JP6428887B1 - Welding state detection method and welding state detection device - Google Patents

Welding state detection method and welding state detection device Download PDF

Info

Publication number
JP6428887B1
JP6428887B1 JP2017182528A JP2017182528A JP6428887B1 JP 6428887 B1 JP6428887 B1 JP 6428887B1 JP 2017182528 A JP2017182528 A JP 2017182528A JP 2017182528 A JP2017182528 A JP 2017182528A JP 6428887 B1 JP6428887 B1 JP 6428887B1
Authority
JP
Japan
Prior art keywords
probes
welding
state detection
welding state
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017182528A
Other languages
Japanese (ja)
Other versions
JP2019056672A (en
Inventor
博史 野口
博史 野口
高橋 正
正 高橋
雅也 椹木
雅也 椹木
龍吾 森井
龍吾 森井
金井 敏彦
敏彦 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Read Corp
Original Assignee
Nidec Read Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Read Corp filed Critical Nidec Read Corp
Priority to JP2017182528A priority Critical patent/JP6428887B1/en
Priority to PCT/JP2018/035355 priority patent/WO2019059395A1/en
Priority to CN201880060218.2A priority patent/CN111094958A/en
Priority to KR1020207007928A priority patent/KR102640756B1/en
Application granted granted Critical
Publication of JP6428887B1 publication Critical patent/JP6428887B1/en
Publication of JP2019056672A publication Critical patent/JP2019056672A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】シート部材の溶着状態を把握することが容易な溶着状態検出方法を提供する。
【解決手段】溶着状態検出方法は、導電性の複数のリード部103が互いに重ね合わされ、当該重ね合わされた部分が所定のX軸方向に延びる帯状に溶着されているタブ端子104における、当該溶着の状態を検出する溶着状態検出方法であって、(a)帯状に溶着された領域である溶着領域105において、X軸方向に沿って一列に並ぶ複数箇所で、それぞれ、一対のプローブPu,Pdの一方をタブ端子104の一方の面に接触させ、一対のプローブPu,Pdの他方をタブ端子104の他方の面に接触させる工程と、(b)前記複数箇所で、それぞれ、タブ端子104の両面に接触された一対のプローブPu,Pd間の抵抗値を測定する工程とを含む。
【選択図】図2
The present invention provides a welding state detection method that makes it easy to grasp the welding state of a sheet member.
A welding state detection method includes a plurality of conductive lead portions 103 overlapped with each other, and the overlapped portion is welded in a strip shape extending in a predetermined X-axis direction. A welding state detection method for detecting a state, wherein (a) a plurality of pairs of probes Pu and Pd are respectively arranged at a plurality of positions aligned in a line along the X-axis direction in a welding region 105 which is a belt-shaped region. Contacting one side of the tab terminal 104 and contacting the other side of the pair of probes Pu and Pd to the other side of the tab terminal 104; and (b) both sides of the tab terminal 104 at the plurality of locations. And measuring a resistance value between the pair of probes Pu and Pd in contact with each other.
[Selection] Figure 2

Description

本発明は、シート部材の溶着状態を検出する溶着状態検出方法及び溶着状態検出装置に関する。 The present invention relates to a welding state detection method and a welding state detection device for detecting a welding state of a sheet member.

従来より、超音波振動を与えるホーンとアンビルとの間に2枚の被接合材を挟んで加圧し、これらの被接合材の接触面に平行に超音波振動を加えて固相接合すると共に、ホーンとアンビル間に電圧を印加し、ホーンとアンビル間に流れる電流を測定し、印加電圧および電流の測定値から接触抵抗を算出して接合状態を判定する超音波接合装置が知られている(例えば、特許文献1参照。)。   Conventionally, pressure is applied by sandwiching two materials to be bonded between a horn and an anvil that give ultrasonic vibrations, and applying ultrasonic vibration parallel to the contact surface of these materials to be solid-phase bonded, An ultrasonic bonding apparatus is known in which a voltage is applied between a horn and an anvil, a current flowing between the horn and the anvil is measured, a contact resistance is calculated from a measured value of the applied voltage and the current, and a bonding state is determined ( For example, see Patent Document 1.)

特開2008−142739号公報JP 2008-142739 A

ところで、近年、例えばリチウム二次電池等の電池の電極板を、その端部で溶着してタブ端子とすることが行われている。このような場合、タブ端子を横断するように帯状に溶着される。そのため、溶着される領域の面積が広くなる。上述の技術を用いて、広い領域で溶着された部材の接触抵抗を測定すると、溶着領域の一部が溶着されていなかった場合であっても、溶着領域全体としては接触抵抗が低抵抗となり、溶着領域の部分的な不良を検出することができないという、不都合があった。   Incidentally, in recent years, for example, an electrode plate of a battery such as a lithium secondary battery is welded at its end portion to form a tab terminal. In such a case, it is welded in a strip shape so as to cross the tab terminal. Therefore, the area of the region to be welded is increased. When the contact resistance of a member welded in a wide area is measured using the above-described technique, even if a part of the weld area is not welded, the contact resistance as a whole is low, There was a problem that a partial defect in the welded area could not be detected.

本発明の目的は、シート部材の溶着状態を把握することが容易な溶着状態検出方法を提供することである。   An object of the present invention is to provide a welding state detection method that makes it easy to grasp the welding state of a sheet member.

本発明に係る溶着状態検出方法は、導電性の複数のシートが互いに重ね合わされ、当該重ね合わされた部分が所定の第一方向に延びる帯状に溶着されているシート部材における、当該溶着の状態を検出する溶着状態検出方法であって、(a)前記帯状に溶着された領域である溶着領域において、前記第一方向に沿って一列に並ぶ複数箇所で、それぞれ、一対のプローブの一方を前記シート部材の一方の面に接触させ、前記一対のプローブの他方を前記シート部材の他方の面に接触させる工程と、(b)前記複数箇所で、それぞれ、前記シート部材の両面に接触された一対のプローブ間の抵抗値を測定する工程とを含む。   The welding state detection method according to the present invention detects the state of welding in a sheet member in which a plurality of conductive sheets are overlapped with each other and the overlapped portions are welded in a belt shape extending in a predetermined first direction. In the welding state detecting method, (a) in the welding region which is the belt-welded region, one of a pair of probes is respectively connected to the sheet member at a plurality of positions aligned in a row along the first direction. Contacting the other surface of the sheet member and contacting the other surface of the sheet member with the other surface of the sheet member; and (b) a pair of probes in contact with both surfaces of the sheet member at the plurality of locations, respectively. And measuring a resistance value between.

この方法によれば、シートが溶着されたシート部材における溶着領域の一列に並ぶ複数箇所で、シート部材の厚み方向の抵抗値を測定することができる。シート部材の厚み方向の抵抗値には、シート部材の溶着状態が反映されるので、ユーザは、このようにして得られた複数箇所の抵抗値から、シート部材の溶着状態を把握することが容易となる。   According to this method, the resistance value in the thickness direction of the sheet member can be measured at a plurality of locations arranged in a line in the welding region of the sheet member to which the sheet is welded. Since the resistance value in the thickness direction of the sheet member reflects the welded state of the sheet member, the user can easily grasp the welded state of the sheet member from the resistance values obtained in a plurality of places. It becomes.

また、(c)前記溶着領域において前記一列と略平行な一又は複数の列に沿って並ぶ複数箇所で、それぞれ、一対のプローブの一方を前記シート部材の一方の面に接触させ、前記一対のプローブの他方を前記シート部材の他方の面に接触させる工程と、(d)前記一又は複数の列に沿って並ぶ複数箇所で、それぞれ、前記シート部材の両面に接触された一対のプローブ間の抵抗値を測定する工程とをさらに含むことが好ましい。   (C) In a plurality of locations arranged along one or a plurality of rows substantially parallel to the one row in the welding region, respectively, one of the pair of probes is brought into contact with one surface of the sheet member, and the pair of pairs A step of bringing the other of the probes into contact with the other surface of the sheet member, and (d) between a pair of probes in contact with both surfaces of the sheet member, respectively, at a plurality of locations arranged along the one or more rows. It is preferable to further include a step of measuring a resistance value.

この方法によれば、シート部材の溶着状態を、二次元平面状に拡がる領域について把握することが容易となる。   According to this method, it becomes easy to grasp the welded state of the sheet member with respect to the region extending in a two-dimensional plane.

また、前記各プローブは二つの接触子を含み、前記(b)工程では、前記一対のプローブに含まれる四つの接触子を用いて四端子測定法により前記抵抗値を測定することが好ましい。   In addition, it is preferable that each probe includes two contacts, and in the step (b), the resistance value is measured by a four-terminal measurement method using four contacts included in the pair of probes.

この方法によれば、四端子測定法により抵抗値を測定することができるので、シート部材における溶着領域の一列に並ぶ複数箇所で測定される抵抗値の測定精度が向上する。その結果、シート部材の溶着状態を精度よく把握することが容易となる。   According to this method, since the resistance value can be measured by the four-terminal measurement method, the accuracy of measurement of the resistance value measured at a plurality of locations arranged in a line in the welding region of the sheet member is improved. As a result, it becomes easy to accurately grasp the welded state of the sheet member.

また、前記各プローブは二つの接触子を含み、前記(b)工程及び前記(d)工程では、前記一対のプローブに含まれる四つの接触子を用いて四端子測定法により前記抵抗値を測定することが好ましい。   Each probe includes two contacts, and in the step (b) and the step (d), the resistance value is measured by a four-terminal measurement method using four contacts included in the pair of probes. It is preferable to do.

この方法によれば、四端子測定法により面状に拡がる領域における、溶着領域の抵抗値の測定精度が向上する。その結果、シート部材の溶着状態を平面状に精度よく把握することが容易となる。   According to this method, the measurement accuracy of the resistance value of the welded region in the region expanded in a planar shape by the four-terminal measurement method is improved. As a result, it becomes easy to accurately grasp the welding state of the sheet member in a planar shape.

また、前記プローブは複数対設けられ、前記(a)工程では、前記複数箇所に対応する複数対のプローブを、それぞれ前記シート部材に接触させることが好ましい。   Preferably, a plurality of pairs of probes are provided, and in the step (a), a plurality of pairs of probes corresponding to the plurality of locations are brought into contact with the sheet member, respectively.

この方法によれば、測定対象の複数箇所に同時に複数対のプローブを接触させることができるので、測定対象箇所に順次プローブを移動させる必要がない。そのため、複数箇所の抵抗値を測定するための時間を短縮することが容易となる。   According to this method, since a plurality of pairs of probes can be simultaneously brought into contact with a plurality of locations on the measurement target, it is not necessary to sequentially move the probes to the measurement target location. Therefore, it becomes easy to shorten the time for measuring the resistance values at a plurality of locations.

また、前記プローブは複数対設けられ、前記(a)工程及び前記(c)工程では、前記複数箇所に対応する複数対のプローブを、それぞれ前記シート部材に接触させることが好ましい。   In addition, it is preferable that a plurality of pairs of probes are provided, and in the steps (a) and (c), a plurality of pairs of probes corresponding to the plurality of locations are brought into contact with the sheet member, respectively.

この方法によれば、測定対象の面状に拡がる複数箇所に同時に複数対のプローブを接触させることができるので、測定対象箇所に順次プローブを移動させる必要がない。そのため、面状に分布する複数箇所の抵抗値を測定するための時間を短縮することが容易となる。   According to this method, a plurality of pairs of probes can be simultaneously brought into contact with a plurality of locations extending in a planar shape of the measurement target, so that it is not necessary to sequentially move the probes to the measurement target location. Therefore, it becomes easy to shorten the time for measuring resistance values at a plurality of locations distributed in a planar shape.

また、(e)前記各対のプローブ間で測定された抵抗値に基づいて、前記溶着状態の良否を判定する工程をさらに含むことが好ましい。   It is preferable that the method further includes (e) determining whether the welded state is good or not based on a resistance value measured between the pair of probes.

この方法によれば、シート部材における溶着領域内に分布する複数箇所の抵抗値に基づいて溶着状態の良否が判定されるので、溶着領域全体の抵抗値に基づく場合と比べて部分的な溶着不良を見つけることが容易となる。   According to this method, since the quality of the welded state is determined based on the resistance values of a plurality of locations distributed in the welded region in the sheet member, partial welding failure compared to the case based on the resistance value of the entire welded region Easy to find.

また、前記(e)工程は、前記測定された抵抗値の平均値及び標準偏差を算出し、当該平均値及び標準偏差に基づいて前記測定された各抵抗値の良、不良を判定し、不良と判定された抵抗値があった場合、当該不良と判定された抵抗値が測定された箇所で溶着不良が生じていると判定することが好ましい。   The step (e) calculates an average value and a standard deviation of the measured resistance values, determines whether each measured resistance value is good or bad based on the average value and the standard deviation, If there is a resistance value determined to be, it is preferable to determine that a welding failure has occurred at a location where the resistance value determined to be defective is measured.

この方法によれば、抵抗値の平均値と標準偏差とに基づいて溶着不良か否かが判定されるので、予め判定のための基準値を設定する必要がない。そのためユーザの利便性が向上する。   According to this method, since it is determined whether or not the welding is defective based on the average value and the standard deviation of the resistance values, it is not necessary to set a reference value for determination in advance. Therefore, convenience for the user is improved.

また、(f)前記各対のプローブ間で測定された抵抗値を、一方の軸が前記複数の箇所に対応し、他方の軸が前記抵抗値に対応するグラフによって示す工程をさらに含むことが好ましい。   And (f) further including a step of displaying the resistance value measured between the pair of probes by a graph in which one axis corresponds to the plurality of locations and the other axis corresponds to the resistance value. preferable.

この方法によれば、ユーザは、グラフを一見して抵抗が異常値となっている箇所、すなわち溶着が不十分な箇所を把握することが可能になる。   According to this method, the user can grasp a portion where the resistance has an abnormal value at a glance, that is, a portion where welding is insufficient.

また、複数のシートは電池の電極板の一部であり、前記シート部材は前記電池のタブ端子であることが好ましい。   Moreover, it is preferable that a some sheet | seat is a part of electrode plate of a battery, and the said sheet | seat member is a tab terminal of the said battery.

この方法によれば、電池のタブ端子の溶着状態を把握することが容易となる。   According to this method, it becomes easy to grasp the welding state of the tab terminal of the battery.

このような構成の溶着状態検出方法は、シート部材の溶着状態を把握することが容易となる。   The welding state detection method having such a configuration makes it easy to grasp the welding state of the sheet member.

本発明の一実施形態に係る溶着状態検出方法を用いる溶着状態検出装置の構成を概略的に示す概念図である。It is a conceptual diagram which shows roughly the structure of the welding state detection apparatus using the welding state detection method which concerns on one Embodiment of this invention. 図1に示す溶着状態検出装置の電気的構成を概念的に示すブロック図である。It is a block diagram which shows notionally the electrical structure of the welding state detection apparatus shown in FIG. 本発明の一実施形態に係る溶着状態検出方法に基づく溶着状態検出装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the welding state detection apparatus based on the welding state detection method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る溶着状態検出方法に基づく溶着状態検出装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the welding state detection apparatus based on the welding state detection method which concerns on one Embodiment of this invention. 図1に示す報知部によって表示されるグラフの一例を示す説明図である。It is explanatory drawing which shows an example of the graph displayed by the alerting | reporting part shown in FIG.

以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る溶着状態検出方法を用いる溶着状態検出装置1の構成を概略的に示す概念図である。図1に示す溶着状態検出装置1は、検査対象物の一例である、リチウムイオン二次電池のタブ端子の溶着状態を検出する装置である。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted. FIG. 1 is a conceptual diagram schematically showing a configuration of a welding state detection apparatus 1 using a welding state detection method according to an embodiment of the present invention. A welding state detection device 1 shown in FIG. 1 is a device that detects a welding state of a tab terminal of a lithium ion secondary battery, which is an example of an inspection object.

図1に示すリチウムイオン二次電池100は、複数の正極板101(電極板)と、複数の負極板111(電極板)とが、図略のセパレータを間に挟んで交互に積層されて、構成されている。正極板101は、例えばアルミ箔等の金属箔からなる正極集電体102の表面に、図略の正極活物質が塗布されて構成されている。負極板111は、例えばアルミ箔等の金属箔からなる負極集電体112の表面に、図略の負極活物質が塗布されて構成されている。   A lithium ion secondary battery 100 shown in FIG. 1 includes a plurality of positive plates 101 (electrode plates) and a plurality of negative plates 111 (electrode plates) stacked alternately with a not-shown separator interposed therebetween. It is configured. The positive electrode plate 101 is configured by applying a positive electrode active material (not shown) to the surface of a positive electrode current collector 102 made of a metal foil such as an aluminum foil. The negative electrode plate 111 is configured by applying a negative electrode active material (not shown) to the surface of a negative electrode current collector 112 made of a metal foil such as an aluminum foil.

リチウムイオン二次電池100の一端側に、各正極集電体102の一部がそれぞれリード部103(シート、電極板の一部)として引き出され、各負極集電体112の一部がそれぞれリード部113(シート、電極板の一部)として引き出されている。各リード部103は前記一端の片側に寄せて引き出され、各リード部113はリード部103とは反対側に片寄らせて引き出されている。これにより、リード部103とリード部113とが重ならないようにされている。   A part of each positive electrode current collector 102 is drawn out as a lead portion 103 (a part of a sheet or an electrode plate) to one end side of the lithium ion secondary battery 100, and a part of each negative electrode current collector 112 is a lead. It is drawn out as a part 113 (a sheet, a part of the electrode plate). Each lead portion 103 is pulled out toward one side of the one end, and each lead portion 113 is pulled out toward the opposite side to the lead portion 103. This prevents the lead portion 103 and the lead portion 113 from overlapping.

各リード部103は積層、密着され、帯状の網がけで示す溶着領域105で互いに溶着されて、正極のタブ端子104とされている。各リード部113は積層、密着され、帯状の網がけで示す溶着領域115で互いに溶着されて、負極のタブ端子114(シート部材、タブ端子)とされている。溶着領域105,115の溶着方法としては、種々の溶着方法が適用可能であるが、例えば超音波溶着が用いられている。図1では、各リード部103,113が溶着される前の状態を示している。   The respective lead portions 103 are laminated and adhered, and are welded to each other in a welding region 105 indicated by a strip-shaped netting to form a positive tab terminal 104. The lead portions 113 are laminated and adhered to each other, and are welded to each other at a welding region 115 indicated by a strip-shaped netting to form a negative tab terminal 114 (sheet member, tab terminal). Various welding methods can be applied as the welding method of the welding regions 105 and 115, and for example, ultrasonic welding is used. In FIG. 1, the state before each lead part 103 and 113 is welded is shown.

図1に示す溶着状態検出装置1は、検出部4U,4Dと、検出処理部5と、報知部6と、検査対象のリチウムイオン二次電池100を検出部4U,4Dの間の所定位置に保持する図略の電池保持部とを備えている。検出部4U,4Dは、検出治具3U,3Dを備えている。検出部4U,4Dは、図略の駆動機構によって、検出治具3U,3Dを、互いに直交するX,Y,Zの三軸方向に移動可能にされ、さらに検出治具3U,3Dを、Z軸を中心に回動可能にされている。   The welding state detection apparatus 1 shown in FIG. 1 has detection units 4U and 4D, a detection processing unit 5, a notification unit 6, and a lithium ion secondary battery 100 to be inspected at a predetermined position between the detection units 4U and 4D. And a battery holding part (not shown) for holding. The detection units 4U and 4D include detection jigs 3U and 3D. The detection units 4U and 4D can move the detection jigs 3U and 3D in the three axis directions X, Y, and Z orthogonal to each other by a drive mechanism (not shown). It can be rotated around an axis.

報知部6は、検出処理部5によって得られた情報を、可視的にユーザに報知する報知装置である。報知部6としては、例えば液晶表示装置等の表示装置やプリンタを用いることができる。   The notification unit 6 is a notification device that visually notifies the user of the information obtained by the detection processing unit 5. As the notification unit 6, for example, a display device such as a liquid crystal display device or a printer can be used.

検出部4Uは、図略の電池保持部に固定されたリチウムイオン二次電池100の上方に位置する。検出部4Dは、図略の電池保持部に固定されたリチウムイオン二次電池100の下方に位置する。検出部4U,4Dは、リチウムイオン二次電池100のタブ端子104,114に順次プローブPu,Pdを接触させるための検出治具3U,3Dを着脱可能に構成されている。なお、検出治具3U,3Dは、タブ端子104,114を一括して二つのタブ端子104,114に同時にプローブPu,Pdを接触可能であってもよい。上方に位置する検出治具3Uに取り付けられたプローブをプローブPu、下方に位置する検出治具3Dに取り付けられたプローブをプローブPdと称する。以下、検出部4U,4Dを総称して検出部4と称し、プローブPu,Pdを総称してプローブPと称する。   The detection unit 4U is located above the lithium ion secondary battery 100 fixed to a battery holding unit (not shown). The detection unit 4D is located below the lithium ion secondary battery 100 fixed to a battery holding unit (not shown). The detection units 4U and 4D are configured to be detachable from detection jigs 3U and 3D for sequentially bringing the probes Pu and Pd into contact with the tab terminals 104 and 114 of the lithium ion secondary battery 100, respectively. The detection jigs 3U and 3D may be able to simultaneously contact the probes Pu and Pd with the two tab terminals 104 and 114 at the same time. A probe attached to the detection jig 3U located above is referred to as a probe Pu, and a probe attached to the detection jig 3D located below is referred to as a probe Pd. Hereinafter, the detection units 4U and 4D are collectively referred to as the detection unit 4, and the probes Pu and Pd are collectively referred to as the probe P.

検出治具3U,3Dは、それぞれ、複数のプローブPu,Pdの先端をタブ端子104,114の溶着領域105,115へ向けて保持する支持部材31と、ベースプレート321とを備えている。ベースプレート321には、各プローブPu,Pdの後端部と接触して導通する図略の電極が設けられている。検出部4U,4Dは、ベースプレート321の各電極と後述の接続回路41U,41Dとを介して各プローブPu,Pdの後端部を、検出処理部5と電気的に接続したり、その接続を切り替えたりする。   Each of the detection jigs 3U and 3D includes a support member 31 that holds the tips of the plurality of probes Pu and Pd toward the welding regions 105 and 115 of the tab terminals 104 and 114, and a base plate 321. The base plate 321 is provided with unillustrated electrodes that are in contact with the rear end portions of the probes Pu and Pd to be conductive. The detection units 4U and 4D electrically connect the rear ends of the probes Pu and Pd to the detection processing unit 5 through the respective electrodes of the base plate 321 and connection circuits 41U and 41D described later, or connect the connections. Switch.

プローブPu,Pdは、全体として略棒状の形状を有している。支持部材31には、プローブPu,Pdを支持する複数の貫通孔が形成されている。支持部材31は、溶着領域105,115と対応する形状、大きさを有している。支持部材31は、溶着領域105内、又は溶着領域115内の略全領域に対して、略均等な分布で複数のプローブPu,Pdを接触させるように、プローブPu,Pdを支持する。複数のプローブPu,Pdは、例えば格子の交点位置に対応するように配設されている。   The probes Pu and Pd have a substantially rod-like shape as a whole. The support member 31 is formed with a plurality of through holes that support the probes Pu and Pd. The support member 31 has a shape and a size corresponding to the welding regions 105 and 115. The support member 31 supports the probes Pu and Pd so that the plurality of probes Pu and Pd are brought into contact with the welding region 105 or substantially the entire region in the welding region 115 with a substantially uniform distribution. The plurality of probes Pu and Pd are arranged so as to correspond to the intersection position of the lattice, for example.

検出治具3U,3Dは、検出部4U,4Dへの取り付け方向が上下逆になる点を除き、互いに同様に構成されている。以下、検出治具3U,3Dを総称して検出治具3と称する。検出治具3は、検査対象のリチウムイオン二次電池100に応じて取り替え可能にされている。   The detection jigs 3U and 3D are configured in the same manner except that the attachment directions to the detection units 4U and 4D are upside down. Hereinafter, the detection jigs 3U and 3D are collectively referred to as a detection jig 3. The detection jig 3 can be replaced in accordance with the lithium ion secondary battery 100 to be inspected.

図2は、図1に示す溶着状態検出装置1の電気的構成を概念的に示すブロック図である。図2に示す溶着状態検出装置1は、例えば、N本のプローブPu1〜PuN、N本のプローブPd1〜PdN、接続回路41U,41D、及び検出処理部5を備えている。検出処理部5は、例えば電源回路51、電圧検出部52、及び制御部53等を備えている。図2では、タブ端子104にプローブPu1〜PuN、Pd1〜PdNを接触させた状態を示している。   FIG. 2 is a block diagram conceptually showing the electrical configuration of the welding state detection apparatus 1 shown in FIG. The welding state detection apparatus 1 illustrated in FIG. 2 includes, for example, N probes Pu1 to PuN, N probes Pd1 to PdN, connection circuits 41U and 41D, and a detection processing unit 5. The detection processing unit 5 includes, for example, a power supply circuit 51, a voltage detection unit 52, a control unit 53, and the like. FIG. 2 shows a state in which the probes Pu1 to PuN and Pd1 to PdN are brought into contact with the tab terminal 104.

図2に示すタブ端子104は、図1に示すタブ端子104をX軸方向に沿って切断した断面で示している。プローブPu1〜PuN、Pd1〜PdNは、X軸方向に沿って並ぶ各一列のプローブPu、Pdに、プローブ番号を付したものである。プローブPu、Pdに付されたプローブ番号は、各プローブPが接触する溶着領域105の位置を示すX軸方向のX座標に対応している。   The tab terminal 104 shown in FIG. 2 is shown in a cross section obtained by cutting the tab terminal 104 shown in FIG. 1 along the X-axis direction. Probes Pu1 to PuN and Pd1 to PdN are obtained by assigning probe numbers to each row of probes Pu and Pd arranged along the X-axis direction. The probe numbers given to the probes Pu and Pd correspond to the X coordinate in the X-axis direction indicating the position of the welding region 105 in contact with each probe P.

プローブPu、Pdは、図2に示すプローブPの他、Y軸方向に隣接して略平行に複数列設けられているが、図示を省略している。プローブPの各列に番号を付与することで、当該列の番号は、各プローブPが接触する溶着領域105の位置を示すY軸方向のY座標に対応する。なお、プローブPの各列は、必ずしも一直線状の列である必要はなく、ジグザグであったり、曲がったり、ばらついたりしている列であってもよい。   In addition to the probe P shown in FIG. 2, the probes Pu and Pd are provided in a plurality of rows adjacent to and parallel to the Y-axis direction, but are not shown. By assigning a number to each column of the probe P, the number of the column corresponds to the Y coordinate in the Y-axis direction that indicates the position of the welding region 105 in contact with each probe P. Each row of the probes P does not necessarily have to be a straight row, and may be a row that is zigzag, bent, or scattered.

各プローブPは、四端子測定法用の二つの接触子を備えている。すなわち、各プローブPは、それぞれ、電流供給用の接触子Tiと、電圧測定用の接触子Tvとを備えている。このように、二つの接触子を備えたプローブとしては、例えば、特開2006−329998号公報に記載されているような、二本のニードルピン(接触子)を一対にしたプローブや、例えば特開2012−154670号公報に記載されているような、筒形状の第一接触子と、第一接触子の内部に挿通された第二接触子とからなる同軸状のプローブを用いることができる。あるいは、格子状に配置された棒状のプローブのそれぞれを接触子とし、二本のプローブ(接触子)を一組にして一つのプローブとして用いてもよい。   Each probe P includes two contacts for a four-terminal measurement method. That is, each probe P includes a contact Ti for supplying current and a contact Tv for measuring voltage. As described above, as a probe having two contacts, for example, a probe in which two needle pins (contacts) are paired as described in JP-A-2006-329998, for example, A coaxial probe composed of a cylindrical first contact and a second contact inserted into the first contact, as described in Japanese Unexamined Patent Publication No. 2012-154670, can be used. Alternatively, each of the rod-shaped probes arranged in a lattice shape may be used as a contact, and two probes (contacts) may be used as a set and used as one probe.

接続回路41Uは、検出治具3Uにおけるベースプレート321の各電極と、電源回路51の正極端子と、電圧検出部52の正極端子とに接続されている。接続回路41Dは、検出治具3Dにおけるベースプレート321の各電極と、電源回路51の負極端子と、電圧検出部52の負極端子とに接続されている。接続回路41U,41Dは、例えば複数のスイッチング素子を用いて構成されている。   The connection circuit 41U is connected to each electrode of the base plate 321 in the detection jig 3U, the positive terminal of the power supply circuit 51, and the positive terminal of the voltage detection unit 52. The connection circuit 41D is connected to each electrode of the base plate 321 in the detection jig 3D, the negative terminal of the power supply circuit 51, and the negative terminal of the voltage detection unit 52. The connection circuits 41U and 41D are configured using, for example, a plurality of switching elements.

そして、接続回路41U,41Dは、制御部53からの制御信号に応じてタブ端子104を間に挟んで互いに対向する一対のプローブPu,Pdを選択し、選択されたプローブPuの接触子Tiに電源回路51の正極を、プローブPuの接触子Tvに電圧検出部52の正極を、プローブPdの接触子Tiに電源回路51の負極を、プローブPdの接触子Tvに電圧検出部52の負極を接続する。   Then, the connection circuits 41U and 41D select a pair of probes Pu and Pd facing each other with the tab terminal 104 interposed therebetween in accordance with a control signal from the control unit 53, and the contact circuits Ti of the selected probe Pu are selected. The positive electrode of the power supply circuit 51 is connected to the contactor Tv of the probe Pu, the positive electrode of the voltage detector 52 is connected to the contactor Ti of the probe Pd, the negative electrode of the power supply circuit 51 is connected to the contactor Tv of the probe Pd. Connecting.

電源回路51は、例えばスイッチング電源回路等の定電流電源回路である。電源回路51は、制御部53からの制御信号に応じて予め設定された一定の直流電流Iを出力する。電圧検出部52は、例えば分圧抵抗やアナログデジタルコンバータ等を用いて構成された、電圧測定回路である。電圧検出部52は、接続回路41U,41Dによって選択された、一対のプローブPu,Pdにおける、プローブPuの接触子TvとプローブPdの接触子Tvとの間の電圧Vを測定し、その測定値を制御部53へ送信する。   The power supply circuit 51 is a constant current power supply circuit such as a switching power supply circuit. The power supply circuit 51 outputs a constant DC current I set in advance according to a control signal from the control unit 53. The voltage detection unit 52 is a voltage measurement circuit configured using, for example, a voltage dividing resistor or an analog / digital converter. The voltage detector 52 measures the voltage V between the contact Tv of the probe Pu and the contact Tv of the probe Pd in the pair of probes Pu and Pd selected by the connection circuits 41U and 41D, and the measured value Is transmitted to the control unit 53.

制御部53は、例えば所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、所定の制御プログラム等を記憶する記憶装置、及びこれらの周辺回路等を備えて構成された、いわゆるマイクロコンピュータである。そして、制御部53は、例えば上述の制御プログラムを実行することによって、検出制御部531、測定部532、判定部533、及びグラフ化部534として機能する。   The control unit 53 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, a storage device that stores a predetermined control program, and peripheral circuits thereof And so on. The control unit 53 functions as the detection control unit 531, the measurement unit 532, the determination unit 533, and the graphing unit 534, for example, by executing the above-described control program.

検出制御部531は、図略の駆動機構を制御して検出部4U,4Dを移動、位置決めさせ、リチウムイオン二次電池100の溶着領域105,115に順次、各プローブPu,Pdの先端を接触させる(工程(a),(c))。なお、検出治具3U,3Dが、溶着領域105,115に対して同時に接触可能な数のプローブPu,Pdを備え、溶着領域105,115に同時にプローブPu,Pdを接触させてもよい。   The detection control unit 531 controls the drive mechanism (not shown) to move and position the detection units 4U and 4D, and sequentially contacts the tips of the probes Pu and Pd to the welding regions 105 and 115 of the lithium ion secondary battery 100. (Steps (a) and (c)). Note that the detection jigs 3U and 3D may include the number of probes Pu and Pd that can simultaneously contact the welding regions 105 and 115, and the probes Pu and Pd may be simultaneously contacted with the welding regions 105 and 115.

この状態で、測定部532は、検出治具3の各プローブPu,Pdを介して溶着領域105,115における各プローブPu,Pdの接触位置で、溶着領域105,115を貫通する方向に検査用の電流Iを供給させ、表裏一対のプローブPu,Pdから得られた電圧Vに基づき、各接触位置における溶着領域105,115の厚み方向の抵抗R=V/Iを算出する。これにより、測定部532は、各接触位置において、一対のプローブP間の抵抗値を測定することができる(工程(b),(d))。   In this state, the measurement unit 532 is for inspection in a direction penetrating the welding regions 105 and 115 at the contact positions of the probes Pu and Pd in the welding regions 105 and 115 via the probes Pu and Pd of the detection jig 3. Current I is supplied, and based on the voltage V obtained from the pair of front and back probes Pu and Pd, the resistance R = V / I in the thickness direction of the welding regions 105 and 115 at each contact position is calculated. Thereby, the measurement part 532 can measure the resistance value between a pair of probe P in each contact position (process (b), (d)).

この場合、各プローブPが接触子Ti,Tvを備え、電流供給と電圧測定とが別の接触子によって行われるので、四端子測定法による抵抗測定が可能となる。その結果、抵抗測定精度が向上する。   In this case, each probe P includes the contacts Ti and Tv, and the current supply and the voltage measurement are performed by different contacts. Therefore, resistance measurement by the four-terminal measurement method is possible. As a result, resistance measurement accuracy is improved.

なお、溶着状態検出装置1は、電源回路51から出力された電流Iを測定する電流測定回路を別途備え、電流測定回路により測定された電流Iに基づいて抵抗Rを算出してもよい。また、電流Iが固定値であれば、電圧Vをそのまま抵抗値を表す情報として用いてもよい。   The welding state detection apparatus 1 may include a current measurement circuit that measures the current I output from the power supply circuit 51, and may calculate the resistance R based on the current I measured by the current measurement circuit. Further, when the current I is a fixed value, the voltage V may be used as information indicating the resistance value as it is.

判定部533は、測定部532によって各対のプローブP間で測定された抵抗Rに基づいて、タブ端子104,114の溶着状態の良否を判定する(工程(e))。グラフ化部534は、各対のプローブP間で測定された抵抗Rを、一方の軸が複数の測定箇所に対応し、他方の軸が抵抗Rに対応するようにグラフ化し、当該グラフを報知部6によって表示させる。   The determination unit 533 determines the quality of the welded state of the tab terminals 104 and 114 based on the resistance R measured between each pair of probes P by the measurement unit 532 (step (e)). The graphing unit 534 graphs the resistance R measured between each pair of probes P so that one axis corresponds to a plurality of measurement locations and the other axis corresponds to the resistance R, and the graph is notified. Displayed by the unit 6.

次に、上述のように構成された溶着状態検出装置1の動作について説明する。図3、図4は、本発明の一実施形態に係る溶着状態検出方法に基づく溶着状態検出装置1の動作の一例を示すフローチャートである。   Next, operation | movement of the welding state detection apparatus 1 comprised as mentioned above is demonstrated. 3 and 4 are flowcharts showing an example of the operation of the welding state detection apparatus 1 based on the welding state detection method according to the embodiment of the present invention.

まず、検出制御部531は、図略の駆動機構を制御して検出部4U,4Dを移動、位置決めさせ、リチウムイオン二次電池100における溶着領域105の上面に各プローブPuの先端を接触させ、溶着領域105の下面に各プローブPdの先端を接触させる(ステップS1:工程(a),(c))。   First, the detection control unit 531 controls the drive mechanism (not shown) to move and position the detection units 4U and 4D, and brings the tips of the probes Pu into contact with the upper surface of the welding region 105 in the lithium ion secondary battery 100, The tip of each probe Pd is brought into contact with the lower surface of the welding region 105 (step S1: steps (a) and (c)).

次に、検出制御部531は、変数j,kを1に初期化する(ステップS2)。変数jは、各プローブPのX軸方向に並ぶ番号、すなわちX座標を示す変数である。変数kは、プローブPの列の番号、すなわちY座標を示す変数である。以下、溶着領域105の座標(j,k)においてタブ端子104に接触するプローブPu,Pdを、それぞれプローブPu(j,k)、プローブPd(j,k)と記載する。また、X軸に沿って並ぶプローブPu,Pdの数を、それぞれN本とし、Y軸に沿って並ぶプローブPu,Pdの列数を、それぞれM列とする。   Next, the detection control unit 531 initializes variables j and k to 1 (step S2). The variable j is a variable indicating the number of the probes P arranged in the X-axis direction, that is, the X coordinate. The variable k is a variable indicating the column number of the probe P, that is, the Y coordinate. Hereinafter, the probes Pu and Pd that are in contact with the tab terminal 104 at the coordinates (j, k) of the welding region 105 are referred to as probes Pu (j, k) and probes Pd (j, k), respectively. Further, the number of probes Pu and Pd aligned along the X axis is N, and the number of probes Pu and Pd aligned along the Y axis is M.

なお、図2では、例えば第1列目のプローブPu(1,1)〜Pu(N,1)及びプローブPd(1,1)〜Pd(N,1)をプローブPu1〜PuN及びプローブPd1〜PdNと表記し、他の列のプローブPの記載を省略している。   In FIG. 2, for example, the probes Pu (1,1) to Pu (N, 1) and the probes Pd (1,1) to Pd (N, 1) in the first row are replaced with the probes Pu1 to PuN and the probes Pd1 to Pd1. It is written as PdN, and the description of the probe P in other columns is omitted.

次に、検出制御部531は、接続回路41U,41Dによって、プローブPu(j,k),Pd(j,k)の接触子Tiを電源回路51に接続させ、プローブPu(j,k),Pd(j,k)の接触子Tvを電圧検出部52に接続させる。   Next, the detection control unit 531 connects the contacts Ti of the probes Pu (j, k) and Pd (j, k) to the power supply circuit 51 using the connection circuits 41U and 41D, and the probes Pu (j, k), The contact Tv of Pd (j, k) is connected to the voltage detection unit 52.

そして、測定部532は、電源回路51によって、プローブPu(j,k)の接触子TiとプローブPd(j,k)の接触子Tiとの間に溶着領域105を厚さ方向に貫通する方向の電流Iを供給させ、そのときプローブPu(j,k)の接触子TvとプローブPd(j,k)の接触子Tvとの間の電圧、すなわち座標(j,k)における電圧V(j,k)を、電圧検出部52によって測定させる(ステップS3)。   Then, the measurement unit 532 uses the power supply circuit 51 to penetrate the welding region 105 in the thickness direction between the contact Ti of the probe Pu (j, k) and the contact Ti of the probe Pd (j, k). Current I, and the voltage between the contact Tv of the probe Pu (j, k) and the contact Tv of the probe Pd (j, k), that is, the voltage V (j at the coordinate (j, k). , K) is measured by the voltage detector 52 (step S3).

次に、測定部532は、座標(j,k)における溶着領域105の厚み方向の抵抗R(j,k)を、下記の式(1)に基づき算出する(ステップS4)。
抵抗R(j,k)=V(j,k)/I ・・・(1)
Next, the measurement unit 532 calculates the resistance R (j, k) in the thickness direction of the welded region 105 at the coordinates (j, k) based on the following equation (1) (step S4).
Resistance R (j, k) = V (j, k) / I (1)

次に、測定部532は、変数jとX軸方向のプローブ数Nとを比較し(ステップS5)、変数jがプローブ数Nに満たなければ(ステップS5でYES)、まだ抵抗Rを測定していない座標位置が残っているから、新たな座標位置について抵抗Rを測定するべく変数jに1を加算し(ステップS6)、再びステップS3以降の処理を繰り返す。   Next, the measurement unit 532 compares the variable j with the number of probes N in the X-axis direction (step S5). If the variable j does not satisfy the number of probes N (YES in step S5), the resistance R is still measured. Since the remaining coordinate position remains, 1 is added to the variable j to measure the resistance R at the new coordinate position (step S6), and the processing from step S3 is repeated again.

一方、変数jがプローブ数N未満でなければ(ステップS5でNO)、Y座標がkの列については抵抗Rを測定し終えたことになるから、測定部532は、変数kをY軸方向のプローブ列数Mと比較する(ステップS7)。そして、変数kがプローブ列数Mに満たなければ(ステップS7でYES)、まだ抵抗Rを測定していないY座標の列が残っているから、測定部532は、新たなY座標(プローブ列)について抵抗Rを測定するべく変数kに1を加算し(ステップS8)、再びステップS3以降の処理を繰り返す。   On the other hand, if the variable j is not less than the number of probes N (NO in step S5), the resistance R has been measured for the column whose Y coordinate is k, and therefore the measurement unit 532 sets the variable k in the Y-axis direction. Is compared with the number M of probe rows (step S7). If the variable k is not less than the number M of probe rows (YES in step S7), the Y coordinate row for which the resistance R has not yet been measured remains, so the measurement unit 532 uses the new Y coordinate (probe row). 1) is added to the variable k to measure the resistance R (step S8), and the processing from step S3 onward is repeated again.

一方、変数kがプローブ列数M未満でなければ(ステップS7でNO)、すべての座標(1,1)〜(N,M)に対応する抵抗R(1,1)〜R(N,M)を測定したことになるから、ステップS9へ移行する。   On the other hand, if the variable k is not less than the number M of probe rows (NO in step S7), resistors R (1,1) to R (N, M) corresponding to all coordinates (1,1) to (N, M). ), The process proceeds to step S9.

以上、ステップS2〜S8が、工程(b)(d)の一例に相当している。   As described above, steps S2 to S8 correspond to an example of the steps (b) and (d).

溶着領域105において、複数枚のリード部103が正常に溶着されていた場合、図2の電流経路Aで示すように、電源回路51から供給された電流Iは、溶着領域105の厚み方向に略最短距離で流れる。一方、座標(j,k)において、リード部103の溶着に不良があり、正常に溶着していない溶着欠陥Fが存在していた場合、電源回路51から供給された電流Iは、図2の電流経路B,Cで示すように溶着欠陥Fを迂回するように流れ、電流が流れる経路が電流経路Aより長くなる。   When a plurality of lead portions 103 are normally welded in the welding region 105, the current I supplied from the power supply circuit 51 is approximately in the thickness direction of the welding region 105 as shown by a current path A in FIG. 2. It flows in the shortest distance. On the other hand, when there is a defect in the welding of the lead portion 103 at coordinates (j, k) and there is a welding defect F that is not normally welded, the current I supplied from the power supply circuit 51 is as shown in FIG. As indicated by the current paths B and C, the current flows so as to bypass the welding defect F, and the path through which the current flows becomes longer than the current path A.

従って、抵抗Rは、溶着状態が良好であるほど小さな値になり、溶着状態が悪くなるほど大きな値になる傾向がある。従って、溶着領域105における座標(1,1)〜(N,M)の抵抗R(1,1)〜R(N,M)を取得することによって、溶着領域105の各部の溶着状態を抵抗R(1,1)〜R(N,M)から推定することが可能となる。   Therefore, the resistance R tends to be smaller as the welded state is better, and larger as the welded state is worsened. Therefore, by acquiring the resistances R (1,1) to R (N, M) at the coordinates (1,1) to (N, M) in the welding region 105, the welding state of each part of the welding region 105 is changed to the resistance R. It is possible to estimate from (1,1) to R (N, M).

そのため、ステップS1〜S8によれば、溶着領域105の略全領域に対して略均等な分布で接触する複数のプローブPu,Pdに基づき、抵抗R(1,1)〜R(N,M)が得られ、かつ溶着領域105の各部の溶着状態が抵抗R(1,1)〜R(N,M)に反映される。従って、ユーザは、ステップS1〜S8により得られた抵抗R(1,1)〜R(N,M)から、タブ端子104の溶着状態を、その溶着領域105の略全体にわたって把握することが容易となる。   Therefore, according to steps S1 to S8, resistances R (1,1) to R (N, M) are based on a plurality of probes Pu and Pd that are in contact with substantially the entire region of the welding region 105 in a substantially uniform distribution. And the welding state of each part of the welding region 105 is reflected in the resistances R (1, 1) to R (N, M). Therefore, the user can easily grasp the welding state of the tab terminal 104 over substantially the entire welding region 105 from the resistances R (1, 1) to R (N, M) obtained in steps S1 to S8. It becomes.

次に、グラフ化部534は、抵抗R(1,1)〜R(N,M)を、横軸がX座標、すなわちプローブPのX軸方向の番号jとし、縦軸が抵抗R(1,1)〜R(N,M)に対応するグラフを報知部6によって表示させる(ステップS9:工程(f))。   Next, the graphing unit 534 sets the resistances R (1, 1) to R (N, M) to the X coordinate on the horizontal axis, that is, the number j in the X axis direction of the probe P, and the resistance R (1) on the vertical axis. , 1) to R (N, M) are displayed by the notification unit 6 (step S9: step (f)).

図5は、図1に示す報知部6によって表示されるグラフの一例を示す説明図である。図5に示すグラフは、横軸が1〜NのX座標、縦軸が抵抗Rを示している。また、プローブPの列番号に対応するY座標を、Y1,Y2,Y3〜YMの複数の折れ線で示している。図5に示すグラフによれば、ユーザは、一見して抵抗Rが異常値となっている箇所の座標、すなわち溶着が不十分な箇所を把握することができる。   FIG. 5 is an explanatory diagram illustrating an example of a graph displayed by the notification unit 6 illustrated in FIG. 1. In the graph shown in FIG. 5, the horizontal axis represents the X coordinate of 1 to N, and the vertical axis represents the resistance R. Further, the Y coordinate corresponding to the column number of the probe P is indicated by a plurality of broken lines Y1, Y2, Y3 to YM. According to the graph shown in FIG. 5, the user can grasp the coordinates of the portion where the resistance R has an abnormal value at first glance, that is, the portion where the welding is insufficient.

次に、判定部533は、抵抗R(1,1)〜R(N,M)の平均値Avと標準偏差σとを算出する(ステップS11)。次に、判定部533は、変数j,kを1に初期化する(ステップS12)。   Next, the determination unit 533 calculates the average value Av and the standard deviation σ of the resistors R (1, 1) to R (N, M) (step S11). Next, the determination unit 533 initializes variables j and k to 1 (step S12).

次に、判定部533は、抵抗R(j,k)と(Av+3σ)とを比較し(ステップS13)、抵抗R(j,k)が(Av+3σ)より大きければ(ステップS13でYES)、すなわち抵抗R(j,k)と平均値Avとの差が3σより大きければ、座標(j,k)の位置で溶着不良が生じていると判定し(ステップS14)、その判定結果を報知部6によって表示させ、ステップS15へ移行する。一方、抵抗R(j,k)が(Av+3σ)以下であれば(ステップS13でNO)、ステップS14を実行することなくステップS15へ移行する。   Next, the determination unit 533 compares the resistance R (j, k) and (Av + 3σ) (step S13). If the resistance R (j, k) is larger than (Av + 3σ) (YES in step S13), that is, If the difference between the resistance R (j, k) and the average value Av is larger than 3σ, it is determined that a welding failure has occurred at the position of the coordinate (j, k) (step S14), and the determination result is notified to the notification unit 6. And the process proceeds to step S15. On the other hand, if the resistance R (j, k) is equal to or less than (Av + 3σ) (NO in step S13), the process proceeds to step S15 without executing step S14.

次に、判定部533は、変数jとX軸方向のプローブ数Nとを比較し(ステップS15)、変数jがプローブ数Nに満たなければ(ステップS5でYES)、まだ良否を判定していない抵抗Rが残っているから、新たな抵抗Rについて良否を判定するべく変数jに1を加算し(ステップS16)、再びステップS13以降の処理を繰り返す。   Next, the determination unit 533 compares the variable j with the number of probes N in the X-axis direction (step S15). If the variable j does not satisfy the number of probes N (YES in step S5), the determination is still good. Since no resistor R remains, 1 is added to the variable j to determine whether the new resistor R is good or bad (step S16), and the processing after step S13 is repeated again.

一方、変数jがプローブ数N未満でなければ(ステップS15でNO)、Y座標がkの列について抵抗Rを評価し終えたことになるから、判定部533は、変数kをY軸方向のプローブ列数Mと比較する(ステップS17)。そして、変数kがプローブ列数Mに満たなければ(ステップS17でYES)、まだ抵抗Rを評価していないY座標の列が残っているから、判定部533は、新たなY座標(プローブ列)について抵抗Rを評価するべく変数kに1を加算し(ステップS18)、再びステップS13以降の処理を繰り返す。   On the other hand, if the variable j is not less than the number of probes N (NO in step S15), since the resistance R has been evaluated for the column whose Y coordinate is k, the determination unit 533 sets the variable k in the Y-axis direction. Comparison is made with the number M of probe rows (step S17). If the variable k is not less than the number M of probe rows (YES in step S17), the Y coordinate row for which the resistance R has not yet been evaluated remains, and therefore the determination unit 533 determines a new Y coordinate (probe row). 1) is added to the variable k in order to evaluate the resistance R (step S18), and the processing after step S13 is repeated again.

一方、変数kがプローブ列数M未満でなければ(ステップS17でNO)、すべての座標(1,1)〜(N,M)に対応する抵抗R(1,1)〜R(N,M)を評価したことになるから、ステップS19へ移行する。   On the other hand, if the variable k is not less than the number M of probe rows (NO in step S17), resistors R (1,1) to R (N, M) corresponding to all coordinates (1,1) to (N, M). ), The process proceeds to step S19.

以上、ステップS11〜S18によれば、溶着不良を検出し、その不良発生箇所の座標を特定することが可能となる。なお、ステップS13において、判定部533は、抵抗R(j,k)と平均値Avとの差が3σより大きい場合に溶着不良と判定する例を示したが、例えば抵抗R(j,k)と平均値Avとの差が、2σより大きい場合や2.5σより大きい場合等に溶着不良と判定してもよく、σの倍数は適宜設定すればよい。   As described above, according to steps S11 to S18, it is possible to detect a welding failure and specify the coordinates of the failure occurrence location. In step S13, the determination unit 533 has shown an example in which a welding failure is determined when the difference between the resistance R (j, k) and the average value Av is greater than 3σ. For example, the resistance R (j, k) If the difference between the average value Av and the average value Av is greater than 2σ or greater than 2.5σ, it may be determined that the welding is defective, and a multiple of σ may be set as appropriate.

判定部533は、平均値Avと標準偏差σとに基づいて溶着不良か否かを判定するので、予め判定のための基準値を設定する必要がない。そのためユーザの利便性が向上する。なお、溶着不良か否かを判定するための判定基準値を予め記憶装置に記憶しておき、判定部533は、ステップS13において、抵抗R(j,k)がその判定基準値より大きい場合にステップS14へ移行する構成としてもよい。   Since the determination unit 533 determines whether or not the welding is defective based on the average value Av and the standard deviation σ, it is not necessary to set a reference value for determination in advance. Therefore, convenience for the user is improved. Note that a determination reference value for determining whether or not the welding is defective is stored in the storage device in advance, and the determination unit 533 determines in step S13 that the resistance R (j, k) is greater than the determination reference value. It is good also as a structure which transfers to step S14.

ステップS19では、判定部533は、ステップS14において溶着不良と判定した座標が有ったか否かをチェックし、溶着不良が一箇所もなければ(ステップS19でYES)、タブ端子104の溶着状態は良好であると判定し(ステップS20)、その判定結果を報知部6によって表示させ、処理を終了する。   In step S19, the determination unit 533 checks whether or not there is a coordinate determined to be a welding failure in step S14. If there is no welding failure (YES in step S19), the welding state of the tab terminal 104 is determined. It determines with it being favorable (step S20), the determination result is displayed by the alerting | reporting part 6, and a process is complete | finished.

一方、溶着不良が一箇所でもあれば(ステップS19でNO)、タブ端子104の溶着状態は不良であると判定し(ステップS21)、その判定結果を報知部6によって表示させ、処理を終了する。   On the other hand, if there is even one welding failure (NO in step S19), it is determined that the welding state of the tab terminal 104 is defective (step S21), the determination result is displayed by the notification unit 6, and the process is terminated. .

以上、ステップS19〜S21によれば、タブ端子104全体として溶着が良好か否かを判定することができ、タブ端子104の検査を行うことが可能となる。以下、タブ端子104に代えてタブ端子114を対象に、ステップS1〜S21を実行することによって、タブ端子114の溶着状態を検出、検査することが可能となる。なお、検出治具3U,3Dによって、溶着領域105,115に同時にプローブPu,Pdを接触させた場合には、一度にタブ端子104,114の溶着状態を検出、検査することも可能である。   As described above, according to steps S <b> 19 to S <b> 21, it is possible to determine whether or not the entire tab terminal 104 is welded, and the tab terminal 104 can be inspected. Hereinafter, by performing Steps S1 to S21 for the tab terminal 114 instead of the tab terminal 104, the welding state of the tab terminal 114 can be detected and inspected. When the probes Pu and Pd are simultaneously brought into contact with the welding regions 105 and 115 by the detection jigs 3U and 3D, the welding state of the tab terminals 104 and 114 can be detected and inspected at a time.

なお、判定部533は、必ずしもステップS19〜S21を実行しなくてもよい。また、溶着状態検出装置1は、判定部533を備えず、ステップS11〜S21を実行しなくてもよい。また、グラフ化部534を備えず、ステップS9を実行しなくてもよい。   Note that the determination unit 533 does not necessarily have to execute Steps S19 to S21. Moreover, the welding state detection apparatus 1 does not include the determination unit 533 and does not need to execute steps S11 to S21. Further, the graphing unit 534 is not provided, and step S9 may not be executed.

また、支持部材31は、複数列のプローブPu,Pdを保持する例に限らず、1列のプローブPu,Pdを保持する構成であってもよい。支持部材31は、1列のプローブPu,Pdを、長手方向の全長にわたって略均等な分布で溶着領域105,115に接触させる構成であってもよい。この場合、ステップS7,S8,S17,S18を実行せず、変数kを1に固定してもよい。   Further, the support member 31 is not limited to an example of holding a plurality of rows of probes Pu and Pd, and may be configured to hold a row of probes Pu and Pd. The support member 31 may be configured such that one row of the probes Pu and Pd is brought into contact with the welding regions 105 and 115 with a substantially uniform distribution over the entire length in the longitudinal direction. In this case, Steps S7, S8, S17, and S18 may not be executed, and the variable k may be fixed to 1.

また、各プローブPが接触子Ti,Tvを備え、四端子測定法により抵抗Rを測定する例を示したが、各プローブPを単一の接触子(プローブ)として四端子測定法を行わず、各プローブPで電流供給と電圧測定とを兼ねてもよい。   Moreover, although each probe P was provided with the contacts Ti and Tv and the resistance R was measured by the four-terminal measurement method, each probe P was used as a single contact (probe) and the four-terminal measurement method was not performed. Each probe P may serve as both current supply and voltage measurement.

また、検出治具3U,3Dが、それぞれ多針状に複数のプローブPu,Pdを備え、複数のプローブPu,Pdを同時にタブ端子104,114に接触させる例を示したが、例えば検出治具3U,3Dが一対の移動式のいわゆるフライングプローブPu,Pdを備え、上述の各座標点に、当該一対のプローブPu,Pdを順次接触させて各座標位置の抵抗Rを測定する構成としてもよい。   In addition, the detection jigs 3U and 3D are each provided with a plurality of probes Pu and Pd in a multi-needle shape, and the plurality of probes Pu and Pd are simultaneously brought into contact with the tab terminals 104 and 114. 3U and 3D may include a pair of movable so-called flying probes Pu and Pd, and measure the resistance R at each coordinate position by sequentially contacting the pair of probes Pu and Pd to the above-described coordinate points. .

また、タブ端子104,114は、リチウムイオン二次電池のタブ端子に限られず、他の電池のタブ端子であってもよい。また、シート部材は、電池のタブ端子に限られず、複数のシートが互いに重ね合わされて溶着されたものであればよい。   The tab terminals 104 and 114 are not limited to the tab terminals of the lithium ion secondary battery, but may be tab terminals of other batteries. Further, the sheet member is not limited to the tab terminal of the battery, and any sheet member may be used as long as a plurality of sheets are overlapped and welded to each other.

1 溶着状態検出装置
3,3U,3D 検出治具
4,4U,4D 検出部
5 検出処理部
6 報知部
31 支持部材
41U,41D 接続回路
51 電源回路
52 電圧検出部
53 制御部
100 リチウムイオン二次電池(電池)
101 正極板(電極板)
102 正極集電体
103,113 リード部(シート、電極板の一部)
104,114 タブ端子(シート部材)
105,115 溶着領域
111 負極板(電極板)
112 負極集電体
321 ベースプレート
531 検出制御部
532 測定部
533 判定部
534 グラフ化部
A,B,C 電流経路
Av 平均値
F 溶着欠陥
I 電流
M プローブ列数
N プローブ数
P,Pu,Pd プローブ
R 抵抗(抵抗値)
Ti,Tv 接触子
V 電圧
σ 標準偏差
DESCRIPTION OF SYMBOLS 1 Welding state detection apparatus 3, 3U, 3D Detection jig | tool 4, 4U, 4D Detection part 5 Detection processing part 6 Notification part 31 Support member 41U, 41D Connection circuit 51 Power supply circuit 52 Voltage detection part 53 Control part 100 Lithium ion secondary Battery (battery)
101 Positive electrode plate (electrode plate)
102 Positive electrode current collector 103, 113 Lead part (sheet, part of electrode plate)
104,114 Tab terminal (sheet member)
105, 115 welding region 111 negative electrode plate (electrode plate)
112 Negative electrode current collector 321 Base plate 531 Detection control unit 532 Measurement unit 533 Determination unit 534 Graphing units A, B, C Current path Av Average value F Welding defect I Current M Probe row number N Probe number P, Pu, Pd Probe R Resistance (resistance value)
Ti, Tv Contactor V Voltage σ Standard deviation

Claims (9)

導電性の複数のシートが互いに重ね合わされ、当該重ね合わされた部分が所定の第一方向に延びる帯状に溶着されているシート部材における、当該溶着状態を検出する溶着状態検出方法であって、
(a)前記帯状に溶着された領域である溶着領域において、前記第一方向に沿って一列に並ぶ複数箇所で、それぞれ、一対のプローブの一方を前記シート部材の一方の面に接触させ、前記一対のプローブの他方を前記シート部材の他方の面に接触させる工程と、
(b)前記複数箇所で、それぞれ、前記シート部材の両面に接触された前記一対のプローブ間の抵抗値を測定する工程と、
(e)前記複数箇所で、それぞれ、前記抵抗値が測定された箇所における前記溶着状態の良否を、前記抵抗値に基づいて判定する工程とを含み、
前記(e)工程は、前記測定された抵抗値の平均値及び標準偏差を算出し、当該平均値及び標準偏差に基づいて前記測定された各抵抗値の良、不良を判定し、不良と判定された抵抗値があった場合、当該不良と判定された抵抗値が測定された箇所で溶着不良が生じていると判定する溶着状態検出方法。
A welding state detection method for detecting the welding state in a sheet member in which a plurality of conductive sheets are overlapped with each other and the overlapped portion is welded in a strip shape extending in a predetermined first direction,
(A) In the welding region, which is a region welded in a belt shape, each of a plurality of probes arranged in a line along the first direction is in contact with one surface of the sheet member, Bringing the other of the pair of probes into contact with the other surface of the sheet member;
(B) measuring the resistance value between the pair of probes in contact with both surfaces of the sheet member, respectively, at the plurality of locations;
(E) said at a plurality of locations, respectively, the quality of the welding conditions at the location where the resistance value is measured, see contains a determining step on the basis of the resistance value,
The step (e) calculates an average value and a standard deviation of the measured resistance values, determines whether each measured resistance value is good or bad based on the average value and the standard deviation, and determines that it is defective. If there is a resistance value determined, a welding state detection method for determining that a welding failure has occurred at a location where the resistance value determined to be defective is measured .
前記(e)工程では、前記複数箇所で、それぞれ、前記抵抗値が測定された箇所における前記溶着状態の良否を、前記各対のプローブ間で測定された前記抵抗値に基づいて判定する請求項1に記載の溶着状態検出方法。   In the step (e), the quality of the welded state at each of the plurality of locations where the resistance value is measured is determined based on the resistance value measured between the pair of probes. 2. The welding state detection method according to 1. (c)前記溶着領域において前記一列と略平行な一又は複数の列に沿って並ぶ複数箇所で、それぞれ、一対のプローブの一方を前記シート部材の一方の面に接触させ、前記一対のプローブの他方を前記シート部材の他方の面に接触させる工程と、
(d)前記一又は複数の列に沿って並ぶ複数箇所で、それぞれ、前記シート部材の両面に接触された一対のプローブ間の抵抗値を測定する工程とをさらに含む請求項1又は2に記載の溶着状態検出方法。
(C) In a plurality of locations arranged along one or more rows substantially parallel to the one row in the welding region, respectively, one of the pair of probes is brought into contact with one surface of the sheet member, Bringing the other into contact with the other surface of the sheet member;
(D) The method further includes a step of measuring a resistance value between a pair of probes in contact with both surfaces of the sheet member at a plurality of locations arranged along the one or more rows. Welding state detection method.
前記各プローブは二つの接触子を含み、
前記(b)工程では、前記一対のプローブに含まれる四つの接触子を用いて四端子測定法により前記抵抗値を測定する請求項1〜3のいずれか1項に記載の溶着状態検出方法。
Each probe includes two contacts;
The welding state detection method according to claim 1, wherein in the step (b), the resistance value is measured by a four-terminal measurement method using four contacts included in the pair of probes.
前記プローブは複数対設けられ、
前記(a)工程では、前記複数箇所に対応する複数対のプローブを、それぞれ前記シート部材に接触させる請求項1〜4のいずれか1項に記載の溶着状態検出方法。
A plurality of pairs of the probes are provided,
The welding state detection method according to any one of claims 1 to 4, wherein in the step (a), a plurality of pairs of probes corresponding to the plurality of locations are brought into contact with the sheet member, respectively.
前記プローブは複数対設けられ、
前記(a)工程及び前記(c)工程では、前記複数箇所に対応する複数対のプローブを、それぞれ前記シート部材に接触させる請求項3に記載の溶着状態検出方法。
A plurality of pairs of the probes are provided,
The welding state detection method according to claim 3, wherein in the step (a) and the step (c), a plurality of pairs of probes corresponding to the plurality of locations are brought into contact with the sheet member, respectively.
(f)前記各対のプローブ間で測定された抵抗値を、一方の軸が前記複数の箇所に対応し、他方の軸が前記抵抗値に対応するグラフによって示す工程をさらに含む請求項1〜のいずれか1項に記載の溶着状態検出方法。 (F) The method further includes a step of indicating the resistance value measured between the pair of probes by a graph in which one axis corresponds to the plurality of locations and the other axis corresponds to the resistance value. The welding state detection method according to any one of 6 . 複数のシートは電池の電極板の一部であり、
前記シート部材は前記電池のタブ端子である請求項1〜のいずれか1項に記載の溶着状態検出方法。
The plurality of sheets are part of the battery electrode plate,
The sheet member is welded state detecting method according to any one of claims 1 to 7 which is a tab terminal of the battery.
請求項1〜のいずれか1項に記載の溶着状態検出方法を用いる溶着状態検出装置。 The welding state detection apparatus using the welding state detection method of any one of Claims 1-8 .
JP2017182528A 2017-09-22 2017-09-22 Welding state detection method and welding state detection device Active JP6428887B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017182528A JP6428887B1 (en) 2017-09-22 2017-09-22 Welding state detection method and welding state detection device
PCT/JP2018/035355 WO2019059395A1 (en) 2017-09-22 2018-09-25 Welding state detection method and welding state detection device
CN201880060218.2A CN111094958A (en) 2017-09-22 2018-09-25 Welding state detection method and welding state detection device
KR1020207007928A KR102640756B1 (en) 2017-09-22 2018-09-25 Welding state detection method and welding state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182528A JP6428887B1 (en) 2017-09-22 2017-09-22 Welding state detection method and welding state detection device

Publications (2)

Publication Number Publication Date
JP6428887B1 true JP6428887B1 (en) 2018-11-28
JP2019056672A JP2019056672A (en) 2019-04-11

Family

ID=64480484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182528A Active JP6428887B1 (en) 2017-09-22 2017-09-22 Welding state detection method and welding state detection device

Country Status (4)

Country Link
JP (1) JP6428887B1 (en)
KR (1) KR102640756B1 (en)
CN (1) CN111094958A (en)
WO (1) WO2019059395A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371532B2 (en) 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090792A1 (en) * 2019-11-09 2021-05-14 日本電産リード株式会社 Probe jig and inspection device
CN111693573A (en) * 2020-05-12 2020-09-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Battery tab welding quality evaluation method and device
JP7243700B2 (en) * 2020-10-15 2023-03-22 株式会社豊田中央研究所 Resistance measuring device, resistance measuring system, resistance measuring method and its program
US20240091884A1 (en) * 2021-06-11 2024-03-21 Lg Energy Solution, Ltd. Device And Method For Inspecting Welded State

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198681A (en) * 2000-01-14 2001-07-24 Sony Corp Non-distructive testing device and method for inverter type resistance welding
JP2008142739A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Ultrasonic welder and method for controlling the same, and welding inspection apparatus for ultrasonic welding and welding inspection method therefor
JP2013036767A (en) * 2011-08-04 2013-02-21 Nissan Motor Co Ltd Apparatus for inspecting electrode sheet
JP2013519543A (en) * 2010-02-15 2013-05-30 プロダクティブ リサーチ エルエルシー. Moldable lightweight composite system and method
JP2014228459A (en) * 2013-05-24 2014-12-08 株式会社オートネットワーク技術研究所 Resistance measurement method of aluminum wire

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2471601A1 (en) * 1979-12-14 1981-06-19 Commissariat Energie Atomique METHOD AND DEVICE FOR NON-DESTRUCTIVE CONTROL OF STITCHES
JPS62231150A (en) * 1986-04-01 1987-10-09 Tokushu Toryo Kk Inspecting method for spot welding zone
JPS63199058U (en) * 1987-06-13 1988-12-21
JPH03110459A (en) * 1989-09-25 1991-05-10 Hitachi Ltd Spot welding inspection device
JPH0480666A (en) * 1990-07-24 1992-03-13 Mitsubishi Electric Corp Electric characteristic evaluator
JP4459367B2 (en) * 2000-02-25 2010-04-28 三桜工業株式会社 Manufacturing method of battery electrode plate
JP5127788B2 (en) * 2009-08-01 2013-01-23 株式会社豊田中央研究所 Resistance welding method, resistance welding member, resistance welding machine, resistance welding machine control method and control program and control device thereof, resistance welding evaluation method and evaluation program and evaluation device thereof
CN102024990A (en) * 2010-06-30 2011-04-20 南京双登科技发展研究院有限公司 Method for manufacturing cells of power lithium ion batteries
US8531305B2 (en) * 2011-05-10 2013-09-10 GM Global Technology Operations LLC Method of measuring electrical resistance of joints
EP2674999B1 (en) * 2011-06-30 2016-08-10 LG Chem, Ltd. Secondary battery with enhanced contact resistance
CN103376278B (en) * 2012-04-27 2016-03-16 协鑫动力新材料(盐城)有限公司 A kind of method detecting lithium ion battery tab welding firmness
CN105758891B (en) * 2015-07-17 2019-03-05 生益电子股份有限公司 A kind of method for testing performance of PCB
CN106154181A (en) * 2016-08-22 2016-11-23 上海方德尚动新能源科技有限公司 A kind of battery bag bonding welding detection system and welding and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198681A (en) * 2000-01-14 2001-07-24 Sony Corp Non-distructive testing device and method for inverter type resistance welding
JP2008142739A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Ultrasonic welder and method for controlling the same, and welding inspection apparatus for ultrasonic welding and welding inspection method therefor
JP2013519543A (en) * 2010-02-15 2013-05-30 プロダクティブ リサーチ エルエルシー. Moldable lightweight composite system and method
JP2013036767A (en) * 2011-08-04 2013-02-21 Nissan Motor Co Ltd Apparatus for inspecting electrode sheet
JP2014228459A (en) * 2013-05-24 2014-12-08 株式会社オートネットワーク技術研究所 Resistance measurement method of aluminum wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371532B2 (en) 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig

Also Published As

Publication number Publication date
KR102640756B1 (en) 2024-02-27
JP2019056672A (en) 2019-04-11
WO2019059395A1 (en) 2019-03-28
CN111094958A (en) 2020-05-01
KR20200058399A (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6428887B1 (en) Welding state detection method and welding state detection device
KR102462033B1 (en) Circuit board inspection method and circuit board inspection apparatus
JP4369949B2 (en) Insulation inspection device and insulation inspection method
KR102216324B1 (en) Maintenance method for contactor and inspecting apparatus
JP5261763B2 (en) Inspection method of welded part by magnetic field measurement
TWI604203B (en) Insulation inspection method and insulation inspection device
EP2803989A1 (en) Electrode testing method and electrode testing apparatus
WO2021090792A1 (en) Probe jig and inspection device
US11585839B2 (en) Resistance measuring device and resistance measuring jig
JP2011089858A (en) Method of maintaining inspection tool and substrate inspection apparatus
JPWO2017159709A1 (en) Inspection device
JP2023057530A (en) Measurement device, measurement system, and measurement method
JP6335393B2 (en) Method and apparatus for testing battery connections
JP2023022340A (en) Probe jig and inspection device
JP5014639B2 (en) measuring device
JP5604839B2 (en) Substrate inspection method and substrate inspection apparatus
JP2020165923A (en) Inspection device and inspection method
WO2023063083A1 (en) Measuring device, measuring system, and measuring method
JP2013044550A (en) Resistance inspection device, resistance inspection method, and resistance inspection program
JP4999143B2 (en) Board inspection equipment
JP5224384B2 (en) Conductor welding method and welding apparatus therefor
JP5079603B2 (en) Electrolytic capacitor inspection method and electrolytic capacitor inspection device
JP5988557B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2005049314A (en) Probing test method and probe condition detector
JP6255833B2 (en) Substrate inspection method and substrate inspection apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6428887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250