JPH11126788A - Ic-chip connecting gold alloy wire - Google Patents

Ic-chip connecting gold alloy wire

Info

Publication number
JPH11126788A
JPH11126788A JP9291165A JP29116597A JPH11126788A JP H11126788 A JPH11126788 A JP H11126788A JP 9291165 A JP9291165 A JP 9291165A JP 29116597 A JP29116597 A JP 29116597A JP H11126788 A JPH11126788 A JP H11126788A
Authority
JP
Japan
Prior art keywords
weight
gold
wire
gold alloy
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9291165A
Other languages
Japanese (ja)
Inventor
Shin Takaura
伸 高浦
Toshitaka Mimura
利孝 三村
Hiroshi Murai
博 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP9291165A priority Critical patent/JPH11126788A/en
Publication of JPH11126788A publication Critical patent/JPH11126788A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0107Ytterbium [Yb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20756Diameter ranges larger or equal to 60 microns less than 70 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20757Diameter ranges larger or equal to 70 microns less than 80 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20758Diameter ranges larger or equal to 80 microns less than 90 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20759Diameter ranges larger or equal to 90 microns less than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart high-temperature leaving performance withstanding the high-temperature leaving test, by resin sealing after bonding and to make the vibration breaking performance excellent by forming a gold alloy wire by blend ing at least one kind of the specified amount of Ca, Ge, Be and Gd into high- purity gold. SOLUTION: An IC-chip connecting alloy gold wire, which comprises 0.4-18 weight % of Ag, 1-200 weight ppm of at least one kind among Ca, Ge, Be and Gd, and the remaining part comprising gold and unavoidable impurities, is formed. In this alloy gold wire, it is suitable that 1-1400 weight % of at least one kind among Pd, Pt, Cu, In, La, Y, Eu and Yb is blended furthermore. It is suitable the high-purity gold of at least 99.995 weight % or more and more suitable at 99.995 weight % or more is used as the raw material gold. Furthermore, it is suitable that the alloy gold wire is made to be the thin metal wire having the diameter of 10-100 μm. It is suitable that the elongation percentage is made to be 2-15% and more suitable that the percentage is 2-7%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に用いら
れるICチップ電極と外部リード等の基板の接続に用い
て好適な金合金線に関する。
The present invention relates to a gold alloy wire suitable for connecting an IC chip electrode used in a semiconductor device to a substrate such as an external lead.

【0002】[0002]

【従来の技術】従来から半導体装置のICチップ電極と
外部リードを接続する線としては、純度99.99重量
%以上の高純度金に他の金属元素を微量含有させた金合
金線が信頼性に優れているとして多用されている。通常
半導体装置は前記接続する方法として、金合金線を用い
た超音波併用熱圧着ボンディング法が主として用いら
れ、その後樹脂封止して半導体装置とされている。
2. Description of the Related Art Conventionally, as a wire connecting an IC chip electrode of a semiconductor device and an external lead, a gold alloy wire obtained by adding a small amount of another metal element to high purity gold having a purity of 99.99% by weight or more is used. It is often used as being excellent. Usually, as a method for connecting the semiconductor device, an ultrasonic combined thermo-compression bonding method using a gold alloy wire is mainly used, and thereafter, the semiconductor device is sealed with a resin to form a semiconductor device.

【0003】一方ICチップ電極を接続した半導体装置
は高温に晒されて使用されるため、この時の接合性の経
時劣化が小さいことが要求されている。ここで特開平4
−229631号公報及び特開平8−316263号公
報にはワイヤ流れ性を抑制するための金合金線が開示さ
れ、その中に高温に晒した時の接合性の経時劣化を抑制
出来ることが開示されている。
On the other hand, since a semiconductor device to which an IC chip electrode is connected is used after being exposed to a high temperature, it is required that the deterioration of the bonding property at this time is small. Here,
JP-A-229631 and JP-A-8-316263 disclose a gold alloy wire for suppressing wire flowability, and it discloses that deterioration of the bondability with time when exposed to high temperatures can be suppressed. ing.

【0004】しかしながら実用に供するためには更に接
合性の経時劣化に対する信頼性の向上が要求されるとと
もに、特開平4−229631号公報に開示された5〜
30重量%Cu、又はそれに加えて0.1〜20重量%
Agを含有する金合金線はボール形成時ボールが硬く、
チップ割れが発生し、実用上問題がある。又特開平8−
316263号公報に開示された金を芯材とし、周囲を
金合金としたいわゆるクラッド線は熱圧着ボンディング
する際、安定したループ形状が得られないと共に、半導
体装置の実装工程中、又は工程間の移動中にワイヤーが
ネック部等で断線が著しくなるため、同様に実用上問題
がある。
[0004] However, in order to be put to practical use, it is required to further improve the reliability with respect to the deterioration with time of the bonding property.
30% by weight Cu or 0.1 to 20% by weight in addition to Cu
The gold alloy wire containing Ag is hard when the ball is formed.
Chip breakage occurs and there is a practical problem. JP-A-8-
A so-called clad wire having gold as a core material and a peripheral gold alloy disclosed in Japanese Patent No. 316263 does not provide a stable loop shape when performing thermocompression bonding, and also during a semiconductor device mounting process or between processes. During the movement, the wire becomes severely broken at a neck portion or the like, and thus there is a practical problem as well.

【0005】[0005]

【発明が解決しようとする課題】高温に晒した時の接合
性の経時劣化に対する信頼性の評価方法として、前記の
特開平4−229631号公報に開示された方法は超音
波併用熱圧着ボンディングした後、樹脂封止していない
ので樹脂の影響を含まず、しかも100時間という短時
間での劣化試験である。このため信頼性のより高い評価
方法で得られる、より信頼性の高い金合金線を提供する
ことが要求されてきた。
As a method for evaluating the reliability with respect to the deterioration with time of the bonding property when exposed to a high temperature, the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 4-229631 employs thermocompression bonding combined with ultrasonic waves. After that, it is a degradation test in a short time of 100 hours without the influence of resin because the resin is not sealed. For this reason, it has been demanded to provide a more reliable gold alloy wire obtained by a more reliable evaluation method.

【0006】又金合金線を用いて配線するワイヤボンデ
ィング法に於いては、半導体装置の実装工程中、又は工
程間の移動中にワイヤーがネック部等で断線することが
ある為、振動破断性能に優れていることが要求されてい
る。又金合金線としては、半導体装置の小型化、高密度
化に伴いICチップ電極が小さくなるため、電極上で圧
着ボール形状の真円度が良いことが要求されている。真
円度が悪くなり、楕円形になると圧着ボールが電極から
はみ出してショートする危険性を防止するためである。
この為ボール形成時にその真球性の良いことが要求され
る。
In a wire bonding method in which wiring is performed using a gold alloy wire, the wire may break at a neck portion or the like during a mounting process of a semiconductor device or during movement between processes. It is required to be excellent. Further, as for the gold alloy wire, the IC chip electrode becomes smaller as the size of the semiconductor device becomes smaller and the density thereof becomes higher. Therefore, it is required that the roundness of the compressed ball shape on the electrode be good. This is to prevent the risk that the crimped ball protrudes from the electrode and short-circuits when the roundness becomes poor and the shape becomes elliptical.
For this reason, good sphericity is required during ball formation.

【0007】又金合金線としては、ICチップ電極にボ
ールを圧着する際、ICチップに割れが生じないことが
必要である。本発明は、前述の事情に鑑みてなされたも
のであり、その目的とするところは、半導体装置の実装
に於いてICチップ電極を金合金線を用いて接続した時
の信頼性を向上することであり、具体的には第1に超音
波併用熱圧着ボンディングした後、樹脂封止した後、2
00℃で1000時間の高温に晒した時の接合性の経時
劣化に優れた(以下高温放置性能という)金合金線を提
供することである。
[0007] In the case of a gold alloy wire, it is necessary that the IC chip does not crack when the ball is pressed against the IC chip electrode. The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the reliability when IC chip electrodes are connected by using a gold alloy wire in mounting a semiconductor device. Specifically, first, after thermocompression bonding with ultrasonic wave, resin sealing,
An object of the present invention is to provide a gold alloy wire which is excellent in deterioration with time of bonding property when exposed to a high temperature of 00 ° C. for 1000 hours (hereinafter referred to as high-temperature storage performance).

【0008】第2に金合金線を用いて配線するワイヤボ
ンディング法に於いて、振動破断性能に優れた金合金線
を提供することである。第3にボール成形時にボールの
真球度が良い金合金線を提供することである。第4にI
Cチップ電極にボールを圧着する際、ICチップに割れ
を生じない金合金線を提供することである。
A second object of the present invention is to provide a gold alloy wire having excellent vibration rupture performance in a wire bonding method of wiring using a gold alloy wire. Third, it is to provide a gold alloy wire having a good sphericity of the ball at the time of ball forming. Fourth I
An object of the present invention is to provide a gold alloy wire that does not crack an IC chip when a ball is pressed against a C chip electrode.

【0009】[0009]

【課題を解決するための手段】本発明者等が鋭意検討を
重ねた結果、高純度金に所定量のAgと所定量のCa,
Ge,Be,Gdのうち少なくとも1種を含有した金合
金線とすることにより前述の目的を達成し得ることを見
い出し、本発明を完成するに至った。すなわち、本発明
は下記にある。 (1)Agを0.4〜18重量%、Ca,Ge,Be,
Gdのうち少なくとも1種を1〜200重量ppm 含有
し、残部が金及び不可避不純物からなることを特徴とす
るICチップ接続用金合金線。 (2)Agを0.4〜18重量%、Beを1〜20重量
ppm 含有し、残部が金及び不可避不純物からなることを
特徴とするICチップ接続用金合金線。 (3)Agを0.4〜18重量%、Beを1〜20重量
ppm ,Ca,Ge,Gdのうち少なくとも1種を1〜1
80重量ppm 含有し、残部が金及び不可避不純物からな
ることを特徴とするICチップ接続用金合金線。 (4)更にPd,Pt,Cu,In,La,Y,Eu,
Ybのうち少なくとも1種を1〜1400重量ppm 含有
したことを特徴とする(1)〜(3)のいずれかに記載
のICチップ接続用金合金線。
As a result of intensive studies by the present inventors, a predetermined amount of Ag and a predetermined amount of Ca,
It has been found that the above object can be achieved by using a gold alloy wire containing at least one of Ge, Be, and Gd, and the present invention has been completed. That is, the present invention is as follows. (1) 0.4-18% by weight of Ag, Ca, Ge, Be,
A gold alloy wire for connecting an IC chip, wherein at least one of Gd is contained in an amount of 1 to 200 ppm by weight, and the balance is made of gold and unavoidable impurities. (2) 0.4 to 18% by weight of Ag and 1 to 20% by weight of Be
A gold alloy wire for connecting IC chips, characterized in that it contains ppm and the balance consists of gold and unavoidable impurities. (3) 0.4 to 18% by weight of Ag and 1 to 20% by weight of Be
at least one of ppm, Ca, Ge, and Gd is 1 to 1
A gold alloy wire for connecting IC chips, comprising 80 wt ppm and the balance being gold and unavoidable impurities. (4) Further, Pd, Pt, Cu, In, La, Y, Eu,
The gold alloy wire for connecting an IC chip according to any one of (1) to (3), wherein at least one of Yb is contained in an amount of 1 to 1400 ppm by weight.

【0010】[0010]

【発明の実施の形態】原料金としては少なくとも99.
99重量%以上の高純度金を用いることが好ましい。更
に好ましくは99.995重量%以上であり、最も好ま
しくは99.999重量%以上である。高純度金を用い
る程有害成分の影響を除去出来て好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION At least 99.
It is preferable to use high-purity gold of 99% by weight or more. It is more preferably at least 99.995% by weight, most preferably at least 99.999% by weight. The use of high-purity gold is preferable because the effects of harmful components can be removed.

【0011】本発明に用いるAgの含有量を、所定量の
Ca,Ge,Be,Gdのうち少なくとも1種との共存
において、0.4〜18重量%とすることにより前記課
題を達成出来る。Ag添加量が0.4%未満と対比し
て、0.4%以上になると高温放置性能が向上してく
る。Ag含有量が18%を越えるとICチップの電極に
割れが生じるとともにボールの真球度が低下してくる。
この為Agの含有量を0.4〜18重量%とした。1〜
15重量%、さらには5〜12重量%が実用的である。
The above object can be achieved by setting the content of Ag used in the present invention to 0.4 to 18% by weight in the presence of at least one of Ca, Ge, Be, and Gd in a predetermined amount. In contrast to the case where the amount of Ag is less than 0.4%, when it is 0.4% or more, the high-temperature storage performance is improved. If the Ag content exceeds 18%, the electrodes of the IC chip will crack, and the sphericity of the ball will decrease.
Therefore, the content of Ag is set to 0.4 to 18% by weight. 1 to
15% by weight, more preferably 5 to 12% by weight, is practical.

【0012】本発明に於いては、所定量のAgとの共存
に於いてBe,Ca,Ge,Gdのうち少なくとも1種
の含有量を1〜200重量ppm とすることが必要であ
る。前記4成分のうち少なくとも1種の含有量が1重量
ppm 未満になると振動破断性能が悪くなる。又200重
量ppm を越えると圧着ボールの真球度が低下してくる。
この為、Be,Ca,Ge,Gdのうち少なくとも1種
の添加量を1〜200重量ppm とした。10〜150重
量ppm が実用的である。
In the present invention, it is necessary that the content of at least one of Be, Ca, Ge and Gd be 1 to 200 ppm by weight when coexisting with a predetermined amount of Ag. The content of at least one of the four components is 1 weight
If it is less than ppm, the vibration rupture performance becomes poor. On the other hand, if it exceeds 200 ppm by weight, the sphericity of the pressure-bonded ball decreases.
Therefore, the addition amount of at least one of Be, Ca, Ge, and Gd is set to 1 to 200 ppm by weight. 10-150 ppm by weight is practical.

【0013】この中で、前記4成分のうちBeを用いる
ことが好ましい。とりわけ1〜20重量ppm Be又はそ
れに加えてCa,Ge,Gdのうち少なくとも1種の含
有量を1〜180重量ppm とすると振動破断性能が一段
と向上してくる。本発明に於いては、所定量のAgと所
定量のBe,Ca,Ge,Gdのうち少なくとも1種と
の共存に於いて、Pd,Pt,Cu,In,La,Y,
Eu,Ybのうち少なくとも1種を1〜1400重量pp
m 添加した場合にも本発明の課題に対して同等の効果を
有する。
Among them, it is preferable to use Be among the above four components. In particular, when the content of Be or 1 to 20 ppm by weight of Be, or at least one of Ca, Ge and Gd is 1 to 180 ppm by weight, the vibration rupture performance is further improved. In the present invention, in the coexistence of a predetermined amount of Ag and a predetermined amount of at least one of Be, Ca, Ge, and Gd, Pd, Pt, Cu, In, La, Y,
At least one of Eu and Yb is 1 to 1400 weight pp
The addition of m has the same effect on the object of the present invention.

【0014】本発明に於ける金合金線は、直径10〜1
00μmの金属細線として用いることが好ましい。本発
明に於ける金合金線は、芯材と被覆材が異なる金属組成
で形成されたクラッド材とは異なるものである。該クラ
ッド材から構成される線は超音波併用熱圧着ボンディン
グ法によりループを形成する際、安定したループ形状が
得られないと共に、半導体装置の実装中、又は工程間の
移動中にワイヤーがネック部等で断線が著しい、本発明
の課題である信頼性の向上を達成することが出来ない。
The gold alloy wire according to the present invention has a diameter of 10 to 1
It is preferably used as a thin metal wire of 00 μm. The gold alloy wire in the present invention is different from the clad material in which the core material and the coating material are formed with different metal compositions. When a wire composed of the clad material is formed into a loop by a thermocompression bonding method combined with ultrasonic waves, a stable loop shape cannot be obtained, and the wire has a neck portion during mounting of a semiconductor device or during movement between processes. For example, the disconnection is remarkable, and the improvement of the reliability, which is an object of the present invention, cannot be achieved.

【0015】本発明に於ける金合金線は伸び率を2〜1
5%、さらには2〜7%とすることが好ましい。本発明
になる金合金線は、半導体装置の実装に於いてICチッ
プ上の電極と外部リードを接続する際に、超音波併用熱
圧着ボンディング法などを採用して配線材料として利用
される。ICチップ上の電極材としては通常Al、Al
合金又はCuが用いられる。
The gold alloy wire according to the present invention has an elongation of 2 to 1%.
It is preferably 5%, more preferably 2 to 7%. The gold alloy wire according to the present invention is used as a wiring material by employing an ultrasonic combined thermo-compression bonding method when connecting an electrode on an IC chip and an external lead in mounting a semiconductor device. Al, Al is usually used as the electrode material on the IC chip.
An alloy or Cu is used.

【0016】なお、本発明によるICチップ接続用重合
金体を用いて、ICチップをリード体あるいは他の電極
と接続する方法、またそうして製造された半導体装置
が、同様に、本発明によって得られることは明らかであ
る。
The method for connecting an IC chip to a lead or another electrode using the polymerized metal for connecting an IC chip according to the present invention, and a semiconductor device manufactured in the same manner are also provided by the present invention. It is clear that it can be obtained.

【0017】[0017]

【実施例】【Example】

(実施例1)表に示す組成となるように、純度99.9
99重量%の金地金と各元素を含む母合金を真空溶解炉
で溶解した。得られる溶液を用いて鋳造し、溝ロール、
伸線機を用いた冷間加工と熱処理を繰り返し、最終アニ
ールを施して、最終線径30μm、伸び率4%の金合金
線とした。更にこの金合金線に極薄膜の潤滑剤被膜を塗
布してICチップ電極接続用金合金線に仕上げた。
(Example 1) The purity was 99.9 so that the composition shown in the table was obtained.
A master alloy containing 99% by weight of gold and each element was melted in a vacuum melting furnace. Cast using the resulting solution, groove roll,
Cold working using a wire drawing machine and heat treatment were repeated and final annealing was performed to obtain a gold alloy wire having a final wire diameter of 30 μm and an elongation of 4%. Further, an extremely thin lubricant film was applied to the gold alloy wire to complete a gold alloy wire for connecting an IC chip electrode.

【0018】この金合金線をボンディングワイヤとし
て、新川株式会社製全自動ボンダーUTC−100型を
用いて大気中でボンディング用のボールを形成した。得
られたボールを測長顕微鏡を用いて縦横の長さを測定
し、ボール真球度=短径/長径からボール真球度を求め
た。試料数50個の平均値を真球度として表に示した。
Using this gold alloy wire as a bonding wire, a ball for bonding was formed in the air using a fully automatic bonder UTC-100 manufactured by Shinkawa Corporation. The length and width of the obtained ball were measured using a length-measuring microscope, and the ball sphericity was calculated from sphericity of the ball = minor axis / major axis. The average value of 50 samples is shown in the table as sphericity.

【0019】又大気中でボンディング用のボールを形成
した後、ICチップ電極上に超音波併用の熱圧着により
ファーストボンディングした後、リード部にセカンドボ
ンディングして、ワイヤーボンディングしたサンプルを
作製した。このサンプルをKOHlwt%水溶液中に約3
0分浸漬し、ICチップ上のAl電極膜を除去した後、
ICチップ表面を金属顕微鏡で観察し、チップ割れの有
無を観察した。電極試料数100個中のチップ割れ数を
チップ割れ率として表に示した。
Also, after forming balls for bonding in the atmosphere, first bonding was performed on the IC chip electrode by thermocompression bonding using ultrasonic waves, and then second bonding was performed on the lead portion to prepare a wire-bonded sample. Put this sample in KOH 1 wt% aqueous solution for about 3
After immersion for 0 minutes and removing the Al electrode film on the IC chip,
The surface of the IC chip was observed with a metallographic microscope to check for chip cracks. The number of chip cracks in 100 electrode samples was shown in the table as the chip cracking rate.

【0020】又前記超音波併用の熱圧着によりワイヤー
ボンディングしたサンプルを搬送用マガジンに挿入した
ものを振動試験機に固定し、サンプルを振動させた。振
動は2.5Gとなるように所定の変位と周波数を繰り返
し与えた。20000回の振動を与えた後、実体顕微鏡
にして破断したワイヤ本数を数えた。ワイヤ試料数10
0個中のワイヤ破断数を振動破断率として表に示した。
Further, the sample which had been wire-bonded by thermocompression combined with ultrasonic waves was inserted into a transport magazine, and the sample was fixed to a vibration tester, and the sample was vibrated. A predetermined displacement and frequency were repeatedly applied so that the vibration became 2.5 G. After 20,000 vibrations, the number of broken wires was counted using a stereomicroscope. 10 wire samples
The number of wire breaks in 0 pieces is shown in the table as the vibration break rate.

【0021】又前記超音波併用の熱圧着によりワイヤー
ボンディングした後、トランスファー式のモールド機に
より樹脂モールドを行った。モールドに用いた樹脂は日
東電工製MP−7400ビフェニル系である。その後、
高温槽内で大気雰囲気中に200℃1000時間晒した
後に、所定の外部リード間の抵抗値を4端子法抵抗測定
によって測定した。試験前と比較して1Ω以上抵抗値が
増加した箇所を不良と判断した。測定端子数100個中
の不良数を高温放置後の不良率として表に示した。
After wire bonding by thermocompression combined with ultrasonic waves, resin molding was performed by a transfer-type molding machine. The resin used for the mold is Nitto Denko MP-7400 biphenyl. afterwards,
After being exposed to the air atmosphere at 200 ° C. for 1000 hours in a high-temperature chamber, the resistance value between predetermined external leads was measured by a four-terminal method resistance measurement. A portion where the resistance value increased by 1Ω or more as compared with that before the test was judged to be defective. The number of failures out of 100 measurement terminals is shown in the table as the failure rate after standing at high temperature.

【0022】尚前記超音波併用の熱圧着によるワイヤー
ボンディングはピン数96のICチップを用いて行い、
振動破断試験はICチップ2個、高温放置試験はICチ
ップ3個を用いて各々任意に100個を測定した。 (実施例2〜41、比較例1〜7)金合金中に含まれる
各成分組成を表の様にしたこと以外は実施例1と同様に
して、試験を行いその結果を表に示した。
The wire bonding by thermocompression combined with the ultrasonic wave is performed using an IC chip having 96 pins.
In the vibration rupture test, two IC chips were used, and in the high temperature standing test, three IC chips were used, and 100 IC chips were arbitrarily measured. (Examples 2 to 41, Comparative Examples 1 to 7) Tests were conducted in the same manner as in Example 1 except that the composition of each component contained in the gold alloy was as shown in the table, and the results were shown in the table.

【0023】(比較例8)金合金中に含まれる成分組成
を20重量%Cu及び1重量%Agとしたこと以外は実
施例1と同様にして、試験を行った。ボール真球度は6
0%であり、チップ割れは100%であった。実用に供
することが出来ない為、これ以上の試験は取りやめた。
(Comparative Example 8) A test was performed in the same manner as in Example 1 except that the composition of the components contained in the gold alloy was changed to 20 wt% Cu and 1 wt% Ag. Ball sphericity is 6
0%, and chip cracking was 100%. Further tests were abandoned because they could not be put to practical use.

【0024】(比較例9)純度が99.999重量%の
金地金を用いて、5重量%Ag,50重量ppm Ca、残
部がAu及び不可避不純物になるように、断面円形の金
合金インゴットを鋳造した。直径の1/2に相当する内
径を有する管状インゴットに加工し、該内径に純度が9
9.999重量%の純金棒を嵌合し、クラッドインゴッ
トを作製した。該インゴットを素材として、実施例1と
同様にして試験を行った。
(Comparative Example 9) A gold alloy ingot having a circular cross section was prepared using gold bullion having a purity of 99.999% by weight, so that 5% by weight of Ag, 50% by weight of Ca, and the balance of Au and inevitable impurities. Cast. It is processed into a tubular ingot having an inner diameter corresponding to 1/2 of the diameter, and the inner diameter has a purity of 9%.
A 9.999 wt% pure gold rod was fitted to produce a clad ingot. Using the ingot as a material, a test was conducted in the same manner as in Example 1.

【0025】前記工程により得られたクラッド線を用い
てボンディング試験を行ったところ、実施例のものが何
れもループ形状が安定していることに対して、ループ形
状が上下左右に曲がりが生じて不安定なものであった。
又振動破断率が100%と極度に悪いものであった。
When a bonding test was carried out using the clad wire obtained in the above step, the loop shape was bent up and down and right and left, while the loop shape was stable in all of the examples. It was unstable.
Further, the vibration rupture rate was extremely poor at 100%.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】(測定結果) (1)実施例1〜41のものは、高温放置後の不良率及
びICチップ割れは何れも0%と優れた高温性能を示す
と共にICチップに損傷を与えることがない。又ボール
真球度は92〜98%、振動破断率は10%以下と優れ
ていることが判る。
(Measurement results) (1) The samples of Examples 1 to 41 exhibit excellent high-temperature performance of 0% in both the defect rate and IC chip cracking after being left at high temperatures, and may damage the IC chips. Absent. Further, it can be seen that the ball sphericity is excellent at 92 to 98% and the vibration rupture rate is excellent at 10% or less.

【0031】即ち本発明構成とすることにより前記した
課題を満足するものが得られた。 (2)前記実施例の中で請求項2〜4に係るBeを含有
する実施例1〜34のものは、振動破断率が0%とな
り、好ましく用いられる。 (3)本発明の必須元素である所定量のAgを含有する
ものの、Ca,Ge,Be,Gdのうち少なくとも1種
を含有しない比較例1,2のものは、振動破断率が25
〜30%と悪いものであり、更にPdを4重量%含有す
る比較例2のものはボール真球度が0.84と悪いもの
であった。
That is, with the constitution of the present invention, the one satisfying the above-mentioned problems was obtained. (2) Of the above examples, those of Examples 1 to 34 containing Be according to claims 2 to 4 are preferably used because the vibration rupture rate is 0%. (3) Comparative Examples 1 and 2, which contain a predetermined amount of Ag which is an essential element of the present invention but do not contain at least one of Ca, Ge, Be, and Gd, have a vibration rupture ratio of 25.
Comparative Example 2 containing 4% by weight of Pd had a bad ball sphericity of 0.84.

【0032】(4)本発明の必須元素である所定量のC
a,Ge,Be,Gdのうち少なくとも1種を含有する
ものの、Agを含有せず、更にPtを2重量%含有する
比較例3のものは、高温放置性能が高いと共にボール真
球度も0.84と悪いものであった。 (5)本発明の必須元素である所定量のCa,Ge,B
e,Gdのうち少なくとも1種を含有するものの、Ag
の含有量が0.4重量%未満である0.3重量%である
比較例4のものは、高温放置性能が低下してくることが
判る。
(4) A predetermined amount of C which is an essential element of the present invention
Comparative Example 3, which contains at least one of a, Ge, Be, and Gd but does not contain Ag, and further contains 2% by weight of Pt, has a high-temperature storage performance and a ball sphericity of 0. It was bad at 0.84. (5) Predetermined amount of Ca, Ge, B which is an essential element of the present invention
Ag containing at least one of e and Gd
In Comparative Example 4 in which the content of is less than 0.4% by weight and less than 0.3% by weight, the high-temperature storage performance is found to be reduced.

【0033】Agの含有量が更に低下して0.01重量
%とした比較例7のものは高温放置性能が悪いものであ
った。 (6)本発明の必須元素である所定量のCa,Ge,B
e,Gdのうち少なくとも1種を含有するものの、Ag
を20.0重量%と18重量%を越えて過剰に含有する
比較例5のものは、チップ割れが10%、ボール真球度
が0.82と悪いものであった。
In Comparative Example 7 in which the Ag content was further reduced to 0.01% by weight, the high-temperature storage performance was poor. (6) Predetermined amount of Ca, Ge, B which is an essential element of the present invention
Ag containing at least one of e and Gd
Of Comparative Example 5 containing 20.0% by weight or more than 18% by weight, the chip crack was 10% and the ball sphericity was as bad as 0.82.

【0034】(7)本発明の必須成分であるAgの含有
量が25.0重量%と過剰であると共に、本発明の必須
成分であるCa,Ge,Be,Gdのうち少なくとも1
種を300重量ppm と過剰に含有する比較例6のもの
は、振動破断率が84%と悪く、しかもチップ割れも3
0%、ボール真球度も0.80と悪いものであった。 (8)本発明の必須成分である所定量のCa,Ge,B
e,Gdのうち少なくとも1種と、本発明の任意成分で
ある所定量のPd,Pt,Cu,In,La,Y,E
u,Ybのうち少なくとも1種を含有するものの、本発
明の必須成分であるAgを0.01重量%と所定量に満
たない量しか含有しない比較例7のものは、高温放置後
の不良率が100%と悪いものであった。
(7) The content of Ag, which is an essential component of the present invention, is excessive at 25.0% by weight, and at least one of Ca, Ge, Be, and Gd, which is an essential component of the present invention, is contained.
In the case of Comparative Example 6 containing 300% by weight of an excessive amount of seeds, the vibration rupture rate was as poor as 84%, and the chip cracking was 3%.
0% and the sphericity of the ball was as bad as 0.80. (8) Predetermined amount of Ca, Ge, B which is an essential component of the present invention
e, Gd, and a predetermined amount of Pd, Pt, Cu, In, La, Y, E, which are optional components of the present invention.
Comparative Example 7 containing at least one of u and Yb, but containing less than a predetermined amount of 0.01% by weight of Ag, which is an essential component of the present invention, has a defective rate after being left at high temperature. Was as bad as 100%.

【0035】(9)本発明の必須成分である所定量のA
gを含有するが、本発明の必須成分であるCa,Ge,
Be,Gdのうち少なくとも1種を300重量ppm と所
定量より過剰に含有する比較例8のものは、ボール真球
度が0.70と悪いものであった。 (10)本発明の金合金線と同じ組成の金合金をクラッ
ドとし、芯線を純金線とした比較例9のものは、ループ
形状が不安定であり、破断振動率は100%と極度に低
く、実用性に劣るものであった。
(9) A predetermined amount of A which is an essential component of the present invention
g, which are essential components of the present invention such as Ca, Ge,
Comparative Example 8, which contained at least one of Be and Gd in excess of a predetermined amount of 300 ppm by weight, had a poor ball sphericity of 0.70. (10) In Comparative Example 9 in which a gold alloy having the same composition as the gold alloy wire of the present invention was clad and the core wire was a pure gold wire, the loop shape was unstable and the breaking vibration rate was extremely low at 100%. , Was inferior in practical use.

【0036】[0036]

【発明の効果】本発明に従って提供されるICチップ接
続用金合金線は、ボンディング後樹脂封止して200
℃,1000時間の高温放置試験に耐える高い高温放置
性能を有し、かつ振動破断性能に優れ、ボールの真球度
も高く、ICチップ割れも少ないので、実用上の信頼性
の非常に高いものである。
According to the present invention, the gold alloy wire for connecting an IC chip provided according to the present invention is resin-sealed after the bonding.
Extremely high practical reliability because it has a high-temperature storage performance that can withstand a high-temperature storage test at 1000 ° C for 1000 hours, has excellent vibration rupture performance, has a high ball sphericity, and has few IC chip cracks. It is.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Agを0.4〜18重量%、Ca,G
e,Be,Gdのうち少なくとも1種を1〜200重量
ppm 含有し、残部が金及び不可避不純物からなることを
特徴とするICチップ接続用金合金線。
1. Ag is 0.4 to 18% by weight, Ca, G
e, Be, Gd at least one of 1 to 200 weight
A gold alloy wire for connecting IC chips, characterized in that it contains ppm and the balance consists of gold and unavoidable impurities.
【請求項2】 Agを0.4〜18重量%、Beを1〜
20重量ppm 含有し、残部が金及び不可避不純物からな
ることを特徴とするICチップ接続用金合金線。
2. An amount of 0.4 to 18% by weight of Ag and 1 to 5% of Be.
A gold alloy wire for connecting IC chips, containing 20 ppm by weight, with the balance being gold and unavoidable impurities.
【請求項3】 Agを0.4〜18重量%、Beを1〜
20重量ppm ,Ca,Ge,Gdのうち少なくとも1種
を1〜180重量ppm 含有し、残部が金及び不可避不純
物からなることを特徴とするICチップ接続用金合金
線。
3. An amount of 0.4 to 18% by weight of Ag and 1 to 5% of Be.
20. A gold alloy wire for connecting IC chips, comprising 20 wt ppm, at least one of Ca, Ge, and Gd in an amount of 1 to 180 wt ppm, with the balance being gold and unavoidable impurities.
【請求項4】 更にPd,Pt,Cu,In,La,
Y,Eu,Ybのうち少なくとも1種を1〜1400重
量ppm 含有したことを特徴とする請求項1〜3のいずれ
かに記載のICチップ接続用金合金線。
4. Pd, Pt, Cu, In, La,
4. The gold alloy wire for connecting an IC chip according to claim 1, wherein at least one of Y, Eu and Yb is contained in an amount of 1 to 1400 ppm by weight.
JP9291165A 1997-10-23 1997-10-23 Ic-chip connecting gold alloy wire Pending JPH11126788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9291165A JPH11126788A (en) 1997-10-23 1997-10-23 Ic-chip connecting gold alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9291165A JPH11126788A (en) 1997-10-23 1997-10-23 Ic-chip connecting gold alloy wire

Publications (1)

Publication Number Publication Date
JPH11126788A true JPH11126788A (en) 1999-05-11

Family

ID=17765295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9291165A Pending JPH11126788A (en) 1997-10-23 1997-10-23 Ic-chip connecting gold alloy wire

Country Status (1)

Country Link
JP (1) JPH11126788A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492593B2 (en) * 2000-05-31 2002-12-10 Tanaka Denshi Kogyo K.K. Gold wire for semiconductor element connection and semiconductor element connection method
EP1312687A4 (en) * 2000-07-03 2003-05-21 Kazuo Ogasa Hard noble-metal alloy member and process for producing the same
WO2006035905A1 (en) * 2004-09-30 2006-04-06 Tanaka Denshi Kogyo K.K. Wire bump material
WO2008132919A1 (en) * 2007-04-17 2008-11-06 Tanaka Denshi Kogyo K.K. Highly reliable gold alloy bonding wire and semiconductor device
JP2010171378A (en) * 2009-01-23 2010-08-05 Junde Li Alloy wire, and method of manufacturing the same
CN110578068A (en) * 2019-07-24 2019-12-17 焦作大学 precious metal alloy wire for precision resistor and manufacturing method thereof
CN113862504A (en) * 2021-12-01 2021-12-31 北京达博有色金属焊料有限责任公司 Gold alloy and alloy product and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492593B2 (en) * 2000-05-31 2002-12-10 Tanaka Denshi Kogyo K.K. Gold wire for semiconductor element connection and semiconductor element connection method
EP1312687A4 (en) * 2000-07-03 2003-05-21 Kazuo Ogasa Hard noble-metal alloy member and process for producing the same
EP1312687A1 (en) * 2000-07-03 2003-05-21 Kazuo Ogasa Hard noble-metal alloy member and process for producing the same
US6913657B2 (en) 2000-07-03 2005-07-05 Kazuo Ogasa Hard precious metal alloy member and method of manufacturing same
US7396424B2 (en) 2000-07-03 2008-07-08 Kazuo Ogasa Method of manufacturing a hard precious metal alloy member
WO2006035905A1 (en) * 2004-09-30 2006-04-06 Tanaka Denshi Kogyo K.K. Wire bump material
WO2008132919A1 (en) * 2007-04-17 2008-11-06 Tanaka Denshi Kogyo K.K. Highly reliable gold alloy bonding wire and semiconductor device
JP2010171378A (en) * 2009-01-23 2010-08-05 Junde Li Alloy wire, and method of manufacturing the same
CN110578068A (en) * 2019-07-24 2019-12-17 焦作大学 precious metal alloy wire for precision resistor and manufacturing method thereof
CN113862504A (en) * 2021-12-01 2021-12-31 北京达博有色金属焊料有限责任公司 Gold alloy and alloy product and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5064577B2 (en) Ball bonding wire
KR101536554B1 (en) Bonding wire
WO2013018238A1 (en) Ball bonding wire
KR101905942B1 (en) Bonding wire
JP3382918B2 (en) Gold wire for connecting semiconductor elements
JP3328135B2 (en) Gold alloy wire for bump formation and bump formation method
JPH11126788A (en) Ic-chip connecting gold alloy wire
JPH1145899A (en) Bonding wire
KR101093462B1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
JP5996853B2 (en) Ball bonding wire
JP6103806B2 (en) Ball bonding wire
JPH10326803A (en) Gold and silver alloy thin wire for semiconductor element
JP6343197B2 (en) Bonding wire
JP3323185B2 (en) Gold wire for connecting semiconductor elements
JPH1145900A (en) Bonding wire
JPH1167811A (en) Gold and silver alloy thin wire for semiconductor device
JP3085090B2 (en) Bonding wire
JP2007019349A (en) Bonding wire
JP4117973B2 (en) Gold alloy wire for bonding
JP3916320B2 (en) Gold alloy wire for bonding
JPH11214425A (en) Gold alloy wire for bonding
JPH1145901A (en) Bonding wire
JPH08325657A (en) Bonding gold wire
JP3586909B2 (en) Bonding wire
JP3426473B2 (en) Gold alloy wires for semiconductor devices

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110