the welded area. There is one that measures electrical resistance by contact, and evaluates joint strength based on the ratio of the electrical resistance (see, for example, Patent Document 3).

しかし、特許文献1に記載のような超音波を使用する方法や、特許文献2および3に記載のような探針プローブを使用して電位差を測定する方法では、スポット溶接の作業時間と比べて、超音波発生用のトーチや探針プローブを所定の位置に設置したり、探針プローブを走査したりするのに時間がかかり、測定時間が非常に長くなってしまうため、多数の溶接部を有する場合には実用的ではないという問題があった。例えば、自動車製造工程では、一点のスポット溶接がわずか数秒で行われており、そのような現場に適用するのは困難である。このため、自動車製造工程では、溶接電流、電流付与時間、加圧力の3因子を正確に制御することによりスポット溶接部の品質を保証しているのが実情であり、たがねを用いた溶接部の抜き打ち破壊検査が実施されている。   However, in the method using ultrasonic waves as described in Patent Document 1 and the method of measuring a potential difference using a probe probe as described in Patent Documents 2 and 3, compared with the working time of spot welding. Since it takes a long time to install the torch and probe for ultrasonic generation at a predetermined position and scan the probe, the measurement time becomes very long. When it has, there was a problem that it was not practical. For example, in an automobile manufacturing process, spot welding is performed in only a few seconds, and it is difficult to apply to such a site. For this reason, in the automobile manufacturing process, the quality of spot welds is guaranteed by accurately controlling the three factors of welding current, current application time, and applied pressure. Welding using chisel An unsuccessful inspection of the part has been carried out.

そこで、測定時間を短縮するために、鋼板を挟んで配置された溶接用の各電極を、電圧測定用の電極として使用する方法が開発されている。このような方法として、例えば、各電極間に印加される溶接電流と各電極間の電圧とを測定し、この測定値を用いて熱伝導モデルに基づく温度分布および通電径を数値解析して、溶接により生成されるナゲット(接触部)の径を推定するもの(例えば、特許文献4参照)や、溶接後に各電極間に電流を流して電圧を測定し、得られた電気抵抗値を基準値と比較することにより溶接の良否を判別するもの(例えば、特許文献5参照)がある。   Therefore, in order to shorten the measurement time, a method has been developed in which each electrode for welding arranged with a steel plate interposed therebetween is used as an electrode for voltage measurement. As such a method, for example, the welding current applied between the electrodes and the voltage between the electrodes are measured, and using this measurement value, the temperature distribution based on the heat conduction model and the current distribution diameter are numerically analyzed, Estimate the diameter of the nugget (contact part) generated by welding (see, for example, Patent Document 4), measure the voltage by passing a current between the electrodes after welding, and use the obtained electrical resistance value as a reference value There is one that discriminates the quality of welding by comparing with (for example, see Patent Document 5).

特開2011−220714号公報JP 2011-220714 A 特許第4822545号公報Japanese Patent No. 4822545 特開2008−254005号公報JP 2008-254005 A 特開平11−47945号公報Japanese Patent Laid-Open No. 11-47945 特開2010−234424号公報JP 2010-234424 A

しかしながら、特許文献4に記載のような数値解析を用いる方法では、抵抗溶接などの際に鋼板の表面粗さが変化する可能性を考慮していないため、接触部(ナゲット)の寸法計算に誤差が発生するおそれがあり、正確な接触寸法を計算できないことがあるという課題があった。特許文献5に記載の方法は、鋼板間の接触寸法を求めるものではなく、また、基準値が良否の判別に大きく影響するため、基準値の取り方によっては良否の判別が変わるおそれがあり、正確な判断ができないという課題があった。   However, the method using the numerical analysis as described in Patent Document 4 does not consider the possibility that the surface roughness of the steel sheet changes during resistance welding or the like, so that an error occurs in the calculation of the size of the contact portion (nugget). There has been a problem that accurate contact dimensions may not be calculated. The method described in Patent Document 5 does not determine the contact dimension between the steel plates, and the reference value greatly affects the determination of pass / fail, so the determination of pass / fail may change depending on how to take the reference value. There was a problem that an accurate judgment could not be made.

本発明は、このような課題に着目してなされたもので、短時間で、鋼板間の接触寸法をより正確に測定することができる鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置を提供することを目的とする。   The present invention has been made paying attention to such a problem, and a contact dimension measuring method between steel sheets and a contact dimension measuring apparatus between steel sheets capable of measuring the contact dimension between steel sheets more accurately in a short time. The purpose is to provide.

上記目的を達成するために、本発明に係る鋼板間の接触寸法測定方法は、2枚の鋼板間の接触寸法を測定する鋼板間の接触寸法測定方法であって、それぞれ各鋼板の表面に接触させた1対の電極間に、一定の大きさの直流電流を流したときの各電極間の電位差を測定する電位差測定工程と、各鋼板間の接触寸法と前記直流電流を流したときの各電極間の電位差との関係を、各電極と各鋼板との接触部の電気抵抗率を考慮して数値解析および/または測定であらかじめ求めておく関係評価工程と、前記関係評価工程で求められた前記関係に基づいて、前記電位差測定工程で測定された前記電位差から各鋼板間の接触寸法を求める接触寸法算出工程とを、有することを特徴とする。   In order to achieve the above object, a method for measuring a contact dimension between steel plates according to the present invention is a method for measuring a contact dimension between steel plates, which measures a contact dimension between two steel plates, each contacting a surface of each steel plate. A potential difference measuring step for measuring a potential difference between the electrodes when a DC current of a constant magnitude is passed between the pair of electrodes, and a contact dimension between the steel plates and each of the currents when the DC current is passed. The relationship between the potential difference between the electrodes was determined in the relationship evaluation step obtained in advance by numerical analysis and / or measurement in consideration of the electrical resistivity of the contact portion between each electrode and each steel plate, and the relationship evaluation step. And a contact dimension calculating step of obtaining a contact dimension between the steel plates from the potential difference measured in the potential difference measuring step based on the relationship.

本発明に係る鋼板間の接触寸法測定装置は、2枚の鋼板間の接触寸法を測定する鋼板間の接触寸法測定装置であって、それぞれ各鋼板の表面に接触可能に設けられた1対の電極と、各電極間に一定の大きさの直流電流を流し、そのときの各電極間の電位差を測定する電位差測定手段と、あらかじめ各電極と各鋼板との接触部の電気抵抗率を考慮して数値解析および/または測定で求めておいた、各鋼板間の接触寸法と前記直流電流を流したときの各電極間の電位差との関係を記憶しておく記憶手段と、前記記憶手段に記憶された前記接触寸法と前記電位差との関係に基づいて、前記電位差測定手段で測定された前記電位差から各鋼板間の接触寸法を求める接触寸法算出手段とを、有することを特徴とする。   A contact dimension measuring apparatus between steel plates according to the present invention is a contact dimension measuring apparatus between steel plates for measuring a contact dimension between two steel plates, and is provided with a pair of contacts provided on the surface of each steel plate. Considering the electrical resistivity of the contact part between each electrode and each steel plate in advance, a potential difference measuring means for measuring a potential difference between each electrode by passing a direct current of a certain magnitude between the electrode and each electrode. Storage means for storing the relationship between the contact dimension between the steel plates and the potential difference between the electrodes when the direct current is passed, which has been obtained by numerical analysis and / or measurement, and stored in the storage means Contact size calculating means for obtaining a contact dimension between the respective steel plates from the potential difference measured by the potential difference measuring means based on the relationship between the contact dimension and the potential difference.

本発明に係る鋼板間の接触寸法測定装置は、本発明に係る鋼板間の接触寸法測定方法を好適に実施することができる。本発明に係る鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置は、各鋼板間の接触寸法と各電極間に一定の直流電流を流したときの各電極間の電位差との関係をあらかじめ求めておく際に、各電極と各鋼板との接触部の電気抵抗率を考慮することにより、抵抗溶接などの際に鋼板の表面粗さが変化する(増大する)場合等にも柔軟に対応することができる。このため、鋼板間の接触寸法をより正確に測定することができる。また、接触寸法を測定する際には、各電極間の電位差を1回測定すればよく、走査や複数点の測定を行う場合と比べて、短時間で測定を行うことができる。   The apparatus for measuring a contact dimension between steel plates according to the present invention can suitably implement the method for measuring a contact dimension between steel plates according to the present invention. The contact dimension measuring method between steel sheets and the contact dimension measuring apparatus between steel sheets according to the present invention are the relationship between the contact dimension between the steel sheets and the potential difference between the electrodes when a constant direct current is passed between the electrodes. Considering the electrical resistivity of the contact portion between each electrode and each steel plate when obtaining in advance, it is possible to flexibly when the surface roughness of the steel plate changes (increases) during resistance welding. Can respond. For this reason, the contact dimension between steel plates can be measured more accurately. Further, when measuring the contact dimension, it is sufficient to measure the potential difference between the electrodes once, and the measurement can be performed in a shorter time compared to the case of performing scanning or measurement at a plurality of points.

本発明に係る鋼板間の接触寸法測定方法で、前記関係評価工程は、数値解析により、前記接触寸法および前記電気抵抗率の関数として前記電位差を求め、さらに複数の異なる電位差のときの各鋼板間の接触寸法を測定することにより、その複数の測定結果を用いて数値解析により前記電気抵抗率と前記接触寸法との関係を求め、その関係と前記電位差の関数とに基づいて、前記接触寸法と前記電位差との関係を求めてもよい。本発明に係る鋼板間の接触寸法測定装置で、前記記憶手段は、数値解析により、前記接触寸法および前記電気抵抗率の関数として前記電位差を求め、さらに複数の異なる電位差のときの各鋼板間の接触寸法を測定することにより、その複数の測定結果を用いて数値解析により前記電気抵抗率と前記接触寸法との関係を求め、その関係と前記電位差の関数とに基づいて求められた、前記接触寸法と前記電位差との関係を記憶しておいてもよい。この場合、抵抗溶接などの際に鋼板の表面粗さが増大して、各電極と各鋼板との接触部の電気抵抗率が大きくなったとき等でも、それを考慮して接触寸法と電位差との関係を求めることができ、鋼板間の接触寸法をより正確に測定することができる。   In the contact dimension measuring method between steel sheets according to the present invention, the relation evaluation step obtains the potential difference as a function of the contact dimension and the electrical resistivity by numerical analysis, and further, between each steel sheet at a plurality of different potential differences. By measuring a contact dimension of the plurality of measurement results, a relationship between the electrical resistivity and the contact dimension is obtained by numerical analysis using the plurality of measurement results, and based on the relationship and a function of the potential difference, the contact dimension and A relationship with the potential difference may be obtained. In the contact dimension measuring apparatus between steel plates according to the present invention, the storage means obtains the potential difference as a function of the contact size and the electrical resistivity by numerical analysis, and further, between each steel plate at a plurality of different potential differences. By measuring a contact dimension, a relationship between the electrical resistivity and the contact dimension is obtained by numerical analysis using the plurality of measurement results, and the contact is obtained based on the relationship and a function of the potential difference. You may memorize | store the relationship between a dimension and the said electrical potential difference. In this case, even when the surface roughness of the steel plate is increased during resistance welding and the electrical resistivity of the contact portion between each electrode and each steel plate is increased, the contact dimensions and the potential difference are taken into consideration. The contact dimension between the steel plates can be measured more accurately.

また、本発明に係る鋼板間の接触寸法測定方法で、関係評価工程は、数値解析を用いず、測定のみで接触寸法と電位差との関係を求めてもよい。本発明に係る鋼板間の接触寸法測定装置で、記憶手段は、数値解析を用いず、測定のみで求められた接触寸法と電位差との関係を記憶しておいてもよい。この場合にも、鋼板間の接触寸法を正確に測定することができる。   Further, in the contact dimension measuring method between steel plates according to the present invention, the relationship evaluation step may obtain the relationship between the contact dimension and the potential difference only by measurement without using numerical analysis. In the contact dimension measuring apparatus between steel plates according to the present invention, the storage means may store the relationship between the contact dimension and the potential difference obtained only by measurement without using numerical analysis. Also in this case, the contact dimension between the steel plates can be accurately measured.

また、本発明に係る鋼板間の接触寸法測定方法で、前記関係評価工程は、各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合、数値解析により、前記接触寸法と前記電位差との関係を求めてもよい。本発明に係る鋼板間の接触寸法測定装置で、前記記憶手段は、各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合、数値解析により求められた、前記接触寸法と前記電位差との関係を記憶しておいてもよい。この場合、抵抗溶接などを行っても、各電極と各鋼板との接触部の電気抵抗率が変化しないときに、効率良く接触寸法と電位差との関係を求めることができる。   Further, in the contact dimension measuring method between steel plates according to the present invention, the relation evaluation step can be assumed that the electrical resistivity of the contact portion between each electrode and each steel plate can be assumed to be constant. You may obtain | require the relationship with an electrical potential difference. In the apparatus for measuring a contact dimension between steel plates according to the present invention, the storage means can be assumed to have a constant electrical resistivity of a contact portion between each electrode and each steel plate, and the contact dimension obtained by numerical analysis and the above-mentioned The relationship with the potential difference may be stored. In this case, even if resistance welding is performed, when the electrical resistivity of the contact portion between each electrode and each steel plate does not change, the relationship between the contact dimension and the potential difference can be obtained efficiently.

本発明に係る鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置で、前記接触寸法は各鋼板を抵抗溶接で接続したときの各鋼板間の接触寸法であり、各電極は前記抵抗溶接を行うための電極から成ることが好ましい。この場合、抵抗溶接を行う際に使用した電極を、接触寸法を測定するための電極としてそのまま使用できるため、電極の位置決めや設置の時間を省略することができ、より短時間で接触寸法の測定を行うことができる。   In the contact dimension measuring method and the contact dimension measuring apparatus between steel sheets according to the present invention, the contact dimension is a contact dimension between the steel plates when the steel plates are connected by resistance welding, and each electrode is the resistance welding It is preferable to comprise an electrode for performing the above. In this case, since the electrode used for resistance welding can be used as it is as an electrode for measuring the contact dimension, the electrode positioning and installation time can be omitted, and the contact dimension can be measured in a shorter time. It can be performed.

本発明によれば、短時間で、鋼板間の接触寸法をより正確に測定することができる鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the contact dimension measuring method between the steel plates and the contact dimension measuring apparatus between steel plates which can measure the contact dimension between steel plates more correctly in a short time can be provided.

本発明の実施の形態の鋼板間の接触寸法測定装置を示す側面図である。It is a side view which shows the contact dimension measuring apparatus between the steel plates of embodiment of this invention. 本発明の実施の形態の鋼板間の接触寸法測定方法に関する、各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合のFEAの解析モデルである。It is an analytical model of FEA when it can be assumed that the electrical resistivity of the contact part of each electrode and each steel plate regarding the contact dimension measuring method between the steel plates of embodiment of this invention is constant. 図2に示す解析モデルによるFEA解析結果の、(a)電極の直径D=6mm、Fe円板の直径(各鋼板の接触寸法)C=3mmのときの電流密度分布、(b)D=6mm、C=6mmのときの電流密度分布、(c)D=6mmのときの、様々なCの値に対する電位ψの分布を示すグラフである。The results of FEA analysis using the analysis model shown in FIG. 2 are: (a) current density distribution when the electrode diameter D = 6 mm, Fe disk diameter (contact dimension of each steel plate) C = 3 mm, (b) D = 6 mm , Current density distribution when C = 6 mm, (c) distribution of potential ψ with respect to various C values when D = 6 mm. 図2に示す解析モデルによるFEA解析結果の、(a)様々なDの値に対する電位差ΔVとCとの関係、(b)∂(ΔV)/∂CとCとの関係を示すグラフである。3 is a graph showing (a) the relationship between the potential difference ΔV and C for various values of D, and (b) the relationship between ∂ (ΔV) / ∂C and C, in the FEA analysis result based on the analysis model shown in FIG. 2. 本発明の実施の形態の鋼板間の接触寸法測定方法に関する、(a)実際の電極形状をモデル化したFEAの解析モデル、(b)電位差ΔVの測定(Experiment)、および(a)に示す解析モデルによるFEA解析により得られた、シム(Shim)の直径(各鋼板の接触寸法)Cと電位差ΔVとの関係を示すグラフである。(A) FEA analysis model modeling actual electrode shape, (b) measurement of potential difference ΔV (Experiment), and analysis shown in (a) It is a graph which shows the relationship between the diameter of Shim (contact dimension of each steel plate) C and potential difference ΔV obtained by FEA analysis using a model. 本発明の実施の形態の鋼板間の接触寸法測定方法を示す、各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合のフローチャートである。It is a flowchart in the case where it can be assumed that the electrical resistivity of the contact part of each electrode and each steel plate is constant showing the contact dimension measuring method between the steel plates of the embodiment of the present invention. 図2に示す解析モデルによるFEA解析結果の、(a)局所的に電流を付与した場合の電流密度分布(Local)、(b)十分に遠方から電流を付与した場合の電流密度分布(Uniform)、(c)それぞれの場合の電位ψの分布を示すグラフである。The results of FEA analysis using the analysis model shown in FIG. 2 are as follows: (a) Current density distribution when a current is applied locally (Local), (b) Current density distribution when a current is applied sufficiently far away (Uniform) , (C) is a graph showing the distribution of potential ψ in each case. 本発明の実施の形態の鋼板間の接触寸法測定方法に関する、各電極と各鋼板との接触部の電気抵抗率が変化する場合のFEAの解析モデルである。It is an analysis model of FEA in case the electrical resistivity of the contact part of each electrode and each steel plate changes regarding the contact dimension measuring method between the steel plates of the embodiment of the present invention. 図8に示す解析モデルによるFEA解析結果の、物理的接触部(各鋼板の接触寸法)C=3mmのときの、様々な接触部の電気抵抗率ρの値に対する電位ψの分布を示すグラフである。FIG. 9 is a graph showing the distribution of potential ψ with respect to the value of electrical resistivity ρ of various contact portions when the physical contact portion (contact dimension of each steel plate) C = 3 mm, as a result of FEA analysis using the analysis model shown in FIG. 8. is there. 図8に示す解析モデルによるFEA解析結果の、様々なρの値に対するCと電位差ΔVとの関係を示すグラフである。It is a graph which shows the relationship between C and electric potential difference (DELTA) V with respect to the value of various (rho) of the FEA analysis result by the analysis model shown in FIG. 実測した各鋼板の接触寸法Cと、図8に示す解析モデルによるFEA解析で算出したρとの関係を示すグラフである。It is a graph which shows the relationship between the measured contact dimension C of each steel plate, and (rho) calculated by the FEA analysis by the analysis model shown in FIG. 電位差ΔVの測定値から求めた接触寸法Cと、実測して得られた接触寸法Cとの関係を示すグラフである。A contact dimension C E obtained from the measured value of the potential difference [Delta] V, which is a graph showing the relationship between the contact dimension C M obtained by actual measurement. 本発明の実施の形態の鋼板間の接触寸法測定方法を示す、各電極と各鋼板との接触部の電気抵抗率が変化する場合のフローチャートである。It is a flowchart in case the electrical resistivity of the contact part of each electrode and each steel plate which shows the contact dimension measuring method between the steel plates of embodiment of this invention changes.

以下、図面に基づき、本発明の実施の形態について説明する。
図1乃至図13は、本発明の実施の形態の鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置を示している。
図1に示すように、鋼板間の接触寸法測定装置10は、2枚の鋼板1a,1bを抵抗溶接で接続したときの各鋼板1a,1bの間の接触寸法を測定するための装置であって、1対の電極11a,11bと電位差測定手段12と制御解析端末13とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 thru | or FIG. 13 has shown the contact dimension measuring method and the contact dimension measuring apparatus between steel plates of embodiment of this invention.
As shown in FIG. 1, a contact dimension measuring device 10 between steel plates is a device for measuring a contact size between steel plates 1a and 1b when two steel plates 1a and 1b are connected by resistance welding. And a pair of electrodes 11a and 11b, a potential difference measuring means 12, and a control analysis terminal 13.

各電極11a,11bは、銅製で、抵抗溶接の一種であるスポット溶接を行うための電極から成っている。各電極11a,11bは、先端に平坦面を有する砲弾形状を成している。各電極11a,11bは、互いに対向して重ね合わされた2枚の鋼板1a,1bの両側から、それぞれ各鋼板1a,1bの表面の対向する位置に、先端の平坦面を所定の圧力で押し付けて接触可能に設けられている。   Each of the electrodes 11a and 11b is made of copper and includes an electrode for performing spot welding which is a kind of resistance welding. Each electrode 11a, 11b has a shell shape having a flat surface at the tip. Each electrode 11a, 11b presses the flat surface at the tip with a predetermined pressure from both sides of the two steel plates 1a, 1b, which are overlapped with each other, to the opposite position of the surface of each steel plate 1a, 1b. It is provided so that contact is possible.

電位差測定手段12は、2本の電流用端子21a,21bと2本の電圧測定用端子22a,22bと測定用電源23と電圧測定器24とを有している。各電流用端子21a,21bは、それぞれ各電極11a,11bの側面に接触可能に設けられている。各電圧測定用端子22a,22bは、それぞれ各電極11a,11bの各電流用端子21a,21bより後端側の側面に接触可能に設けられている。測定用電源23は、各電流用端子21a,21bに接続され、各電流用端子21a,21bを通して各電極11a,11bの間に一定の大きさの直流電流を流すよう設けられている。電圧測定器24は、各電圧測定用端子22a,22bに接続され、測定用電源23により各電極11a,11bの間に直流電流を流したとき、各電圧測定用端子22a,22bの間の電位差を測定するよう設けられている。   The potential difference measuring means 12 has two current terminals 21a and 21b, two voltage measurement terminals 22a and 22b, a measurement power source 23, and a voltage measuring device 24. The current terminals 21a and 21b are provided so as to be in contact with the side surfaces of the electrodes 11a and 11b, respectively. The voltage measuring terminals 22a and 22b are provided so as to be able to contact the side surfaces on the rear end side of the current terminals 21a and 21b of the electrodes 11a and 11b, respectively. The measurement power source 23 is connected to each of the current terminals 21a and 21b, and is provided so that a DC current having a constant magnitude flows between the electrodes 11a and 11b through the current terminals 21a and 21b. The voltage measuring device 24 is connected to the voltage measuring terminals 22a and 22b. When a direct current is passed between the electrodes 11a and 11b by the measuring power source 23, the potential difference between the voltage measuring terminals 22a and 22b. It is provided to measure

制御解析端末13は、コンピュータから成り、測定用電源23と電圧測定器24とに接続されている。制御解析端末13は、その機能として、制御手段25と電圧入力手段26と記憶手段27と接触寸法算出手段28とを有している。制御手段25は、測定用電源23から各電極11a,11bの間に流す直流電流の大きさ、およびその直流電流を流すタイミングを制御可能になっている。また、制御手段25は、測定用電源23により各電極11a,11bの間に直流電流を流したとき、電圧測定器24で電位差を測定するよう、電圧測定器24の測定タイミングを制御可能になっている。電圧入力手段26は、電圧測定器24で測定された各電圧測定用端子22a,22bの間の電位差を入力可能になっている。   The control analysis terminal 13 includes a computer and is connected to a measurement power source 23 and a voltage measuring device 24. The control analysis terminal 13 has a control means 25, a voltage input means 26, a storage means 27, and a contact dimension calculation means 28 as its functions. The control means 25 can control the magnitude of the direct current that flows between the electrodes 11a and 11b from the measurement power supply 23 and the timing at which the direct current flows. Further, the control means 25 can control the measurement timing of the voltage measuring device 24 so that the voltage measuring device 24 measures the potential difference when a direct current is passed between the electrodes 11a and 11b by the measuring power source 23. ing. The voltage input means 26 can input a potential difference between the voltage measuring terminals 22a and 22b measured by the voltage measuring device 24.

記憶手段27は、あらかじめ各電極11a,11bと各鋼板1a,1bとの接触部の電気抵抗率を考慮して数値解析および/または測定で求めておいた、各鋼板1a,1bの間の接触寸法と直流電流を流したときの各電極11a,11bの間の電位差との関係を記憶しておくようになっている。接触寸法算出手段28は、記憶手段27に記憶された接触寸法と電位差との関係に基づいて、電圧入力手段26から入力された電位差から各鋼板1a,1bの間の接触寸法を求めるようになっている。   The storage means 27 is a contact between the steel plates 1a and 1b, which has been obtained in advance by numerical analysis and / or measurement in consideration of the electrical resistivity of the contact portion between the electrodes 11a and 11b and the steel plates 1a and 1b. The relationship between the dimensions and the potential difference between the electrodes 11a and 11b when a direct current is passed is stored. The contact dimension calculation means 28 obtains the contact dimension between the steel plates 1a and 1b from the potential difference input from the voltage input means 26 based on the relationship between the contact dimension stored in the storage means 27 and the potential difference. ing.

鋼板間の接触寸法測定装置10は、本発明の実施の形態の鋼板間の接触寸法測定方法を好適に実施することができる。以下、実施例に基づいて、本発明の実施の形態の鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置10の作用効果について説明する。   The contact dimension measuring apparatus 10 between steel plates can suitably implement the contact dimension measuring method between steel plates according to the embodiment of the present invention. Hereinafter, based on an Example, the effect of the contact dimension measuring method between the steel plates of embodiment of this invention and the contact dimension measuring apparatus 10 between steel plates is demonstrated.

[各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合−数値解析]
各電極11a,11bと各鋼板1a,1bとの接触部の電気抵抗率が一定と仮定できる場合について、数値解析により、鋼板間の接触寸法測定についての検討を行った。
[When it can be assumed that the electrical resistivity of the contact portion between each electrode and each steel plate is constant-numerical analysis]
In the case where the electrical resistivity of the contact portion between each electrode 11a, 11b and each steel plate 1a, 1b can be assumed to be constant, the contact dimension measurement between the steel plates was examined by numerical analysis.

まず、各電極11a,11bから2枚の鋼板1a,1bに電流を流したときの、電極11a,11b上の電位分布を有限要素法解析(FEA)により算出し、各鋼板1a,1bの接触状況の変化に伴う電位分布の変化を調べた。
各鋼板1a,1bおよび各電極11a,11bの内部の電流の流れは、以下に示すラプラス方程式に支配されている。
Δψ=0 (1)
ここで、ψは電位であり、Δはラプラス演算子である。式(1)をFEA解析で解くことにより、ψを求めることができる。以下では、汎用非線形解析プログラムのMarcを用いて、FEA解析を行った。
First, the potential distribution on the electrodes 11a and 11b when current flows from the electrodes 11a and 11b to the two steel plates 1a and 1b is calculated by finite element analysis (FEA), and the contact between the steel plates 1a and 1b is calculated. The change of the potential distribution with the change of the situation was investigated.
The flow of current inside each steel plate 1a, 1b and each electrode 11a, 11b is governed by the Laplace equation shown below.
Δψ = 0 (1)
Here, ψ is a potential, and Δ is a Laplace operator. By solving Equation (1) by FEA analysis, ψ can be obtained. In the following, FEA analysis was performed using the general-purpose nonlinear analysis program Marc.

FEAの1/2解析モデルを、図2に示す。図2に示すように、Fe製の鋼板(Sheet)1a,1bを、直径17.5mm、厚さ1.2mmの円板とし、2枚の鋼板1a,1bを合わせた中央部に、厚さ0.7mm、直径CのFe円板(Contact)を物理的接触部として挿入した。また、直径Dの各Cu電極(Electrode)11a,11bを、各鋼板1a,1bの外側の表面から長さ20mmの位置に押し当てた。FEA解析では、Cの範囲を1〜6mm、Dの範囲を3〜9mmとし、各Cu電極11a,11bの電気抵抗率を1.68×10−8Ω・m、各鋼板1a,1bおよびFe円板の電気抵抗率を1.42×10−7Ω・mとした。また、各電極11a,11bと各鋼板1a,1bとの間の接触部の電気抵抗率を、6.0×10−6Ω・mで一定とした。また、同じFe製の各鋼板1a,1bとFe円板との間の電気抵抗率を、0とした。また、各電極11a,11bの側面の、各鋼板1a,1bの表面から4mm離れた位置から電流の入出力を行い、付与する電流を1Aとした。各電極11a,11bの表面上にx軸を定め、その原点を各鋼板1a,1bの間の中心とした。 A 1/2 analysis model of FEA is shown in FIG. As shown in FIG. 2, the steel plates 1a and 1b made of Fe are discs having a diameter of 17.5 mm and a thickness of 1.2 mm, and the thickness is set at the center of the two steel plates 1a and 1b. A 0.7 mm, diameter C Fe disk (Contact) was inserted as a physical contact. Moreover, each Cu electrode (Electrode) 11a, 11b of diameter D was pressed to the position of 20 mm in length from the outer surface of each steel plate 1a, 1b. In the FEA analysis, the range of C is 1-6 mm, the range of D is 3-9 mm, the electrical resistivity of each Cu electrode 11a, 11b is 1.68 × 10 −8 Ω · m, each steel plate 1a, 1b and Fe The electric resistivity of the disk was set to 1.42 × 10 −7 Ω · m. Moreover, the electrical resistivity of the contact part between each electrode 11a, 11b and each steel plate 1a, 1b was made constant at 6.0 × 10 −6 Ω · m. The electrical resistivity between the same Fe steel plates 1a and 1b and the Fe disk was set to zero. In addition, current was input / output from a position 4 mm away from the surface of each steel plate 1a, 1b on the side surface of each electrode 11a, 11b, and the applied current was 1A. The x-axis was defined on the surfaces of the electrodes 11a and 11b, and the origin was the center between the steel plates 1a and 1b.

FEA解析結果として、D=6mmのときの、C=3mm、6mmの場合の電流密度分布を、それぞれ図3(a)および(b)に示す。図3(a)および(b)に示すように、C=3mmの場合に、C=6mmの場合と比較して、相対的に高い電流密度がFe円板近傍で形成されていることが確認された。これは、Cの減少と共にFe円板での電気抵抗が増加することを示唆しており、Cが小さくなるに従って電流経路が長くなるためであると考えられる。   As a result of FEA analysis, current density distributions in the case of C = 3 mm and 6 mm when D = 6 mm are shown in FIGS. 3A and 3B, respectively. As shown in FIGS. 3A and 3B, when C = 3 mm, it is confirmed that a relatively high current density is formed in the vicinity of the Fe disk compared to the case of C = 6 mm. It was done. This suggests that the electrical resistance at the Fe disk increases with decreasing C, and this is considered to be because the current path becomes longer as C decreases.

D=6mmのときの、様々なCの値に対するψの分布を、図3(c)に示す。図3(c)に示すように、Cの減少と共に、ψの絶対値が増加していることがわかる。例えば、各鋼板1a,1bの外側の表面からそれぞれ12mmの位置の2点A、B間の電位差ΔVに着目すると、C=6mmのときのΔVは123μVであるのに対し、C=1mmのときのΔVは592μVであり、ΔVはCの減少と共に増加している。   FIG. 3C shows the distribution of ψ for various C values when D = 6 mm. As shown in FIG. 3C, it can be seen that as C decreases, the absolute value of ψ increases. For example, paying attention to the potential difference ΔV between two points A and B at a position of 12 mm from the outer surface of each steel plate 1a, 1b, ΔV when C = 6 mm is 123 μV, whereas when C = 1 mm ΔV is 592 μV, and ΔV increases as C decreases.

様々なDの値に対するΔVとCとの関係を、図4(a)に示す。図4(a)に示すように、全てのDの場合において、Cの増加と共にΔVが減少していることがわかる。また、あるCにおいて、Dの値が小さい程、ΔVの値が大きくなることがわかる。計測したΔVから精度良くCを評価するために、∂(ΔV)/∂CとCとの関係を求め、図4(b)に示す。図4(b)に示すように、Cの値が小さい程、∂(ΔV)/∂Cの値は大きくなり、D=9mmで最大となっている。このことから、より太い電極を用いることにより、Cを正確に評価することができるといえる。   The relationship between ΔV and C for various values of D is shown in FIG. As shown in FIG. 4A, it can be seen that ΔV decreases as C increases in all D cases. It can also be seen that in a certain C, the value of ΔV increases as the value of D decreases. In order to accurately evaluate C from the measured ΔV, the relationship between ∂ (ΔV) / ∂C and C is obtained and shown in FIG. As shown in FIG. 4B, the smaller the value of C, the larger the value of ∂ (ΔV) / ∂C, and the maximum is D = 9 mm. From this, it can be said that C can be accurately evaluated by using a thicker electrode.

以上のFEA解析結果から、各電極11a,11bの間に電流を入力したとき、各電極11a,11bの間の電位分布に着目することによりCを評価できることがわかる。以下に、このことを確認するために、鋼板間の接触寸法測定装置10を用いた実験を行った。   From the above FEA analysis results, it can be seen that when current is input between the electrodes 11a and 11b, C can be evaluated by paying attention to the potential distribution between the electrodes 11a and 11b. In order to confirm this, an experiment using the contact dimension measuring apparatus 10 between steel plates was performed below.

[各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合−測定実験]
実験では、2枚の鋼板1a,1bとして、それぞれ厚さ1.2mmで、60mm正方の鋼板を用いた。また、同じ鋼板からパンチ加工により円板状のシム(Shim)を抜き出し、各鋼板1a,1bの間の接触部として使用した。シムの直径Cは、3〜6mmである。図1に示すように、各鋼板1a,1bを2つのCu電極11a,11bの間に挿入し、各電極11a,11bの押しつけ力を2.35kN(一定)とした。各電流用端子21a,21bを、スプリングを介して各電極11a,11bの表面の、各鋼板1a,1bの表面から4mmの位置に接触させ、各電流用端子21a,21bの間に2Aの電流を流した。また、各電極11a,11bの表面の、各鋼板1a,1bの表面から12mmの位置に設置した各電圧測定用端子22a,22bを用いて、電流を流したときの各電圧測定用端子22a,22bの間の電位差ΔVを測定した。
[When it can be assumed that the electrical resistivity of the contact portion between each electrode and each steel plate is constant-measurement experiment]
In the experiment, as the two steel plates 1a and 1b, 60 mm square steel plates each having a thickness of 1.2 mm were used. Further, a disk-shaped shim was extracted from the same steel plate by punching and used as a contact portion between the steel plates 1a and 1b. The shim diameter C is 3-6 mm. As shown in FIG. 1, each steel plate 1a, 1b was inserted between two Cu electrodes 11a, 11b, and the pressing force of each electrode 11a, 11b was 2.35 kN (constant). Each current terminal 21a, 21b is brought into contact with the surface of each electrode 11a, 11b via a spring at a position 4 mm from the surface of each steel plate 1a, 1b, and a current of 2A is provided between each current terminal 21a, 21b. Shed. Moreover, each voltage measurement terminal 22a, when a current is passed using each voltage measurement terminal 22a, 22b installed at a position 12 mm from the surface of each steel plate 1a, 1b on the surface of each electrode 11a, 11b. The potential difference ΔV between 22b was measured.

また、実際の電極形状をモデル化し、図5(a)に示す解析モデルを用いて、FEA解析も行った。解析では、各Cu電極11a,11bと各鋼板1a,1bとの接触抵抗を、6.0×10−6Ω・mで一定とした。なお、各鋼板1a,1bとシムとの間の接触抵抗ρは、両者間の面圧によって変化すると考えられる。ここでは、各電極11a,11bの間の加圧力を一定としたため、面圧はCによって変化する。以上を考慮して、ρを次式で与えた。
ρ=ρ+Q(C−C (2)
ここで、ρは十分な面圧の付与下(C)において一定値となる接触抵抗であり、Qは定数である。解析ではC=3mm、ρ=1.35×10−5Ω・m、Q=1.8Ω/mと仮定した。また、比較のため、各鋼板1a,1bとシムとの間の接触抵抗を、ρ=1.6×10−5Ω・mで一定とした場合についても解析を行った。
In addition, an actual electrode shape was modeled, and FEA analysis was also performed using the analysis model shown in FIG. In the analysis, the contact resistance between each Cu electrode 11a, 11b and each steel plate 1a, 1b was made constant at 6.0 × 10 −6 Ω · m. In addition, it is thought that contact resistance (rho) 1 between each steel plate 1a, 1b and shim changes with the surface pressure between both. Here, since the applied pressure between the electrodes 11a and 11b is constant, the surface pressure varies with C. Considering the above, ρ 1 is given by the following equation.
ρ 1 = ρ 0 + Q (C−C 0 ) 2 (2)
Here, ρ 0 is a contact resistance that becomes a constant value under application of sufficient surface pressure (C 0 ), and Q is a constant. In the analysis, it was assumed that C 0 = 3 mm, ρ 0 = 1.35 × 10 −5 Ω · m, and Q = 1.8 Ω / m. For comparison, an analysis was also performed when the contact resistance between the steel plates 1a and 1b and the shim was constant at ρ 2 = 1.6 × 10 −5 Ω · m.

電位差の測定およびFEA解析により得られた、シムの直径Cと電位差ΔVとの関係を、図5(b)に示す。図5(b)に示すように、実測の結果(Experiment)から、ΔVの測定値はCの増加と共に減少していることが確認された。この傾向は、FEA解析の結果と類似している。特に、各鋼板1a,1bとシムとの間の接触抵抗が変化する場合(ρの場合)の解析結果が、実測値と良く一致している。なお、実際のスポット溶接部の検査では、溶接部は鋼板1a,1bと物理的に接合されているため、両者の接触部での接触抵抗を一定(ρの場合)として良く、この場合は、図5(b)に示すように、Cの変化に対するΔVの変化がより顕著となる。 FIG. 5B shows the relationship between the shim diameter C and the potential difference ΔV obtained by measuring the potential difference and FEA analysis. As shown in FIG. 5 (b), it was confirmed from the actual measurement result (Experiment) that the measured value of ΔV decreased as C increased. This tendency is similar to the result of FEA analysis. In particular, the analysis result in the case (the case of [rho 1) of each steel sheet 1a, the contact resistance between the 1b and the shim changes are in good agreement with the measured values. In the actual spot welded portion inspection, since the welded portion is physically joined to the steel plates 1a and 1b, the contact resistance at both contact portions may be constant (in the case of ρ 2 ). As shown in FIG. 5B, the change in ΔV with respect to the change in C becomes more remarkable.

以上の数値解析および実験結果から、各電極11a,11bと各鋼板1a,1bとの接触部の電気抵抗率が一定と仮定できる場合には、鋼板間の接触寸法測定装置10を用いて、以下のようにして本発明の実施の形態の鋼板間の接触寸法測定方法を実施することができる。すなわち、図6に示すように、まず、関係評価工程により、数値解析で、図4(a)や図5(b)のような、各鋼板間の接触寸法Cと電位差ΔVとの関係を求め、記憶手段27に記憶しておく(ステップ31)。その後、電位差測定手段12により、各電極11a,11bの間の電位差ΔVを測定し(ステップ32)、接触寸法算出手段28により、測定された電位差ΔVから、記憶手段27に記憶された関係に基づいて、各鋼板1a,1bの間の接触寸法Cを求めることができる(ステップ33)。   From the above numerical analysis and experimental results, when it can be assumed that the electrical resistivity of the contact portion between each electrode 11a, 11b and each steel plate 1a, 1b can be assumed to be constant, using the contact dimension measuring device 10 between steel plates, Thus, the method for measuring the contact dimension between the steel plates according to the embodiment of the present invention can be implemented. That is, as shown in FIG. 6, first, in the relationship evaluation step, the relationship between the contact dimension C and the potential difference ΔV between the steel plates is obtained by numerical analysis as shown in FIGS. 4 (a) and 5 (b). And stored in the storage means 27 (step 31). Thereafter, the potential difference measuring means 12 measures the potential difference ΔV between the electrodes 11a and 11b (step 32), and the contact dimension calculating means 28 calculates the potential difference ΔV based on the relationship stored in the storage means 27. Thus, the contact dimension C between the steel plates 1a and 1b can be obtained (step 33).

なお、上記の数値解析および実験では、各電極11a,11bの表面の2点間で電流を局所的に付与している。ここで、局所的に電流を付与した場合、および、各電極11a,11bの端部の十分に遠方から電流を付与した場合の電流密度分布をFEA解析により求め、それぞれ図7(a)および(b)に示す。また、その時のψの分布を、図7(c)に示す。図7(c)に示すように、局所的に電流を付与した場合(Local)のC=6mm、1mmのときのΔVの値は、それぞれ123μV、592μVである。これに対して、十分遠方から電流を付与し、各電極11a,11bの内部で電流密度が一様となる場合(Uniform)のC=6mm、1mmのときのΔVの値は、それぞれ147μV、616μVであり、局所的に電流を付与した場合と同程度である。このため、電流の入出力方法は、状況に応じて選択すればよいといえる。   In the above numerical analysis and experiment, a current is locally applied between two points on the surface of each electrode 11a, 11b. Here, when a current is applied locally and when a current is applied sufficiently far from the ends of the electrodes 11a and 11b, current density distributions are obtained by FEA analysis, and FIGS. Shown in b). In addition, the distribution of ψ at that time is shown in FIG. As shown in FIG. 7C, the values of ΔV when C = 6 mm and 1 mm when current is applied locally (Local) are 123 μV and 592 μV, respectively. On the other hand, when current is applied from a sufficiently far distance and the current density is uniform inside each electrode 11a, 11b (Uniform), the values of ΔV when C = 6 mm and 1 mm are 147 μV and 616 μV, respectively. It is the same level as when a current is applied locally. For this reason, it can be said that the input / output method of the current may be selected according to the situation.

[各電極と各鋼板との接触部の電気抵抗率が変化する場合−数値解析]
実際のスポット溶接等の溶接では、溶接後に鋼板1a,1bの表面粗さが増大するため、各電極11a,11bと各鋼板1a,1bとの間の接触抵抗(電気抵抗率)は一定ではなく、変化することの方が多いと考えられる。一般に、溶接電流を増加させることで各鋼板1a,1bの間の接触部の径は増大するが、各鋼板1a,1bの表面粗さが増大して、各電極11a,11bと各鋼板1a,1bとの間の接触抵抗が増大するため、このことを考慮して各鋼板1a,1bの間の接触寸法を求める必要がある。そこで、まず、各電極11a,11bと各鋼板1a,1bとの間の接触抵抗と、各鋼板1a,1bの間の接触寸法とを変化させた場合の、各電極11a,11bでの電位差を数値解析により算出し、両者が電位差に及ぼす影響の検討を行った。
[When the electrical resistivity of the contact portion between each electrode and each steel plate changes-Numerical analysis]
In actual welding such as spot welding, since the surface roughness of the steel plates 1a and 1b increases after welding, the contact resistance (electric resistivity) between the electrodes 11a and 11b and the steel plates 1a and 1b is not constant. It seems that there are many things that change. In general, the diameter of the contact portion between the steel plates 1a and 1b is increased by increasing the welding current, but the surface roughness of the steel plates 1a and 1b is increased, and the electrodes 11a and 11b and the steel plates 1a and 1b are increased. Since contact resistance with 1b increases, it is necessary to obtain | require the contact dimension between each steel plate 1a, 1b in consideration of this. Therefore, first, the potential difference at each electrode 11a, 11b when the contact resistance between each electrode 11a, 11b and each steel plate 1a, 1b and the contact dimension between each steel plate 1a, 1b are changed. It was calculated by numerical analysis, and the effect of both on the potential difference was examined.

図2の場合と同様に、数値解析には有限要素法を用いた。FEA解析モデルを、図8に示す。図8に示すように、2枚の鋼板(Sheet)1a,1bを、直径17.5mm、厚さ1.2mmの円板とし、2枚の鋼板1a,1bを合わせた中央部に、厚さ0.1mm、直径Cの物理的接触部(Weld)を設けた。FEA解析では、各Cu電極(Electrode)11a,11bの電気抵抗率を、1.68×10−8Ω・m、Feの電気抵抗率を、1.42×10−7Ω・mとした。また、各Cu電極11a,11bと各鋼板1a,1bとの間の接触部の電気抵抗率ρを、1×10−6Ω・m〜50×10−6Ω・mの範囲で変化させた。 As in the case of FIG. 2, the finite element method was used for the numerical analysis. The FEA analysis model is shown in FIG. As shown in FIG. 8, two steel plates (Sheet) 1a and 1b are made into discs having a diameter of 17.5 mm and a thickness of 1.2 mm, and the thickness is set at the center of the two steel plates 1a and 1b. A physical contact (Weld) of 0.1 mm and diameter C was provided. In the FEA analysis, the electrical resistivity of each Cu electrode (Electrode) 11a, 11b was set to 1.68 × 10 −8 Ω · m, and the electrical resistivity of Fe was set to 1.42 × 10 −7 Ω · m. Each Cu electrodes 11a, 11b and the steel plate 1a, the electrical resistivity of the contact portion ρ between 1b, was changed in the range of 1 × 10 -6 Ω · m~50 × 10 -6 Ω · m .

図2に示すモデルと同様に、各電極11a,11bの側面の、各鋼板1a,1bの表面から4mm離れた位置から電流の入出力を行い、付与する電流を1Aとした。また、各電極11a,11bの表面上にx軸を定め、その原点を各鋼板1a,1bの間の中心とした。FEA解析では、式(1)を解くことで、各電極11a,11bでの表面電位ψを求めるとともに、各電極11a,11bの表面の点A、B間の電位差ΔVを求めた。以下では、汎用非線形解析プログラムのMarcを用いて、FEA解析を行った。   Similarly to the model shown in FIG. 2, current input / output was performed from a position 4 mm away from the surface of each steel plate 1a, 1b on the side surface of each electrode 11a, 11b, and the applied current was 1A. Further, the x-axis was defined on the surfaces of the electrodes 11a and 11b, and the origin was the center between the steel plates 1a and 1b. In the FEA analysis, by solving Equation (1), the surface potential ψ at each electrode 11a, 11b was obtained, and the potential difference ΔV between the points A and B on the surface of each electrode 11a, 11b was obtained. In the following, FEA analysis was performed using the general-purpose nonlinear analysis program Marc.

FEA解析結果として、C=3mmの場合の、様々なρの値に対するψの分布を、図9に示す。図9に示すように、ρが大きい程、ψの絶対値が大きいことがわかる。また、様々なρの値に対するCとΔVとの関係を、図10に示す。図10に示すように、ΔVはCが小さい程、またρが大きい程、大きな値をとることがわかる。ここで、ΔVを、それぞれCとρとを独立な変数とする関数の線形和として近似すると、次式が得られる。
ΔV=6.88×10-8-1.2+14.2ρ+1.07×10-5 (3)
式(3)の相関係数Rの2乗値(R値)は、0.9995である。
As an FEA analysis result, the distribution of ψ with respect to various values of ρ when C = 3 mm is shown in FIG. As can be seen from FIG. 9, the larger the value of ρ, the larger the absolute value of ψ. FIG. 10 shows the relationship between C and ΔV for various values of ρ. As shown in FIG. 10, ΔV takes a larger value as C is smaller and as ρ is larger. Here, when ΔV is approximated as a linear sum of functions each having C and ρ as independent variables, the following equation is obtained.
ΔV = 6.88 × 10 -8 C -1.2 + 14.2ρ + 1.07 × 10 -5 (3)
The square value (R 2 value) of the correlation coefficient R in Expression (3) is 0.9995.

[各電極と各鋼板との接触部の電気抵抗率が変化する場合−測定実験]
実際に各鋼板1a,1bをスポット溶接し、そのときのΔVを測定すると共に、溶接後に各鋼板1a,1bを切断して溶接部の断面観察を行い、各鋼板1a,1bの間の接触寸法Cを実測した。また、実測したΔVおよびCから、図8に示す解析モデルを用いて、FEA解析により、各Cu電極11a,11bと各鋼板1a,1bとの間の接触部の電気抵抗率ρを算出した。なお、ここでは、実測したΔVおよびCからFEA解析を行って接触部の電気抵抗率ρを算出したが、実測したΔVおよびCを(3)式に代入して接触部の電気抵抗率ρを求めてもよい。
[When the electrical resistivity of the contact portion between each electrode and each steel plate changes-measurement experiment]
Each steel plate 1a, 1b is actually spot-welded, and ΔV at that time is measured, and after welding, each steel plate 1a, 1b is cut to observe the cross section of the welded portion, and the contact dimension between each steel plate 1a, 1b C was measured. Further, the electrical resistivity ρ of the contact portion between each Cu electrode 11a, 11b and each steel plate 1a, 1b was calculated from the actually measured ΔV and C by FEA analysis using the analysis model shown in FIG. Here, the FEA analysis was performed from the measured ΔV and C to calculate the electrical resistivity ρ of the contact portion. However, the measured ΔV and C were substituted into the equation (3) to obtain the electrical resistivity ρ of the contact portion. You may ask for it.

算出したρと実測したCとの関係を、図11に示す。図11に示すように、Cが増大するほどρが増大しているが、これはCが増大するほど各鋼板1a,1bの表面粗さが増大したためである。図11の場合のρとCとの関係は、次式で近似することができる(図11中の実線)。
ρ=2.14×10-7×exp(947×C) (4)
The relationship between the calculated ρ and the actually measured C is shown in FIG. As shown in FIG. 11, ρ increases as C increases. This is because the surface roughness of the steel plates 1a and 1b increases as C increases. The relationship between ρ and C in the case of FIG. 11 can be approximated by the following equation (solid line in FIG. 11).
ρ = 2.14 × 10 −7 × exp (947 × C) (4)

式(3)および式(4)より、
ΔV=6.88×10-8-1.2+3.04×10-6exp(947×C)+1.07×10-5 (5)
が得られる。式(5)から、ΔVを測定すればCを評価することができる。なお、式(4)の関係は溶接条件に依存するため、異なる溶接条件ではこの関係を改めて得ることにより、同様の評価式を得ることができる。
From Formula (3) and Formula (4),
ΔV = 6.88 × 10 -8 C -1.2 + 3.04 × 10 -6 exp (947 × C) + 1.07 × 10 -5 (5)
Is obtained. From equation (5), C can be evaluated by measuring ΔV. In addition, since the relationship of Formula (4) is dependent on welding conditions, the same evaluation formula can be obtained by obtaining this relationship anew under different welding conditions.

式(5)を評価するために、新たに52個のスポット溶接を行い、各スポット溶接試料について、電位差ΔVの測定値から式(5)を用いて求めた接触寸法Cと、実測して得られた接触寸法Cとの比較を行った。その結果を、図12に示す。図12に示すように、CとCとは良く一致しており、式(5)を利用することにより鋼板1a,1bの間の接触寸法を正確に測定できることが確認された。 In order to evaluate the formula (5), 52 spot weldings were newly performed, and the spot weld samples were measured with the contact dimension CE obtained by using the formula (5) from the measured value of the potential difference ΔV. comparison between the obtained contact dimension C M were performed. The result is shown in FIG. As shown in FIG. 12, CE and CM are in good agreement, and it has been confirmed that the contact dimension between the steel plates 1a and 1b can be accurately measured by using the equation (5).

以上の数値解析および実験結果から、各電極11a,11bと各鋼板1a,1bとの接触部の電気抵抗率が変化する場合には、鋼板間の接触寸法測定装置10を用いて、以下のようにして本発明の実施の形態の鋼板間の接触寸法測定方法を実施することができる。すなわち、図13に示すように、まず、関係評価工程により、数値解析で、図10から求めた式(3)のような、各電極11a,11bと各鋼板1a,1bとの接触部の接触寸法Cおよび電気抵抗率ρの関数として、電位差ΔVを求める(ステップ34)。次に、複数の異なる電位差ΔVのときの各鋼板1a,1bの間の接触寸法Cを測定し、その複数の測定結果を用いて、数値解析により、図11から求めた式(4)のような、電気抵抗率ρと接触寸法Cとの関係を求める(ステップ35)。さらに、その電気抵抗率ρと接触寸法Cとの関係と、電位差ΔVの関数とに基づいて、式(5)のような接触寸法Cと電位差ΔVとの関係を求め、記憶手段27に記憶しておく(ステップ36)。   From the above numerical analysis and experimental results, when the electrical resistivity of the contact portion between each electrode 11a, 11b and each steel plate 1a, 1b changes, using the contact dimension measuring apparatus 10 between the steel plates, the following is performed. Thus, the method for measuring the contact dimension between the steel plates according to the embodiment of the present invention can be carried out. That is, as shown in FIG. 13, first, in the relational evaluation step, the contact of the contact portion between each electrode 11a, 11b and each steel plate 1a, 1b as shown in Expression (3) obtained from FIG. 10 by numerical analysis. A potential difference ΔV is determined as a function of the dimension C and the electrical resistivity ρ (step 34). Next, the contact dimension C between the respective steel plates 1a and 1b at a plurality of different potential differences ΔV is measured, and numerical analysis is performed using the plurality of measurement results as shown in Expression (4) obtained from FIG. The relationship between the electrical resistivity ρ and the contact dimension C is obtained (step 35). Further, based on the relationship between the electrical resistivity ρ and the contact dimension C and the function of the potential difference ΔV, the relationship between the contact dimension C and the potential difference ΔV as shown in equation (5) is obtained and stored in the storage means 27. (Step 36).

関係評価工程により接触寸法Cと電位差ΔVとの関係を求めた後、図6と同様に、電位差測定手段12により、各電極11a,11bの間の電位差ΔVを測定し(ステップ32)、接触寸法算出手段28により、測定された電位差ΔVから、記憶手段27に記憶された関係に基づいて、各鋼板1a,1bの間の接触寸法Cを求めることができる(ステップ33)。   After obtaining the relationship between the contact dimension C and the potential difference ΔV in the relationship evaluation step, the potential difference ΔV between the electrodes 11a and 11b is measured by the potential difference measuring means 12 as in FIG. Based on the measured potential difference ΔV, the calculation means 28 can determine the contact dimension C between the steel plates 1a and 1b based on the relationship stored in the storage means 27 (step 33).

以上の実施例から、本発明の実施の形態の鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置10は、各鋼板1a,1bの間の接触寸法と、各電極11a,11bの間に一定の直流電流を流したときの各電極11a,11bの間の電位差との関係をあらかじめ求めておく際に、各電極11a,11bと各鋼板1a,1bとの接触部の電気抵抗率を考慮することにより、その電気抵抗率が一定の場合だけでなく、抵抗溶接などの際に鋼板1a,1bの表面粗さが変化(増大)して電気抵抗率が変化する場合にも柔軟に対応することができる。このため、鋼板1a,1bの間の接触寸法をより正確に測定することができる。   From the above examples, the contact dimension measuring method between steel plates and the contact dimension measuring apparatus 10 between steel plates according to the embodiment of the present invention are the contact dimensions between the steel plates 1a and 1b and the electrodes 11a and 11b. When the relationship between the potential difference between the electrodes 11a and 11b when a constant direct current is passed through is previously determined, the electrical resistivity of the contact portion between the electrodes 11a and 11b and the steel plates 1a and 1b is determined. By considering it, not only when the electrical resistivity is constant, but also when the electrical resistivity changes due to changes (increases) in the surface roughness of the steel plates 1a, 1b during resistance welding, etc. can do. For this reason, the contact dimension between the steel plates 1a and 1b can be measured more accurately.

また、本発明の実施の形態の鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置10は、スポット溶接を行う際に使用した電極を、接触寸法を測定するための電極11a,11bとしてそのまま使用するため、電極11a,11bの位置決めや設置の時間を省略することができ、より短時間で接触寸法の測定を行うことができる。また、接触寸法を測定する際には、各電極11a,11bの間の電位差を1回測定すればよく、走査や複数点の測定を行う場合と比べて、短時間で測定を行うことができる。   Moreover, the contact dimension measuring method between the steel plates and the contact dimension measuring apparatus 10 between the steel plates according to the embodiment of the present invention use the electrodes used for spot welding as the electrodes 11a and 11b for measuring the contact dimensions. Since the electrodes 11a and 11b are used as they are, the time required for positioning and installation of the electrodes 11a and 11b can be omitted, and the contact dimensions can be measured in a shorter time. Further, when measuring the contact dimension, the potential difference between the electrodes 11a and 11b may be measured once, and the measurement can be performed in a shorter time compared to the case of performing scanning or measurement at a plurality of points. .

1a,1b 鋼板
10 鋼板間の接触寸法測定装置
11a,11b 電極
12 電位差測定手段
21a,21b 電流用端子
22a,22b 電圧測定用端子
23 測定用電源
24 電圧測定器
13 制御解析端末
25 制御手段
26 電圧入力手段
27 記憶手段
28 接触寸法算出手段
DESCRIPTION OF SYMBOLS 1a, 1b Steel plate 10 Contact size measuring apparatus 11 between steel plates 11a, 11b Electrode 12 Potential difference measuring means 21a, 21b Current terminal 22a, 22b Voltage measuring terminal 23 Measuring power supply 24 Voltage measuring device 13 Control analysis terminal 25 Control means 26 Voltage Input means 27 Storage means 28 Contact dimension calculation means

Claims (8)

2枚の鋼板間の接触寸法を測定する鋼板間の接触寸法測定方法であって、
それぞれ各鋼板の表面に接触させた1対の電極間に、一定の大きさの直流電流を流したときの各電極間の電位差を測定する電位差測定工程と、
各鋼板間の接触寸法と前記直流電流を流したときの各電極間の電位差との関係を、各電極と各鋼板との接触部の電気抵抗率を考慮して数値解析および/または測定であらかじめ求めておく関係評価工程と、
前記関係評価工程で求められた前記関係に基づいて、前記電位差測定工程で測定された前記電位差から各鋼板間の接触寸法を求める接触寸法算出工程とを、
有することを特徴とする鋼板間の接触寸法測定方法。
A method for measuring a contact dimension between two steel plates, which measures a contact dimension between two steel plates,
A potential difference measuring step for measuring a potential difference between the electrodes when a direct current of a constant magnitude is passed between a pair of electrodes in contact with the surfaces of the respective steel plates,
The relationship between the contact dimension between the steel plates and the potential difference between the electrodes when the direct current is applied is determined in advance by numerical analysis and / or measurement in consideration of the electrical resistivity of the contact portion between each electrode and each steel plate. The relationship evaluation process to be requested,
Based on the relationship obtained in the relationship evaluation step, a contact size calculation step for obtaining a contact size between the steel plates from the potential difference measured in the potential difference measurement step,
A method for measuring a contact dimension between steel plates, comprising:
前記関係評価工程は、数値解析により、前記接触寸法および前記電気抵抗率の関数として前記電位差を求め、さらに複数の異なる電位差のときの各鋼板間の接触寸法を測定することにより、その複数の測定結果を用いて数値解析により前記電気抵抗率と前記接触寸法との関係を求め、その関係と前記電位差の関数とに基づいて、前記接触寸法と前記電位差との関係を求めることを特徴とする請求項1記載の鋼板間の接触寸法測定方法。   The relation evaluation step obtains the potential difference as a function of the contact dimension and the electrical resistivity by numerical analysis, and further measures the contact dimension between the steel plates at a plurality of different potential differences, thereby measuring the plurality of measurements. A relationship between the electrical resistivity and the contact size is obtained by numerical analysis using a result, and a relationship between the contact size and the potential difference is obtained based on the relationship and a function of the potential difference. Item 1. A method for measuring a contact dimension between steel plates according to Item 1. 前記関係評価工程は、各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合、数値解析により、前記接触寸法と前記電位差との関係を求めることを特徴とする請求項1記載の鋼板間の接触寸法測定方法。   2. The relationship evaluation step of obtaining a relationship between the contact dimension and the potential difference by numerical analysis when it can be assumed that the electrical resistivity of the contact portion between each electrode and each steel plate is constant. Of measuring contact dimensions between steel plates. 前記接触寸法は各鋼板を抵抗溶接で接続したときの各鋼板間の接触寸法であり、
各電極は前記抵抗溶接を行うための電極から成ることを
特徴とする請求項1乃至3のいずれか1項に記載の鋼板間の接触寸法測定方法。
The contact dimension is a contact dimension between each steel plate when each steel plate is connected by resistance welding,
The method for measuring a contact dimension between steel plates according to any one of claims 1 to 3, wherein each electrode comprises an electrode for performing the resistance welding.
2枚の鋼板間の接触寸法を測定する鋼板間の接触寸法測定装置であって、
それぞれ各鋼板の表面に接触可能に設けられた1対の電極と、
各電極間に一定の大きさの直流電流を流し、そのときの各電極間の電位差を測定する電位差測定手段と、
あらかじめ各電極と各鋼板との接触部の電気抵抗率を考慮して数値解析および/または測定で求めておいた、各鋼板間の接触寸法と前記直流電流を流したときの各電極間の電位差との関係を記憶しておく記憶手段と、
前記記憶手段に記憶された前記接触寸法と前記電位差との関係に基づいて、前記電位差測定手段で測定された前記電位差から各鋼板間の接触寸法を求める接触寸法算出手段とを、
有することを特徴とする鋼板間の接触寸法測定装置。
A contact dimension measuring device between steel sheets for measuring a contact dimension between two steel sheets,
A pair of electrodes each provided in contact with the surface of each steel plate;
A potential difference measuring means for passing a direct current of a certain magnitude between the electrodes and measuring a potential difference between the electrodes at that time,
The contact dimension between the steel plates and the potential difference between the electrodes when the direct current is passed, which are obtained in advance by numerical analysis and / or measurement in consideration of the electrical resistivity of the contact portion between each electrode and each steel plate. Storage means for storing the relationship between
Based on the relationship between the contact dimension stored in the storage means and the potential difference, contact dimension calculation means for obtaining a contact dimension between the steel plates from the potential difference measured by the potential difference measuring means,
An apparatus for measuring a contact dimension between steel plates, comprising:
前記記憶手段は、数値解析により、前記接触寸法および前記電気抵抗率の関数として前記電位差を求め、さらに複数の異なる電位差のときの各鋼板間の接触寸法を測定することにより、その複数の測定結果を用いて数値解析により前記電気抵抗率と前記接触寸法との関係を求め、その関係と前記電位差の関数とに基づいて求められた、前記接触寸法と前記電位差との関係を記憶しておくことを特徴とする請求項5記載の鋼板間の接触寸法測定装置。   The storage means obtains the potential difference as a function of the contact size and the electrical resistivity by numerical analysis, and further measures the contact size between the steel plates at a plurality of different potential differences, thereby obtaining a plurality of measurement results. The relationship between the electrical resistivity and the contact size is obtained by numerical analysis using the, and the relationship between the contact size and the potential difference obtained based on the relationship and the function of the potential difference is stored. The apparatus for measuring a contact dimension between steel plates according to claim 5. 前記記憶手段は、各電極と各鋼板との接触部の電気抵抗率が一定と仮定できる場合、数値解析により求められた、前記接触寸法と前記電位差との関係を記憶しておくことを特徴とする請求項5記載の鋼板間の接触寸法測定装置。   The storage means stores the relationship between the contact dimension and the potential difference obtained by numerical analysis when the electrical resistivity of the contact portion between each electrode and each steel plate can be assumed to be constant. The apparatus for measuring a contact dimension between steel plates according to claim 5. 前記接触寸法は各鋼板を抵抗溶接で接続したときの各鋼板間の接触寸法であり、
各電極は前記抵抗溶接を行うための電極から成ることを
特徴とする請求項5乃至7のいずれか1項に記載の鋼板間の接触寸法測定装置。
The contact dimension is a contact dimension between each steel plate when each steel plate is connected by resistance welding,
The contact dimension measuring device between steel plates according to any one of claims 5 to 7, wherein each electrode comprises an electrode for performing the resistance welding.
JP2014167293A 2014-08-20 2014-08-20 Contact dimension measuring method between steel plates and contact dimension measuring apparatus between steel plates Active JP6236610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167293A JP6236610B2 (en) 2014-08-20 2014-08-20 Contact dimension measuring method between steel plates and contact dimension measuring apparatus between steel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167293A JP6236610B2 (en) 2014-08-20 2014-08-20 Contact dimension measuring method between steel plates and contact dimension measuring apparatus between steel plates

Publications (2)

Publication Number Publication Date
JP2016044998A true JP2016044998A (en) 2016-04-04
JP6236610B2 JP6236610B2 (en) 2017-11-29

Family

ID=55635706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167293A Active JP6236610B2 (en) 2014-08-20 2014-08-20 Contact dimension measuring method between steel plates and contact dimension measuring apparatus between steel plates

Country Status (1)

Country Link
JP (1) JP6236610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477383B2 (en) 2020-07-15 2024-05-01 ダイハツ工業株式会社 How to simulate spot welding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279287A (en) * 1991-03-06 1992-10-05 Mitsubishi Electric Corp Resistance welding equipment
JPH1147945A (en) * 1997-08-01 1999-02-23 Matsushita Electric Ind Co Ltd Method and device for monitoring welding quality
US20070221629A1 (en) * 2006-03-22 2007-09-27 Vernon Fernandez Resistance spot welding system and method
US20080041827A1 (en) * 2006-05-26 2008-02-21 Wei Li Resistance Spot Welding Monitoring System and Method
JP2008241419A (en) * 2007-03-27 2008-10-09 Denshi Jiki Kogyo Kk Method and device for measuring nugget diameter
JP2008254005A (en) * 2007-04-02 2008-10-23 Denshi Jiki Kogyo Kk Spot welding strength evaluation method and apparatus
JP2010234424A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Method and apparatus for welding conductor
JP2012115888A (en) * 2010-12-02 2012-06-21 Honda Motor Co Ltd Method of setting welding condition in spot welding apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279287A (en) * 1991-03-06 1992-10-05 Mitsubishi Electric Corp Resistance welding equipment
JPH1147945A (en) * 1997-08-01 1999-02-23 Matsushita Electric Ind Co Ltd Method and device for monitoring welding quality
US20070221629A1 (en) * 2006-03-22 2007-09-27 Vernon Fernandez Resistance spot welding system and method
US20080041827A1 (en) * 2006-05-26 2008-02-21 Wei Li Resistance Spot Welding Monitoring System and Method
JP2008241419A (en) * 2007-03-27 2008-10-09 Denshi Jiki Kogyo Kk Method and device for measuring nugget diameter
JP2008254005A (en) * 2007-04-02 2008-10-23 Denshi Jiki Kogyo Kk Spot welding strength evaluation method and apparatus
JP2010234424A (en) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The Method and apparatus for welding conductor
JP2012115888A (en) * 2010-12-02 2012-06-21 Honda Motor Co Ltd Method of setting welding condition in spot welding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477383B2 (en) 2020-07-15 2024-05-01 ダイハツ工業株式会社 How to simulate spot welding

Also Published As

Publication number Publication date
JP6236610B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US8021504B2 (en) Quality control method for ultrasound welding
CN110023028B (en) Apparatus and method for inspecting welding of secondary battery
CN100503127C (en) Method for monitoring a resistance welding process and device therefor
Ling et al. Input electrical impedance as quality monitoring signature for characterizing resistance spot welding
Spreng et al. Adaption of the ultrasonic welding technique to the process of joining insulated copper wires with standardized tubular cable lugs
KR101390385B1 (en) Method for evaluating welding quality of nut projection welding
JP6236610B2 (en) Contact dimension measuring method between steel plates and contact dimension measuring apparatus between steel plates
US9815136B2 (en) Method for single-sided resistance welding
CN113646122A (en) Method for monitoring the quality of ultrasonic welds
JP6648836B2 (en) Method for producing CTOD test piece and jig for adjusting plastic strain
CN104968466A (en) Welding device and welding method
JP4822545B2 (en) Nugget diameter measuring method and nugget diameter measuring apparatus
JP6764369B2 (en) Join monitoring system and join equipment
JP4756224B1 (en) Spot welding inspection equipment
JP5001049B2 (en) Spot welding strength evaluation method and apparatus
Xu et al. Quality monitoring for resistance spot welding using dynamic signals
JP5868728B2 (en) Spot welding fixed strength evaluation method and spot welding fixed strength evaluation apparatus
JP4789502B2 (en) Crack depth measurement technique and apparatus for deep cracks using potentiometric method
JP2019084579A (en) Welded part inspection method between steel plate, welded part inspection apparatus between steel plate and welding apparatus of steel plate
JP2006000894A (en) Apparatus and method for judging quality of spot welded portion, and spot welding apparatus
JP7213214B2 (en) Weld crack detector
JP6465274B2 (en) Structure detector
JP5224384B2 (en) Conductor welding method and welding apparatus therefor
Medellín-Castillo et al. Weld quality analysis and evaluation of plasma arc welds in electrical stators
Raj et al. DETECTION OF WEAK SPOT IN BACK PLATE BY USING SINGLE ELECTRODE SPOT WELDING MACHINE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170927

R150 Certificate of patent or registration of utility model

Ref document number: 6236610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250