JP2014116387A - Bonding wire for white light-emitting diode - Google Patents

Bonding wire for white light-emitting diode Download PDF

Info

Publication number
JP2014116387A
JP2014116387A JP2012267962A JP2012267962A JP2014116387A JP 2014116387 A JP2014116387 A JP 2014116387A JP 2012267962 A JP2012267962 A JP 2012267962A JP 2012267962 A JP2012267962 A JP 2012267962A JP 2014116387 A JP2014116387 A JP 2014116387A
Authority
JP
Japan
Prior art keywords
mass
bonding wire
silver
white light
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012267962A
Other languages
Japanese (ja)
Other versions
JP6276501B2 (en
Inventor
Atsushi Chiba
淳 千葉
Yuki Yasutoku
優希 安徳
Satoshi Tejima
聡 手島
Kazuhiko Yasuhara
和彦 安原
I Chen
▲い▼ 陳
Nanako Maeda
菜那子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2012267962A priority Critical patent/JP6276501B2/en
Publication of JP2014116387A publication Critical patent/JP2014116387A/en
Application granted granted Critical
Publication of JP6276501B2 publication Critical patent/JP6276501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • H01L2224/48511Heat affected zone [HAZ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Abstract

PROBLEM TO BE SOLVED: To provide a bonding wire having wire strength and loop shape suitable for white light-emitting diode, and black shadow of which is invisible.SOLUTION: A bonding wire for white light-emitting diode is a thin wire of a ternary alloy composed of 0.1-4.0 mass% of palladium (Pd), 0.01-2.0 mass% of gold (Au), and the reminder of silver (Ag) having purity of 99.999 mass% or more, or of a ternary alloy composed of 0.1-4.0 mass% of palladium (Pd), 0.01-2.0 mass% of gold (Au), and 1-50 mass ppm, in total, of at least one kind out of lantern (La), calcium (Ca) or europium (Eu), and the reminder of silver (Ag) having purity of 99.999 mass% or more, where the black shadow of wire is invisible from immediately above the light emission surface of organic silicon resin.

Description

本発明は、青色LED素子と補色関係にある黄色蛍光体を用いた白色発光ダイオード用ボンディングワイヤに関し、特に擬似白色発光ダイオード用ボンディングワイヤに関する。   The present invention relates to a bonding wire for a white light emitting diode using a yellow phosphor having a complementary color relationship with a blue LED element, and more particularly to a bonding wire for a pseudo white light emitting diode.

青色LEDと黄色発光蛍光体を組み合わせた擬似白色発光ダイオードは、視覚上明るくみえることから、さまざまな照明用途に用いられている。この原理は、青色LED素子から射出された450nm近辺の波長の青色レーザ光が蛍光体に吸収されると、補色関係にある590nm近辺の黄色光を新たに発光する蛍光体を用い、この黄色光と蛍光体に吸収されなかった青色光とが混ざり合って視覚上白色にみえることを利用するものである。この擬似白色発光ダイオードには、青色LED素子のパッド電極を配線基板上のリード電極と直交して用いる縦型発光ダイオードと平行して用いる横型発光ダイオードとがある。
従来、青色LED素子のパッド電極と配線基板上のリード電極とを接続するためのボンディングワイヤには金線が用いられてきたが、99.99質量%以上の高純度の金(Au)は、金(Au)元素自体の反射率が低く、特に450nm近辺のレーザ光などの単色光に対しては反射率が40%になるため、有機シリコン樹脂の光出射面直上からみたときにボンディングワイヤの黒い影ができ、視覚上の白色効率が低下するという問題があった。
A pseudo-white light-emitting diode combining a blue LED and a yellow light-emitting phosphor is visually bright and is used in various lighting applications. This principle is based on the use of a phosphor that newly emits yellow light near 590 nm in a complementary color relationship when blue laser light having a wavelength around 450 nm emitted from a blue LED element is absorbed by the phosphor. And blue light that is not absorbed by the phosphor are mixed and appear to be visually white. This pseudo white light emitting diode includes a horizontal light emitting diode that is used in parallel with a vertical light emitting diode in which a pad electrode of a blue LED element is used orthogonal to a lead electrode on a wiring board.
Conventionally, a gold wire has been used as a bonding wire for connecting a pad electrode of a blue LED element and a lead electrode on a wiring board, but high-purity gold (Au) of 99.99% by mass or more is Since the reflectivity of the gold (Au) element itself is low, and the reflectivity is 40% particularly for monochromatic light such as laser light around 450 nm, the bonding wire has a low reflectance when viewed from directly above the light emitting surface of the organic silicon resin. There was a problem that a black shadow was formed and the visual white efficiency was lowered.

このため、これらの波長に対して反射率が100%近くある純銀(Ag)や銀合金をボンディングワイヤに使用することが考えられた。しかし、純銀(Ag)や純銀(Ag)に近い銀合金のボンディングワイヤは、硫化やマイグレーションの問題がある。また、LED素子のパッド電極がアルミニウム(Al)の場合には、これらのボンディングワイヤはAg−Al金属間化合物が形成され、この金属間化合物は使用する環境に水分があると、水分と反応して劣化して白色発光ダイオードの長期信頼性が劣化するという問題があり、ボンディングワイヤとしての使用が制限されていた。   For this reason, it was considered to use pure silver (Ag) or a silver alloy having a reflectance of nearly 100% for these wavelengths for the bonding wire. However, a silver alloy bonding wire close to pure silver (Ag) or pure silver (Ag) has problems of sulfidation and migration. In addition, when the pad electrode of the LED element is aluminum (Al), these bonding wires are formed with an Ag-Al intermetallic compound, and this intermetallic compound reacts with moisture if there is moisture in the environment to be used. As a result, the long-term reliability of the white light-emitting diode deteriorates, and its use as a bonding wire is limited.

上記問題を解決するため、銀(Ag)に別の元素を含有させ、銀(Ag)の純度を下げたボンディングワイヤが開発された。例えば、特開2012−99577号公報には「銀(Ag)を主成分とし、10000〜90000質量ppmの金(Au)、10000〜50000質量ppmのパラジウム(Pd)、10000〜30000質量ppmの銅(Cu)、から選ばれた少なくとも1種以上の成分を含み、塩素(Cl)含有量が1質量ppm未満であることを特徴とするボンディングワイヤ(後述の特許文献1の請求項1)」が請求され、直径16〜25μmのAg−1、2、3質量%Pd合金(同実施例1、2、3)およびAg−1質量%Pd―1.8質量%Au合金(同実施例17)、Ag−2.0質量%Pd―1質量%Au合金(同実施例18)ボンディングワイヤが開示されている。
しかし、上記のAg−Pd二元合金はフリー・エアー・ボール(FAB)を形成したときの溶融ボールの結晶粒が粗く、特に縦型発光ダイオードに用いた場合にはボンディングループが鋭角であるためワイヤ強度が不足するという問題がある。Ag−Pd−Au三元合金も、また、金(Au)が著しく硬さを増すため、FABを形成したときの溶融ボールの結晶粒が硬くかつ粗く、特に縦型発光ダイオードに用いた場合にはワイヤのしなやかさに欠けるという問題がある。
In order to solve the above problem, a bonding wire has been developed in which another element is contained in silver (Ag) to lower the purity of silver (Ag). For example, Japanese Patent Application Laid-Open No. 2012-99777 discloses “Silver (Ag) as a main component, 10,000 to 90000 mass ppm of gold (Au), 10,000 to 50000 mass ppm of palladium (Pd), and 10,000 to 30000 mass ppm of copper. A bonding wire (Claim 1 of Patent Document 1 described later), which includes at least one component selected from (Cu) and has a chlorine (Cl) content of less than 1 ppm by mass. Ag-1, 2, 3 mass% Pd alloy (Examples 1, 2, 3) and Ag-1 mass% Pd-1.8 mass% Au alloy (the Example 17) having a diameter of 16 to 25 μm An Ag-2.0 mass% Pd-1 mass% Au alloy (same example 18) bonding wire is disclosed.
However, the above Ag-Pd binary alloy has a coarse crystal grain of the molten ball when a free air ball (FAB) is formed, and the bonding loop has an acute angle particularly when used in a vertical light emitting diode. There is a problem that the wire strength is insufficient. The Ag-Pd-Au ternary alloy also has a significantly increased hardness due to the fact that gold (Au) has a significantly increased hardness, so that the crystal grains of the molten ball when forming the FAB are hard and rough, particularly when used in vertical light emitting diodes. Has the problem of lacking the flexibility of the wire.

また、特許第4771562号公報には「純度99.99質量%以上の銀(Ag)と純度99.999質量%以上の金(Au)と純度99.99質量%以上のパラジウム(Pd)とからなる三元合金系ボンディングワイヤであって、金(Au)が4〜10質量%、パラジウム(Pd)が2〜5質量%、希土類元素が15〜70質量ppmおよび残部が銀(Ag)からなる半導体素子用Ag−Au−Pd三元合金系ボンディングワイヤ(後述の特許文献2の請求項1および請求項4)」が請求されている。しかし、上記のAg−Au−Pd三元合金系ボンディングワイヤは、金(Au)の量がパラジウム(Pd)の量よりも多いので、赤外分光光度計で測定すると乱反射光に金(Au)の黄色成分が含まれ、白色発光ダイオードとしては不適である。   Further, Japanese Patent No. 4781562 discloses “from silver (Ag) having a purity of 99.99 mass% or more, gold (Au) having a purity of 99.999 mass% or more, and palladium (Pd) having a purity of 99.99 mass% or more. A ternary alloy-based bonding wire consisting of 4 to 10% by weight of gold (Au), 2 to 5% by weight of palladium (Pd), 15 to 70% by weight of rare earth elements, and the balance being silver (Ag). An Ag—Au—Pd ternary alloy bonding wire for semiconductor elements (Claim 1 and Claim 4 of Patent Document 2 described later) is claimed. However, since the above Ag-Au-Pd ternary alloy bonding wire has a larger amount of gold (Au) than that of palladium (Pd), gold (Au) is reflected in irregularly reflected light when measured with an infrared spectrophotometer. The yellow component is contained and is not suitable as a white light emitting diode.

さらに、新たな問題として、銀(Ag)の純度を下げると比抵抗が増加しワイヤ自体が発熱する結果、ワイヤ周縁の有機シリコン樹脂も加熱され、有機シリコン樹脂の屈折率が変化する。また、ボンディングワイヤの最終線径は、最終ダイヤモンドダイスにより仕上げられるが、完全な円形状でないため、青色光や黄色光や白色光が反射・屈折等により複雑な動きをし、銀(Ag)合金の純度を下げると、ボンディングワイヤの黒い影ができるという白色発光ダイオード特有の問題も発生した。   Further, as a new problem, when the purity of silver (Ag) is lowered, the specific resistance increases and the wire itself generates heat. As a result, the organic silicon resin around the wire is also heated, and the refractive index of the organic silicon resin changes. The final wire diameter of the bonding wire is finished by the final diamond die, but it is not a perfect circle, so blue light, yellow light and white light move in a complicated manner due to reflection and refraction, and silver (Ag) alloy When the purity of the light-emitting diode was lowered, a problem peculiar to white light-emitting diodes, in which a black shadow of the bonding wire was generated, also occurred.

特開2012−99577号公報JP2012-99577A 特許第4771562号公報Japanese Patent No. 4771562

本発明の課題は、ボンディングワイヤの黒い影がみえず、かつ、白色発光ダイオードに適したワイヤ強度およびループ形状を有するAg−Au−Pd三元合金またはAg−Au−Pd三元系合金ボンディングワイヤを提供することを目的とする。特に、本発明は、縦型擬似白色発光ダイオードに最適なAg−Au−Pd三元系合金ボンディングワイヤを提供することを目的とする。   An object of the present invention is to provide an Ag—Au—Pd ternary alloy or an Ag—Au—Pd ternary alloy bonding wire that does not show a black shadow of the bonding wire and has a wire strength and a loop shape suitable for a white light emitting diode. The purpose is to provide. In particular, an object of the present invention is to provide an Ag—Au—Pd ternary alloy bonding wire that is optimal for a vertical pseudo white light emitting diode.

本発明の課題を解決するための半導体素子用Ag−Au−Pd三元合金ボンディングワイヤの一つは、黄色蛍光体配合の有機シリコン樹脂で取り囲まれた、ベース基材の銀(Ag)または銀合金層に設置された青色LED素子のパッド電極と配線基板上のリード電極とを接続するためのボンディングワイヤであって、当該ボンディングワイヤが、パラジウム(Pd)が0.1〜4.0質量%、金(Au)が0.01〜2.0質量%および残部が純度99.999質量%以上の銀(Ag)からなる三元合金細線である白色発光ダイオード用ボンディングワイヤである。   One of the Ag—Au—Pd ternary alloy bonding wires for semiconductor elements to solve the problems of the present invention is silver (Ag) or silver of a base substrate surrounded by an organic silicon resin containing a yellow phosphor. A bonding wire for connecting a pad electrode of a blue LED element placed on an alloy layer and a lead electrode on a wiring board, the bonding wire being 0.1 to 4.0% by mass of palladium (Pd) , A bonding wire for a white light-emitting diode, which is a ternary alloy thin wire made of silver (Ag) having a gold (Au) content of 0.01 to 2.0 mass% and the balance of 99.999 mass% or more.

また、本発明の課題を解決するための半導体素子用Ag−Au−Pd三元系合金ボンディングワイヤの一つは、黄色蛍光体配合の有機シリコン樹脂で取り囲まれた、ベース基材の銀(Ag)または銀合金層に設置された青色LED素子のパッド電極と配線基板上のリード電極とを接続するためのボンディングワイヤであって、当該ボンディングワイヤが、パラジウム(Pd)が0.1〜4.0質量%、金(Au)が0.01〜2.0質量%、ランタン(La)、カルシウム(Ca)またはユーロピウム(Eu)のうちの少なくとも1種が合計で1〜50質量ppmおよび残部が純度99.999質量%以上の銀(Ag)からなる三元系合金細線である白色発光ダイオード用ボンディングワイヤである。   One of the Ag—Au—Pd ternary alloy bonding wires for semiconductor elements for solving the problems of the present invention is silver (Ag) of a base substrate surrounded by an organic silicon resin containing a yellow phosphor. ) Or a bonding wire for connecting the pad electrode of the blue LED element placed on the silver alloy layer and the lead electrode on the wiring board, and the bonding wire has palladium (Pd) of 0.1 to 4. 0 mass%, gold (Au) 0.01-2.0 mass%, at least one of lanthanum (La), calcium (Ca) or europium (Eu) in total 1-50 mass ppm and the balance This is a bonding wire for a white light emitting diode, which is a ternary alloy fine wire made of silver (Ag) having a purity of 99.999 mass% or more.

また、本発明の課題を解決するための半導体素子用Ag−Au−Pd三元合金またはAg−Au−Pd三元系合金ボンディングワイヤの好ましい態様の一つは、上記パラジウム(Pd)対金(Au)の比率が2:1〜10:1の範囲内にあることである。   One of preferred embodiments of the Ag—Au—Pd ternary alloy or the Ag—Au—Pd ternary alloy bonding wire for semiconductor elements for solving the problems of the present invention is the palladium (Pd) counterion ( Au) ratio is in the range of 2: 1 to 10: 1.

また、本発明の課題を解決するための半導体素子用Ag−Au−Pd三元合金またはAg−Au−Pd三元系合金ボンディングワイヤの好ましい態様の一つは、青色LED素子上面のパッド電極が純度99.9質量%以上のアルミニウム(Al)金属または0.5〜2.0質量%のシリコン(Si)または銅(Cu)および残部純度99.9質量%以上のアルミニウム(Al)合金であることである。   One of the preferred embodiments of the Ag—Au—Pd ternary alloy or Ag—Au—Pd ternary alloy bonding wire for semiconductor elements for solving the problems of the present invention is that the pad electrode on the upper surface of the blue LED element is Aluminum (Al) metal having a purity of 99.9% by mass or more, or silicon (Si) or copper (Cu) having a purity of 0.5 to 2.0% by mass and an aluminum (Al) alloy having a remaining purity of 99.9% by mass or more. That is.

また、本発明の課題を解決するための半導体素子用Ag−Au−Pd三元合金またはAg−Au−Pd三元系合金ボンディングワイヤの好ましい態様の一つは、青色LED素子の底面がベース基材の銀(Ag)または銀合金層に設置されていることである。   One of the preferred embodiments of the Ag—Au—Pd ternary alloy or Ag—Au—Pd ternary alloy bonding wire for semiconductor elements for solving the problems of the present invention is that the bottom surface of the blue LED element is a base group. It is installed in the silver (Ag) or silver alloy layer of the material.

また、本発明の課題を解決するための半導体素子用Ag−Au−Pd三元合金またはAg−Au−Pd三元系合金ボンディングワイヤの好ましい態様の一つは、ベース基材上の銀(Ag)または銀合金層に設置された青色LED素子のパッド電極がAu−Sn共晶合金で前記銀(Ag)または銀合金層上にハンダ付けされていることである。   One of preferred embodiments of an Ag—Au—Pd ternary alloy or an Ag—Au—Pd ternary alloy bonding wire for a semiconductor device for solving the problems of the present invention is silver (Ag) on a base substrate. Or the pad electrode of the blue LED element placed on the silver alloy layer is soldered on the silver (Ag) or silver alloy layer with an Au—Sn eutectic alloy.

なお、本発明の課題を解決するための半導体素子用Ag−Au−Pd三元合金またはAg−Au−Pd三元系合金ボンディングワイヤは、ダイヤモンドダイスにより断面減少率が99%以上連続して冷間伸線加工され、その後、調質熱処理によってボンディングワイヤの機械的特性が調えられる。   Incidentally, the Ag—Au—Pd ternary alloy for semiconductor elements or the Ag—Au—Pd ternary alloy bonding wire for solving the problems of the present invention has a cross-sectional reduction rate of 99% or more continuously by diamond dies. After wire drawing, the mechanical properties of the bonding wire are adjusted by tempering heat treatment.

(主添加元素)
本発明において、パラジウム(Pd)を0.1〜4.0質量%添加しても、さらに金(Au)を0.01〜2.0質量%添加しても、銀(Ag)中に均一に固溶し、かつ、残りの銀(Ag)が95質量%以上あるので、当該銀合金の青色の反射率にほとんど影響を与えず、450nm近辺の光に対して80%以上の反射率を確保できる。そのため透明な有機シリコン樹脂で取り囲んでも、純金ボンディングワイヤのような黒い影ができることは無い。また、金(Au)をメイン元素(Ag)に対して数%含有させるサブ元素としたときに青色成分が出ないようにするためには、パラジウム(Pd)対金(Au)の比率が2:1〜10:1の範囲内にあることが好ましい。
なお、最終のダイヤモンドダイスの表面性状により純銀表面には数十nmオーダーの微細な傷が発生するが、ワイヤ表面の傷が微細であるため調質熱処理後であってもボンディングワイヤ表面の銀光沢色が保持される。
(Main additive element)
In the present invention, even if palladium (Pd) is added in an amount of 0.1 to 4.0% by mass or even gold (Au) is added in an amount of 0.01 to 2.0% by mass, it is uniform in silver (Ag). In addition, since the remaining silver (Ag) is 95 mass% or more, the blue reflectance of the silver alloy is hardly affected, and the reflectance of 80% or more is applied to light in the vicinity of 450 nm. It can be secured. Therefore, even if surrounded by a transparent organic silicon resin, there is no black shadow like a pure gold bonding wire. In order to prevent a blue component from appearing when gold (Au) is contained as a sub-element containing several percent of the main element (Ag), the ratio of palladium (Pd) to gold (Au) is 2 It is preferably within the range of 1 to 10: 1.
Although fine scratches on the order of several tens of nanometers occur on the pure silver surface due to the surface properties of the final diamond die, the surface of the bonding wire has a silver luster even after tempering heat treatment because the wire surface has fine scratches. The color is preserved.

本発明において、パラジウム(Pd)を0.1〜4.0質量%添加するのは、金(Au)との共添加効果によって純銀(Ag)の硫化やマイグレーションを抑制するためである。パラジウム(Pd)が0.1質量%未満では硫化やマイグレーションを抑制することができない。逆に、パラジウム(Pd)が4.0質量%を超えると、銀光沢色が失われるとともに、ボンディングワイヤの比抵抗が増加し、ワイヤ自体が発熱する結果、黒い影ができやすくなる。よって、パラジウム(Pd)の範囲を0.1〜4.0質量%とした。   In the present invention, 0.1 to 4.0% by mass of palladium (Pd) is added in order to suppress sulfidation or migration of pure silver (Ag) due to the co-addition effect with gold (Au). If palladium (Pd) is less than 0.1% by mass, sulfurization and migration cannot be suppressed. On the other hand, when palladium (Pd) exceeds 4.0% by mass, the silver luster color is lost, the specific resistance of the bonding wire is increased, and the wire itself generates heat, so that a black shadow is easily formed. Therefore, the range of palladium (Pd) was set to 0.1 to 4.0% by mass.

本発明において、金(Au)を0.01〜2.0質量%添加するのは、パラジウム(Pd)との共添加効果によってボンディングワイヤの機械的強度を増し、Ag−Al金属間化合物の形成を避けるためである。金(Au)が0.01質量%未満では、ボンディングワイヤの機械的強度が不十分である。特に縦型擬似白色発光ダイオードに用いると、有機シリコン樹脂で取り囲んだときに注入樹脂の流動抵抗によるボンディングワイヤの変形である樹脂流れを起こしやすくなる。また、金(Au)は著しく硬さを増すため、2.0質量%を超えると、フリー・エアー・ボール(FAB)を形成したときの溶融ボールの結晶粒が硬く、かつ、粗くなる。   In the present invention, the addition of 0.01 to 2.0 mass% of gold (Au) increases the mechanical strength of the bonding wire by the co-addition effect with palladium (Pd), and forms an Ag—Al intermetallic compound. Is to avoid. When the gold (Au) is less than 0.01% by mass, the mechanical strength of the bonding wire is insufficient. In particular, when used in a vertical pseudo white light emitting diode, a resin flow that is a deformation of the bonding wire due to the flow resistance of the injected resin is likely to occur when surrounded by an organic silicon resin. Further, since gold (Au) remarkably increases the hardness, if it exceeds 2.0 mass%, the crystal grains of the molten ball when the free air ball (FAB) is formed become hard and rough.

本発明において、パラジウム(Pd)対金(Au)の比率が2:1〜10:1の範囲内にあることが上記の青色成分が現れないためにも好ましい。しかも、擬似白色発光ダイオードに用いた場合、純銀(Ag)での硫化やマイグレーションを抑制する効果は、上記範囲内の関係にあるときにその効果が大きく、パラジウム(Pd)対金(Au)の比率が10:1に近づくほど硫化やマイグレーションを抑制する効果が高くなる。逆に、パラジウム(Pd)対金(Au)の比率が2:1未満になると、ワイヤ自体が硬くなりがちでループが描きにくくなりやすい。   In the present invention, it is preferable that the ratio of palladium (Pd) to gold (Au) is in the range of 2: 1 to 10: 1 because the blue component does not appear. Moreover, when used in a pseudo-white light emitting diode, the effect of suppressing sulfidation and migration with pure silver (Ag) is significant when there is a relationship within the above range, and the effect of palladium (Pd) versus gold (Au) As the ratio approaches 10: 1, the effect of suppressing sulfidation and migration increases. On the other hand, when the ratio of palladium (Pd) to gold (Au) is less than 2: 1, the wire itself tends to be hard and it is difficult to draw a loop.

(微量添加元素)
本発明のAg−Pd−Au三元系合金は、ランタン(La)、カルシウム(Ca)またはユーロピウム(Eu)のうちの少なくとも1種が合計で1〜50質量ppm添加した合金である。これらの微量添加元素は、Ag−Pd−Au三元合金の色を変化させることはないが、ボンディングワイヤの機械的強度を向上する効果がある。特に、本発明のAg−Pd−Au三元系合金はループ角度が鋭角の縦型擬似白色発光ダイオードに用いるのが好適である。Ag−Pd−Au三元合金にランタン(La)、カルシウム(Ca)またはユーロピウム(Eu)の元素を所定範囲内で添加すると、FABの形状を損なうことなくボンディングワイヤのしなやかさを増す。しかし、これらの元素の合計が1質量ppm未満では添加効果が無く、50質量ppmを超えるとFABを形成したときの溶融ボールの結晶粒が硬くなりすぎ、チップ割れを起こす。よって、ランタン(La)、カルシウム(Ca)またはユーロピウム(Eu)のうちの少なくとも1種が合計で1〜50質量ppmの範囲とした。
(Trace addition element)
The Ag—Pd—Au ternary alloy of the present invention is an alloy to which at least one of lanthanum (La), calcium (Ca), and europium (Eu) is added in a total of 1 to 50 mass ppm. These trace additive elements do not change the color of the Ag—Pd—Au ternary alloy, but have the effect of improving the mechanical strength of the bonding wire. In particular, the Ag—Pd—Au ternary alloy of the present invention is preferably used for a vertical pseudo white light emitting diode having an acute loop angle. When an element of lanthanum (La), calcium (Ca), or europium (Eu) is added to the Ag—Pd—Au ternary alloy within a predetermined range, the flexibility of the bonding wire is increased without impairing the shape of the FAB. However, if the total of these elements is less than 1 ppm by mass, there is no effect of addition, and if it exceeds 50 ppm by mass, the crystal grains of the molten ball when FAB is formed become too hard and chip cracking occurs. Therefore, at least one of lanthanum (La), calcium (Ca), and europium (Eu) is in the range of 1 to 50 mass ppm in total.

本発明において、青色LED素子の底面は、ベース基材の銀(Ag)または銀合金層に設置されていることが好ましい。銀(Ag)または銀合金層の反射率が高いので、高輝度が得られ、本発明のAg−Pd−Au三元合金またはAg−Pd−Au三元系合金のボンディングワイヤの黒い影が出にくくなるためである。より好ましくは、ベース基材に逆円錐台の窪みが設けられ、そこに青色LED素子の底面が設置されていることである。有機シリコン樹脂の光出射面以外の面がすべて反射されるからである。   In this invention, it is preferable that the bottom face of a blue LED element is installed in the silver (Ag) or silver alloy layer of a base base material. Since the reflectance of the silver (Ag) or silver alloy layer is high, high brightness is obtained, and a black shadow of the bonding wire of the Ag—Pd—Au ternary alloy or the Ag—Pd—Au ternary alloy of the present invention appears. This is because it becomes difficult. More preferably, the base substrate is provided with a concave truncated conical depression, and the bottom surface of the blue LED element is provided there. This is because all surfaces other than the light emitting surface of the organic silicon resin are reflected.

また、青色LED素子のパッド電極がAu−Sn共晶合金で前記銀(Ag)または銀合金層上にハンダ付けされていることがより好ましい。青色LED素子が発熱しても、熱放散性が良いからである。   More preferably, the pad electrode of the blue LED element is soldered on the silver (Ag) or silver alloy layer with an Au—Sn eutectic alloy. This is because even if the blue LED element generates heat, heat dissipation is good.

上述のように、本発明のAg−Pd−Au三元合金またはAg−Pd−Au三元系合金のボンディングワイヤを擬似白色発光ダイオードに用いた場合、銀(Ag)の純度が95質量%以上あるので、450nmの青色光に対して80%以上の反射率を確保でき、純銀(Ag)に匹敵する高輝度が確保される。そのため、有機シリコン樹脂の光出射面直上に本発明のボンディングワイヤの黒い影ができることはない。
また、本発明のAg−Pd−Au三元合金またはAg−Pd−Au三元系合金のボンディングワイヤは、縦型擬似白色発光ダイオードでも横型擬似白色発光ダイオードでもボンディング強度があり、1種類のワイヤで擬似白色発光ダイオード用ボンディングワイヤとして用いることができる効果がある。
また、本発明のAg−Pd−Au三元合金またはAg−Pd−Au三元系合金のボンディングワイヤは、ボンディングワイヤの機械的強度に影響を与える金(Au)の添加量が2.0質量%以下なので、FABを形成したときの溶融ボールの結晶粒が硬くなりすぎることも無い。また、本発明のAg−Pd−Au三元合金またはAg−Pd−Au三元系合金のボンディングワイヤは、純度99.9質量%以上のアルミニウム(Al)金属または0.5〜2.0質量%のシリコン(Si)または銅(Cu)および残部純度99.9質量%以上のアルミニウム(Al)合金からなるやわらかいアルミパッドを用いた場合でも、本発明のボンディングワイヤによってチップ割れやパッドめくれが生じることは無い。
As described above, when the bonding wire of the Ag—Pd—Au ternary alloy or the Ag—Pd—Au ternary alloy of the present invention is used for the pseudo white light emitting diode, the purity of silver (Ag) is 95% by mass or more. Therefore, a reflectance of 80% or more can be ensured for 450 nm blue light, and high luminance comparable to pure silver (Ag) is ensured. Therefore, a black shadow of the bonding wire of the present invention is not formed immediately above the light emitting surface of the organic silicon resin.
In addition, the bonding wire of the Ag—Pd—Au ternary alloy or the Ag—Pd—Au ternary alloy according to the present invention has bonding strength with either a vertical pseudo white light emitting diode or a horizontal pseudo white light emitting diode, and has one kind of wire. Thus, it can be used as a bonding wire for a pseudo white light emitting diode.
The Ag—Pd—Au ternary alloy or Ag—Pd—Au ternary alloy bonding wire of the present invention has an addition amount of 2.0 mass of gold (Au) that affects the mechanical strength of the bonding wire. % Or less, the crystal grains of the molten ball when the FAB is formed do not become too hard. The bonding wire of the Ag—Pd—Au ternary alloy or the Ag—Pd—Au ternary alloy of the present invention is an aluminum (Al) metal having a purity of 99.9% by mass or more, or 0.5 to 2.0 mass. Even when a soft aluminum pad made of an aluminum (Al) alloy made of silicon (Si) or copper (Cu) and a remaining purity of 99.9% by mass or more is used, the bonding wire of the present invention causes chip cracking and pad turning. There is nothing.

表1左欄に示される成分組成を有するAg−Pd−Au三元合金またはAg−Pd−Au三元系合金(いずれも銀(Ag)の純度は99.9999質量%以上である)を通常の純金ボンディングワイヤと同様にして、溶解し、5mm径で連続鋳造した。この連続鋳造した太線を引き続きそのまま湿式で25μmの最終線径までダイヤモンドダイスにより断面減少率が99.9%以上の連続伸線をし、所定の調質熱処理を施して、25μmの線径を有する本発明に係る白色発光ダイオード用ボンディングワイヤ(以下、「本発明ワイヤ」という)1〜20と本発明の組成範囲に入らない比較品のボンディングワイヤ3および4および従来品のAu−Pd合金ボンディングワイヤ1および2(以下、まとめて「比較ワイヤ」という)1〜4を製造した。
本発明における調質熱処理は、金線の場合と同様に、管状炉において、温度およびスピードを調整の上、引張り破断試験機で伸びが4%(通常品)となるように調整するための熱処理である。
Usually, an Ag—Pd—Au ternary alloy or an Ag—Pd—Au ternary alloy having a composition shown in the left column of Table 1 (both of which the purity of silver (Ag) is 99.9999% by mass or more) In the same manner as the pure gold bonding wire, it was melted and continuously cast with a diameter of 5 mm. The continuously cast thick wire is continuously wetted to a final wire diameter of 25 μm with a diamond die and continuously drawn with a cross-section reduction rate of 99.9% or more, and subjected to a predetermined tempering heat treatment to have a wire diameter of 25 μm. Bonding wires for white light emitting diodes (hereinafter referred to as “wires of the present invention”) 1 to 20 according to the present invention, comparative bonding wires 3 and 4 that do not fall within the composition range of the present invention, and conventional Au—Pd alloy bonding wires 1 and 2 (hereinafter collectively referred to as “comparison wires”) 1 to 4 were produced.
As in the case of gold wire, the tempering heat treatment in the present invention is a heat treatment for adjusting the temperature and speed in a tubular furnace and adjusting the elongation to 4% (normal product) with a tensile fracture tester. It is.

Figure 2014116387
Figure 2014116387

実施例1〜6が請求項1に係る発明、実施例7〜20が請求項2に係る発明、実施例1〜4、7〜16および18〜20が請求項3に係る発明である。   Examples 1 to 6 are inventions according to claim 1, Examples 7 to 20 are inventions according to claim 2, Examples 1 to 4, 7 to 16, and 18 to 20 are inventions according to claim 3.

これらの本発明ワイヤ1〜20および比較ワイヤ1〜4をキューリック・アンド・ソファ製のワイヤボンダー(製品名:「Maxμm ultra」)にセットし、ダミーの半導体IC(テストパターンをウェーハに埋め込んだもの、略称「TEG」)表面のAl−1.0質量%Si−0.5質量%Cu合金からなる60μm角アルミパッドに、吹付け窒素雰囲気下、45μm狙いでフリー・エアー・ボール(FAB)を作製し、基材の加熱温度:200℃、ループ長さ:5mm、ループ高さ:220μm、圧着ボール径:54μm、圧着ボール高さ:8μm、の条件で第一ボンディングをしてから真空蒸着した純銀(Ag)層上に超音波接合で第二ボンドをした。このときのループ高さのばらつきおよび第一ボンディング時における溶融ボールのシェア強度について評価を行なった。   These inventive wires 1 to 20 and comparative wires 1 to 4 are set on a wire bonder (product name: “Max μm ultra”) made by Curik & Sofa, and a dummy semiconductor IC (test pattern is embedded in the wafer) Abbreviation “TEG”) Free air ball (FAB) aiming at 45 μm in a blowing nitrogen atmosphere on a 60 μm square aluminum pad made of Al-1.0 mass% Si-0.5 mass% Cu alloy on the surface After the first bonding under the conditions of substrate heating temperature: 200 ° C., loop length: 5 mm, loop height: 220 μm, pressure ball diameter: 54 μm, pressure ball height: 8 μm, vacuum deposition is performed. A second bond was made by ultrasonic bonding on the pure silver (Ag) layer. The variation in the loop height at this time and the shear strength of the molten ball during the first bonding were evaluated.

ついで、第一ボンディングをしたアルミパッドを水酸化ナトリウム溶液で溶解し、パッドダメージの評価を行った。さらに、車載部品の品質規格AEC−Q100に準拠して、175℃で1000時間放置した後、放置前の電気抵抗に対する放置後の電気抵抗の上昇率を評価した。また、uHAST装置で1000時間放置した後、放置前の電気抵抗に対する放置後の電気抵抗の上昇率を評価した。   Next, the aluminum pad subjected to the first bonding was dissolved with a sodium hydroxide solution, and the pad damage was evaluated. Furthermore, in accordance with the quality standard AEC-Q100 for in-vehicle components, after leaving at 175 ° C. for 1000 hours, the rate of increase in electrical resistance after being left to electrical resistance before being left was evaluated. In addition, the rate of increase in electrical resistance after being left as it was relative to the electrical resistance before being left standing was evaluated after being left for 1000 hours in the uHAST apparatus.

また、別途、10mm径で連続鋳造したワイヤの一部をカットし、ロール圧延により平板加工をし、パーキンエルマー社製の紫外可視近赤外分光光度計(型式LAMBDA750)で全可視光域の反射率を測定し、450nmの反射率を評価した。   Separately, a part of the wire continuously cast with a diameter of 10 mm is cut, flattened by roll rolling, and reflected in the entire visible light range by an ultraviolet-visible near-infrared spectrophotometer (model LAMBDA750) manufactured by PerkinElmer. The reflectance was measured and the reflectance at 450 nm was evaluated.

なお、5mm厚の黄色透明アクリル板の裏面に25μm径のボンディングワイヤを貼り付け、後方から450nmの青色光源を照射して黄色透明アクリル板の表面の影を目視で観察したところ、比較例2のボンディングワイヤだけワイヤ部分が黒く観察され、その他の実施例1〜20および比較例1、3、4のボンディングワイヤは黒い影がみられなかった。   In addition, when a bonding wire having a diameter of 25 μm was attached to the back surface of the 5 mm thick yellow transparent acrylic plate, and the shadow of the surface of the yellow transparent acrylic plate was visually observed by irradiating a 450 nm blue light source from the rear, Only the bonding wire was observed to have a black wire portion, and no black shadow was observed in the bonding wires of other Examples 1 to 20 and Comparative Examples 1, 3, and 4.

また、調質熱処理前と調質熱処理後の実施例および比較例の細線の反射率を測定し、調質熱処理前後で変わりないことを確認した。   Moreover, the reflectance of the thin wire | line of the Example and comparative example before and after tempering heat processing was measured, and it confirmed that it did not change before and after tempering heat processing.

[圧着ボールのシェア評価方法]
各々の合金組成に対し、専用のICチップにワイヤボンダーでボンディングを行い、100点について、ダージ社製の製品名「万能ボンドテスター(BT)(型式4000)」を用い、第一ボンド時の圧着ボールのシェア強度評価を行った。それらの評価結果を表1右欄に示す。
[Share ball evaluation method]
Each alloy composition is bonded to a dedicated IC chip with a wire bonder, and 100 points are bonded using the product name “Universal Bond Tester (BT) (model 4000)” manufactured by Dirge. Ball shear strength was evaluated. The evaluation results are shown in the right column of Table 1.

[高温放置・HAST信頼性評価方法]
各々の合金組成に対し、専用のICチップ(200/平方インチ)にワイヤボンダーでボンディングを行い、専用のプラスチック樹脂で封止し、電気抵抗測定用サンプルを作製した。そのサンプルを高温放置信頼性評価では175℃の温風乾燥炉内で1000時間放置し、HAST信頼性試験では高度加速寿命試験(HAST)装置内に温度130℃、湿度85%、圧力2.2気圧の条件で1000時間放置後、電気抵抗を測定した。電気抵抗は、ケースレー・インスツルメンツ社製の製品名「ソースメーター(型式2004)」を用い、専用のICソケットおよび専用に構築した自動測定システムで行った。測定方法は、いわゆる直流四端子法により、測定用プローブから隣接する外部リード間(ICチップ上のパッドが短絡した対を選択)に一定電流を流し、プローブ間の電圧を測定した。
電気抵抗は外部リード100対(200ピン)について、それぞれ放置前と放置後に電気抵抗測定を行い電気抵抗の上昇率を評価した。それらの評価結果を表1右欄に示す。
[High temperature storage and HAST reliability evaluation method]
For each alloy composition, a dedicated IC chip (200 / square inch) was bonded with a wire bonder and sealed with a dedicated plastic resin to prepare a sample for measuring electrical resistance. The sample was left in a hot air drying oven at 175 ° C. for 1000 hours for high temperature storage reliability evaluation, and in the HAST reliability test, the temperature was 130 ° C., humidity 85%, pressure 2.2 in a highly accelerated life test (HAST) apparatus. The electrical resistance was measured after being allowed to stand for 1000 hours under atmospheric pressure conditions. The electrical resistance was measured using a product name “source meter (model 2004)” manufactured by Keithley Instruments, with a dedicated IC socket and a dedicated automatic measurement system. The measurement method was a so-called DC four-terminal method, in which a constant current was passed between adjacent external leads from the measurement probe (a pair in which the pads on the IC chip were short-circuited), and the voltage between the probes was measured.
For the electrical resistance, 100 pairs of external leads (200 pins) were measured before and after leaving, and the rate of increase in electrical resistance was evaluated. The evaluation results are shown in the right column of Table 1.

表1右欄中、「1stボールシェア」は、第一ボンドにおけるシェア荷重値を示し、◎は12kg/mm以上、○は10kg/mm以上、△は8kg/mm以上をそれぞれ示し、そして、8kg/mm未満もしくはボール剥がれが発生した場合は、×を示す。
また、表1右欄中、「チップダメージ」は、水酸化ナトリウム水溶液でアルミパッドを溶かした後にチップを実体顕微鏡で観察した結果を示し、傷やクラックが少しでも入っている場合は×とし、傷やクラックがまったくない場合を◎として、それぞれ示す。
また、表1右欄中、「高温放置信頼性」は、175℃で1000時間放置した後、放置前の電気抵抗に対する電気抵抗の上昇率を示し、◎は20%以下、○は50%以下、×は50%超を、それぞれ示す。
また、表1右欄中、「HAST信頼性」は、HAST装置放置前の電気抵抗値に対する放置後の電気抵抗の上昇率を示し、◎は20%以下、○は50%以下、×は50%超を、それぞれ示す。
また、表1右欄中、「反射率」は、450nmの波長における反射率を示し、◎は85%以上、○は80%以上、△は80%未満をそれぞれ示す。
In Table 1 right column, “1st ball share” indicates a shear load value in the first bond, ◎ indicates 12 kg / mm 2 or more, ◯ indicates 10 kg / mm 2 or more, and Δ indicates 8 kg / mm 2 or more, And when less than 8 kg / mm < 2 > or ball peeling generate | occur | produced, x is shown.
In the right column of Table 1, “chip damage” indicates the result of observing the chip with a stereomicroscope after dissolving the aluminum pad with an aqueous sodium hydroxide solution. The cases where there are no scratches or cracks are indicated as ◎.
In the right column of Table 1, “high temperature storage reliability” indicates the rate of increase in electrical resistance with respect to the electrical resistance after storage at 175 ° C. for 1000 hours, ◎: 20% or less, ○: 50% or less , X represents more than 50%, respectively.
In the right column of Table 1, “HAST reliability” indicates the rate of increase in electrical resistance after leaving the HAST device before leaving, ◎ is 20% or less, ○ is 50% or less, and × is 50 Each indicates more than%.
In the right column of Table 1, “Reflectance” indicates reflectance at a wavelength of 450 nm, ◎ indicates 85% or more, ◯ indicates 80% or more, and Δ indicates less than 80%.

表1右欄に示される結果から明らかなように、本発明のAg−Pd−Au三元合金またはAg−Pd−Au三元系合金のボンディングワイヤは、ボンディングワイヤの黒い影が見えない効果のほかに、1stボールの接合性がよく、チップダメージが発生せず、高温放置後およびHAST評価後の電気抵抗の上昇が少なく、反射率が高い。一方、比較ワイヤ2は黒い影がみえ、比較ワイヤ1、3および4は、黒い影ができないものの、ボンディング特性が不十分で、これらの特性のうち少なくともいずれか一つは不良となることが分かる。   As is apparent from the results shown in the right column of Table 1, the bonding wire of the Ag—Pd—Au ternary alloy or the Ag—Pd—Au ternary alloy of the present invention has an effect that the black shadow of the bonding wire is not visible. In addition, the bonding performance of the 1st ball is good, chip damage does not occur, the increase in electrical resistance after standing at high temperature and after HAST evaluation is small, and the reflectance is high. On the other hand, the comparison wire 2 has a black shadow, and the comparison wires 1, 3 and 4 cannot have a black shadow, but the bonding characteristics are insufficient, and at least one of these characteristics is defective. .

本発明のボンディングワイヤは、縦型擬似白色発光ダイオードにも横型擬似白色発光ダイオードにも適用でき、広く白色発光ダイオードの用途がある。
The bonding wire of the present invention can be applied to both vertical pseudo white light emitting diodes and horizontal pseudo white light emitting diodes, and has wide applications for white light emitting diodes.

Claims (6)

黄色蛍光体配合の有機シリコン樹脂で取り囲まれた、ベース基材の銀(Ag)または銀合金層に設置された青色LED素子のパッド電極と配線基板上のリード電極とを接続するためのボンディングワイヤであって、当該ボンディングワイヤが、パラジウム(Pd)が0.1〜4.0質量%、金(Au)が0.01〜2.0質量%および残部が純度99.999質量%以上の銀(Ag)からなる三元合金細線であることを特徴とする白色発光ダイオード用ボンディングワイヤ。   Bonding wire for connecting the pad electrode of the blue LED element placed on the silver (Ag) or silver alloy layer of the base substrate and the lead electrode on the wiring board, surrounded by an organic silicon resin containing a yellow phosphor The bonding wire is silver having a palladium (Pd) content of 0.1-4.0 mass%, a gold (Au) content of 0.01-2.0 mass%, and the balance of 99.999 mass% or more. A bonding wire for a white light emitting diode, which is a ternary alloy thin wire made of (Ag). 黄色蛍光体配合の有機シリコン樹脂で取り囲まれた、ベース基材の銀(Ag)または銀合金層に設置された青色LED素子のパッド電極と配線基板上のリード電極とを接続するためのボンディングワイヤであって、当該ボンディングワイヤがパラジウム(Pd)が0.1〜4.0質量%、金(Au)が0.01〜2.0質量%、ランタン(La)、カルシウム(Ca)またはユーロピウム(Eu)のうちの少なくとも1種が合計で1〜50質量ppmおよび残部が純度99.999質量%以上の銀(Ag)からなる三元系合金細線であることを特徴とする白色発光ダイオード用ボンディングワイヤ。   Bonding wire for connecting the pad electrode of the blue LED element placed on the silver (Ag) or silver alloy layer of the base substrate and the lead electrode on the wiring board, surrounded by an organic silicon resin containing a yellow phosphor In the bonding wire, palladium (Pd) is 0.1 to 4.0% by mass, gold (Au) is 0.01 to 2.0% by mass, lanthanum (La), calcium (Ca) or europium ( Bonding for white light-emitting diodes, characterized in that at least one of Eu) is a ternary alloy thin wire made of silver (Ag) having a total of 1 to 50 mass ppm and the balance of 99.999 mass% or more Wire. 上記パラジウム(Pd)対金(Au)の比率が2:1〜10:1の範囲内にある請求項1または請求項2に記載の白色発光ダイオード用ボンディングワイヤ。   The white light emitting diode bonding wire according to claim 1 or 2, wherein a ratio of the palladium (Pd) to gold (Au) is in a range of 2: 1 to 10: 1. 青色LED素子上面のパッド電極が純度99.9質量%以上のアルミニウム(Al)金属または0.5〜2.0質量%のシリコン(Si)または銅(Cu)および残部純度99.9質量%以上のアルミニウム(Al)合金である請求項1または請求項2のいずれかに記載の白色発光ダイオード用ボンディングワイヤ。   The pad electrode on the top surface of the blue LED element is aluminum (Al) metal having a purity of 99.9% by mass or more, or silicon (Si) or copper (Cu) having a purity of 0.5 to 2.0% by mass, and the remaining purity is 99.9% by mass or more. The white light emitting diode bonding wire according to claim 1, wherein the bonding wire is an aluminum (Al) alloy. 青色LED素子の底面がベース基材の銀(Ag)または銀合金層に設置されている請求項1または請求項2のいずれかに記載の白色発光ダイオード用ボンディングワイヤ。   The white light emitting diode bonding wire according to claim 1, wherein a bottom surface of the blue LED element is disposed on silver (Ag) or a silver alloy layer of the base substrate. ベース基材上の銀(Ag)または銀合金層に設置された青色LED素子のパッド電極がAu−Sn共晶合金で前記銀(Ag)または銀合金層上にハンダ付けされている請求項1または請求項2のいずれかに記載の白色発光ダイオード用ボンディングワイヤ。   The pad electrode of the blue LED element installed in the silver (Ag) or silver alloy layer on the base substrate is soldered on the silver (Ag) or silver alloy layer with an Au-Sn eutectic alloy. Or the bonding wire for white light emitting diodes in any one of Claim 2.
JP2012267962A 2012-12-07 2012-12-07 Bonding wire for white light emitting diode Expired - Fee Related JP6276501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012267962A JP6276501B2 (en) 2012-12-07 2012-12-07 Bonding wire for white light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267962A JP6276501B2 (en) 2012-12-07 2012-12-07 Bonding wire for white light emitting diode

Publications (2)

Publication Number Publication Date
JP2014116387A true JP2014116387A (en) 2014-06-26
JP6276501B2 JP6276501B2 (en) 2018-02-07

Family

ID=51172107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267962A Expired - Fee Related JP6276501B2 (en) 2012-12-07 2012-12-07 Bonding wire for white light emitting diode

Country Status (1)

Country Link
JP (1) JP6276501B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160025394A (en) * 2014-08-27 2016-03-08 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Wire for bonding and method of manufacturing the same
WO2017154453A1 (en) * 2016-03-11 2017-09-14 タツタ電線株式会社 Bonding wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771562B1 (en) * 2011-02-10 2011-09-14 田中電子工業株式会社 Ag-Au-Pd ternary alloy bonding wire
JP2012099577A (en) * 2010-10-29 2012-05-24 Sumitomo Metal Mining Co Ltd Bonding wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099577A (en) * 2010-10-29 2012-05-24 Sumitomo Metal Mining Co Ltd Bonding wire
JP4771562B1 (en) * 2011-02-10 2011-09-14 田中電子工業株式会社 Ag-Au-Pd ternary alloy bonding wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160025394A (en) * 2014-08-27 2016-03-08 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Wire for bonding and method of manufacturing the same
KR101681616B1 (en) * 2014-08-27 2016-12-01 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Wire for bonding and method of manufacturing the same
WO2017154453A1 (en) * 2016-03-11 2017-09-14 タツタ電線株式会社 Bonding wire
JPWO2017154453A1 (en) * 2016-03-11 2018-08-09 タツタ電線株式会社 Bonding wire
KR20180123472A (en) * 2016-03-11 2018-11-16 타츠타 전선 주식회사 Bonding wire
KR102455208B1 (en) 2016-03-11 2022-10-14 타츠타 전선 주식회사 bonding wire

Also Published As

Publication number Publication date
JP6276501B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5981314B2 (en) Bonding wires for semiconductor devices
CN100487883C (en) Au alloy bonding wire
JP4771562B1 (en) Ag-Au-Pd ternary alloy bonding wire
JP2014222725A (en) Bonding wire for high-speed signal
TWI512121B (en) Copper wire for bonding applications
US8101030B2 (en) Manufacturing method for composite alloy bonding wire
EP2768019A2 (en) Copper bond wire and method of making the same
JP5671512B2 (en) Bonding wire
JP2014179412A (en) Bonding wire
JP6276501B2 (en) Bonding wire for white light emitting diode
CN108796269A (en) Billon bonding wire and its manufacturing method
Wu et al. Bonding of Ag-alloy wire in LED packages
WO2012117512A1 (en) BONDING WIRE OF GOLD (Au) ALLOY
JP2006351701A (en) Gold alloy wire for bonding wire having high initial junction property, high junction reliability, high circularity of compression bonding ball, high linearity, high resin flow resistance and low specific resistance
JP6103806B2 (en) Ball bonding wire
KR102460206B1 (en) bonding wire
JP6714150B2 (en) Bonding wire and semiconductor device
WO2024014268A1 (en) Bonding wire for light-emitting diode (led) and manufacturing method for bonding wire for led
JP5080682B1 (en) Gold-platinum-palladium alloy bonding wire
Murali et al. Basics of thermosonic bonding of fine alloyed Ag wires
KR20140049730A (en) Ag alloy wire for semiconductor package
JP2008027951A (en) Gold alloy for connecting semiconductor device
JP2011142163A (en) GOLD (Au) ALLOY BONDING WIRE
JP2007332393A (en) 3n gold alloy bonding wire
TW201342558A (en) Ag-based alloy bonding wire for semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161104

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180112

R150 Certificate of patent or registration of utility model

Ref document number: 6276501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees