JP5224384B2 - Conductor welding method and welding apparatus therefor - Google Patents

Conductor welding method and welding apparatus therefor Download PDF

Info

Publication number
JP5224384B2
JP5224384B2 JP2009086465A JP2009086465A JP5224384B2 JP 5224384 B2 JP5224384 B2 JP 5224384B2 JP 2009086465 A JP2009086465 A JP 2009086465A JP 2009086465 A JP2009086465 A JP 2009086465A JP 5224384 B2 JP5224384 B2 JP 5224384B2
Authority
JP
Japan
Prior art keywords
welding
resistance value
conductor
measuring
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009086465A
Other languages
Japanese (ja)
Other versions
JP2010234424A (en
Inventor
知章 水谷
剛 表谷
和彦 浅見
静一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Automotive Systems Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009086465A priority Critical patent/JP5224384B2/en
Publication of JP2010234424A publication Critical patent/JP2010234424A/en
Application granted granted Critical
Publication of JP5224384B2 publication Critical patent/JP5224384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、導体同士を溶接する溶接方法及び溶接装置に関し、より詳しくは例えば自動車用のステアリングロールコネクタに用いられるような銅箔と接続端子の溶接方法及び溶接装置に関する。   The present invention relates to a welding method and a welding apparatus for welding conductors, and more particularly, to a welding method and a welding apparatus for a copper foil and a connection terminal, such as those used in a steering roll connector for an automobile.

従来、導体同士を溶接する溶接方法は様々な方法が存在し、溶接対象に応じて適した溶接方法で溶接される。なお、溶接箇所における溶接の良否を判定する方法についても複数提案されている。   Conventionally, there are various welding methods for welding conductors, and welding is performed by a welding method suitable for a welding target. A plurality of methods have also been proposed for determining the quality of welding at a weld location.

例えば、スタッドの抵抗溶接方法において、溶接電圧と溶接電流とに基づいて溶接部の電気抵抗値を算出し、算出した電気抵抗値によって溶接の良否を判別する方法が提案されている(特許文献1参照)。   For example, in a resistance welding method for studs, a method has been proposed in which an electrical resistance value of a welded portion is calculated based on a welding voltage and a welding current, and the quality of welding is determined based on the calculated electrical resistance value (Patent Document 1). reference).

特許文献1で提案された判定方法は、予め設定した電気抵抗値の基準値と、溶接中あるいは溶接後に算出した電気抵抗値とを比較し、算出した電気抵抗値が基準値より低い場合、溶接不良と判定するものである。   The determination method proposed in Patent Document 1 compares a preset reference value of an electric resistance value with an electric resistance value calculated during or after welding, and if the calculated electric resistance value is lower than the reference value, welding is performed. It is determined to be defective.

しかし、この特許文献1の判定方法では、溶接電圧と溶接電流とに基づいて溶接部の電気抵抗値を算出しているため、溶接対象や電極自体の抵抗や、それぞれの接触抵抗等の電気抵抗値に影響を与える要素が多く、算出した電気抵抗値によって正確な溶接状態を判別することは困難であった。   However, in the determination method of Patent Document 1, since the electric resistance value of the welded portion is calculated based on the welding voltage and the welding current, the resistance of the welding object and the electrode itself, and the electric resistance such as the contact resistance of each of them are calculated. There are many factors that affect the value, and it is difficult to accurately determine the welding state based on the calculated electrical resistance value.

詳しくは、溶接中に算出した抵抗値を基準値と比較するため、材料のばらつきや、電極等の電気抵抗値や接触抵抗値が経時変化すると、溶接電圧や溶接電流が変化し、電気抵抗値に影響をあたえるため、正確な溶接状態の判別することは困難であった。   Specifically, in order to compare the resistance value calculated during welding with the reference value, when the material variation, the electrical resistance value of the electrode, etc., and the contact resistance value change over time, the welding voltage and welding current change, and the electrical resistance value Therefore, it is difficult to accurately determine the welding state.

特開平7−323376号公報JP-A-7-323376

この発明は、導体同士の溶接箇所の電気抵抗値を正確に測定して、溶接状態の良否を精度良く判別できる導体の溶接方法及びその溶接装置を提供することを目的とする。   It is an object of the present invention to provide a conductor welding method and a welding apparatus for the conductor that can accurately measure the electrical resistance value of the welded portion between the conductors and accurately determine the quality of the welded state.

この発明は、重ね合わせた第1導体と第2導体との溶接箇所を、該溶接箇所に対して外側から前記第1導体に押し付ける第1溶接部と、前記第2導体に押し付ける第2溶接部とで構成する一対の溶接手段によって通電可能に溶接する導体の溶接方法であって、溶接前に電気抵抗値を測定する溶接前抵抗値測定ステップと、前記溶接箇所を溶接する溶接ステップと、電気抵抗値測定手段に通電して、前記溶接箇所の電気抵抗値を測定する抵抗値測定ステップと、前記抵抗値測定ステップで測定した電気抵抗値と、前記溶接前抵抗値測定ステップで測定した溶接前電気抵抗値とに基づいて電気抵抗値の変化を示す電気抵抗値変化量を検出する抵抗値変化量検出ステップと、測定した前記電気抵抗値変化量と、良好な溶接に基づく電気抵抗値の変化を示す基準抵抗値変化量を比較する比較ステップと、該比較結果に基づいて溶接の良否を判別する判別ステップとを有することを特徴とする。 The present invention provides a first welded portion that presses the welded portion of the superimposed first conductor and second conductor against the welded portion from the outside, and a second welded portion that presses against the second conductor. A conductor welding method for welding to be energized by a pair of welding means comprising: a pre-welding resistance value measuring step for measuring an electric resistance value before welding; a welding step for welding the welding portion; A resistance value measuring step of energizing the resistance value measuring means to measure the electric resistance value of the welded portion, the electric resistance value measured in the resistance value measuring step, and the pre-welding measured in the pre-welding resistance value measuring step and the resistance value change amount detecting step of detecting an electrical resistance value variation amount indicating the change in electrical resistance based on the resistance value, and the measured the electric resistance value change amount, a change in electrical resistance based on excellent welding And having a comparison step of comparing a reference resistance value variation amount indicating and the discrimination step of discriminating the quality of the weld based on the comparison result.

また、この発明の態様として、前記電気抵抗値測定手段を、4端子法により電気抵抗値を測定する4端子法電気抵抗値測定手段で構成することができる。
また、この発明の態様として、前記第1導体を銅箔で構成し、第2導体を端子で構成することができる。
Further, as an aspect of the present invention, the electric resistance value measuring means can be constituted by a four terminal method electric resistance value measuring means for measuring an electric resistance value by a four terminal method.
As an aspect of the present invention, the first conductor can be made of copper foil, and the second conductor can be made of a terminal.

また、この発明は、重ね合わせた第1導体と第2導体との溶接箇所を、該溶接箇所に対して外側から前記第1導体に押し付ける第1溶接部と、前記第2導体に押し付ける第2溶接部とで構成する一対の溶接手段によって通電可能に溶接する導体の溶接装置であって、溶接前の電気抵抗値からの電気抵抗値の変化を示す電気抵抗値変化量を検出する抵抗値変化量検出手段と、重ね合わせた第1導体と第2導体に通電して前記溶接箇所の電気抵抗値を測定する電気抵抗値測定手段と、該電気抵抗値測定手段による測定結果を、良好な溶接に基づく基準抵抗値の変化を示す基準抵抗値変化量とする基準抵抗値と比較する比較手段と、該比較手段の比較結果に基づいて溶接の良否を判別する判別手段とを備え、前記比較手段を、前記電気抵抗値変化量と前記基準抵抗値変化量とを比較する構成とすることを特徴とする。 Further, according to the present invention, a first welded portion that presses the welded portion of the superimposed first conductor and second conductor against the first conductor from the outside with respect to the welded portion, and a second that presses against the second conductor. A welding apparatus for a conductor that is welded so as to be energized by a pair of welding means constituted by a welded portion, and that detects a change in resistance value that indicates a change in electrical resistance value from an electrical resistance value before welding. and amount detecting means, and the electric resistance value measuring means for measuring a first conductor and the electric resistance of the welded portions by energizing the second conductor superimposed, the measurement results of the electrical resistance measuring means, good welding Bei example comparing means for comparing a reference resistance value of the reference resistance value variation amount indicating the change in the reference resistance value based on, and discriminating means for discriminating the quality of the weld on the basis of a comparison result of the comparison means, the comparison Means for changing the electric resistance value Characterized by a configuration of comparing the reference resistance value variation.

また、この発明の態様として、前記電気抵抗値測定手段を、4端子法により電気抵抗値を測定する4端子法電気抵抗値測定手段で構成することができる。
また、この発明の態様として、前記第1導体を銅箔で構成し、第2導体を端子で構成することができる。
Further, as an aspect of the present invention, the electric resistance value measuring means can be constituted by a four terminal method electric resistance value measuring means for measuring an electric resistance value by a four terminal method.
As an aspect of the present invention, the first conductor can be made of copper foil, and the second conductor can be made of a terminal.

上記第1導体と第2導体は、例えば、銅箔と接続端子のように異なる部材や、銅箔同士のように同じ部材で構成することができ、また導体は銅箔、接続端子、平角導体等の導電性部材で構成することができる。   The first conductor and the second conductor can be composed of different members such as copper foil and connection terminals, or the same member such as copper foils, and the conductors are copper foil, connection terminals, and rectangular conductors. It can comprise with electroconductive members, such as.

第1溶接部と第2溶接部とで構成する上記一対の溶接手段は、導体同士を重ねた溶接箇所を介して第1溶接部と第2溶接部との間に通電して溶接する抵抗溶接や、溶接箇所に圧力を加えながら並行振動を与えて溶接する超音波溶接とすることができる。   The pair of welding means constituted by the first welded portion and the second welded portion is resistance welding for welding by energizing between the first welded portion and the second welded portion via a welded portion where conductors are overlapped with each other. Or it can be set as the ultrasonic welding which gives a parallel vibration and welds, applying a pressure to a welding location.

電気抵抗値測定手段は、直流抵抗測定法を用いた測定回路及び測定手段とすることができ、詳しくは4端子測定法及び2端子測定法を用いた測定回路及び測定手段とすることができる。   The electrical resistance value measuring means can be a measuring circuit and measuring means using a DC resistance measuring method, and more specifically, a measuring circuit and measuring means using a four-terminal measuring method and a two-terminal measuring method.

この発明によれば、導体同士の溶接箇所の電気抵抗値を正確に測定して、溶接状態の良否を精度良く判別できる導体の溶接方法及びその溶接装置を提供することができる。   According to the present invention, it is possible to provide a conductor welding method and its welding apparatus capable of accurately measuring the electrical resistance value of the welded portion between the conductors and accurately determining the quality of the welded state.

抵抗溶接装置の構成図。The block diagram of a resistance welding apparatus. 溶接処理のフローチャート。The flowchart of a welding process. 抵抗溶接における抵抗値変化についての説明図。Explanatory drawing about resistance value change in resistance welding.

この発明の一実施形態を以下図面と共に説明する。
図1は抵抗溶接装置1の構成図を示し、図2は溶接処理のフローチャートを示し、図3は抵抗溶接における抵抗値変化についての説明図を示している。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a configuration diagram of a resistance welding apparatus 1, FIG. 2 shows a flowchart of a welding process, and FIG. 3 shows an explanatory diagram of a resistance value change in resistance welding.

抵抗溶接装置1は、重ね合わせた銅箔100と接続端子200との溶接箇所Hを、上側から銅箔100に押し付ける第1電極20と、下側から接続端子200に押し付ける第2電極30とで構成する一対の抵抗溶接機構10によって通電可能に溶接する装置である。   The resistance welding apparatus 1 includes a first electrode 20 that presses the welded portion H between the overlapped copper foil 100 and the connection terminal 200 against the copper foil 100 from above, and a second electrode 30 that presses against the connection terminal 200 from below. It is an apparatus which welds so that electricity supply is possible by a pair of resistance welding mechanisms 10 which comprise.

抵抗溶接装置1には、電気抵抗値測定機構40と、比較手段及び判別手段として機能する制御端末50とを備えている。
電気抵抗値測定機構40は、重ね合わせた銅箔100と接続端子200に通電して溶接箇所Hの電気抵抗値Rを測定する構成である。
The resistance welding apparatus 1 includes an electrical resistance value measuring mechanism 40 and a control terminal 50 that functions as a comparison unit and a determination unit.
The electric resistance value measuring mechanism 40 is configured to measure the electric resistance value R of the welded portion H by energizing the overlapped copper foil 100 and the connection terminal 200.

比較手段として機能する制御端末50は、電気抵抗値測定機構40によって測定された電気抵抗値Rを基準値と比較する構成である。
判別手段として機能する制御端末50は、電気抵抗値Rと基準値との比較結果に基づいて溶接の良否を判別する構成である。
The control terminal 50 functioning as a comparison unit is configured to compare the electric resistance value R measured by the electric resistance value measuring mechanism 40 with a reference value.
The control terminal 50 functioning as a determination unit is configured to determine whether the welding is good or not based on the comparison result between the electric resistance value R and the reference value.

詳しくは、制御端末50を抵抗値変化量検出手段として機能させ、溶接前に測定した溶接前電気抵抗値Rbからの電気抵抗値Rの変化を示す電気抵抗値変化量Vを検出する。   Specifically, the control terminal 50 is caused to function as a resistance value change amount detecting means, and an electric resistance value change amount V indicating a change in the electric resistance value R from the pre-welding electric resistance value Rb measured before welding is detected.

そして、比較手段として機能する制御端末50は、良好な溶接に基づく基準値の変化を示す基準抵抗値変化量Vg(図3参照)と、電気抵抗値変化量Vとを比較する構成である。
また、前記電気抵抗値測定機構40は、電圧増幅回路41と定電流発生回路42とで構成し、4端子法により電気抵抗値Rを測定する構成である。
And the control terminal 50 which functions as a comparison means is the structure which compares the reference resistance value variation | change_quantity Vg (refer FIG. 3) which shows the change of the reference value based on favorable welding, and the electrical resistance value variation | change_quantity V. FIG.
The electric resistance value measuring mechanism 40 includes a voltage amplification circuit 41 and a constant current generation circuit 42, and measures the electric resistance value R by a four-terminal method.

上記構成について詳述すると、抵抗溶接装置1は、抵抗溶接機構10、電気抵抗値測定機構40、制御端末50及び溶接用回路60とで構成し、銅箔100と接続端子200の溶接箇所Hに通電して抵抗溶接する装置である。   The above-described configuration will be described in detail. The resistance welding apparatus 1 includes a resistance welding mechanism 10, an electric resistance measurement mechanism 40, a control terminal 50, and a welding circuit 60. It is a device that conducts resistance and conducts resistance welding.

抵抗溶接機構10は、銅箔100に対して下向きに押し付ける第1電極20と、下側から接続端子200に対して上向きに押し付ける第2電極30とで構成している。
なお、本実施例において、銅箔100は、およそ35〜150μmの厚さの箔を用いているが、これに限定されるものではない。
The resistance welding mechanism 10 includes a first electrode 20 that is pressed downward against the copper foil 100 and a second electrode 30 that is pressed upward against the connection terminal 200 from the lower side.
In the present embodiment, the copper foil 100 uses a foil having a thickness of about 35 to 150 μm, but is not limited to this.

第1電極20は、正面視略Y字型の電極本体21と、該電極本体21の上部に配置した電極ホルダ22とで構成している。
電極本体21は、上部の二股部21aと、下部の電極当接部21bとで正面視略Y字型に形成している。なお、二股部21aのうち一方側の測定回路側二股部21aa(図1において右側)には、後述する電圧増幅回路41の測定用電極44aを接続固定する固定治具21cを備えている。また、電極当接部21bの底面部分で構成する当接面21baで銅箔100に当接する構成である。
なお、本実施例において、当接面21baは、数百μmの大きさのものを用いているが、これに限定されるものではない。
The first electrode 20 includes a substantially Y-shaped electrode main body 21 in front view and an electrode holder 22 disposed on the electrode main body 21.
The electrode body 21 is formed in a substantially Y shape in front view by an upper bifurcated portion 21a and a lower electrode contact portion 21b. A measuring circuit side bifurcated portion 21aa (on the right side in FIG. 1) of the bifurcated portion 21a is provided with a fixing jig 21c for connecting and fixing a measuring electrode 44a of a voltage amplification circuit 41 described later. Moreover, it is the structure contact | abutted to the copper foil 100 by contact surface 21ba comprised by the bottom face part of the electrode contact part 21b.
In the present embodiment, the contact surface 21ba has a size of several hundred μm, but is not limited to this.

電極ホルダ22は幅方向中央に絶縁体23を配置しており、絶縁体23を挟む態様で、電極本体21の上部の二股部21aを固定している。なお、二股部21aのうち他方側の溶接回路側二股部21abが固定された溶接回路側ホルダ22b(図1において左側)には、定電流発生回路42と溶接用回路60が接続されている。   In the electrode holder 22, an insulator 23 is arranged at the center in the width direction, and the upper bifurcated portion 21 a of the electrode body 21 is fixed in such a manner as to sandwich the insulator 23. A constant current generating circuit 42 and a welding circuit 60 are connected to a welding circuit side holder 22b (left side in FIG. 1) to which the other side of the bifurcated portion 21a is fixed.

第2電極30は、正面視略逆Y字型の電極本体31と、該電極本体31の下部に配置した電極ホルダ32とで構成している。
電極本体31は、下部の二股部31aと、上部の電極当接部31bとで正面視略逆Y字型に形成している。なお、二股部31aのうち一方側の測定回路側二股部31aa(図1において右側)には、後述する電気抵抗値測定機構40の測定用電極44bを接続固定する固定治具31cを備えている。また、電極当接部31bの上面部分で構成する当接面31baで接続端子200に当接する構成である。
なお、本実施例において、当接面31baは、数百μmの大きさのものを想定しているが、これに限定されるものではない。
The second electrode 30 includes a substantially inverted Y-shaped electrode body 31 as viewed from the front, and an electrode holder 32 disposed below the electrode body 31.
The electrode main body 31 is formed in a substantially inverted Y shape in front view by a lower bifurcated portion 31a and an upper electrode contact portion 31b. In addition, the measuring circuit side bifurcated portion 31aa (on the right side in FIG. 1) of the bifurcated portion 31a is provided with a fixing jig 31c for connecting and fixing a measuring electrode 44b of the electric resistance measuring mechanism 40 described later. . Further, the contact surface 31ba formed by the upper surface portion of the electrode contact portion 31b is in contact with the connection terminal 200.
In the present embodiment, the contact surface 31ba is assumed to have a size of several hundred μm, but is not limited to this.

電極ホルダ32は幅方向中央に絶縁体33を配置しており、絶縁体33を挟む態様で、電極本体31の下部の二股部31aを固定している。なお、二股部31aのうち他方側の溶接回路側二股部31abが固定された溶接回路側ホルダ32b(図1において左側)には、定電流発生回路42と溶接用回路60が接続されている。   In the electrode holder 32, an insulator 33 is arranged at the center in the width direction, and the lower forked portion 31 a of the electrode main body 31 is fixed in such a manner as to sandwich the insulator 33. A constant current generating circuit 42 and a welding circuit 60 are connected to a welding circuit side holder 32b (left side in FIG. 1) to which the other side of the bifurcated portion 31a is fixed.

第1電極20と第2電極30とは、図示しない昇降手段により、銅箔100と接続端子200とが重なった溶接箇所Hに対して上下方向に相対移動し銅箔100と接続端子200とを上下方向から加圧しながら挟み込む構成である。
なお、本実施例において、銅箔100と接続端子200とを上下方向から挟み込む加圧力は、およそ1.0〜4.0kgfの強さに設定しているが、これに限定されるものではない。
The first electrode 20 and the second electrode 30 are moved relative to each other in a vertical direction with respect to the welded portion H where the copper foil 100 and the connection terminal 200 overlap by an elevating means (not shown), and the copper foil 100 and the connection terminal 200 are moved. It is the structure inserted | pinched, pressing from the up-down direction.
In the present embodiment, the pressing force for sandwiching the copper foil 100 and the connection terminal 200 from the vertical direction is set to a strength of about 1.0 to 4.0 kgf, but is not limited thereto. .

電気抵抗値測定機構40は、直流4端子測定法によって溶接箇所Hの電気抵抗値Rを測定するための測定回路を構成しており、電圧増幅回路41と定電流発生回路42とで構成している。 The electric resistance value measuring mechanism 40 constitutes a measuring circuit for measuring the electric resistance value R of the welded portion H by a direct current four-terminal measuring method, and comprises a voltage amplification circuit 41 and a constant current generating circuit 42. Yes.

電圧増幅回路41は、測定回路側二股部21aaに装着される測定用電極44aと、測定回路側二股部31aaに装着される測定用電極44bに接続され、電圧を増幅率βで増幅すると共に、図示省略する電圧計で電圧を測定し、測定結果を制御端末50に送信する構成である。   The voltage amplification circuit 41 is connected to the measurement electrode 44a attached to the measurement circuit side bifurcated portion 21aa and the measurement electrode 44b attached to the measurement circuit side bifurcated portion 31aa, and amplifies the voltage with an amplification factor β. The voltage is measured with a voltmeter (not shown), and the measurement result is transmitted to the control terminal 50.

また、電圧増幅回路41、測定用電極44a、測定回路側二股部21aa、電極当接部21b、溶接箇所H、電極当接部31b、測定回路側二股部31aa及び測定用電極44bを通る抵抗値測定用電圧測定ルート41aを形成している。   Further, the resistance value passing through the voltage amplification circuit 41, the measurement electrode 44a, the measurement circuit side bifurcated portion 21aa, the electrode contact portion 21b, the welding location H, the electrode contact portion 31b, the measurement circuit side bifurcated portion 31aa, and the measurement electrode 44b. A voltage measurement route 41a for measurement is formed.

定電流発生回路42は、溶接回路側ホルダ22bと溶接回路側ホルダ32bに接続されると共に、ON/OFFスイッチ43を備えており、後述する制御端末50からの信号によって定電流Iを通電する構成である。   The constant current generation circuit 42 is connected to the welding circuit side holder 22b and the welding circuit side holder 32b, and includes an ON / OFF switch 43, and is configured to energize the constant current I by a signal from the control terminal 50 described later. It is.

また、定電流発生回路42、溶接回路側ホルダ22b、溶接回路側二股部21ab、電極当接部21b、溶接箇所H、電極当接部31b、溶接回路側二股部31ab、溶接回路側ホルダ32b及びON/OFFスイッチ43を通る抵抗値測定電流ルート42aを形成している。   Further, the constant current generating circuit 42, the welding circuit side holder 22b, the welding circuit side bifurcated portion 21ab, the electrode contact portion 21b, the welding location H, the electrode contact portion 31b, the welding circuit side bifurcated portion 31ab, the welding circuit side holder 32b, and A resistance measurement current route 42 a passing through the ON / OFF switch 43 is formed.

溶接用回路60は、溶接回路側ホルダ22bと溶接回路側ホルダ32bとに接続され、溶接用電源61から供給された溶接電流Iwを、溶接箇所Hを介して電極当接部21b及び電極当接部31bに通電する構成である。
なお、本実施例において、溶接電流Iwは、およそ350〜550Aの電流量に設定しているが、これに限定されるものではない。
The welding circuit 60 is connected to the welding circuit side holder 22b and the welding circuit side holder 32b, and the welding current Iw supplied from the welding power source 61 is applied to the electrode contact portion 21b and the electrode contact via the welding location H. It is the structure which supplies with electricity to the part 31b.
In this embodiment, the welding current Iw is set to a current amount of about 350 to 550 A, but is not limited to this.

また、溶接用電源61、溶接用回路60、溶接回路側ホルダ22b、溶接回路側二股部21ab、電極当接部21b、溶接箇所H、電極当接部31b、溶接回路側二股部31ab、溶接回路側ホルダ32bを通る溶接用通電ルート60aを形成している。   Further, a welding power source 61, a welding circuit 60, a welding circuit side holder 22b, a welding circuit side bifurcated portion 21ab, an electrode contact portion 21b, a welding location H, an electrode contact portion 31b, a welding circuit side bifurcated portion 31ab, a welding circuit. A welding energization route 60a passing through the side holder 32b is formed.

制御端末50は、電圧増幅回路41、ON/OFFスイッチ43及び溶接用電源61に接続されている。そして、電圧増幅回路41で測定された電圧値を受信する構成である。また、ON/OFFスイッチ43に対してON/OFFを切り替える切替信号を送信する構成である。また、溶接用電源61に対して溶接電流Iwの通電のON/OFFを切り替える信号を送信する構成である。   The control terminal 50 is connected to the voltage amplification circuit 41, the ON / OFF switch 43 and the welding power source 61. The voltage value measured by the voltage amplifier circuit 41 is received. In addition, a switching signal for switching ON / OFF to the ON / OFF switch 43 is transmitted. In addition, a signal for switching ON / OFF of energization of the welding current Iw is transmitted to the welding power source 61.

詳しくは、制御端末50はいわゆるパーソナルコンピュータであり、CRTや液晶ディスプレイ等で構成される表示部、キーボードはマウス等で構成される入力部、接続された電圧増幅回路41、ON/OFFスイッチ43及び溶接用電源61と通信する通信部51、CPU等で構成される制御部52及びハードディスク等で構成される記憶部53とを備えている。   Specifically, the control terminal 50 is a so-called personal computer, a display unit configured with a CRT, a liquid crystal display, or the like, an input unit configured with a mouse or the like as a keyboard, a connected voltage amplification circuit 41, an ON / OFF switch 43, and A communication unit 51 that communicates with the welding power source 61, a control unit 52 configured by a CPU or the like, and a storage unit 53 configured by a hard disk or the like are provided.

記憶部53には、各種プログラムや、溶接の良否を判別するための基準となる基準抵抗値変化量Vg等の各種データを記憶している。
記憶部53に記憶する各種プログラムは、例えば、制御プログラム、通信プログラム、算出プログラム、判別プログラム、その他抵抗溶接装置1が稼働するために必要なプログラムである。
The storage unit 53 stores various data such as various programs and a reference resistance value change amount Vg that serves as a reference for determining the quality of welding.
The various programs stored in the storage unit 53 are, for example, a control program, a communication program, a calculation program, a determination program, and other programs necessary for the resistance welding apparatus 1 to operate.

制御プログラムは定電流発生回路42や溶接用回路60を制御するプログラムであり、通信プログラムは通信部51を介して電圧増幅回路41、ON/OFFスイッチ43及び溶接用電源61と通信するプログラムである。算出プログラムは受信した電圧値から電気抵抗値Rや電気抵抗値Rの変化量を示す電気抵抗値変化量Vを算出するプログラムであり、判別プログラムは、電気抵抗値変化量Vと基準抵抗値変化量Vgとを比較して溶接の良否を判別するプログラムである。   The control program is a program for controlling the constant current generating circuit 42 and the welding circuit 60, and the communication program is a program for communicating with the voltage amplification circuit 41, the ON / OFF switch 43 and the welding power source 61 via the communication unit 51. . The calculation program is a program for calculating the electric resistance value R and the electric resistance value change amount V indicating the change amount of the electric resistance value R from the received voltage value, and the discrimination program is the electric resistance value change amount V and the reference resistance value change. This is a program for comparing the amount Vg to determine the quality of welding.

制御部52は、上記各種プログラムを用い、通信部51を介して接続された電圧増幅回路41、ON/OFFスイッチ43及び溶接用電源61を制御する構成である。   The control unit 52 is configured to control the voltage amplification circuit 41, the ON / OFF switch 43, and the welding power source 61 connected via the communication unit 51 using the various programs.

次に、このように構成された抵抗溶接装置1を用いた銅箔100と接続端子200との溶接処理について説明する。
まず、銅箔100と接続端子200との溶接処理の準備として、銅箔100と接続端子200とを抵抗溶接装置1にセットする。詳しくは、第1電極20と第2電極30とを図示省略する昇降手段によって離間方向に移動させる。
Next, the welding process of the copper foil 100 and the connection terminal 200 using the resistance welding apparatus 1 configured as described above will be described.
First, as preparation for the welding process between the copper foil 100 and the connection terminal 200, the copper foil 100 and the connection terminal 200 are set in the resistance welding apparatus 1. Specifically, the first electrode 20 and the second electrode 30 are moved in the separation direction by lifting means (not shown).

その状態で、溶接箇所Hで重ね合わせた銅箔100と接続端子200とを、電極当接部21bと電極当接部31bとの間に配置し、第1電極20と第2電極30とを前記昇降手段によって移動させ、当接面21baと当接面31baとで溶接箇所Hを上下から挟み込んで握持する。この状態で、銅箔100と接続端子200との溶接処理の準備は完了し、続いて銅箔100と接続端子200との溶接処理を開始する。   In this state, the copper foil 100 and the connection terminal 200 overlapped at the welding location H are disposed between the electrode contact portion 21b and the electrode contact portion 31b, and the first electrode 20 and the second electrode 30 are disposed. It moves by the said raising / lowering means, and the welding location H is pinched and gripped by the contact surface 21ba and the contact surface 31ba. In this state, preparation for the welding process between the copper foil 100 and the connection terminal 200 is completed, and then the welding process between the copper foil 100 and the connection terminal 200 is started.

銅箔100と接続端子200との溶接処理は、溶接前抵抗値測定工程S1と、溶接工程S2と、溶接後抵抗値測定工程S3と、判別工程S4とを行う処理である。
なお、溶接前抵抗値測定工程S1は溶接前の溶接箇所H部分の電気抵抗値Rを測定する工程であり、溶接後抵抗値測定工程S3は溶接後の溶接箇所H部分の電気抵抗値Rを測定する工程であり、同じ処理を行う工程である。
The welding process between the copper foil 100 and the connection terminal 200 is a process of performing the pre-weld resistance value measurement step S1, the welding step S2, the post-weld resistance value measurement step S3, and the discrimination step S4.
In addition, the resistance value measuring step S1 before welding is a step of measuring the electric resistance value R of the welded portion H before welding, and the post-welding resistance value measuring step S3 is an electric resistance value R of the welded portion H after welding. It is a process of measuring and a process of performing the same process.

溶接工程S2は、溶接箇所Hを介して第1電極20と第2電極30とに溶接電流Iwを通電して、溶接箇所Hを溶接する工程である。判別工程S4は、溶接前抵抗値測定工程S1と溶接後抵抗値測定工程S3とで測定した抵抗値に基づいて溶接の良否を判別する工程である。   The welding step S2 is a step of welding the welding location H by energizing the first electrode 20 and the second electrode 30 through the welding location H with the welding current Iw. The discrimination step S4 is a step of discriminating the quality of welding based on the resistance values measured in the pre-weld resistance value measurement step S1 and the post-weld resistance value measurement step S3.

各工程について詳述する。まず、溶接処理の準備完了後に実施する溶接前抵抗値測定工程S1について説明する。
溶接前抵抗値測定工程S1では、制御端末50で電圧増幅回路41を制御して溶接前電気抵抗値Rbを測定するための電圧増幅回路41の電圧測定を開始する(ステップt1)。そして、電圧増幅回路41の電圧測定が開始された状態で、制御端末50は、定電流発生回路42のON/OFFスイッチ43をON制御する(ステップt2)。
Each step will be described in detail. First, the pre-welding resistance measurement step S1 performed after the preparation for the welding process is completed will be described.
In the resistance value measurement step S1 before welding, the voltage amplification circuit 41 is controlled by the control terminal 50 to start voltage measurement of the voltage amplification circuit 41 for measuring the electric resistance value Rb before welding (step t1). Then, with the voltage measurement of the voltage amplifier circuit 41 started, the control terminal 50 controls the ON / OFF switch 43 of the constant current generation circuit 42 to be ON (step t2).

ON/OFFスイッチ43がON制御されたことによって定電流発生回路42の抵抗値測定電流ルート42aには定電流Iが通電され(ステップt3)、このときの測定した電圧値を受信した制御端末50によって溶接箇所Hの電気抵抗値Rを算出する(ステップt4)。具体的には、電圧増幅回路41での電圧増幅率をβとし、定電流Iを流したときに電圧Vを測定した場合の抵抗値R(Ω)は、R=V/(βI)で算出することができる。   When the ON / OFF switch 43 is ON-controlled, the constant current I is supplied to the resistance value measurement current route 42a of the constant current generation circuit 42 (step t3), and the control terminal 50 that has received the voltage value measured at this time. To calculate the electric resistance value R of the welded portion H (step t4). Specifically, the resistance value R (Ω) when the voltage amplification factor in the voltage amplification circuit 41 is β and the voltage V is measured when the constant current I is passed is calculated by R = V / (βI). can do.

そして、制御端末50はON/OFFスイッチ43をOFF制御して(ステップt5)、電圧増幅回路41の電圧測定を終了する(ステップt6)。溶接前抵抗値測定工程S1の処理が終了すると、制御端末50は算出した電気抵抗値Rを溶接前電気抵抗値Rbとして記憶部53に記憶し、次の溶接工程S2に移行する。   Then, the control terminal 50 controls the ON / OFF switch 43 to be OFF (step t5), and the voltage measurement of the voltage amplification circuit 41 is ended (step t6). When the pre-welding resistance value measurement step S1 is completed, the control terminal 50 stores the calculated electric resistance value R in the storage unit 53 as the pre-welding electric resistance value Rb, and proceeds to the next welding step S2.

溶接前抵抗値測定工程S1において溶接前電気抵抗値Rbの測定が完了した制御端末50によって溶接用電源61に溶接開始の信号を送信すると(ステップu1)、溶接用電源61は溶接用通電ルート60aに溶接電流Iwを通電する。   When a welding start signal is transmitted to the welding power source 61 by the control terminal 50 that has completed the measurement of the electrical resistance value Rb before welding in the resistance value measuring step S1 before welding (step u1), the welding power source 61 is connected to the welding energization route 60a. The welding current Iw is energized.

この溶接用電源61による溶接電流Iwの通電により、電極当接部21bと電極当接部31bとの間で銅箔100と接続端子200の溶接箇所Hが溶接される(ステップu2)。そして、この溶接電流Iwを所定時間通電すると、制御端末50は溶接用電源61に通電停止の信号を送信して溶接通電を停止して(ステップu3)、溶接工程S2を終了する。   By applying the welding current Iw by the welding power source 61, the welded portion H of the copper foil 100 and the connection terminal 200 is welded between the electrode contact portion 21b and the electrode contact portion 31b (step u2). When the welding current Iw is energized for a predetermined time, the control terminal 50 transmits an energization stop signal to the welding power source 61 to stop the energization of welding (step u3), and ends the welding process S2.

溶接工程S2終了後に、溶接後の溶接箇所H部分の電気抵抗値Rを測定する溶接後抵抗値測定工程S3に移行する。なお、上述したように、溶接後抵抗値測定工程S3は溶接前抵抗値測定工程S1と同じ処理を行って、溶接後の溶接箇所H部分の電気抵抗値Rを測定する工程である。   After the welding step S2, the process proceeds to a post-welding resistance value measuring step S3 for measuring the electric resistance value R of the welded portion H after welding. In addition, as above-mentioned, resistance value measurement process S3 after welding is the process of performing the same process as resistance value measurement process S1 before welding, and measuring the electrical resistance value R of the welding location H part after welding.

詳しくは、溶接後抵抗値測定工程S3では、制御端末50で電圧増幅回路41を制御して溶接後の溶接箇所Hの電気抵抗値Rを測定するための電圧増幅回路41の電圧測定を開始する(ステップv1)。そして、電圧増幅回路41の電圧測定が開始された状態で、制御端末50は、定電流発生回路42のON/OFFスイッチ43をON制御する(ステップv2)。   Specifically, in the post-welding resistance value measurement step S3, the voltage amplification circuit 41 for controlling the voltage amplification circuit 41 by the control terminal 50 and measuring the electrical resistance value R of the welded portion H after welding is started. (Step v1). Then, with the voltage measurement of the voltage amplification circuit 41 started, the control terminal 50 controls the ON / OFF switch 43 of the constant current generation circuit 42 to be ON (Step v2).

ON/OFFスイッチ43がON制御されたことによって定電流発生回路42の抵抗値測定電流ルート42aには定電流Iが通電され(ステップv3)、このときの測定した電圧値を受信した制御端末50によって溶接箇所Hの電気抵抗値Rを算出する(ステップv4)。   When the ON / OFF switch 43 is ON-controlled, the constant current I is supplied to the resistance value measuring current route 42a of the constant current generating circuit 42 (step v3), and the control terminal 50 that has received the measured voltage value at this time. To calculate the electric resistance value R of the welded portion H (step v4).

その後、制御端末50は、ON/OFFスイッチ43をOFF制御して(ステップv5)、電圧増幅回路41の電圧測定を終了する(ステップv6)。溶接後抵抗値測定工程S3の処理が終了すると、制御端末50は算出した電気抵抗値Rを記憶部53に記憶し、次の判別工程S4に移行する。   Thereafter, the control terminal 50 controls the ON / OFF switch 43 to be OFF (Step v5), and ends the voltage measurement of the voltage amplifier circuit 41 (Step v6). When the post-welding resistance value measurement step S3 is completed, the control terminal 50 stores the calculated electrical resistance value R in the storage unit 53, and proceeds to the next determination step S4.

溶接箇所H部分の溶接の良否を判別する判別工程S4では、記憶部53に記憶した溶接前電気抵抗値Rbと電気抵抗値Rから電気抵抗値変化量Vを算出する(ステップw1)。   In a discrimination step S4 for discriminating whether or not the welding portion H is welded, an electrical resistance value change amount V is calculated from the pre-welding electrical resistance value Rb and the electrical resistance value R stored in the storage unit 53 (step w1).

そして、制御端末50は、記憶部53に記憶する基準抵抗値変化量Vgと、電気抵抗値変化量Vとを比較し、溶接箇所H部分の溶接の良否を判別する(ステップw2)。   Then, the control terminal 50 compares the reference resistance value change amount Vg stored in the storage unit 53 with the electrical resistance value change amount V, and determines whether or not the welding portion H is welded (step w2).

溶接の良否判別について詳しく説明すると、図3に示すように、良好な溶接の場合の溶接箇所の抵抗値は溶接開始後に大きく低下し、その後適切な抵抗値になだらかに収束する(図3において実線で示す良好溶接抵抗値変化曲線Lg参照)。   The welding quality determination will be described in detail. As shown in FIG. 3, the resistance value of the welded portion in the case of good welding greatly decreases after the start of welding, and then converges gently to an appropriate resistance value (the solid line in FIG. 3). The favorable welding resistance value change curve Lg shown in FIG.

これに対し、例えば溶接電流が小さかったり、第1電極20と第2電極30との加圧力が弱かったりすることによる溶接不足の場合、溶接開始してから抵抗値はなだらかに下がり、適切な抵抗値まで下がりきらない(図3において二点鎖線で示す溶接不足抵抗値変化曲線Lb1参照)。
このような抵抗値変化の場合、溶接箇所の抵抗が大きすぎ、十分な導通性能を確保できないため、当該溶接は不良と判別する。
On the other hand, for example, in the case of insufficient welding due to a small welding current or a weak pressure applied to the first electrode 20 and the second electrode 30, the resistance value gradually decreases after starting welding, and the appropriate resistance (See the welding underresistance value change curve Lb1 shown by a two-dot chain line in FIG. 3).
In the case of such a resistance value change, since the resistance of the welded portion is too large and sufficient conduction performance cannot be ensured, it is determined that the welding is defective.

反対に、例えば溶接電流が大きすぎたり、第1電極20と第2電極30との加圧力が強すぎたりすることによる溶接過多の場合、溶接開始直後に、適切な抵抗値を超えて急激に抵抗値が下がる(図3において破線で示す溶接過多抵抗値変化曲線Lb2参照)。
このような抵抗値変化の場合、溶接箇所の銅箔が熔解し、溶接部の周辺で銅箔が破断するおそれがあり、十分な耐久性を確保できないため、当該溶接は不良と判別する。
On the other hand, in the case of excessive welding due to, for example, the welding current being too large or the pressurizing force between the first electrode 20 and the second electrode 30 being too strong, immediately after the start of welding, the resistance value is rapidly exceeded. The resistance value decreases (see welding excessive resistance value change curve Lb2 indicated by a broken line in FIG. 3).
In the case of such a resistance value change, the copper foil at the welded portion is melted and the copper foil may be broken around the welded portion, and sufficient durability cannot be ensured. Therefore, the welding is determined to be defective.

なお、記憶部53に記憶する基準抵抗値変化量Vgは、良好な溶接における抵抗値の変化履歴を示す良好溶接抵抗値変化曲線Lgでの溶接開始前の抵抗値と、溶接により良好溶接抵抗値変化曲線Lgが収束する適切な抵抗値までの差となる。   Note that the reference resistance value change amount Vg stored in the storage unit 53 is a resistance value before starting welding on a good welding resistance value change curve Lg indicating a change history of resistance value in good welding, and a good welding resistance value by welding. It becomes a difference to an appropriate resistance value at which the change curve Lg converges.

そして、制御端末50は、電気抵抗値Rから算出した電気抵抗値変化量Vと基準抵抗値変化量Vgとを比較して、電気抵抗値変化量Vがほぼ同程度であれば、溶接箇所H部分の溶接は良好であったと判別する。   Then, the control terminal 50 compares the electric resistance value change amount V calculated from the electric resistance value R with the reference resistance value change amount Vg, and if the electric resistance value change amount V is approximately the same, the welding location H It is determined that the welding of the part was good.

逆に、図3の溶接不足抵抗値変化曲線Lb1のように溶接不足の場合の電気抵抗値変化量Vは、基準抵抗値変化量Vgに比べて小さくなるため、制御端末50は、不良な溶接として判別する。
同様に、図3の溶接過多抵抗値変化曲線Lb2のように溶接過多の場合の電気抵抗値変化量Vは、基準抵抗値変化量Vgに比べて大きくなるため、制御端末50は、不良な溶接として判別する。
On the contrary, since the electrical resistance value change amount V in the case of insufficient welding as shown in the welding underresistance value change curve Lb1 in FIG. 3 is smaller than the reference resistance value variation amount Vg, the control terminal 50 is inferior. It is determined as
Similarly, since the electrical resistance value change amount V in the case of excessive welding as shown in the welding excessive resistance value change curve Lb2 in FIG. 3 becomes larger than the reference resistance value change amount Vg, the control terminal 50 is inferior to the defective welding. It is determined as

このように、制御端末50は、基準値の履歴である良好溶接抵抗値変化曲線Lgに基づく基準抵抗値変化量Vgと、電気抵抗値変化量Vとを比較して溶接箇所H部分の溶接の良否を判別して判別工程S4を終了する。このようにして、溶接前抵抗値測定工程S1、溶接工程S2、溶接後抵抗値測定工程S3及び判別工程S4で構成する抵抗溶接装置1による溶接処理を終了する。   In this way, the control terminal 50 compares the reference resistance value change amount Vg based on the good welding resistance value change curve Lg, which is the history of the reference value, with the electrical resistance value change amount V, and compares the reference resistance value change amount Vg. Whether the quality is good or not is determined, and the determination step S4 is terminated. In this way, the welding process by the resistance welding apparatus 1 configured in the pre-weld resistance value measurement step S1, the welding step S2, the post-weld resistance value measurement step S3, and the discrimination step S4 is completed.

なお、上述の溶接処理における抵抗溶接は、溶接状態に影響する要素として、電流i・時間t・抵抗rの三要素が挙げられる。そもそも、抵抗溶接は溶接箇所の抵抗rによるジュール熱を利用しており、抵抗rが大きければ大きいほど、Q=αirt(αは定数)の式で表される発熱量が大きくなる。 The resistance welding in the above-described welding process includes three elements of current i, time t, and resistance r as elements that affect the welding state. In the first place, resistance welding uses Joule heat due to the resistance r of the welded portion, and the greater the resistance r, the greater the amount of heat generated expressed by the equation Q = αi 2 rt (α is a constant).

ここで上記三要素のうち電流iと時間tは溶接用電源を介して制御端末で制御できる。しかし、抵抗rは銅箔、接続端子及び電極本体自体の抵抗に加えて、それぞれの接触抵抗の総和となるため、制御が困難である。   Here, among the above three elements, the current i and the time t can be controlled by the control terminal via the welding power source. However, the resistance r is difficult to control because it is the sum of the respective contact resistances in addition to the resistance of the copper foil, the connection terminal and the electrode body itself.

詳しくは、抵抗rを構成するうち、銅箔、接続端子及び電極本体自体の抵抗、並びに、銅箔と接続端子の接触抵抗は変化しないが、銅箔や接続端子と電極本体との接触抵抗は変化する可能性がある。   Specifically, the resistance of the copper foil, the connection terminal, and the electrode body itself, and the contact resistance between the copper foil and the connection terminal do not change, but the contact resistance between the copper foil, the connection terminal, and the electrode body is It can change.

この銅箔や接続端子と電極本体との接触抵抗の変化は、電極本体同士の加圧力に大きく依存する。この加圧力は抵抗溶接装置で制御することができるものの、溶接処理中の加圧力制御は困難である。なお、溶接処理中に加圧力を追従制御したとしても、追従が遅く、溶接状態がばらつくおそれがある。
また、電極とワークの接触抵抗がばらつくことによって、電気抵抗値の単純比較だけでは溶接状態を判定することができない。
The change in the contact resistance between the copper foil or the connection terminal and the electrode body largely depends on the pressure applied between the electrode bodies. Although this pressure can be controlled by a resistance welding apparatus, it is difficult to control the pressure during the welding process. Even if the follow-up control is performed during the welding process, the follow-up is slow and the welding state may vary.
Further, since the contact resistance between the electrode and the workpiece varies, the welding state cannot be determined only by simple comparison of the electric resistance values.

しかし、抵抗溶接装置1を用いた銅箔100と接続端子200との溶接箇所Hの溶接方法は、前記溶接箇所Hを溶接する溶接工程S2と、電気抵抗値測定機構40に通電して、前記溶接箇所Hの電気抵抗値Rを測定する溶接後抵抗値測定工程S3と、測定した電気抵抗値Rを基準値と比較し、該比較結果に基づいて溶接の良否を判別する判別工程S4とを有しているため、抵抗溶接装置1で溶接した溶接箇所Hの溶接の良否を高精度で判別することができる。   However, the welding method of the welding location H of the copper foil 100 and the connection terminal 200 using the resistance welding apparatus 1 energizes the welding resistance S and the electrical resistance value measuring mechanism 40, and welds the welding location H. A post-welding resistance value measuring step S3 for measuring the electric resistance value R of the welding location H, and a discrimination step S4 for comparing the measured electric resistance value R with a reference value and discriminating the quality of the welding based on the comparison result. Therefore, the quality of the welding of the welding location H welded by the resistance welding apparatus 1 can be determined with high accuracy.

具体的には、判別工程S4のステップw1において、前記溶接後抵抗値測定工程S3で測定した電気抵抗値Rと、前記溶接前抵抗値測定工程S1で測定した溶接前電気抵抗値Rbとに基づいて電気抵抗値変化量Vを検出し、判別工程S4のステップw2で、電気抵抗値変化量Vと基準抵抗値変化量Vgとを比較して溶接の良否を判別するため、より高精度な良否判別を実行することができる。   Specifically, based on the electrical resistance value R measured in the post-welding resistance value measuring step S3 and the pre-welding electrical resistance value Rb measured in the pre-welding resistance value measuring step S1 in step w1 of the discrimination process S4. The electrical resistance value change amount V is detected, and in step w2 of the determination step S4, the electrical resistance value change amount V and the reference resistance value change amount Vg are compared to determine the quality of the welding, so that the accuracy is higher. Discrimination can be performed.

詳しくは、電気抵抗値変化量Vと基準抵抗値変化量Vgとを比較するため、銅箔100や接続端子200のばらつき、電極本体21及び電極本体31の電気抵抗値、溶接箇所Hでの接触抵抗値が経時変化した場合であっても、確実に溶接良否を判別することができる。   Specifically, in order to compare the electric resistance value change amount V and the reference resistance value change amount Vg, the dispersion of the copper foil 100 and the connection terminal 200, the electric resistance values of the electrode body 21 and the electrode body 31, and the contact at the welding location H Even if the resistance value changes with time, it is possible to reliably determine whether welding is good or bad.

また、抵抗溶接装置1に、電気抵抗値測定機構40と、比較手段及び判別手段として機能する制御端末50とを備え、電気抵抗値測定機構40を、重ね合わせた銅箔100と接続端子200に通電して前記溶接箇所Hの電気抵抗値Rを測定する構成としているため、例えば、溶接箇所Hの電気抵抗値Rを高精度で測定することができる。   In addition, the resistance welding apparatus 1 includes an electrical resistance value measuring mechanism 40 and a control terminal 50 that functions as a comparison unit and a discrimination unit. The electrical resistance value measuring mechanism 40 is attached to the overlapped copper foil 100 and the connection terminal 200. Since it is set as the structure which electrically supplies and measures the electrical resistance value R of the said welding location H, the electrical resistance value R of the welding location H can be measured with high precision, for example.

詳しくは、溶接箇所Hの電気抵抗値Rを測定する電気抵抗値測定機構40を溶接用回路60とは別に設け、溶接用回路60の溶接用通電ルート60aへの通電していないタイミングで電気抵抗値測定機構40を用いて電気抵抗値Rを測定するため、溶接電圧と溶接電流とに基づいて溶接箇所Hの電気抵抗値Rを算出する場合と比較して、より正確に電気抵抗値Rを測定することができる。   Specifically, an electric resistance value measuring mechanism 40 for measuring the electric resistance value R of the welding location H is provided separately from the welding circuit 60, and the electric resistance is measured at a timing when the energization route 60a of the welding circuit 60 is not energized. Since the electric resistance value R is measured using the value measuring mechanism 40, the electric resistance value R can be more accurately compared with the case where the electric resistance value R of the welding location H is calculated based on the welding voltage and the welding current. Can be measured.

また、電気抵抗値測定機構40を用いて測定した電気抵抗値Rに基づいて基準値と比較して溶接の良否を判別するため、比較結果が不良であると判別された場合の理由を溶接不良によるものと特定できる。   Further, in order to determine the quality of the welding by comparing with the reference value based on the electrical resistance value R measured using the electrical resistance value measuring mechanism 40, the reason why the comparison result is determined to be defective is the welding failure. Can be identified as

また、電気抵抗値測定機構40を、電圧増幅回路41と定電流発生回路42とで構成し、直流4端子測定法によって溶接箇所Hの電気抵抗値Rを測定するための回路を構成しているため、溶接箇所Hにおける小さな抵抗値を正確に測定することができる。   Further, the electric resistance value measuring mechanism 40 is constituted by a voltage amplification circuit 41 and a constant current generating circuit 42, and a circuit for measuring the electric resistance value R of the welded portion H by a DC four-terminal measurement method is constituted. Therefore, a small resistance value at the welding location H can be accurately measured.

したがって、厚さが約35〜150μmの銅箔100と接続端子200とを、約1.0〜4.0kgfの強さで加圧力し、約350〜550Aの溶接電流Iwで溶接するような本実施例においても、高精度で電気抵抗値Rを算出し、正確に溶接の良否を判別することができる。   Therefore, the book in which the copper foil 100 having a thickness of about 35 to 150 μm and the connection terminal 200 are pressed with a strength of about 1.0 to 4.0 kgf and welded with a welding current Iw of about 350 to 550 A. Also in the embodiment, the electric resistance value R can be calculated with high accuracy, and the quality of welding can be accurately determined.

詳しくは、例えば、溶接対象物の厚さが数mm、溶接電流Iwが数百〜数千A、加圧力が数十kgfとするようなスタッドの抵抗溶接方法において、溶接電圧と溶接電流とに基づいて溶接部の電気抵抗値を算出し、算出した電気抵抗値によって溶接の良否を判別する方法では、本実施例のような溶接対象物では溶接による電気抵抗値Rの変化がわずかであるため、正確に電気抵抗値Rを算出することは不可能である。   Specifically, for example, in the stud resistance welding method in which the thickness of the welding object is several mm, the welding current Iw is several hundred to several thousand A, and the applied pressure is several tens kgf, the welding voltage and the welding current are In the method of calculating the electrical resistance value of the welded portion based on this and determining the quality of the welding based on the calculated electrical resistance value, the welding object as in this embodiment has a slight change in the electrical resistance value R due to welding. It is impossible to accurately calculate the electric resistance value R.

しかし、本実施例の抵抗溶接装置1のように、溶接電流Iwと定電流Iとを切り分け、通電タイミングをずらし、さらに電気抵抗値測定機構40を電圧増幅回路41と定電流発生回路42とで構成したことにより、わずかな電気抵抗値Rの変化を検出することができる。したがって、本実施例のような溶接対象物のように、厚さの薄い対象物であっても、高精度で電気抵抗値Rの変化を検出し、正確に溶接の良否を判別することができる。   However, like the resistance welding apparatus 1 of the present embodiment, the welding current Iw and the constant current I are separated, the energization timing is shifted, and the electric resistance value measuring mechanism 40 is further divided by the voltage amplification circuit 41 and the constant current generation circuit 42. By configuring, a slight change in the electric resistance value R can be detected. Therefore, even if the object is thin like the object to be welded as in the present embodiment, it is possible to detect the change in the electric resistance value R with high accuracy and accurately determine the quality of the welding. .

また、抵抗溶接装置1や、抵抗溶接装置1を用いた溶接方法では、溶接処理における溶接工程S2で溶接した流れでそのまま溶接状態の良否を判別できるため、利便性が高い。   Moreover, in the welding method using the resistance welding apparatus 1 or the resistance welding apparatus 1, the quality of the welding state can be determined as it is based on the flow welded in the welding step S2 in the welding process, which is highly convenient.

なお、上述の実施例では、溶接工程S2で溶接した後、判別工程S4で溶接状態の良否を判別しただけであったが、判別工程S4での判別結果が溶接不足と判別された場合に、溶接工程S2に戻って再度溶接処理する構成であってもよい。   In the above-described embodiment, after welding in the welding step S2, only the quality of the welding state is determined in the determination step S4. However, when the determination result in the determination step S4 is determined as insufficient welding, The structure which returns to welding process S2 and welds again may be sufficient.

また、上述の実施例では、銅箔100と接続端子200とを溶接する構成であったが、銅箔100同士、接続端子200同士、或いは平角導体と接続端子などの導電性部材を組み合わせして溶接してもよい。また、ナゲットを形成するような溶接方法に適用することもできる。   Moreover, in the above-mentioned Example, although it was the structure which welds the copper foil 100 and the connection terminal 200, combining conductive members, such as copper foils 100, the connection terminals 200, or a flat conductor, and a connection terminal. You may weld. Moreover, it can also be applied to a welding method for forming a nugget.

また、上述の実施例では、溶接箇所Hを介して電極本体21と電極本体31とに溶接電流Iwを通電して抵抗溶接する構成であったが、溶接箇所Hを超音波振動させて溶接する超音波振動溶接で行ってもよい。   Further, in the above-described embodiment, the welding current Iw is applied to the electrode main body 21 and the electrode main body 31 via the welding location H and resistance welding is performed. However, the welding location H is ultrasonically vibrated and welded. You may carry out by ultrasonic vibration welding.

この発明の構成と、前記実施例との対応において、
この発明の第1導体は、銅箔100に対応し、
以下同様に、
第2導体は、接続端子200に対応し、
第1溶接部は、第1電極20に対応し、
第2溶接部は、第2電極30に対応し、
一対の溶接手段は、抵抗溶接機構10に対応し、
溶接装置は、抵抗溶接装置1に対応し、
電気抵抗値測定手段は、電気抵抗値測定機構40に対応し、
4端子法電気抵抗値測定手段は、電圧増幅回路41と定電流発生回路42とで構成する電気抵抗値測定機構40に対応し、
比較手段及び判別手段は、ステップS4を実行する制御部52に対応し、
抵抗値変化量検出手段は、ステップw1を実行する制御部52に対応し、
溶接前抵抗値測定ステップは、溶接前抵抗値測定工程S1に対応し、
溶接ステップは、溶接工程S2に対応し、
抵抗値測定ステップは、溶接後抵抗値測定工程S3に対応し、
比較ステップ及び判別ステップは、判別工程S4に対応し、
抵抗値変化量検出ステップとは、判別工程S4におけるステップw1に対応するも、
本発明は、前記実施例の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the above embodiment,
The first conductor of the present invention corresponds to the copper foil 100,
Similarly,
The second conductor corresponds to the connection terminal 200,
The first weld corresponds to the first electrode 20,
The second weld corresponds to the second electrode 30,
The pair of welding means corresponds to the resistance welding mechanism 10,
The welding device corresponds to the resistance welding device 1,
The electrical resistance value measuring means corresponds to the electrical resistance value measuring mechanism 40,
The four-terminal method electric resistance value measuring means corresponds to an electric resistance value measuring mechanism 40 composed of a voltage amplifier circuit 41 and a constant current generating circuit 42,
The comparison unit and the determination unit correspond to the control unit 52 that executes Step S4.
The resistance value change amount detection means corresponds to the control unit 52 that executes Step w1,
The resistance value measurement step before welding corresponds to the resistance value measurement step S1 before welding,
The welding step corresponds to the welding step S2,
The resistance value measuring step corresponds to the resistance value measuring step S3 after welding,
The comparison step and the determination step correspond to the determination step S4,
The resistance value change detection step corresponds to step w1 in the determination step S4.
The present invention is not limited only to the configuration of the above-described embodiment, but can be applied based on the technical idea shown in the claims, and many embodiments can be obtained.

1…抵抗溶接装置
10…抵抗溶接機構
20…第1電極
30…第2電極
40…電気抵抗値測定機構
41…電圧増幅回路
42…定電流発生回路
52…制御部
100…銅箔
200…接続端子
H…溶接箇所
Vg…基準抵抗値変化量
DESCRIPTION OF SYMBOLS 1 ... Resistance welding apparatus 10 ... Resistance welding mechanism 20 ... 1st electrode 30 ... 2nd electrode 40 ... Electrical resistance value measurement mechanism 41 ... Voltage amplification circuit 42 ... Constant current generation circuit 52 ... Control part 100 ... Copper foil 200 ... Connection terminal H ... Welded part Vg ... Reference resistance value change amount

Claims (6)

重ね合わせた第1導体と第2導体との溶接箇所を、該溶接箇所に対して外側から前記第1導体に押し付ける第1溶接部と、前記第2導体に押し付ける第2溶接部とで構成する一対の溶接手段によって通電可能に溶接する導体の溶接方法であって、
溶接前に電気抵抗値を測定する溶接前抵抗値測定ステップと、
前記溶接箇所を溶接する溶接ステップと、
電気抵抗値測定手段に通電して、前記溶接箇所の電気抵抗値を測定する抵抗値測定ステップと、
前記抵抗値測定ステップで測定した電気抵抗値と、前記溶接前抵抗値測定ステップで測定した溶接前電気抵抗値とに基づいて電気抵抗値の変化を示す電気抵抗値変化量を検出する抵抗値変化量検出ステップと、
測定した前記電気抵抗値変化量と、良好な溶接に基づく電気抵抗値の変化を示す基準抵抗値変化量を比較する比較ステップと、
該比較結果に基づいて溶接の良否を判別する判別ステップとを有する
溶接方法。
The welded portion of the overlapped first conductor and second conductor is composed of a first welded portion that presses against the welded portion from the outside against the first conductor and a second welded portion that presses against the second conductor. A method of welding a conductor that is welded to be energized by a pair of welding means,
A resistance measurement step before welding for measuring an electrical resistance value before welding;
A welding step of welding the weld location;
A resistance value measuring step of energizing the electrical resistance value measuring means and measuring the electrical resistance value of the weld location;
Resistance value change for detecting an electrical resistance value change amount indicating a change in electrical resistance value based on the electrical resistance value measured in the resistance value measuring step and the pre-welding electrical resistance value measured in the pre-welding resistance value measuring step A quantity detection step;
A comparison step of comparing the measured electrical resistance value change amount with a reference resistance value change amount indicating a change in electrical resistance value based on good welding ;
And a determination step of determining whether or not the welding is good based on the comparison result.
前記電気抵抗値測定手段を、
4端子法により電気抵抗値を測定する4端子法電気抵抗値測定手段で構成した
請求項1に記載の溶接方法。
The electrical resistance value measuring means,
Welding method according to claim 1 configured by the 4-terminal method the electric resistance measuring means for measuring the electrical resistance by the four terminal method.
前記第1導体を銅箔で構成し、第2導体を端子で構成した
請求項1又は2に記載の溶接方法。
The welding method according to claim 1 or 2, wherein the first conductor is made of copper foil and the second conductor is made of a terminal.
重ね合わせた第1導体と第2導体との溶接箇所を、該溶接箇所に対して外側から前記第1導体に押し付ける第1溶接部と、前記第2導体に押し付ける第2溶接部とで構成する一対の溶接手段によって通電可能に溶接する導体の溶接装置であって、
溶接前の電気抵抗値からの電気抵抗値の変化を示す電気抵抗値変化量を検出する抵抗値変化量検出手段と、
重ね合わせた第1導体と第2導体に通電して前記溶接箇所の電気抵抗値を測定する電気抵抗値測定手段と、
該電気抵抗値測定手段による測定結果を、良好な溶接に基づく基準抵抗値の変化を示す基準抵抗値変化量とする基準抵抗値と比較する比較手段と、
該比較手段の比較結果に基づいて溶接の良否を判別する判別手段とを備え、
前記比較手段を、
前記電気抵抗値変化量と前記基準抵抗値変化量とを比較する構成とした
溶接装置。
The welded portion of the overlapped first conductor and second conductor is composed of a first welded portion that presses against the welded portion from the outside against the first conductor and a second welded portion that presses against the second conductor. A conductor welding device for welding to be energized by a pair of welding means,
Resistance value change amount detecting means for detecting an electric resistance value change amount indicating a change in electric resistance value from an electric resistance value before welding;
Electrical resistance value measuring means for energizing the superimposed first conductor and second conductor to measure the electrical resistance value of the welded portion;
Comparison means for comparing the measurement result by the electric resistance value measurement means with a reference resistance value as a reference resistance value change amount indicating a change in the reference resistance value based on good welding ;
E Bei and discriminating means for discriminating the quality of the weld on the basis of a comparison result of the comparison means,
The comparing means;
The welding apparatus configured to compare the electric resistance value change amount and the reference resistance value change amount .
前記電気抵抗値測定手段を、
4端子法により電気抵抗値を測定する4端子法電気抵抗値測定手段で構成した
請求項4に記載の溶接装置。
The electrical resistance value measuring means,
The welding apparatus according to claim 4 , comprising a four-terminal method electric resistance value measuring means for measuring an electric resistance value by a four-terminal method.
前記第1導体を銅箔で構成し、第2導体を端子で構成した
請求項又は5に記載の溶接装置。
The welding apparatus according to claim 4 or 5, wherein the first conductor is made of copper foil and the second conductor is made of a terminal.
JP2009086465A 2009-03-31 2009-03-31 Conductor welding method and welding apparatus therefor Active JP5224384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086465A JP5224384B2 (en) 2009-03-31 2009-03-31 Conductor welding method and welding apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086465A JP5224384B2 (en) 2009-03-31 2009-03-31 Conductor welding method and welding apparatus therefor

Publications (2)

Publication Number Publication Date
JP2010234424A JP2010234424A (en) 2010-10-21
JP5224384B2 true JP5224384B2 (en) 2013-07-03

Family

ID=43089276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086465A Active JP5224384B2 (en) 2009-03-31 2009-03-31 Conductor welding method and welding apparatus therefor

Country Status (1)

Country Link
JP (1) JP5224384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236610B2 (en) * 2014-08-20 2017-11-29 国立大学法人東北大学 Contact dimension measuring method between steel plates and contact dimension measuring apparatus between steel plates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239556A (en) * 1996-03-07 1997-09-16 Rohm Co Ltd Electric resistance welding method
JP2002028790A (en) * 2000-07-12 2002-01-29 Fujitsu Ten Ltd Resistance welding equipment

Also Published As

Publication number Publication date
JP2010234424A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP6428887B1 (en) Welding state detection method and welding state detection device
JP2008142739A (en) Ultrasonic welder and method for controlling the same, and welding inspection apparatus for ultrasonic welding and welding inspection method therefor
JP5224384B2 (en) Conductor welding method and welding apparatus therefor
JP5647194B2 (en) Flexible printed circuit board and manufacturing method thereof
JP2009262159A (en) Direct welding apparatus and welding method
US5973287A (en) Resistance welding method and apparatus used in the method
JP7077650B2 (en) Bonding device and bonding method
JP2007050442A (en) Resistance welding method
TWI768567B (en) Connection structure for resistance detection means in resistance welding apparatus, and resistance welding method
WO2021090792A1 (en) Probe jig and inspection device
JPH1177323A (en) Quality monitoring device for resistance welding
JP3540125B2 (en) Quality inspection method for resistance welding
JP6015275B2 (en) Resistance welding apparatus and resistance welding method
JP2011240368A (en) Method and system for determining weld quality
JP3181208B2 (en) Degradation state detection device for resistance junction electrode
JP5965620B2 (en) Resistance welding quality control method and resistance welding apparatus
JP2019118921A (en) Welding device
JP2020069496A (en) Evaluation method of welding point of indirect spot welding
JP4605701B2 (en) Spot welding equipment
JP2006110613A (en) Resistance welding equipment and resistance welding method
JPH09239556A (en) Electric resistance welding method
JPH0957459A (en) Resistance-welding method for laminated damping plate
JP5825665B2 (en) Resistance welding control device
US20210146483A1 (en) Welding quality detection system and welding quality detection method
JP2022062933A (en) Method for detecting crack in weld zone, and device for detecting crack in weld zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

R151 Written notification of patent or utility model registration

Ref document number: 5224384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350