JP4117973B2 - Gold alloy wire for bonding - Google Patents
Gold alloy wire for bonding Download PDFInfo
- Publication number
- JP4117973B2 JP4117973B2 JP13037799A JP13037799A JP4117973B2 JP 4117973 B2 JP4117973 B2 JP 4117973B2 JP 13037799 A JP13037799 A JP 13037799A JP 13037799 A JP13037799 A JP 13037799A JP 4117973 B2 JP4117973 B2 JP 4117973B2
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- weight
- alloy wire
- gold alloy
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/43—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05617—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05624—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/43—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48599—Principal constituent of the connecting portion of the wire connector being Gold (Au)
- H01L2224/486—Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/48617—Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
- H01L2224/48624—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0102—Calcium [Ca]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01025—Manganese [Mn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01031—Gallium [Ga]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01032—Germanium [Ge]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01039—Yttrium [Y]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01063—Europium [Eu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01064—Gadolinium [Gd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20751—Diameter ranges larger or equal to 10 microns less than 20 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20752—Diameter ranges larger or equal to 20 microns less than 30 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20753—Diameter ranges larger or equal to 30 microns less than 40 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20754—Diameter ranges larger or equal to 40 microns less than 50 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20755—Diameter ranges larger or equal to 50 microns less than 60 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20756—Diameter ranges larger or equal to 60 microns less than 70 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20757—Diameter ranges larger or equal to 70 microns less than 80 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20758—Diameter ranges larger or equal to 80 microns less than 90 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20759—Diameter ranges larger or equal to 90 microns less than 100 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/2076—Diameter ranges equal to or larger than 100 microns
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は半導体素子のボンディングワイヤおよびバンプ形成用として有用な半導体素子ボンディング用金合金線に関する。
【0002】
【従来の技術】
従来から半導体装置に用いられるICチップ電極と外部リードを接続する線としては、純度99.99重量%以上の高純度金に他の金属元素を微量含有させた金合金線が信頼性に優れているとして多用されている。
通常半導体装置は前記接続する方法として、金合金線を用いた超音波併用熱圧着ボンディング法が主として用いられ、その後樹脂封止して半導体装置とされている。
【0003】
ここで超音波併用熱圧着ボンディング法により配線し、ループを形成した状態を図1に示す。1はICチップ、2はICチップ上のAl電極、3は金合金線、4はリードフレーム、5はファースト側接合点、6はセカンド側接合点である。最近半導体装置は動作電源や外部環境によって加熱され、高温に晒されて使用されることが多く、ボンディングワイヤには高温で長時間保持しても接合劣化が小さいことが求められている。この為、従来から高温に保持した後のプル強度劣化に有効であるとして所定の金合金組成が提案されている。例えば特開平10−4115号公報にはワイヤボンディングした試料を200℃で100時間保持した後のプル強度に優れているとしてCo,Ge等を含有した組成の金合金線が開示されている。また、特開平2−215140号公報にはワイヤボンディングした試料を250℃で900分保持した後のシェア強度に優れているとしてMn等を含有した組成の金合金線が開示されている。
【0004】
一方前記高温に保持した後の接合性を向上するような金合金線にするために、金に合金元素を添加すると振動破断性能が低下してくるという問題が生じてくる。該振動破断性能は半導体装置の樹脂封止前の試料運搬時に振動による断線を防止出来る性能として金合金線に要求されるものである。
【0005】
【発明が解決しようとする課題】
ここで従来から接合性の信頼性を向上させようとするとボール真球度、振動破断率、ICチップの割れ性の何れかに問題が生じると共に、最近では高温で更に長時間の環境に保持した後の更なる接合性の信頼性の向上が求められている。前記した金合金線に於いても前述の要求に対して未だ不十分である。
【0006】
本発明は上述したような事情に鑑みてなされたものであり、その目的とするところは高温で長時間の環境に保持した後の接合性の信頼性が向上すると共に、ボール真球度に優れ、振動破断率が小さく、ICチップの割れが少ない金合金線を提供する事にある。
【0007】
【課題を解決するための手段】
本発明者等が鋭意研究を重ねた結果、所定量のCo,Zn(第1群元素)のうち少なくとも1種と所定量のMnと所定量のLa,Y,Gd,Be,Ca,Eu(第2群元素)のうち少なくとも1種を高純度金に含有させることにより、あるいは所定量のCoと所定量のMnを高純度金に含有させることにより、前述の目的を達成しうることを知見し、本発明を完成するに至った。
【0008】
(1)Co,Znのうち少なくとも1種を1重量ppm 以上1000重量ppm 未満、Mnを1〜1000重量ppm 及びLa,Y,Gd,Be,Ca,Euのうち少なくとも1種を1〜400重量ppm 含有し、残部がAuと不可避不純物からなることを特徴とする半導体素子ボンディング用金合金線。
(2)Co,Znのうち少なくとも1種を1重量ppm 以上1000重量ppm 未満、Mnを1〜1000重量ppm 及びLa,Y,Gd,Be,Euのうち少なくとも1種を1〜400重量ppm 含有し、残部がAuと不可避不純物からなることを特徴とする半導体素子ボンディング用金合金線。
【0009】
(3)Co,Znのうち少なくとも1種を1重量ppm 以上1000重量ppm 未満、Mnを1〜1000重量ppm 及びCaを10〜400重量ppm 含有し、残部がAuと不可避不純物からなることを特徴とする半導体素子ボンディング用金合金線。
(4)Co,Znのうち少なくとも1種を1重量ppm 以上1000重量ppm 未満、Mnを1〜1000重量ppm 、Ca及びLa,Y,Gd,Be,Euのうち少なくとも1種を各々5重量ppm 以上且つその合計で10〜400重量ppm 含有し、残部がAuと不可避不純物からなることを特徴とする半導体素子ボンディング用金合金線。
(5)Coを1重量ppm 以上1000重量ppm 未満、Mnを1〜1000重量ppm 含有し、残部がAuと不可避不純物からなることを特徴とする半導体素子ボンディング用金合金線。
(6)更にPd,Pt,Cu,Ag,Niのうち少なくとも1種を0.01〜2.0重量%含有することを特徴とする上記(1)〜(5)の半導体素子ボンディング用金合金線。
【0010】
本発明の半導体素子ボンディング用金合金線は、ボール真球度、振動破断率、ICチップ割れと共に、特に高温接合性に優れているので、ワイヤボンディング用のみならず、バンプ形成用に用いても優れており、本発明はバンプ形成用を含むものである。
【0011】
【発明の実施の形態】
(1)原料金
原料金としては少なくとも99.99重量%以上に精製した高純度金を用いることが好ましい。更に好ましくは99.995重量%以上であり、最も好ましくは99.999重量%以上である。この為合金中の不可避不純物は0.01重量%未満が好ましい。更に好ましくは0.005重量%未満であり、最も好ましくは0.001重量%未満である。不可避不純物が少ない程有害元素を除去出来るため信頼性が向上して好ましい。
【0012】
(2)〔Co,Zn〕
a)前記高純度金に所定量のMnと所定量の第2群元素のうち少なくとも1種との共存において、所定量のCo,Znのうち少なくとも1種を含有した組成とすることにより、あるいは前記高純度金に所定量のMnとの共存において所定量のCoを含有した組成とすることにより、前記課題を達成することが出来る。
b)前記共存組成において、1〜1000重量ppm のMnと1〜400重量ppm の第2群元素のうち少なくとも1種と共存したCo,Znのうち少なくとも1種、あるいは1〜1000ppm のMnと共存したCoの含有量が1重量ppm 以上になると、これを含有しないものと対比して高温接合性が向上してくる。前記Co,Znのうち少なくとも1種の含有量が1.0重量%迄は前記効果を維持出来るものの、1.0重量%を越えるとICチップの割れが生じてくるが、本発明はそのうち1000重量ppm 未満の場合に向けられている。そこで、該共存組成に於けるCo,Znのうち少なくとも1種の含有量は1重量ppm 以上、1000重量ppm 未満と定めた。(以下、第1群元素の量についてこの範囲を単に1〜1000重量ppm と表記するが、正確には1重量ppm 以上1000重量ppm 未満である)
【0013】
(3)Mn
a)前記高純度金に所定量の第1群元素のうち少なくとも1種と所定量の第2群元素のうち少なくとも1種との共存において、あるいは前記高純度金に所定量のCoとの共存において、所定量のMnを含有した組成とすることにより前記課題を達成することが出来る。
b)前記共存組成において、1〜1000重量ppm の第1群元素のうち少なくとも1種と1〜400重量ppm の第2群元素のうち少なくとも1種と共存したMn、あるいは1〜1000重量ppm のCoと共存したMnの含有量が1重量ppm 以上になると、これを含有しないものと対比して高温接合性が向上してくる。前記Mnの含有量が1.0重量%を越えるとICチップの割れが生じてくるが、本発明はそのうち1000重量ppm 以下の場合に向けられている。この為該共存組成に於けるMnの含有量は1〜1000重量ppm と定めた。
【0014】
(4)〔La,Y,Gd,Be,Ca,Eu〕
a)前記高純度金に所定量の第1群元素のうち少なくとも1種と所定量のMnとの共存において、所定量の第2群元素のうち少なくとも1種を含有した組成とすることにより前記課題を達成することが出来る。
b)前記共存組成において1〜1000重量ppm の第1群元素のうち少なくとも1種と1〜1000重量ppm のMnと共存した第2群元素のうち少なくとも1種の含有量が1重量ppm 以上になるとこれを含有しないものと対比して高温接合性、振動破断率が向上してくる。前記第2群元素のうち少なくとも1種の含有量が400重量ppm を越えるとボール真球度が悪くなる。この為該共存組成に於ける第2群元素のうち少なくとも1種の含有量は1〜400重量ppm と定めた。
【0015】
c)更に前記共存組成において所定量の第2群元素のうち少なくとも1種が次の3種類の場合は、Caを単独で1重量ppm 以上10重量ppm 未満含有する場合と対比してボール真球度が一段と向上してくる。
この為、前記共存組成において所定量の第2群元素のうち少なくとも1種が次の3種類のうち何れか1つであることが好ましい。
【0016】
i)La,Y,Gd,Be,Euのうち少なくとも1種を1〜400重量ppm
ii)Caを10〜400重量ppm
iii)CaとLa,Y,Gd,Be,Euのうち少なくとも1種とを各々5重量ppm 以上且つその合計で10〜400重量ppm
(5)〔Pd,Pt,Cu,Ag,Ni〕
a)前記(1)〜(4)の共存組成において、所定量のPd,Pt,Cu,Ag,Ni(第3群元素)のうち少なくとも1種をさらに含有しても、同様に、前記課題を達成できる。
b)前記共存組成において、1〜1000重量ppm の第1群元素のうち少なくとも1種と1〜1000重量ppm のMnと共存し、さらに第2群元素のうち少なくとも1種の共存又は非共存において、更に第3群元素のうち少なくとも1種の含有量が0.01〜2.0重量%の範囲内であれば含有しても、これらの元素を含まないものと同様に優れた効果が得られる。この為共存組成における第3群元素のうち少なくとも1種の含有量は0.01〜2.0重量%と定めた。
(6)金合金線の製造方法
本発明になる金合金線の好ましい製造方法を説明する。
【0017】
高純度金に所定量の元素を添加し、真空溶解炉で溶解した後インゴットに鋳造する。インゴットに溝ロール、伸線機を用いた冷間加工と中間アニールを施し、最終冷間加工により直径10〜100μmの細線とした後最終アニールを施すものである。
(7)用途
本発明の半導体素子ボンディング用金合金線は、半導体装置の実装に際して、ICチップ等の半導体素子をリードフレームに接続する際、超音波併用熱圧着ボンディング法を用いた配線材料として好ましく用いられる。また、半導体装置のICチップ等の電極バンプ形成用としても有用である。半導体装置はその後樹脂封止をして仕上げられる。
【0018】
【実施例】
表1〜3に示す実施例及び比較例について説明する。
(実施例1)
純度99.999重量%の高純度金に所定量のCo,Mn,Laを添加し真空溶解炉で溶解した後、鋳造して表1に示す組成の金合金インゴットを得、これに溝ロール、伸線機を用いた冷間加工と中間アニールを施し、最終冷間加工により直径30μmとし、伸び率4%となるように最終アニールを行い更に表面処理剤を被覆して金合金線に仕上げた。
【0019】
金合金線を全自動ボンディングマシン(新川株式会社製 UTC−100型)を用いてICチップのAl電極と銅合金リードフレームを超音波併用熱圧着ボンディング法でピン数96個のボンディング試料(この樹脂封止前の試料を「ボンディング試料」という)を作成した。次いでボンディング試料をエポキシ樹脂で樹脂封止した半導体試料(この樹脂封止後の試料を「半導体試料」という)を作成した。これらの試料を用いて次の試験を行った。
〔高温接合性試験〕
前記半導体試料を用いて事前に端子間の電気抵抗を測定した。次いで高温槽を用いて200℃で2,000時間保持して高温加速試験を行った後、同一端子間の電気抵抗を測定し、電気抵抗の変化が1Ω以上となった場合不良箇所とした。試験は4個の半導体試料から任意に100カ所選定して測定した。不良箇所の数を高温放置不良率として表1に示した。
〔ボール真球度〕
全自動ボンディングマシンにて大気中でボールを作成し、1000倍の測定顕微鏡を用いてボールの縦、横長さを測定し、次式によってボール真球度を算出した。10個のボールについて測定し、その平均値をボール真球度として表1に示した。
【0020】
ボール真球度=(短径)/(長径)
〔振動破断率〕
前記ボンディング試料を搬送用マガジンに挿入したものを振動試験機に固定し、試料を振動させた。振動は周波数100Hz、変位量0.1mmとして繰り返し与えた。20000回の振動を与えた後、実体顕微鏡にて破断したワイヤ本数を数えた。試験は4個のボンディング試料から任意に選定した100本のワイヤ中のワイヤ破断数を振動破断率として表1に示した。
〔チップ割れ〕
前記ボンディング試料をKOH1wt%水溶液中に約30分浸漬し、ICチップ上のAl電極膜を除去した後、ICチップ表面を金属顕微鏡で観察し、チップ割れの有無を観察した。試験は4個のボンディング試料から任意に選定した電極試料数100個中のチップ割れ数をチップ割れ不良率として表1に示した。
(実施例2〜64)(比較例1〜19)
金合金線の組成を表1〜4に示すようにしたこと以外は実施例1と同様にして金合金線に仕上げ、同様の試験を行ってその結果を表1〜4に示した。
【0021】
【表1】
【0022】
【表2】
【0023】
【表3】
【0024】
【表4】
【0025】
(試験結果)
(1)高純度金にCo,Zn(第1群元素)のうち少なくとも1種を1〜1000重量ppm 、Mnを1〜1000重量ppm 、La,Y,Gd,Be,Ca,Eu(第2群元素)のうち少なくとも1種を1〜400重量ppm 共存して含有した組成である実施例1〜39および47〜51は高温放置不良率が0〜5%、ボール真球度が0.92〜0.99、振動破断率が0〜10%、チップ割れ不良率が0%と優れた効果を示した。
(2)高純度金にCoを1〜1000重量ppm 、Mnを1〜1000重量ppm 共存した組成である実施例40〜46は高温放置不良率が0〜5%、ボール真球度が0.95〜0.98、振動破断率が0〜10%、チップ割れ不良率が0%と優れた効果を示した。
(3)高純度金に第1群元素のうち少なくとも1種を1〜1000重量ppm と、Mnを1〜1000重量ppm と、第2群元素のうち少なくとも1種を1〜400重量ppm と、Pd,Pt,Cu,Ag,Ni(第3群元素)のうち少なくとも1種を0.01〜2.0重量%とを共存して含有した組成である実施例47〜59、および、高純度金にCoを1〜1000重量ppm とMnを1〜1000重量ppm と第2群元素のうち少なくとも1種を1〜400重量ppm とを共存して含有した組成である実施例60〜66は、高温放置不良率が0%、ボール真球度が0.95〜0.98、振動破断率が0〜10%、チップ割れ不良率が0%と優れた効果を示した。
【0026】
(4)この中でも第2群元素のうち少なくとも1種が次の3種類のうち何れか1つである場合は、Caのみを1〜10重量ppm 未満含有する実施例23と対比して振動破断率が10%に対して0%と更に優れた効果を示す様になる。この為共存元素としての第2群元素のうち少なくとも1種は次の3種類のうち何れか1つであることが好ましい。
i)La,Eu,Y,Beのうち少なくとも1種を1〜400重量ppm
ii)Caを10〜400重量ppm
iii)Ca及びLa,Eu,Y,Beのうち少なくとも1種とを各々5重量ppm以上且つその合計で10〜400重量ppm
【0027】
(5)高純度金に第1群元素のうち少なくとも1種又はMnのみを含有する比較例1〜5は高温放置不良率が63〜82%、振動破断率が19〜36%であり本願の構成である実施例1〜66の方が優れていることがわかる。
【0028】
(6)高純度金にZnを1〜1000重量ppm 含有するが第2群元素のうち少なくとも1種を含有しない比較例6は高温放置不良率が42%、振動破断率が21%であり本願の構成である実施例1〜66の方が優れていることがわかる。
(7)高純度金に第1群元素のうち少なくとも1種を含有しない比較例7〜9は高温放置不良率が57〜66%であり本願の構成である実施例1〜66の方が優れていることがわかる。
【0029】
(8)高純度金にMnを含有しない比較例10,11は高温放置不良率が69〜72%であり本願の構成である実施例1〜66の方が優れていることがわかる。
(9)高純度金に第2群元素のうち少なくとも1種のみを含有する比較例12〜13は高温放置不良率が100%であり本願の構成である実施例1〜66の方が優れていることがわかる。
【0030】
(10)高純度金に含有する第1群元素のうち少なくとも1種又はMnの含有量が1重量%を越える比較例14〜17はチップ割れ不良率が51〜63%であり本願の構成である実施例1〜66の方が優れていることがわかる。
(11)高純度金に含有する第2群元素のうち少なくとも1種の含有量が1000重量ppm を越える比較例18,19はボール真球度が0.62〜0.67であり本願の構成である実施例1〜66の方が優れていることがわかる。
【0031】
【発明の効果】
本発明により高純度金にCo,Znのうち少なくとも1種を1〜1000重量ppm ,Mnを1〜1000重量ppm ,La,Y,Gd,Be,Ca,Euのうち少なくとも1種を1〜400重量ppm 含有させた組成、あるいは高純度金にCoを1〜1000重量ppm 、Mnを1〜1000重量ppm 含有させた組成、さらにはこれらにPd,Pt,Cu,Au,Ag,Niのうち少なくとも1種を0.01〜2.0重量%添加した組成を有する半導体素子ボンディング用金合金線によれば、高温で長時間の環境に保持した後の接合性の信頼性が向上すると共に、ボール真球度に優れ、振動破断率が小さく、ICチップの割れが少ない金合金線とすることが出来る。
【図面の簡単な説明】
【図1】ワイヤボンディング法により金合金線を用いてICチップとリードフレームの間を接続した様子を示す。
【符号の説明】
1…ICチップ
2…Al電極
3…金合金線
4…リードフレーム
5,6…接合点[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonding wire for a semiconductor element and a gold alloy wire for bonding a semiconductor element useful for forming a bump.
[0002]
[Prior art]
Conventionally, as a wire connecting an IC chip electrode and an external lead used in a semiconductor device, a gold alloy wire in which a trace amount of other metal elements is contained in high-purity gold having a purity of 99.99% by weight or more has excellent reliability. It is often used as being.
Usually, as a method for connecting the semiconductor device, an ultrasonic combined thermocompression bonding method using a gold alloy wire is mainly used, and then the resin is sealed to obtain a semiconductor device.
[0003]
Here, FIG. 1 shows a state where wiring is formed by a thermocompression bonding method using ultrasonic waves and a loop is formed. Reference numeral 1 is an IC chip, 2 is an Al electrode on the IC chip, 3 is a gold alloy wire, 4 is a lead frame, 5 is a first side junction, and 6 is a second side junction. Recently, semiconductor devices are often used by being heated by an operating power source or an external environment and exposed to a high temperature, and bonding wires are required to have low junction deterioration even when held at a high temperature for a long time. For this reason, a predetermined gold alloy composition has been proposed as being effective for pull strength deterioration after being kept at a high temperature. For example, Japanese Patent Application Laid-Open No. 10-4115 discloses a gold alloy wire having a composition containing Co, Ge, etc. as having excellent pull strength after holding a wire-bonded sample at 200 ° C. for 100 hours. Japanese Patent Laid-Open No. 2-215140 discloses a gold alloy wire having a composition containing Mn and the like because it has excellent shear strength after holding a wire-bonded sample at 250 ° C. for 900 minutes.
[0004]
On the other hand, when an alloying element is added to gold in order to obtain a gold alloy wire that improves the bondability after being held at the high temperature, there arises a problem that the vibration breaking performance is lowered. The vibration rupture performance is required for a gold alloy wire as performance capable of preventing disconnection due to vibration during sample transportation before resin sealing of a semiconductor device.
[0005]
[Problems to be solved by the invention]
Here, when trying to improve the reliability of the bondability conventionally, there is a problem in any of the ball sphericity, vibration breakage rate, and IC chip cracking property, and recently it has been kept at a high temperature for a longer time. There is a need for further improvement in the reliability of the later joining. The above-described gold alloy wire is still insufficient for the above requirements.
[0006]
The present invention has been made in view of the circumstances as described above, and the object of the present invention is to improve the reliability of the bondability after being held in an environment at a high temperature for a long time, and is excellent in ball sphericity. Another object of the present invention is to provide a gold alloy wire having a small vibration breaking rate and few IC chip cracks.
[0007]
[Means for Solving the Problems]
As a result of extensive studies by the present inventors, at least one of a predetermined amount of Co, Zn (first group element), a predetermined amount of Mn, and a predetermined amount of La, Y, Gd, Be, Ca, Eu ( It is found that the above-mentioned object can be achieved by containing at least one of the second group elements) in high-purity gold or by containing a predetermined amount of Co and a predetermined amount of Mn in high-purity gold. Thus, the present invention has been completed.
[0008]
(1) At least one of Co and Zn is 1 ppm by weight to less than 1000 ppm by weight, Mn is 1-1000 ppm by weight, and at least one of La, Y, Gd, Be, Ca, Eu is 1 to 400 wt. ppm contains a semiconductor element bonding gold alloy wire characterized in that the balance of Au and No 避不 pure product.
(2) Containing at least one of Co and Zn in the range of 1 to 1000 ppm, Mn from 1 to 1000 ppm, and at least one of La, Y, Gd, Be, and Eu from 1 to 400 ppm by weight and a semiconductor element bonding gold alloy wire for the balance being made of Au and No 避不 pure product.
[0009]
(3) Co, at least one of less than 1000 ppm by weight or 1 ppm by weight of Zn, and a 1 to 1000 ppm by weight and Ca Mn containing 10 to 400 ppm by weight, the balance being Au and No 避不 pure product A gold alloy wire for bonding semiconductor elements.
(4) At least one of Co and Zn is 1 ppm by weight to less than 1000 ppm by weight, Mn is 1 to 1000 ppm by weight, and at least one of Ca and La, Y, Gd, Be, Eu is 5 ppm by weight. or more and in that the total contained 10 to 400 wt ppm, semiconductor devices bonded gold alloy wire for the balance being made of Au and No 避不 pure product.
(5) Co with 1 ppm by weight to less than 1000 ppm by weight, a Mn containing 1 to 1000 ppm by weight, a semiconductor device bonding gold alloy wire for the balance being made of Au and No 避不 pure product.
(6) The gold alloy for bonding semiconductor elements according to the above (1) to (5), further comprising 0.01 to 2.0% by weight of at least one of Pd, Pt, Cu, Ag, and Ni. line.
[0010]
The gold alloy wire for semiconductor element bonding of the present invention is excellent not only for ball bonding but also for forming a bump because it has excellent high-temperature bonding properties together with ball sphericity, vibration breaking rate, and IC chip cracking. It is excellent and the present invention includes the formation of bumps.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
(1) Raw charges The raw charges are preferably high-purity gold refined to at least 99.99% by weight or more. More preferably, it is 99.995 weight% or more, Most preferably, it is 99.999 weight% or more. Therefore, the inevitable impurities in the alloy are preferably less than 0.01% by weight. More preferably it is less than 0.005% by weight, most preferably less than 0.001% by weight. Less unavoidable impurities are preferable because harmful elements can be removed and reliability is improved.
[0012]
(2) [Co, Zn]
a) In the coexistence of a predetermined amount of Mn and at least one of a predetermined amount of the second group element in the high-purity gold, a composition containing at least one of a predetermined amount of Co and Zn, or The said subject can be achieved by setting it as the composition containing predetermined amount Co in the coexistence with predetermined amount Mn in the said high purity gold | metal | money.
b) In the coexisting composition, at least one of Co and Zn coexisting with at least one of 1-1000 ppm by weight of Mn and 1 to 400 ppm by weight of the second group element, or coexisting with 1-1000 ppm of Mn. When the Co content is 1 ppm by weight or more, the high-temperature bondability is improved as compared with the case of not containing this. The above effect can be maintained up to a content of at least one of Co and Zn up to 1.0% by weight. However, if the content exceeds 1.0% by weight, the IC chip cracks. It is intended for cases where the weight is less than ppm. Therefore, the content of at least one of Co and Zn in the coexisting composition is determined to be 1 ppm by weight or more and less than 1000 ppm by weight. (Hereinafter, this range is simply expressed as 1 to 1000 ppm by weight for the amount of the first group element, but it is precisely 1 to 1000 ppm by weight.)
[0013]
(3) Mn
a) Coexistence of the high-purity gold with at least one of a predetermined amount of the first group element and at least one of the predetermined amount of the second group element, or coexistence of the high-purity gold with a predetermined amount of Co. In this case, the above-described problem can be achieved by using a composition containing a predetermined amount of Mn.
b) In the coexisting composition, Mn coexisting with at least one of the first group elements of 1 to 1000 ppm by weight and at least one of the second group elements of 1 to 400 ppm by weight, or 1 to 1000 ppm by weight of When the content of Mn coexisting with Co is 1 ppm by weight or more, the high temperature bondability is improved as compared with the case of not containing this. When the content of Mn exceeds 1.0% by weight, cracking of the IC chip occurs, but the present invention is directed to the case of 1000 ppm by weight or less. Therefore, the content of Mn in the coexisting composition is set to 1 to 1000 ppm by weight.
[0014]
(4) [La, Y, Gd, Be, Ca, Eu]
a) In the coexistence of at least one of a predetermined amount of the first group element and a predetermined amount of Mn in the high-purity gold, the composition contains at least one of the predetermined amount of the second group element. Can accomplish the task.
b) In the coexisting composition, the content of at least one of the first group elements of 1-1000 ppm by weight and the second group of elements coexisting with 1-1000 ppm by weight of Mn is 1 ppm by weight or more. If it becomes, compared with the thing which does not contain this, high temperature bondability and a vibration fracture rate will improve. When the content of at least one of the second group elements exceeds 400 ppm by weight, the ball sphericity is deteriorated. For this reason, the content of at least one of the second group elements in the coexisting composition is set to 1 to 400 ppm by weight.
[0015]
c) Further, when at least one of the predetermined amount of the second group element in the coexisting composition is the following three kinds, the ball true sphere is compared with the case where Ca is contained alone by 1 ppm to less than 10 ppm by weight. The degree will improve further.
For this reason, in the coexisting composition, it is preferable that at least one of the predetermined amount of the second group element is any one of the following three types.
[0016]
i) 1 to 400 ppm by weight of at least one of La, Y, Gd, Be, and Eu
ii) 10 to 400 ppm by weight of Ca
iii) Each of Ca and at least one of La, Y, Gd, Be, and Eu is 5 ppm by weight or more and 10 to 400 ppm by weight in total.
(5) [Pd, Pt, Cu, Ag, Ni]
a) In the coexisting composition of (1) to (4), even if at least one of a predetermined amount of Pd, Pt, Cu, Ag, Ni (third group element) is further contained, Can be achieved.
b) In the coexisting composition, at least one of 1-1000 ppm by weight of the first group element coexists with 1-1000 ppm by weight of Mn, and at least one of the second group elements coexisting or non-coexisting. In addition, even if the content of at least one of the third group elements is in the range of 0.01 to 2.0% by weight, the same excellent effects as those not containing these elements can be obtained. It is done. For this reason, the content of at least one of the third group elements in the coexisting composition is determined to be 0.01 to 2.0% by weight.
(6) Method for Producing Gold Alloy Wire A preferred method for producing a gold alloy wire according to the present invention will be described.
[0017]
A predetermined amount of element is added to high-purity gold, melted in a vacuum melting furnace, and cast into an ingot. The ingot is subjected to cold working and intermediate annealing using a groove roll and a wire drawing machine, and is subjected to final annealing after making the fine wire 10 to 100 μm in diameter by final cold working.
(7) Applications The gold alloy wire for bonding a semiconductor element of the present invention is preferably used as a wiring material using an ultrasonic combined thermocompression bonding method when connecting a semiconductor element such as an IC chip to a lead frame when mounting a semiconductor device. Used. It is also useful for forming electrode bumps such as IC chips of semiconductor devices. The semiconductor device is then finished with resin sealing.
[0018]
【Example】
Examples and Comparative Examples shown in Tables 1 to 3 will be described.
(Example 1)
A predetermined amount of Co, Mn, La was added to high-purity gold having a purity of 99.999% and dissolved in a vacuum melting furnace, and then cast to obtain a gold alloy ingot having the composition shown in Table 1, and a groove roll, Cold processing using a wire drawing machine and intermediate annealing were performed, the final cold processing was performed to make the diameter 30 μm, the final annealing was performed so that the elongation was 4%, and the surface treatment agent was further coated to finish the gold alloy wire. .
[0019]
Using a fully automatic bonding machine (UTC-100, manufactured by Shinkawa Co., Ltd.) for gold alloy wire, a bonding sample with 96 pins (this resin) using an IC chip Al electrode and a copper alloy lead frame by ultrasonic thermocompression bonding. A sample before sealing was referred to as a “bonding sample”. Next, a semiconductor sample in which the bonding sample was resin-sealed with an epoxy resin (the sample after the resin sealing was referred to as “semiconductor sample”) was prepared. The following tests were conducted using these samples.
[High temperature bondability test]
The electrical resistance between the terminals was measured in advance using the semiconductor sample. Next, after a high temperature accelerated test was conducted by holding at 200 ° C. for 2,000 hours using a high temperature bath, the electrical resistance between the same terminals was measured, and when the change in electrical resistance was 1Ω or more, it was determined as a defective part. The test was performed by arbitrarily selecting 100 locations from 4 semiconductor samples. The number of defective parts is shown in Table 1 as a high temperature storage defect rate.
[Ball sphericity]
Balls were created in the atmosphere with a fully automatic bonding machine, the vertical and horizontal lengths of the balls were measured using a 1000 × measuring microscope, and the ball sphericity was calculated according to the following equation. Ten balls were measured, and the average value was shown in Table 1 as the ball sphericity.
[0020]
Ball sphericity = (minor axis) / (major axis)
[Vibration breaking rate]
The bonding sample inserted into a transfer magazine was fixed to a vibration tester, and the sample was vibrated. Vibration was repeatedly applied at a frequency of 100 Hz and a displacement of 0.1 mm. After applying 20,000 vibrations, the number of broken wires was counted with a stereomicroscope. In the test, Table 1 shows the number of wire breaks in 100 wires arbitrarily selected from four bonding samples as the vibration breakage rate.
[Chip cracking]
The bonding sample was immersed in an aqueous solution of 1 wt% KOH for about 30 minutes to remove the Al electrode film on the IC chip, and then the surface of the IC chip was observed with a metal microscope to observe the presence or absence of chip cracking. In the test, Table 1 shows the number of chip cracks in 100 electrode samples arbitrarily selected from four bonding samples as a chip crack defect rate.
(Examples 2 to 64) (Comparative Examples 1 to 19)
A gold alloy wire was finished in the same manner as in Example 1 except that the composition of the gold alloy wire was as shown in Tables 1 to 4, the same test was performed, and the results are shown in Tables 1 to 4.
[0021]
[Table 1]
[0022]
[Table 2]
[0023]
[Table 3]
[0024]
[Table 4]
[0025]
(Test results)
(1) High purity gold with at least one of Co and Zn (first group elements) of 1 to 1000 ppm by weight, Mn of 1 to 1000 ppm by weight, La, Y, Gd, Be, Ca, Eu (second Examples 1 to 39 and 47 to 51 having compositions containing at least one of the group elements) in an amount of 1 to 400 ppm by weight have a high temperature storage failure rate of 0 to 5% and a ball sphericity of 0.92. -0.99, the vibration breaking rate was 0 to 10%, and the chip crack defect rate was 0%.
(2) Examples 40 to 46 having a composition in which Co is mixed in high purity gold in an amount of 1 to 1000 ppm by weight and Mn is in the range of 1 to 1000 ppm by weight. The excellent effects of 95 to 0.98, the vibration breaking rate of 0 to 10%, and the chip cracking failure rate of 0% were exhibited.
(3) In high purity gold, at least one of the first group elements is 1 to 1000 ppm by weight, Mn is 1 to 1000 ppm by weight, and at least one of the second group elements is 1 to 400 ppm by weight; Examples 47 to 59 having a composition containing at least one of Pd, Pt, Cu, Ag, and Ni (third group element) in an amount of 0.01 to 2.0% by weight, and high purity Examples 60 to 66 having a composition containing Co in an amount of 1 to 1000 ppm by weight of Co, 1 to 1000 ppm by weight of Mn, and 1 to 400 ppm by weight of at least one of the second group elements, The high temperature standing defective rate was 0%, the ball sphericity was 0.95 to 0.98, the vibration breaking rate was 0 to 10%, and the chip cracking defective rate was 0%.
[0026]
(4) Among them, when at least one of the second group elements is any one of the following three kinds, vibration fracture is caused in contrast to Example 23 containing less than 1 to 10 ppm by weight of Ca alone. The rate is 0% with respect to 10%, and an even better effect is exhibited. Therefore, at least one of the second group elements as coexisting elements is preferably one of the following three types.
i) 1 to 400 ppm by weight of at least one of La, Eu, Y, and Be
ii) 10 to 400 ppm by weight of Ca
iii) Each of at least one of Ca and La, Eu, Y, and Be is 5 ppm by weight or more and 10 to 400 ppm by weight in total.
[0027]
(5) Comparative Examples 1 to 5 containing at least one of the first group elements or only Mn in high-purity gold have a high temperature storage failure rate of 63 to 82% and a vibration breaking rate of 19 to 36%. It turns out that the Examples 1-66 which are structures are superior.
[0028]
(6) Comparative Example 6 containing high-purity gold containing 1 to 1000 ppm by weight of Zn but not containing at least one of the second group elements has a high temperature failure rate of 42% and a vibration breaking rate of 21%. It turns out that the Examples 1-66 which are the structures of this are superior.
(7) Comparative Examples 7 to 9 which do not contain at least one of the first group elements in high purity gold have a high temperature storage failure rate of 57 to 66%, which is superior to Examples 1 to 66 having the configuration of the present application. You can see that
[0029]
(8) It can be seen that Comparative Examples 10 and 11 in which Mn is not contained in high-purity gold have a high-temperature standing defect rate of 69 to 72%, and Examples 1 to 66 having the configuration of the present application are superior.
(9) Comparative Examples 12 to 13 containing only at least one of the second group elements in high purity gold have a high temperature storage failure rate of 100%, and Examples 1 to 66 having the configuration of the present application are superior. I understand that.
[0030]
(10) Comparative Examples 14 to 17 in which the content of at least one of the first group elements contained in the high-purity gold or Mn exceeds 1% by weight has a chip crack defect rate of 51 to 63%. It can be seen that Examples 1 to 66 are superior.
(11) In Comparative Examples 18 and 19 in which the content of at least one of the second group elements contained in the high purity gold exceeds 1000 ppm by weight, the ball sphericity is 0.62 to 0.67, and the configuration of the present application It can be seen that Examples 1 to 66 are superior.
[0031]
【The invention's effect】
According to the present invention, at least one of Co and Zn in high purity gold is 1-1000 ppm by weight, Mn is 1-1000 ppm by weight, and at least one of La, Y, Gd, Be, Ca, Eu is 1 to 400. A composition containing ppm by weight, or a composition containing 1 to 1000 ppm by weight of Co and 1 to 1000 ppm by weight of Mn in high-purity gold, and further including at least one of Pd, Pt, Cu, Au, Ag, and Ni. According to the gold alloy wire for bonding a semiconductor element having a composition in which one type is added in an amount of 0.01 to 2.0% by weight, the reliability of the bondability after being maintained in an environment at a high temperature for a long time is improved. A gold alloy wire having excellent sphericity, a low vibration breaking rate, and few IC chip cracks can be obtained.
[Brief description of the drawings]
FIG. 1 shows a state where an IC chip and a lead frame are connected using a gold alloy wire by a wire bonding method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... IC chip 2 ... Al electrode 3 ... Gold alloy wire 4 ... Lead frame 5, 6 ... Joint point
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13037799A JP4117973B2 (en) | 1998-05-15 | 1999-05-11 | Gold alloy wire for bonding |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13354998 | 1998-05-15 | ||
JP10-133549 | 1999-04-15 | ||
JP10830599 | 1999-04-15 | ||
JP11-108305 | 1999-04-15 | ||
JP13037799A JP4117973B2 (en) | 1998-05-15 | 1999-05-11 | Gold alloy wire for bonding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000357706A JP2000357706A (en) | 2000-12-26 |
JP4117973B2 true JP4117973B2 (en) | 2008-07-16 |
Family
ID=27311204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13037799A Expired - Fee Related JP4117973B2 (en) | 1998-05-15 | 1999-05-11 | Gold alloy wire for bonding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4117973B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4513440B2 (en) * | 2004-07-15 | 2010-07-28 | 住友ベークライト株式会社 | Semiconductor device |
-
1999
- 1999-05-11 JP JP13037799A patent/JP4117973B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000357706A (en) | 2000-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101124612B1 (en) | Bonding wire | |
JPH0936162A (en) | Gold wire used for bonding | |
JP4117973B2 (en) | Gold alloy wire for bonding | |
JP3628139B2 (en) | Gold alloy wire for semiconductor element bonding | |
JP3916320B2 (en) | Gold alloy wire for bonding | |
JPH11126788A (en) | Ic-chip connecting gold alloy wire | |
JP3612179B2 (en) | Gold-silver alloy fine wire for semiconductor devices | |
JP3810200B2 (en) | Gold alloy wire for wire bonding | |
KR100695925B1 (en) | Gold wire for semiconductor element bonding | |
JPH09272931A (en) | Fine gold alloy wire for semiconductor device | |
CN111656501B (en) | Bonding wire | |
JP3994113B2 (en) | Wire bump | |
JPH08325657A (en) | Bonding gold wire | |
KR19990088305A (en) | Bonding gold alloy wire and applications thereof | |
JP3586909B2 (en) | Bonding wire | |
JP3744131B2 (en) | Bonding wire | |
JP3085090B2 (en) | Bonding wire | |
JPH09321075A (en) | Bonding wire | |
JP3426473B2 (en) | Gold alloy wires for semiconductor devices | |
JP3669811B2 (en) | Gold alloy wire for semiconductor element bonding | |
JP3585993B2 (en) | Gold wire for bonding | |
JP3120940B2 (en) | Spherical bump for semiconductor device | |
JPH10303236A (en) | Gold alloy wire for bonding on semiconductor device | |
JPH10233410A (en) | Alloy au wire for bonding semiconductor element | |
JP3747023B2 (en) | Gold bonding wire for semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080422 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |