JP2008027951A - Gold alloy for connecting semiconductor device - Google Patents

Gold alloy for connecting semiconductor device Download PDF

Info

Publication number
JP2008027951A
JP2008027951A JP2006195328A JP2006195328A JP2008027951A JP 2008027951 A JP2008027951 A JP 2008027951A JP 2006195328 A JP2006195328 A JP 2006195328A JP 2006195328 A JP2006195328 A JP 2006195328A JP 2008027951 A JP2008027951 A JP 2008027951A
Authority
JP
Japan
Prior art keywords
mass
wire
ppm
alloy
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195328A
Other languages
Japanese (ja)
Inventor
Michitaka Mikami
道孝 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2006195328A priority Critical patent/JP2008027951A/en
Publication of JP2008027951A publication Critical patent/JP2008027951A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012033N purity grades, i.e. 99.9%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gold alloy for connecting a semiconductor device in which breakage or stripping of a wire is prevented in heat cycle after bonding. <P>SOLUTION: The gold alloy for connecting a semiconductor device consists of 0.01-2 mass% of Cu, 0.01-0.3 mass% of Ge, and the reminder of Au (a). Assuming a first additive element group contains total 1-100 mass ppm of one kind or two kinds of Be and In (b), a second additive element group contains total 1-100 mass ppm of one kind or more than one kind of Mg, Sn, Si, Ga, Bi and Sr (c), and a third additive element group contains total 1-50 mass ppm of one kind or two kinds of B and Li (d); any one or any two or three of the first, second and third additive element groups are added to the (a) alloy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置を接続するための金合金で、特に接続後に複数回の加熱・冷却の熱サイクルを伴う用途に適したボンディングワイヤまたはバンプワイヤに関する。   The present invention relates to a gold alloy for connecting a semiconductor device, and more particularly to a bonding wire or a bump wire suitable for an application involving a plurality of heating / cooling thermal cycles after connection.

ボンディングワイヤは、一般的に半導体チップ上の電極とリードフレームの端子間を結線する金属線であり、半導体パッケージ内で3次元的に配線される。金属線の種類は、さまざまなものが開発されているが、基本的に純度99.99質量%以上のAuによって代表される。
一方、Cuを1〜5質量%未満含有したAu合金、それにCa、Ge、Be、La、Inの1種または2種以上を合計で0.0003〜0.01質量%を添加したもの、あるいは、Cuを1〜5質量%未満と、Ptを1〜5質量%未満含有したAu合金、さらにはそれにCa、Ge、Be、La、Inの1種または2種以上を合計で0.0003〜0.01質量%を添加したもの(特許文献1参照)もある。この特許文献に開示されるものは、半導体素子の微細化・高密度化に対応すべく、ボンディングワイヤの細線化(例えば線径20μm以下ないし15μm以下)してもワイヤに必要な強度を保たせようとするものである。
The bonding wire is generally a metal wire that connects the electrode on the semiconductor chip and the terminal of the lead frame, and is three-dimensionally wired in the semiconductor package. Various types of metal wires have been developed, and are basically represented by Au having a purity of 99.99% by mass or more.
On the other hand, an Au alloy containing less than 1 to 5% by mass of Cu, and one or two or more of Ca, Ge, Be, La and In added with a total of 0.0003 to 0.01% by mass, or In addition, an Au alloy containing less than 1 to 5% by mass of Cu and less than 1 to 5% by mass of Pt, and further, one or more of Ca, Ge, Be, La, and In may be added in a total of 0.0003 to Some have added 0.01% by mass (see Patent Document 1). In this patent document, in order to cope with the miniaturization and high density of semiconductor elements, even if the bonding wire is thinned (for example, the wire diameter is 20 μm or less to 15 μm or less), the required strength of the wire is maintained. It is about to try.

ボンディングワイヤの第一ボンドの接続技術は、超音波併用熱圧着方式が用いられる。ボンディングワイヤの先端をアーク入熱で加熱溶融させ、その溶融ボール部を半導体素子の電極上に圧着接合させる。その後、ワイヤはキャピラリーによってループを描いた後、外部端子のリード側に第二ボンドされる。
第二ボンドの接続技術は、超音波圧着方式が用いられ、ワイヤは外部リード端子へ直接ウェッジ接合される。そして、最終的に樹脂モールドされ、半導体装置が完成する。
このようにして製造された半導体装置におけるボンディングワイヤの欠陥は、主に樹脂封止時に発生し、ボンディングワイヤのワイヤ流れや蛇行、切断が一般的である。
As a connection technique for the first bond of the bonding wire, an ultrasonic combined thermocompression method is used. The tip of the bonding wire is heated and melted by arc heat input, and the molten ball portion is pressure bonded to the electrode of the semiconductor element. Then, after drawing a loop with a capillary, the wire is second bonded to the lead side of the external terminal.
The connection technique of the second bond uses an ultrasonic crimping method, and the wire is directly wedge-bonded to the external lead terminal. Finally, resin molding is performed to complete the semiconductor device.
Bonding wire defects in the semiconductor device manufactured in this manner mainly occur during resin sealing, and the wire flow, meandering, and cutting of the bonding wire are common.

すなわち、ボンディング時にはワイヤ流れなどのボンディング不良が無い半導体装置であっても、その後の半導体の組立作業において180℃前後のモールド処理や260℃前後のPbフリーのキュア処理など、加熱工程が複数回行われると、ボンディングワイヤと電極やリードフレームの接合界面からボンディングワイヤが破断したり、ステッチ部から剥離したりすることがある。これは、接合されたボンディングワイヤがモールド樹脂やリードフレーム等の熱膨脹・熱収縮に対して追従できないために生じる現象である。   That is, even in a semiconductor device that does not have bonding defects such as wire flow during bonding, the heating process is performed several times in subsequent semiconductor assembly operations, such as mold processing at around 180 ° C. and Pb-free curing at around 260 ° C. As a result, the bonding wire may be broken from the bonding interface between the bonding wire and the electrode or the lead frame, or may be peeled off from the stitch portion. This is a phenomenon that occurs because the bonded bonding wire cannot follow the thermal expansion / contraction of the mold resin, the lead frame, or the like.

従来は、このような欠点に対し、ワイヤの高温変形能を維持させるために、Caや希土類元素の添加量が少ない、軟質系ワイヤにより対応してきた。これは、添加元素が多くなる程、熱応力に対する追随性が低下するからである。しかし今日、「ボンディングワイヤと電極との接合部における接合信頼性を向上するには、ボンディングワイヤ中に、Cu、Pd、Pt、Zn、Agから選ばれる少なくとも1種以上の元素の総計濃度が0.01〜1.5質量%の範囲であり、残部が金及び不可避不純物からなる金合金ボンディングワイヤであることが有効であることを見出した。」(特許文献2参照)ことも報告されている。この特許文献2に開示されるものは、環境への負荷が懸念されるBr、Sb等の元素を低減あるいは削除し、P、Mg、Alの少なくとも1種を含有する「環境調和封止樹脂」向けに開発されたものである。   Conventionally, in order to maintain the high temperature deformability of the wire, such a defect has been dealt with by using a soft wire with a small amount of Ca or rare earth element added. This is because the followability to thermal stress decreases as the additive element increases. However, today, “in order to improve the bonding reliability at the bonding portion between the bonding wire and the electrode, the total concentration of at least one element selected from Cu, Pd, Pt, Zn, and Ag is 0 in the bonding wire. It was also found that it was effective to be a gold alloy bonding wire consisting of gold and inevitable impurities in the range of 0.01 to 1.5% by mass ”(see Patent Document 2). . What is disclosed in this Patent Document 2 is an “environmentally friendly sealing resin” that reduces or eliminates elements such as Br and Sb, which are concerned about the burden on the environment, and contains at least one of P, Mg, and Al. It was developed for.

このように、近年、集積回路の集積度が向上し、ボンディングワイヤが25μmから20μmへと細線化してきた結果、軟質系ワイヤによるループ形成が困難になってきておりワイヤの高強度化が望まれる。しかも、半導体装置の用途は熱電機器や車載用途へ広がり、ワイヤ自身へ150〜280℃の加熱・冷却の熱サイクルが常時行われるようにもなってきたため、従来のCaや希土類元素によるワイヤの高強度化では対応できない。また、これらの欠陥はボンディングワイヤと電極との接合界面で生じるため、程度の差こそあるものの、バンプワイヤでも同様の課題が発生してくるものと推測される。   Thus, in recent years, the degree of integration of integrated circuits has been improved, and bonding wires have been thinned from 25 μm to 20 μm. As a result, it has become difficult to form loops with soft wires, and it is desirable to increase the strength of the wires. . Moreover, the use of semiconductor devices has expanded to thermoelectric equipment and in-vehicle applications, and the heating and cooling cycles of 150 to 280 ° C. have been constantly performed on the wires themselves. It cannot be supported by strengthening. In addition, since these defects occur at the bonding interface between the bonding wire and the electrode, it is estimated that the same problem occurs even with the bump wire, although there is a difference in degree.

特開平2−119148号公報Japanese Patent Laid-Open No. 2-119148 特開2003−133362号公報JP 2003-133362 A

本発明は、上記ボンディング後の熱サイクルにおけるワイヤの破断や剥離現象を発生させない半導体装置接続用金合金を提供することを課題とする。   It is an object of the present invention to provide a gold alloy for connecting a semiconductor device that does not cause a wire breakage or peeling phenomenon in the thermal cycle after bonding.

上記の課題を解決するための、本発明のボンディングワイヤ用金合金は、以下の通りである。
(a) Cu0.01〜2質量%、Ge0.01〜0.3質量%、および残部Auからなることを特徴とする半導体装置接続用金合金。
(b) Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。
(c) Cu0.01〜2質量%、Ge0.01〜0.3質量%、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。
(d) Cu0.01〜2質量%、Ge0.01〜0.3質量%、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。
The gold alloy for bonding wires of the present invention for solving the above problems is as follows.
(A) A gold alloy for connecting a semiconductor device, characterized by comprising Cu 0.01 to 2 mass%, Ge 0.01 to 0.3 mass%, and the balance Au.
(B) A semiconductor comprising 0.01 to 2 mass% of Cu, 0.01 to 0.3 mass% of Ge, 1 or 100 mass ppm of one or two of Be or In, and the balance Au. Gold alloy for device connection.
(C) Cu 0.01-2% by mass, Ge 0.01-0.3% by mass, Mg, Sn, Si, Ga, Bi, or Sr, or a total of 1 to 100 ppm by mass, and the balance A gold alloy for connecting a semiconductor device, characterized by comprising Au.
(D) A semiconductor comprising 0.01 to 2 mass% of Cu, 0.01 to 0.3 mass% of Ge, 1 or 50 mass ppm in total of one or two of B or Li, and the balance Au. Gold alloy for device connection.

(e) Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。
(f) Cu0.01〜2質量%、Ge0.01〜0.3質量%、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。
(g) Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。
(h) Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。
(E) Cu 0.01 to 2% by mass, Ge 0.01 to 0.3% by mass, 1 or 100 ppm in total of one or two of Be or In, Mg, Sn, Si, Ga, Bi or Sr A gold alloy for connecting a semiconductor device, characterized in that one or more of the above are composed of 1 to 100 mass ppm in total and the balance Au.
(F) Cu 0.01 to 2 mass%, Ge 0.01 to 0.3 mass%, Mg, Sn, Si, Ga, Bi or Sr, or a total of 1 to 100 mass ppm, B or A gold alloy for connecting a semiconductor device, comprising one or two kinds of Li in a total of 1 to 50 ppm by mass and the balance Au.
(G) Cu 0.01 to 2% by mass, Ge 0.01 to 0.3% by mass, 1 or 2 types of Be or In in total 1 to 100 ppm by mass, 1 or 2 types of B or Li in total 1 to 50 ppm by mass, and the balance Au, a gold alloy for connecting a semiconductor device.
(H) Cu 0.01 to 2% by mass, Ge 0.01 to 0.3% by mass, 1 or 2 types of Be or In in total 1 to 100 ppm by mass, Mg, Sn, Si, Ga, Bi or Sr A gold alloy for connecting a semiconductor device, characterized in that it comprises 1 to 100 mass ppm in total of 1 type or 2 types, 1 to 50 mass ppm in total of 1 type or 2 types of B or Li, and the balance Au .

本発明の効果は、樹脂モールド後に150〜300℃の熱サイクルを繰り返し受けても、Au−Cu−Ge合金成分を主体とした軟質ボンディングワイヤの高温変形能によって破断や剥離が生じない効果がある。そのため、従来のボールボンディングに加え、ステッチボンディングにも有効である。また、バンプワイヤも同様に破断や剥離が生じない効果がある。   The effect of the present invention is that there is no breakage or peeling due to the high temperature deformability of the soft bonding wire mainly composed of an Au-Cu-Ge alloy component even if it is repeatedly subjected to a heat cycle of 150 to 300 ° C after resin molding. . Therefore, it is effective for stitch bonding in addition to conventional ball bonding. Similarly, the bump wire is also effective in preventing breakage and peeling.

本発明は、上記ボンディング後の熱サイクルにおけるワイヤの破断や剥離現象を発生させないためになされたものである。これまでのCaや希土類元素による強度を向上させたワイヤでは加熱された時のワイヤ変形能が著しく低下することが実験によってわかった。そこで、本発明者は、高濃度のGeが所定のAu−Cu合金に対して強度を有しながら、高温変形能を向上させることに着目して150〜300℃の高温における熱サイクルの追随性に優れた、Au−Cu−Ge合金成分を主体とした十分なワイヤ強度を有する高温高変形能を有するワイヤを開発し、上記ボンディング後の熱サイクルに伴う不良を解決するものである。また、同様にバンプワイヤの接合後の熱サイクルにおけるワイヤの破断や剥離を解決するものである。   The present invention has been made in order not to cause breakage or peeling of the wire in the thermal cycle after bonding. It has been experimentally found that the wire deformability when heated with the conventional Ca and rare earth element-improved strength is remarkably lowered. Therefore, the present inventor has focused on improving high temperature deformability while high strength Ge has strength with respect to a predetermined Au—Cu alloy, and follows the thermal cycle at a high temperature of 150 to 300 ° C. The present invention develops a wire having a high temperature and high deformability, which has a sufficient wire strength mainly composed of an Au—Cu—Ge alloy component, and solves the defects associated with the thermal cycle after bonding. Similarly, it solves the breakage and peeling of the wire in the thermal cycle after the bonding of the bump wires.

これまでもAuに対して100質量ppm以下のGeを添加することはよく知られていたし、特許文献2の請求の範囲第2項にみられるように、Au−Cu合金に対してGeを添加した例も知られている。しかし、Au−Cu合金は99.99質量%のAu合金に比してボール硬度を増すため、Geの添加量はできるだけ少なくしてAu−Cu合金のボール硬度をできるだけ低く抑えようとするのが一般的であった。ところが、所定のAu−Cu合金の場合には、Geの添加量が100質量ppmを超えても軟質ボールを維持可能であることがわかり、更に、Au−Cu合金に対して高温変形能を向上させることがわかった。   In the past, it was well known to add 100 ppm by mass or less of Ge to Au, and as shown in claim 2 of Patent Document 2, Ge was added to the Au-Cu alloy. Examples are also known. However, since the Au—Cu alloy increases the ball hardness as compared with the 99.99 mass% Au alloy, the addition amount of Ge should be reduced as much as possible to keep the ball hardness of the Au—Cu alloy as low as possible. It was general. However, in the case of a predetermined Au—Cu alloy, it can be seen that a soft ball can be maintained even if the amount of Ge exceeds 100 mass ppm, and further, the high temperature deformability is improved with respect to the Au—Cu alloy. I found out that

本発明の金合金ワイヤは、Au基合金として、Au中に0.01〜2質量%のCuを含有し、さらに0.01〜0.3質量%のGeを含有する。そして、このAu基合金中に含有させるGe元素によって高温変形に優れた性能を得るものである。更に詳細な性能は、個々の微量元素群の効果によるが、高温熱サイクルの繰返しによる耐熱衝撃性に優れている。
Caや希土類元素の微量添加は、これまでAuに対して常温における機械的強度を向上させることが知られていたが、高温変形能を大幅に低下させ、接合部およびその近傍で破断が生じてしまう。ここで、本発明者はBeまたはInの1種または2種を合計で1〜100質量ppm、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、またはBまたはLiの1種または2種を合計で1〜50質量ppmと、成分組成を最適化させることによって、常温における機械的強度の向上させながら、高温における変形能を維持させる効果があることを見出した。
The gold alloy wire of the present invention contains 0.01 to 2% by mass of Cu in the Au as an Au-based alloy, and further contains 0.01 to 0.3% by mass of Ge. And the performance excellent in high temperature deformation is obtained by Ge element contained in this Au base alloy. Further detailed performance depends on the effect of individual trace element groups, but is excellent in thermal shock resistance due to repeated high-temperature thermal cycles.
The addition of trace amounts of Ca and rare earth elements has been known to improve mechanical strength at room temperature with respect to Au so far, but the high temperature deformability is greatly reduced and fracture occurs at and near the joint. End up. Here, the inventor has 1 to 100 mass ppm in total of 1 or 2 types of Be or In, and 1 to 100 mass in total of 1 type or 2 types of Mg, Sn, Si, Ga, Bi or Sr. By optimizing the component composition of 1 or 2 ppm in total, 1 or 2 ppm of ppm, or B or Li, the effect of maintaining the deformability at high temperature while improving the mechanical strength at normal temperature I found out.

本発明で用いるAu−Cu−Ge基合金において,その原料としてのAuは高純度のAuであって純度は99.99質量%以上、好ましくは99.999質量%以上のものである。同様に,含有させる原料としてのCuは、高純度のものでその純度は99.9質量%以上、好ましくは99.99質量%以上のものである。Au−Cu−Ge基合金中のCuの含有量は、全質量に対し0.01〜2質量%、好ましくは0.1〜1質量%である。CuはAuに対して全率固溶しやすいからであるため、これまで知られているAu−1質量%Pd合金マトリックスのように鋳造条件によって偏析が生じる心配が無い。
Cuを所定量含有させたAu−Cu−Ge基合金ワイヤは、Cuによって固溶強化されるものの、チップダメージを与えない程度のボール硬さを維持しており、ステッチ接合に対しても、良好な接合性が得られるワイヤである。
In the Au—Cu—Ge base alloy used in the present invention, Au as a raw material is high-purity Au and has a purity of 99.99 mass% or more, preferably 99.999 mass% or more. Similarly, Cu as a raw material to be contained has a high purity and a purity of 99.9% by mass or more, preferably 99.99% by mass or more. The content of Cu in the Au—Cu—Ge base alloy is 0.01 to 2% by mass, preferably 0.1 to 1% by mass, based on the total mass. This is because Cu is easily dissolved in a total amount with respect to Au, so that there is no fear of segregation depending on casting conditions unlike the conventionally known Au-1 mass% Pd alloy matrix.
The Au-Cu-Ge base alloy wire containing a predetermined amount of Cu is solid-solution strengthened by Cu, but maintains a ball hardness that does not cause chip damage, and is good for stitch bonding. It is a wire that can obtain a good bondability.

しかし、Cuが2質量%を超えると、ボール硬さが大きくなりすぎて第一ボンドの接合時にSiチップを割るおそれがある。従って、Cuは2質量%、好ましくは1質量%を超えないことが必要である。また、Cuが0.01質量%未満であると、Cuによる固溶強化が十分でなく、Cuが0.01質量%未満であると、ワイヤ自身の剛性が不足して、ボンディングワイヤの場合には樹脂封止時にワイヤ流れが生じたり、バンプワイヤの場合にはネック高さの安定性が低下したりする。   However, if Cu exceeds 2% by mass, the ball hardness becomes too high, and the Si chip may be broken when the first bond is bonded. Therefore, it is necessary that Cu does not exceed 2 mass%, preferably 1 mass%. Further, when Cu is less than 0.01% by mass, solid solution strengthening by Cu is not sufficient, and when Cu is less than 0.01% by mass, the rigidity of the wire itself is insufficient. In the case of resin sealing, a wire flow occurs, and in the case of a bump wire, the stability of the neck height is lowered.

本発明で用いる原料としてのGeは、高純度のもので、その純度は99.9質量%以上、好ましくは99.99質量%以上である。また、Au−Cu−Ge基合金中のGeの含有量は、全質量に対し0.01〜0.3質量%、好ましくは0.01〜0.1質量%である。
GeはAuと共晶反応を示し、Geを所定量含有させたAu合金ワイヤは、純度が99.999質量%以上のAuよりも高温変形能が優れていることを見出した。
しかし、Au−Ge合金ワイヤは軟質過ぎるため、Geは上記のAu−Cu合金中に含有させなければならない。これまでAu−Cu合金に微量元素を含有させるとAu−Cu合金の機械的強度が向上することが知られていた。しかし、Geを多量に共存させることによって強度が向上すると同時に高温におけるワイヤの変形能力も向上することがわかった。
Ge as a raw material used in the present invention has a high purity, and its purity is 99.9% by mass or more, preferably 99.99% by mass or more. Further, the Ge content in the Au—Cu—Ge base alloy is 0.01 to 0.3% by mass, preferably 0.01 to 0.1% by mass, based on the total mass.
It has been found that Ge shows a eutectic reaction with Au, and an Au alloy wire containing a predetermined amount of Ge has a higher temperature deformability than Au with a purity of 99.999% by mass or more.
However, since the Au—Ge alloy wire is too soft, Ge must be contained in the Au—Cu alloy. It has been known so far that when a trace element is contained in an Au—Cu alloy, the mechanical strength of the Au—Cu alloy is improved. However, it has been found that coexistence of a large amount of Ge improves the strength and at the same time improves the deformability of the wire at high temperatures.

ただし、Geが0.3質量%を超えると、高温変形能は変化しないものの溶融ボールが硬くなりチップダメージが発生する。ヒートサイクルの繰返し回数が多い場合または熱衝撃が大きい場合は、Geが0.1質量%以下であると、繰返しの熱サイクルや高温熱衝撃に対する追随性がよい。
他方、Geが0.01質量%未満では純度が99.999質量%以上のAuと高温変形能が変わらない。よって、Geの高温変形能を発揮するには0.01質量%以上が必要である。
また、Au−Cu−Ge基合金ワイヤは溶融ボールのバンプ接合時に結晶粒が微細化し熱影響部が短くなることがわかった。このためワイヤの切断時にバンプのテイル長さが短く、安定したバンプを形成することができる。
However, if Ge exceeds 0.3% by mass, the hot ball deformability does not change, but the molten ball becomes hard and chip damage occurs. When the number of repetitions of the heat cycle is large or the thermal shock is large, if the Ge content is 0.1% by mass or less, the followability to the repeated thermal cycle and the high temperature thermal shock is good.
On the other hand, when the Ge content is less than 0.01% by mass, the high temperature deformability does not change from that of Au having a purity of 99.999% by mass or more. Therefore, 0.01% by mass or more is required to exhibit the high temperature deformability of Ge.
In addition, it was found that the Au-Cu-Ge-based alloy wire has a finer crystal grain and a shorter heat-affected zone at the time of bump bonding of the molten ball. Therefore, the tail length of the bump is short when the wire is cut, and a stable bump can be formed.

本発明で用いる原料としてのBeまたはInは、高純度のもので、Beの純度は98質量%以上、好ましくは99質量%以上、Inの純度は99質量%以上、好ましくは99.9質量%以上である。また、Au−Cu−Ge基合金中のBeまたはInの含有量は、全質量に対し1〜100質量ppm、好ましくは5〜50質量ppmである。
BeまたはInはこれまで常温におけるAuの機械的強度を向上させる元素としては知られていたが、本発明者はBeまたはInを所定量含有させたAu−Cu−Ge基合金ワイヤは、Au合金中の成分組成の最適化によって150〜300℃における高温変形能を上昇させることを見出した。また、第一ボンドにおける真円性を向上させる効果もある。
Be or In as a raw material used in the present invention is of high purity, the purity of Be is 98% by mass or more, preferably 99% by mass or more, and the purity of In is 99% by mass or more, preferably 99.9% by mass. That's it. Further, the content of Be or In in the Au—Cu—Ge base alloy is 1 to 100 ppm by mass, preferably 5 to 50 ppm by mass with respect to the total mass.
Until now, Be or In has been known as an element for improving the mechanical strength of Au at room temperature. However, the present inventor used an Au-Cu-Ge based alloy wire containing a predetermined amount of Be or In as an Au alloy. It has been found that the high-temperature deformability at 150 to 300 ° C. is increased by optimizing the composition of the components. It also has the effect of improving the roundness of the first bond.

しかし、BeまたはInが100質量ppmを超えると、ボールが硬くなりすぎて第一ボンドの接合時にSiチップを割るおそれがある。BeまたはInの含有量は100質量ppmを超えないことが必要である。また、BeまたはInが1質量ppm未満であると、Au−Cu−Ge基合金の機械的強度を向上させることができない。更に、バンプワイヤの場合には第一ボンド後の引きちぎり性の向上は見られない。よって、BeまたはInの含有量は1質量ppm以上が必要である。好ましくは、5質量ppm以上である。   However, if Be or In exceeds 100 ppm by mass, the ball becomes too hard and the Si chip may break during the bonding of the first bond. The content of Be or In must not exceed 100 ppm by mass. Further, if Be or In is less than 1 ppm by mass, the mechanical strength of the Au—Cu—Ge base alloy cannot be improved. Furthermore, in the case of a bump wire, no improvement in tearing after the first bond is observed. Therefore, the content of Be or In needs to be 1 mass ppm or more. Preferably, it is 5 mass ppm or more.

本発明で用いる原料としてのMg、Sn、Si、Ga、BiまたはSrは、高純度のもので、純度は99質量%以上、好ましくは99.9質量%以上である。また、Au−Cu−Ge基合金中のMg、Sn、Si、Ga、BiまたはSrの含有量は、全質量に対し1〜100質量ppm、好ましくは5〜50質量ppmである。
Mg、Sn、Si、Ga、BiまたはSrは、これまで常温におけるAuの機械的強度を向上させる元素としては知られていたが、本発明者はMg、Sn、Si、Ga、BiまたはSrを所定量含有させたAu−Cu−Ge基合金ワイヤは、Au合金中の成分組成の最適化によって150〜300℃における高温変形能を上昇させることを見出した。また、Mg、Sn、Si、Ga、BiまたはSrは、BeまたはInと同様に、第一ボンドにおけるボール真円性を向上させる効果もある。
Mg, Sn, Si, Ga, Bi, or Sr as a raw material used in the present invention has a high purity, and the purity is 99% by mass or more, preferably 99.9% by mass or more. Further, the content of Mg, Sn, Si, Ga, Bi or Sr in the Au—Cu—Ge base alloy is 1 to 100 ppm by mass, preferably 5 to 50 ppm by mass with respect to the total mass.
Mg, Sn, Si, Ga, Bi, or Sr has been known as an element that improves the mechanical strength of Au at room temperature, but the present inventor has changed Mg, Sn, Si, Ga, Bi, or Sr. It has been found that the Au—Cu—Ge based alloy wire contained in a predetermined amount increases the high temperature deformability at 150 to 300 ° C. by optimizing the component composition in the Au alloy. Further, Mg, Sn, Si, Ga, Bi, or Sr has an effect of improving the roundness of the ball in the first bond, similarly to Be or In.

しかし、Mg、Sn、Si、Ga、BiまたはSrの総量が100質量ppmの所定量を超えると、ボールが硬くなりすぎて第一ボンドの接合時にSiチップを割るおそれがある。従って、Mg、Sn、Si、Ga、BiまたはSrの総計含有量は100質量ppmを超えないことが必要である。また、Mg、Sn、Si、Ga、BiまたはSrが1質量ppm未満であると、Au−Cu−Ge基合金の機械的強度を向上させることができず、ボンディングワイヤの場合には耐ワイヤ流れ性を向上させることができず、バンプワイヤの場合には第一ボンド後の引きちぎり性を向上させることができない。よって、Mg、Sn、Si、Ga、BiまたはSrの総計含有量は1質量ppm以上が必要である。好ましくは、5質量ppm以上である。   However, if the total amount of Mg, Sn, Si, Ga, Bi, or Sr exceeds a predetermined amount of 100 ppm by mass, the ball may become too hard and break the Si chip when the first bond is bonded. Therefore, the total content of Mg, Sn, Si, Ga, Bi or Sr needs to not exceed 100 ppm by mass. Further, if Mg, Sn, Si, Ga, Bi or Sr is less than 1 ppm by mass, the mechanical strength of the Au—Cu—Ge base alloy cannot be improved. In the case of a bump wire, the tearability after the first bond cannot be improved. Therefore, the total content of Mg, Sn, Si, Ga, Bi or Sr needs to be 1 mass ppm or more. Preferably, it is 5 mass ppm or more.

本発明で用いる原料としてのBまたはLiは高純度のもので、その純度は99質量%以上、好ましくは99.9質量%以上である。また、マトリックス中のBまたはLiの含有量は、全質量に対し1〜50質量ppm、好ましくは1〜10質量ppmである。
BまたはLiも、BeやMgなどと同様に、これまで常温におけるAuの機械的強度を向上させる元素としては知られていたが、本発明者は、BまたはLiを所定量含有させたAu−Cu−Ge基合金ワイヤは、Au合金中の成分組成の最適化によって150〜300℃における高温変形能を上昇させることを見出した。また、BまたはLiはAu−Cu−Ge基合金の溶融ボール表面に形成される酸化膜を抑制する効果があり、ボールの成形性を向上させる効果もある。
B or Li as a raw material used in the present invention has a high purity, and its purity is 99% by mass or more, preferably 99.9% by mass or more. Moreover, content of B or Li in a matrix is 1-50 mass ppm with respect to the total mass, Preferably it is 1-10 mass ppm.
B or Li has been known as an element for improving the mechanical strength of Au at room temperature, like Be and Mg, but the present inventor has made Au-- containing a predetermined amount of B or Li. It has been found that the Cu—Ge based alloy wire increases the high temperature deformability at 150 to 300 ° C. by optimizing the component composition in the Au alloy. Further, B or Li has an effect of suppressing an oxide film formed on the surface of the molten ball of the Au—Cu—Ge base alloy, and also has an effect of improving the moldability of the ball.

しかし、BまたはLiが50質量ppmを超えると、ボールが硬くなりすぎて第一ボンドの接合時にSiチップを割るおそれがある。従って、BまたはLiの含有量は50質量ppmを超えないことが必要である。また、BまたはLiが1質量ppm未満であると、Au−Cu−Ge基合金の機械的強度を向上させることができず、ボンディングワイヤの場合のループ形成性向上効果は得られない。バンプワイヤの場合には第一ボンド後の引きちぎり性向上効果は得られない。従って、BまたはLiは1質量ppm以上が必要である。   However, if B or Li exceeds 50 ppm by mass, the ball becomes too hard and the Si chip may be broken during the bonding of the first bond. Therefore, it is necessary that the content of B or Li does not exceed 50 ppm by mass. Moreover, when B or Li is less than 1 mass ppm, the mechanical strength of the Au—Cu—Ge base alloy cannot be improved, and the effect of improving the loop formability in the case of a bonding wire cannot be obtained. In the case of a bump wire, the tearing improvement effect after the first bond cannot be obtained. Accordingly, B or Li needs to be 1 mass ppm or more.

次に、本発明を実施例により詳述する。
[実施例1〜38]
純度99.999質量%以上の高純度Auへ純度99.99質量%以上の高純度Cu、およびGeを表1に示す所定量(単位は質量%)含有させてAu−Cu−Ge基合金を作製した。このAu−Cu−Ge基合金に、Be若しくはIn、Mg、Sn、Si、Ga、Bi若しくはSr、またはBもしくはLiをそれぞれ表1に示す所定量含有させ、これを実施例1〜38として表1に示す。この配合品を真空溶解炉で溶解鋳造し、伸線加工して線径25μmのところで最終熱処理して伸び率を4%に調整した。
得られたワイヤについて常温(室温)及び高温で伸び率を測定し、常温での伸び率に対する高温での伸び率の比を求め、「伸び率比」として表2に示す。なお、高温での伸び率とは、ワイヤを250℃の雰囲気で20秒間保持し、その雰囲気中で引張り試験を行ったときの測定値をいう。そして、各々の実施例について、株式会社新川製の汎用ボンディング装置(モデル:UTC−1000型)を用いてボンディング試験を行った。更に、ボンディングされたワイヤについて熱サイクル加速試験を行い、ボンディング特性を評価した。その結果を表2に示す。
Next, the present invention will be described in detail by examples.
[Examples 1 to 38]
An Au—Cu—Ge based alloy containing a predetermined amount (unit: mass%) shown in Table 1 containing high purity Cu having a purity of 99.99 mass% or more and high purity Cu having a purity of 99.999 mass% or more is included. Produced. The Au—Cu—Ge base alloy contains Be or In, Mg, Sn, Si, Ga, Bi or Sr, or B or Li, respectively, as shown in Table 1, and these are shown as Examples 1 to 38. It is shown in 1. This blended product was melt cast in a vacuum melting furnace, drawn, and finally heat treated at a wire diameter of 25 μm to adjust the elongation to 4%.
The elongation rate of the obtained wire was measured at room temperature (room temperature) and at a high temperature, and the ratio of the elongation rate at the high temperature to the elongation rate at the room temperature was determined and is shown in Table 2 as “elongation rate ratio”. The elongation at high temperature refers to a value measured when a wire is held in an atmosphere at 250 ° C. for 20 seconds and a tensile test is performed in the atmosphere. And about each Example, the bonding test was done using the general-purpose bonding apparatus (model: UTC-1000 type | mold) made from Shinkawa. Further, the bonded wire was subjected to a thermal cycle acceleration test to evaluate the bonding characteristics. The results are shown in Table 2.

なお、表2中「チップダメージ」とは、60μm角のAlパッドへ搭載したSiチップへ40μmの溶融ボールにより圧着径φ50μmになるように接合した時のAlパッド下のSiの割れ発生率をN=100で評価し、◎は0%、○は1%未満、△は1%以上5%未満、×は5%以上を示す。
「真円性」とは、第一ボンドにおける圧着ボールの直径を真上からX、Y2方向よりN=40で測定し、XをYで除した値(X/Y)を示し、◎は0.96以上、○は0.94以上0.96未満、△は0.92以上0.94未満、×は0.92未満を示す。
「ボール形成性」とは、溶融ボールを作製した時のボール底部を1000倍のSEMで観察し、◎は引巣のないもの、○は底部がやや平らであるが引巣は存在しないもの、△は底部に小さなひけ巣があるもの、×は底部に大きな引巣、またはボール外観がいびつな形状のものを示す。
“Chip damage” in Table 2 refers to the rate of Si cracking under the Al pad when bonded to a Si chip mounted on a 60 μm square Al pad with a 40 μm molten ball so as to have a compression diameter of φ50 μm. = 100, ◎ indicates 0%, ○ indicates less than 1%, Δ indicates 1% or more and less than 5%, and × indicates 5% or more.
“Roundness” means a value (X / Y) obtained by measuring the diameter of the press-bonded ball in the first bond from the top and X = Y, N = 40 from the Y2 direction, and dividing X by Y. .96 or more, ○ indicates 0.94 or more and less than 0.96, Δ indicates 0.92 or more and less than 0.94, and x indicates less than 0.92.
“Ball formability” means that the bottom of the ball when the molten ball was produced was observed with a 1000 times SEM, ◎: no nesting, ◯: slightly flat bottom but no nesting, Δ indicates that there is a small shrinkage nest at the bottom, and × indicates a large nest at the bottom or an irregular ball appearance.

「低温ボンディング性」とは、200℃におけるシェア強度に対する160℃におけるシェア強度の比を示し、◎は0.9以上、○は0.85以上0.9未満、△は0.8以上0.85未満、×は0.8未満を示す(N=40)。なお160℃および200℃における、温度以外のボンディング条件は同一であり、測定はDAGE社製万能シェアテスターBT−2400にておこなった。
「セカンド断線発生率」とは、ボンディング後に樹脂モールドした状態で150℃/−55℃の熱サイクル試験を1000サイクル行った後に、モールド樹脂を開封し、第二ボンドのはがれを観察して得られるはがれ率(N=200)で、◎は0%、○は1%以下、△は1%以上3%未満、×は3%以上を示す。
“Low-temperature bonding property” indicates the ratio of the shear strength at 160 ° C. to the shear strength at 200 ° C., ◎ is 0.9 or more, ○ is 0.85 or more and less than 0.9, and Δ is 0.8 or more and 0.8. Less than 85, x indicates less than 0.8 (N = 40). The bonding conditions other than the temperature at 160 ° C. and 200 ° C. were the same, and the measurement was performed with a universal shear tester BT-2400 manufactured by DAGE.
The “second disconnection occurrence rate” is obtained by performing a heat cycle test at 150 ° C./−55° C. in a state of resin molding after bonding for 1000 cycles, then opening the mold resin and observing peeling of the second bond. In peeling rate (N = 200), ◎ indicates 0%, ◯ indicates 1% or less, Δ indicates 1% or more and less than 3%, and × indicates 3% or more.

一方、上記の実施例の組成でワイヤの常温における伸び率を2%以下に調整したワイヤについて株式会社新川製の汎用バンプ装置(モデル:SBB−1型)を用いて引きちぎり方式により、Alチップへバンプボンディングをおこなった。その結果も表2に併せて示す。ここで、「バンプ高さ」とは、直径50μmの溶融ボールでボンディングにより直径65μmまで圧着してバンプを形成したときの、チップ表面からテイル先端部までの高さと定義され、テイル長さの安定性について、測定値のレンジにより評価をおこなった。(N=40)このとき、◎は10μm未満、○は10以上15μm未満、△は15μm以上20μm未満、×は20μm以上を示す。   On the other hand, a wire whose elongation at room temperature was adjusted to 2% or less with the composition of the above-described example was cut by a tearing method using a general-purpose bump device (model: SBB-1 type) manufactured by Shinkawa Co., Ltd. Bump bonding was performed. The results are also shown in Table 2. Here, the “bump height” is defined as the height from the chip surface to the tail tip when a bump is formed by bonding with a molten ball having a diameter of 50 μm to a diameter of 65 μm, and the tail length is stable. The property was evaluated by the range of measured values. (N = 40) In this case, ◎ indicates less than 10 μm, ○ indicates 10 or more and less than 15 μm, Δ indicates 15 μm or more and less than 20 μm, and x indicates 20 μm or more.

Figure 2008027951
Figure 2008027951

Figure 2008027951
Figure 2008027951

[比較例1〜17]
表3に、実施例と微量元素の成分組成が異なる比較例の各組成を示す。比較例のAu合金極細線は、実施例と同様にして、線径が25μmのところで最終熱処理をして伸び率を4%又は2%以下に調整し、実施例1と同様にして評価した。その結果を表4に示す。
[Comparative Examples 1 to 17]
In Table 3, each composition of the comparative example from which an Example and the component composition of a trace element differ is shown. The Au alloy ultrafine wire of the comparative example was evaluated in the same manner as in Example 1 by adjusting the elongation rate to 4% or 2% or less by final heat treatment when the wire diameter was 25 μm in the same manner as in the example. The results are shown in Table 4.

Figure 2008027951
Figure 2008027951

Figure 2008027951
Figure 2008027951

上記の結果から明らかなように、本発明のAu合金ワイヤは、成分組成が所定の範囲内にあれば、高温の伸び率に優れており、繰返し熱サイクルの過酷な環境下でも満足のいく効果が得られることがわかる。また、ボンディング性やバンプ形成においても優れた効果が得られている。   As is clear from the above results, the Au alloy wire of the present invention is excellent in high-temperature elongation as long as the component composition is within a predetermined range, and a satisfactory effect even in a severe environment of repeated thermal cycles. It can be seen that In addition, excellent effects are also obtained in bonding properties and bump formation.

本発明のAu合金ワイヤは、繰返しの熱サイクルを受ける分野、例えば発光ダイオードやフリップチップパッケージ、鉛フリーはんだを適用したデバイスなどのボンディングワイヤまたはバンプワイヤに用いられる。また、上記適用デバイスを含む過酷な熱衝撃を受ける分野、例えば熱電機器用や車載基板半導体用などにおけるボンディングワイヤまたはバンプワイヤに用いられる。よって、半導体機器の製造技術の分野に貢献するところ大である。   The Au alloy wire of the present invention is used in fields subjected to repeated thermal cycles, for example, bonding wires or bump wires of light emitting diodes, flip chip packages, and devices to which lead-free solder is applied. Moreover, it is used for the bonding wire or bump wire in the field | area which receives the severe thermal shock containing the said application device, for example, the object for thermoelectric devices, a vehicle-mounted board | substrate semiconductor, etc. Therefore, it greatly contributes to the field of semiconductor device manufacturing technology.

Claims (8)

Cu0.01〜2質量%、Ge0.01〜0.3質量%、および残部Auからなることを特徴とする半導体装置接続用金合金。   A gold alloy for connecting a semiconductor device, characterized by comprising Cu 0.01-2 mass%, Ge 0.01-0.3 mass%, and the balance Au. Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。   For connecting a semiconductor device, comprising Cu 0.01 to 2% by mass, Ge 0.01 to 0.3% by mass, one or two of Be or In in total 1 to 100 ppm by mass, and the balance Au Gold alloy. Cu0.01〜2質量%、Ge0.01〜0.3質量%、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。   Cu 1 to 2 mass%, Ge 0.01 to 0.3 mass%, Mg, Sn, Si, Ga, Bi or Sr, or a total of 1 to 100 mass ppm, and the balance Au. A gold alloy for connecting a semiconductor device. Cu0.01〜2質量%、Ge0.01〜0.3質量%、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。   For connecting a semiconductor device, comprising Cu 0.01 to 2 mass%, Ge 0.01 to 0.3 mass%, one or two of B or Li in total 1 to 50 mass ppm, and the balance Au Gold alloy. Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。   Cu 0.01-2 mass%, Ge 0.01-0.3 mass%, one or two of Be or In in total 1 to 100 mass ppm, one of Mg, Sn, Si, Ga, Bi or Sr Alternatively, a gold alloy for connecting a semiconductor device, comprising two or more kinds in total of 1 to 100 ppm by mass and the balance Au. Cu0.01〜2質量%、Ge0.01〜0.3質量%、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。   Cu 0.01-2% by mass, Ge 0.01-0.3% by mass, Mg, Sn, Si, Ga, Bi, or Sr, or a total of 1 to 100 mass ppm, 1 of B or Li A gold alloy for connecting a semiconductor device, comprising a total of 1 to 50 mass ppm of seeds or two kinds, and the balance Au. Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。   Cu 0.01-2 mass%, Ge 0.01-0.3 mass%, 1 or 2 types of Be or In in total 1 to 100 mass ppm, 1 or 2 types of B or Li in total 1 to 2 A gold alloy for connecting a semiconductor device, comprising 50 mass ppm and the balance Au. Cu0.01〜2質量%、Ge0.01〜0.3質量%、BeまたはInの1種または2種を合計で1〜100質量ppm、Mg、Sn、Si、Ga、BiまたはSrの1種または2種以上を合計で1〜100質量ppm、BまたはLiの1種または2種を合計で1〜50質量ppm、および残部Auからなることを特徴とする半導体装置接続用金合金。   Cu 0.01-2 mass%, Ge 0.01-0.3 mass%, one or two of Be or In in total 1 to 100 mass ppm, one of Mg, Sn, Si, Ga, Bi or Sr Alternatively, a gold alloy for connecting a semiconductor device, comprising a total of 1 to 100 ppm by mass of 2 or more, 1 to 50 ppm by mass of 1 or 2 of B or Li, and the balance Au.
JP2006195328A 2006-07-18 2006-07-18 Gold alloy for connecting semiconductor device Pending JP2008027951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195328A JP2008027951A (en) 2006-07-18 2006-07-18 Gold alloy for connecting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195328A JP2008027951A (en) 2006-07-18 2006-07-18 Gold alloy for connecting semiconductor device

Publications (1)

Publication Number Publication Date
JP2008027951A true JP2008027951A (en) 2008-02-07

Family

ID=39118315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195328A Pending JP2008027951A (en) 2006-07-18 2006-07-18 Gold alloy for connecting semiconductor device

Country Status (1)

Country Link
JP (1) JP2008027951A (en)

Similar Documents

Publication Publication Date Title
CN103409654B (en) Silver-gold-palladium alloy bump manufacture line
JP2010245390A (en) Bonding wire
JP2014179412A (en) Bonding wire
JP3994113B2 (en) Wire bump
JP6103806B2 (en) Ball bonding wire
WO2006134825A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property, high resin flow resistance and low specific resistance
JP5996853B2 (en) Ball bonding wire
JP6926245B2 (en) Bonding wire
JP4195495B1 (en) Gold alloy wire for ball bonding
JP6714150B2 (en) Bonding wire and semiconductor device
JP2005294874A (en) Wire wedge bonded semiconductor device and gold alloy bonding wire
JP2008027951A (en) Gold alloy for connecting semiconductor device
JP2007019349A (en) Bonding wire
KR100618054B1 (en) Au alloy bonding wire
JP3586909B2 (en) Bonding wire
JP5669335B1 (en) Silver-gold alloy bonding wire
JP3085090B2 (en) Bonding wire
JPH03291340A (en) Copper alloy extra fine wire for semiconductor device and semiconductor device
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JP2008016550A (en) Au BONDING WIRE FOR SEMICONDUCTOR ELEMENT
JP4117973B2 (en) Gold alloy wire for bonding
JPH07335685A (en) Bonding wire
JPH0143824B2 (en)
JP2009105250A (en) Gold alloy wire for ball bonding