JPH03291340A - Copper alloy extra fine wire for semiconductor device and semiconductor device - Google Patents

Copper alloy extra fine wire for semiconductor device and semiconductor device

Info

Publication number
JPH03291340A
JPH03291340A JP2094469A JP9446990A JPH03291340A JP H03291340 A JPH03291340 A JP H03291340A JP 2094469 A JP2094469 A JP 2094469A JP 9446990 A JP9446990 A JP 9446990A JP H03291340 A JPH03291340 A JP H03291340A
Authority
JP
Japan
Prior art keywords
semiconductor device
wire
copper
copper alloy
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094469A
Other languages
Japanese (ja)
Inventor
Toshinori Ishii
利昇 石井
Akira Mori
暁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2094469A priority Critical patent/JPH03291340A/en
Publication of JPH03291340A publication Critical patent/JPH03291340A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012066N purity grades, i.e. 99.9999%

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To improve the reliability at a high temp. as a copper alloy extra fine wire for a semiconductor device and the reliability against the change in temp. by incorporating a trace amt. of Fe, Al and Mg into high purity oxygen free copper. CONSTITUTION:In a copper alloy extra fine wire used as a bonding wire for a semiconductor device, oxygen free copper having high purity of >=99.9999wt.% is incorporated with each 0.1wt.ppm of Fe and Ag and 0.5 to 400ppm Mg. The added Fe and Ag improve the corrosion resistance in the joined part of a wire with an Al alloy wiring film by the coexistence with Mg without increasing the hardness of the copper. Even in the contraction of a package or the like in accordance with the change in temp., the generation of cracks in its heat affected zone can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造に際し、ボンディング・
ワイヤとして用いた場合に、Siチップ上のAQ合金配
線被膜とワイヤの接合部が耐蝕性が高く、かつ熱サイク
ルに対しても強いような半導体装置用銅合金極細線及び
熱サイクルを受ける悪い環境のむとでも使用可能な高温
での耐用性の高い半導体装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides bonding and
When used as a wire, the bond between the AQ alloy wiring film on the Si chip and the wire has high corrosion resistance and is resistant to thermal cycles.It is a copper alloy ultra-fine wire for semiconductor devices and a harsh environment that is subjected to thermal cycles. The present invention relates to a semiconductor device that has high durability at high temperatures and can be used even when swallowed.

〔従来の技術〕[Conventional technology]

従来、一般に、半導体装置としてトランジスタやIC,
さらにLSIなどが知られているが、この中で、例えば
ICの製造法の1つとして次に示すようなものがある。
Conventionally, semiconductor devices generally include transistors, ICs,
Further, LSIs and the like are known, and among these, for example, the following is one of the methods for manufacturing ICs.

(a)まず、リードフレーム素材として、板厚:0゜I
〜0.3zxを有するCu合金条材を用意する。
(a) First, as a lead frame material, plate thickness: 0°I
A Cu alloy strip having a thickness of ~0.3zx is prepared.

(b)このリードフレーム素材より、エツチングまたは
プレス打抜き加工にて、製造せんとするICの形状に適
合したリードフレームを形成する。
(b) From this lead frame material, a lead frame that matches the shape of the IC to be manufactured is formed by etching or press punching.

(C)ついで、リードフレームの所定個所に、Siチッ
プを、Agペーストなどの導電性樹脂を用いて加熱接着
するか、あるいは、予めSiチップおよびリードフレー
ムの片面に形成しておいたAu。
(C) Next, a Si chip is thermally bonded to a predetermined location on the lead frame using a conductive resin such as Ag paste, or an Au film is formed on one side of the Si chip and the lead frame in advance.

Ag 、Ni 、Cuまたはこれらの合金で構成された
鍍金層を介してはんだ付けするかAuろう付けをする。
Soldering or Au brazing is performed through a plating layer made of Ag, Ni, Cu, or an alloy thereof.

(d)Si チップとリードフレームとに渡って、ボン
ディングワイヤとして直径:20〜100μlを有する
Au極細線を用いてボールボンディングを施す。
(d) Ball bonding is performed across the Si chip and the lead frame using an Au ultrafine wire having a diameter of 20 to 100 μl as a bonding wire.

(e)引続いて、Siチップ、ボンディングワイヤ、お
よびSiチップが取付けられた部分のリードフレームを
、これらを保護する目的で樹脂封止する。
(e) Subsequently, the Si chip, the bonding wire, and the portion of the lead frame to which the Si chip is attached are sealed with resin for the purpose of protecting them.

(f)最終的に、上記リードフレームにおける相互に連
な各部分を切除してICを形成する。
(f) Finally, each interconnected portion of the lead frame is cut out to form an IC.

以上(a)〜(f)の主要工程からなる方法が知られて
いる。
A method consisting of the main steps (a) to (f) above is known.

上記のように、半導体装置の製造には、ボンディングワ
イヤとしてAu極細線が用いられているが、近年、高価
なAu極細線に代って安価な高純度無酸素銅極細線が注
目されるようになっている。
As mentioned above, ultrafine Au wires are used as bonding wires in the manufacture of semiconductor devices, but in recent years, inexpensive high-purity oxygen-free copper ultrafine wires have been attracting attention in place of the expensive Au ultrafine wires. It has become.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、一般の高純度無酸素銅極細線を半導体装置の
ボンディングワイヤとして用いる場合には、超音波を併
用した熱圧着ボンディングを行うのが普通であるが、ボ
ンディング時にワイヤ先端部に形成されたボール部によ
って、圧着される側のSiチップ自体にマイクロクラッ
クが生じたりするなどの問題点があり、ボンディングワ
イヤ素材に元素を添加して硬化させることは好ましくな
いとされていた。
By the way, when using ordinary high-purity oxygen-free copper ultrafine wires as bonding wires for semiconductor devices, it is common to perform thermocompression bonding using ultrasonic waves. It has been considered undesirable to add elements to the bonding wire material and harden it, as there are problems such as microcracks occurring in the Si chip itself on the side to be crimped depending on the bonding wire material.

ところが、ボンディング技術の進歩により、ボール部の
硬さが若干硬化してもボンディング可能でかつ破壊され
にくい構造のSiチップも製造されており、そのため従
来よりも多量の添加元素の添加が可能となっている。
However, with advances in bonding technology, Si chips have been manufactured that allow bonding and are resistant to breakage even if the hardness of the ball part hardens slightly, making it possible to add a larger amount of additive elements than before. ing.

また、最近、半導体に対する信頼性の要求が厳しくなり
、従来では使用されなかった高温下での使用、また厳し
い温度変化下での使用が要求されてきており、この場合
、ワイヤとへ〇合金配線膜との接合部における局部電池
の生成、温度変化のために生じるパッケージ、ワイヤな
どの収縮による銅合金極細線熱影響部におけるクラック
の発生という問題が生じているのが現状である。
In addition, recently, reliability requirements for semiconductors have become stricter, requiring them to be used at high temperatures, which were not previously possible, and under severe temperature changes. Currently, there are problems such as the formation of local batteries at the junction with the film and the occurrence of cracks in the heat affected zone of copper alloy ultrafine wires due to shrinkage of packages, wires, etc. caused by temperature changes.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は上述の様な観点から、高温下での
信頼性、ならびに、温度変化に対する信頼性を向上させ
る銅ボンディングワイヤを開発すべく鋭意研究を行った
結果、以下のような知見を得るに至った。
Therefore, from the above-mentioned viewpoint, the present inventors conducted intensive research to develop a copper bonding wire that improves reliability under high temperatures and against temperature changes, and as a result, the following findings were made. I ended up getting this.

すなわち、これまで鋼中の不純物元素とされていたFe
およびAgは、他の不純物元素、特に、Se 、Te 
、Sなどとは異なり、銅の硬度を上げることなく、それ
ぞれ0.1重量ppm以上、3゜0重量ppu未満含有
し、かつ0.5重量pp+m以上、400重量pp園未
満のMgと共存することにより、ワイヤとAI2合金配
線被膜接合部での耐蝕性を飛躍的に向上させるとともに
、温度変化に伴うパッケージなどの収縮においてもその
熱影響部でのクラックの発生を大きく低減させる。
In other words, Fe, which has been considered an impurity element in steel,
and Ag are other impurity elements, especially Se, Te
, S, etc., each contains 0.1 ppm or more and less than 3°0 ppu by weight without increasing the hardness of copper, and coexists with Mg of 0.5 ppm or more and less than 400 ppu by weight. This dramatically improves the corrosion resistance at the joint between the wire and the AI2 alloy wiring coating, and also greatly reduces the occurrence of cracks in the heat-affected zone when the package shrinks due to temperature changes.

この発明は上記知見に基づいてなされたものであって、
99.9999重量%以上の高純度無酸素銅に、Feお
よびAgをそれぞれ0.1重量PPm以上、3,0重量
PPm未満含み、かつMgを05重量ppm以上、40
0重量ppm未満含むことを特徴とする半導体装置用銅
合金極細線及びこの銅合金極細線をボンディングワイヤ
とする半導体装置である。
This invention was made based on the above findings, and
High purity oxygen-free copper of 99.9999% by weight or more, containing Fe and Ag of 0.1 weight PPm or more and less than 3.0 weight PPm, respectively, and Mg of 0.05 weight ppm or more, 40
A copper alloy ultrafine wire for a semiconductor device characterized by containing less than 0 ppm by weight, and a semiconductor device using this copper alloy ultrafine wire as a bonding wire.

なお、この発明の銅合金極細線において、合金成分とし
て、FeおよびAgの含有量をそれぞれ0.1重量pp
m以上、3.0重量PPm未満、かッMgの含有量を0
.5重量PPm以上、400重量ppm未満と定めたの
は、これらの含有量が上記指定未満では、半導体装置の
実用に際し、高温下での使用時にワイヤとAρ合金配線
被膜との接合部における耐蝕性を向上させる効果および
、温度変化に伴なうパッケージ、ワイヤなどの収縮によ
るワイヤのクラック発生を低減させる効果がなく、一方
、FeおよびAgのそれぞれの含有量が3.0重量PP
mを超えると、Mgとの共存下においては、ワイヤボン
ディング時におけるワイヤ先端部に形成させるボールの
形成能が劣化し、Mgが400重1p p mを超える
と、ボールの変形に伴う加工硬化が大きくなり、破壊さ
れにくい構造のC,lチップへもワイヤボンディングが
困難になるという理由に基づくものである。
In addition, in the copper alloy ultrafine wire of this invention, the content of Fe and Ag as alloy components is each 0.1 pp by weight.
m or more, less than 3.0 weight PPm, Mg content is 0
.. The reason for setting the content to be 5 ppm or more and less than 400 ppm by weight is that if these contents are less than the above specifications, corrosion resistance at the joint between the wire and the Aρ alloy wiring coating will be reduced when semiconductor devices are put into practical use at high temperatures. PP with an Fe and Ag content of 3.0 wt.
If Mg exceeds 400 wt.m, the ability to form a ball at the tip of the wire during wire bonding will deteriorate in the coexistence with Mg, and if Mg exceeds 400 wt. This is based on the reason that wire bonding becomes difficult even to C and l chips, which are large and have a structure that is difficult to break.

まl二、これらの合金成分を添加する銅を99゜999
9重量%以上と規定したのは、銅における不可避不純物
としてのS、SeおよびTeなどは硬度が上昇するのみ
でなく、従来の銅ボンディングワイヤに発生していた耐
蝕性の低下を避けることができなくなるためであり、さ
らに、これまで鋼中の不純物として取り除かれていた、
Fe、Agの含有量を0.1重量ppm以上、3.0重
量pp謙未満にコントロールする必要があるためである
Second, the copper to which these alloy components are added is 99°999
The reason for specifying 9% by weight or more is that S, Se, Te, etc., which are unavoidable impurities in copper, not only increase the hardness, but also avoid the decrease in corrosion resistance that occurs in conventional copper bonding wires. Furthermore, this is because the metals that were previously removed as impurities in steel,
This is because it is necessary to control the content of Fe and Ag to 0.1 ppm or more and less than 3.0 ppm by weight.

〔作用〕[Effect]

この発明の半導体装置用銅合金極細線および半導体装置
にあっては、FeおよびAXをそれぞれ0.1重1p 
p ta以上、3.0重量ppm未満含有させ、かつM
gを0.5重量ppm以上、400重量Ppm未満含有
させることにより、銅の硬度を上げることなく、ワイヤ
とAQ合金配線被膜接合部での耐蝕性を飛躍的に向上さ
せるとともに、温度変化に伴うパッケージなどの収縮に
おいてもその熟影響部でのクラックの発生を大きく低減
させることができる。
In the copper alloy ultrafine wire for semiconductor devices and the semiconductor device of this invention, Fe and AX are each added at 0.1 weight and 1 p.
p ta or more and less than 3.0 ppm by weight, and M
By containing 0.5 weight ppm or more and less than 400 weight ppm of Even when a package or the like shrinks, the occurrence of cracks in the affected area can be greatly reduced.

〔実施舛〕[Implementation]

次に、この発明の一実施例を説明する。 Next, one embodiment of the present invention will be described.

まず、通常の電気鋼を原料とし、これに電解精製を繰り
返し施した後、S、SeおよびTeなどと化合物を形成
し易い元素(例えばLa等)を添加し、ゾーン・リファ
イニングを行って99.9999%以上の高純度無酸素
銅を作製する。
First, regular electrical steel is used as a raw material, and after repeated electrolytic refining, elements that easily form compounds with S, Se, Te, etc. (such as La) are added, and zone refining is performed to obtain a 99% .9999% or higher purity oxygen-free copper is produced.

引続いて、この高純度無酸素銅を真空溶解炉で溶解し、
これにそれぞれ第1表に示されるように、FeおよびA
gをそれぞれ0.1重量pp1以上、3.0重量ppi
+未満に、かツM gを0.5重量pp1以上、400
重量ppm未満となるように含有させて鋳造し、さらに
、これに通常の条件で熱部および冷間線引加工を施し、
いずれも直径:25μ肩の本発明に係わる銅合金極細線
No、1〜8をそれぞれ製造した。
Subsequently, this high-purity oxygen-free copper is melted in a vacuum melting furnace,
In addition, as shown in Table 1, Fe and A
g to 0.1 weight ppi or more and 3.0 weight ppi, respectively.
+ less than 0.5 weight pp1 or more of cutlet M g, 400
It is cast with a content of less than ppm by weight, and then subjected to hot part and cold wire drawing under normal conditions,
Copper alloy ultrafine wires No. 1 to 8 according to the present invention each having a diameter of 25 μm were manufactured, respectively.

また、比較のため、上記添加元素量が本願発明の銅合金
極細線とは異なる比較例No、1〜4をを製造した。
For comparison, Comparative Examples Nos. 1 to 4 were manufactured in which the amount of added elements was different from that of the copper alloy ultrafine wire of the present invention.

ついで、上記各種の銅極細線No、  I = 12を
用いてAQ合金配線被膜を有するボンディングによって
破壊されにくい構造のSiチップにポールボンディング
を行い、ボールの形成能、マイクロクラックの発生の調
査を行った。
Next, pole bonding was performed using the various copper ultrafine wires No. I = 12 mentioned above to a Si chip having a structure that is difficult to break by bonding and has an AQ alloy wiring film, and the ability to form balls and the occurrence of micro cracks were investigated. Ta.

また、これらのワイヤを使用して作製した半導体素子を
250℃の高温下で放置し、30時間後の接続不良個数
を測定した。さらに、−65℃〜150℃のヒートサイ
クルテストを行い、500サイクル後の不良数を測定し
た。
Further, semiconductor devices manufactured using these wires were left at a high temperature of 250° C., and the number of connection failures was measured after 30 hours. Furthermore, a heat cycle test was conducted at -65°C to 150°C, and the number of defects after 500 cycles was measured.

これらの結果を第−表に示す。These results are shown in Table 1.

以下余白 この表に示される結果から、本発明の実施例の銅合金極
細線においては、No、7においてマイクロクラックが
lツ発生しているのみで、信頼性テストにおいては、全
く問題が生じていない。この程度のマイクロクラック発
生であれば、ボンディング条件で回避できる。比較例N
099においては、Mgの添加量が少ないため、信頼性
の向上は認められず、No、10.11においては、F
eおよびAgの含有量が適正でないため、Mgとの共存
効果が十分でなく、やはり信頼性向上が認めら・れず、
又、ボール形成能が悪いため、マイクロクラックも発生
している。No、+2においては、Mgが多すぎてボー
ルの硬化により、マイクロクラックが多数発生している
Margin below From the results shown in this table, in the copper alloy ultrafine wire of the example of the present invention, only one micro crack occurred in No. 7, and no problems occurred in the reliability test. do not have. If this level of microcracking occurs, it can be avoided by adjusting the bonding conditions. Comparative example N
In No. 099, no improvement in reliability was observed due to the small amount of Mg added, and in No. 10.11, F
Since the contents of e and Ag were not appropriate, the coexistence effect with Mg was not sufficient, and no improvement in reliability was observed.
Furthermore, microcracks also occur due to the poor ball forming ability. In No. and +2, the amount of Mg was too large and the balls were hardened, resulting in many microcracks.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の半導体装置用銅合金細
線によれば、ボンディング可能な硬度範囲で、ボール形
成能が良好となり、かつ高温下並びに温度変化の激しい
環境下においても信頼性の高い接合部を確保できる。
As explained above, the copper alloy fine wire for semiconductor devices of the present invention has good ball-forming ability within the hardness range that allows bonding, and provides highly reliable bonding even under high temperatures and environments with severe temperature changes. Department can be secured.

また、上記極細線をボンディングワイヤとした半導体装
置においては、ワイヤとAI2合金配線被4との接合部
が、局部電池の生成により腐蝕されて断線するなどの事
故が防止され、高温の悪影響下においても耐用性が高く
、かつ、温度変化の激しい環境下においても、パッケー
ジ、ワイヤなどの収縮において、ワイヤの熱影響部にク
ラックが発生し、断線するなどの事故も防止される。
In addition, in a semiconductor device using the above-mentioned ultra-thin wire as a bonding wire, accidents such as the bonding portion between the wire and the AI2 alloy wiring sheath 4 being corroded and disconnected due to the formation of local batteries can be prevented, and even under the adverse effects of high temperatures, It also has high durability, and even in environments with severe temperature changes, it prevents accidents such as cracks occurring in the heat-affected zone of the wire and disconnection due to shrinkage of the package, wire, etc.

Claims (2)

【特許請求の範囲】[Claims] (1)99.9999重量%以上の高純度無酸素銅に、
FeおよびAgをそれぞれ0.1重量ppm以上、3.
0重量ppm未満含み、かつMgを0.5重量ppm以
上、400重量ppm未満含むことを特徴とする半導体
装置用銅合金極細線。
(1) High purity oxygen-free copper of 99.9999% by weight or more,
3. Fe and Ag each at 0.1 ppm or more by weight;
A copper alloy ultrafine wire for a semiconductor device, characterized in that it contains less than 0 ppm by weight, and 0.5 ppm or more and less than 400 ppm by weight of Mg.
(2)請求項1の半導体装置用銅合金極細線をボンディ
ングワイヤとしていることを特徴とする半導体装置。
(2) A semiconductor device characterized in that the ultrafine copper alloy wire for semiconductor devices according to claim 1 is used as a bonding wire.
JP2094469A 1990-04-10 1990-04-10 Copper alloy extra fine wire for semiconductor device and semiconductor device Pending JPH03291340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094469A JPH03291340A (en) 1990-04-10 1990-04-10 Copper alloy extra fine wire for semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094469A JPH03291340A (en) 1990-04-10 1990-04-10 Copper alloy extra fine wire for semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
JPH03291340A true JPH03291340A (en) 1991-12-20

Family

ID=14111143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094469A Pending JPH03291340A (en) 1990-04-10 1990-04-10 Copper alloy extra fine wire for semiconductor device and semiconductor device

Country Status (1)

Country Link
JP (1) JPH03291340A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087975A1 (en) * 2003-04-03 2004-10-14 Outokumpu Copper Products Oy Substrate material of a copper-magnesium alloy
WO2004087976A1 (en) * 2003-04-03 2004-10-14 Outokumpu Copper Products Oy Oxygen-free copper alloy and method for its manufacture and use of copper alloy
WO2006134724A1 (en) 2005-06-15 2006-12-21 Nippon Mining & Metals Co., Ltd. Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper
EP4067517A4 (en) * 2019-11-29 2023-11-22 Mitsubishi Materials Corporation Copper alloy, copper alloy plastic-processed material, component for electronic and electric devices, terminal, bus bar, and heat dissipation substrate
EP4067518A4 (en) * 2019-11-29 2023-11-29 Mitsubishi Materials Corporation Copper alloy, copper alloy plastic working material, electronic/electrical device component, terminal, busbar, heat-dissipating board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087975A1 (en) * 2003-04-03 2004-10-14 Outokumpu Copper Products Oy Substrate material of a copper-magnesium alloy
WO2004087976A1 (en) * 2003-04-03 2004-10-14 Outokumpu Copper Products Oy Oxygen-free copper alloy and method for its manufacture and use of copper alloy
WO2006134724A1 (en) 2005-06-15 2006-12-21 Nippon Mining & Metals Co., Ltd. Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper
EP2845915A1 (en) 2005-06-15 2015-03-11 JX Nippon Mining & Metals Corporation Ultrahigh-purity copper bonding wire
EP4067517A4 (en) * 2019-11-29 2023-11-22 Mitsubishi Materials Corporation Copper alloy, copper alloy plastic-processed material, component for electronic and electric devices, terminal, bus bar, and heat dissipation substrate
EP4067518A4 (en) * 2019-11-29 2023-11-29 Mitsubishi Materials Corporation Copper alloy, copper alloy plastic working material, electronic/electrical device component, terminal, busbar, heat-dissipating board

Similar Documents

Publication Publication Date Title
JPH10118783A (en) Soldering material, and electronic parts using it
JP3796181B2 (en) Electronic member having lead-free solder alloy, solder ball and solder bump
US5833920A (en) Copper alloy for electronic parts, lead-frame, semiconductor device and connector
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JPH09275120A (en) Semiconductor device
JPH03291340A (en) Copper alloy extra fine wire for semiconductor device and semiconductor device
JP2701419B2 (en) Gold alloy fine wire for semiconductor element and bonding method thereof
JPH01290231A (en) Semiconductor device and copper allow extremely fine wire therefor
JPH01291435A (en) Extrafine copper alloy wire for semiconductor device and semiconductor device
JP2001127076A (en) Alloy member for die bonding
JPH0412623B2 (en)
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
JPH10275820A (en) Gold alloy wire for bonding semiconductor device
JPH04218932A (en) Copper alloy ultrathin wire for semiconductor device and semiconductor device
JPH0726167B2 (en) Au alloy extra fine wire for bonding wire of semiconductor device
JP7542583B2 (en) Bonding wire and semiconductor device
JP2661247B2 (en) Gold alloy fine wire for semiconductor element bonding
JPH02251155A (en) Gold alloy thin wire for semiconductor elements and bonding method thereof
JP2783981B2 (en) Solder alloy
JPH0830229B2 (en) Au alloy extra fine wire for bonding wire of semiconductor device
JP2556084B2 (en) Cu alloy extra fine wire for semiconductor devices
JPH10303236A (en) Gold alloy wire for bonding on semiconductor device
JPH0413858B2 (en)
JP3120940B2 (en) Spherical bump for semiconductor device
JPH11163016A (en) Small gold ball for bump and semiconductor device