JP6926245B2 - Bonding wire - Google Patents
Bonding wire Download PDFInfo
- Publication number
- JP6926245B2 JP6926245B2 JP2019569076A JP2019569076A JP6926245B2 JP 6926245 B2 JP6926245 B2 JP 6926245B2 JP 2019569076 A JP2019569076 A JP 2019569076A JP 2019569076 A JP2019569076 A JP 2019569076A JP 6926245 B2 JP6926245 B2 JP 6926245B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- bonding
- less
- electrode
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052779 Neodymium Inorganic materials 0.000 claims description 11
- 229910052772 Samarium Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 description 25
- 239000000654 additive Substances 0.000 description 23
- 230000000996 additive effect Effects 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 16
- 239000010931 gold Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 229910052688 Gadolinium Inorganic materials 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910001020 Au alloy Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/14—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05617—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05624—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Wire Bonding (AREA)
Description
本発明は、ボンディングワイヤに関する。 The present invention relates to bonding wires.
半導体素子上の電極と基板の電極とを接続する方法として、図1に示すように、放電加熱等によりボンディングワイヤWの先端に形成したFAB(Free Air Ball)を一方の電極10に押し当てて1st接合を行った後、ボンディングワイヤの外周面を他方の電極10’に押し当てて2nd接合を行うボールボンディング法によって電極10,10’を接続する方法や、図2に示すように、FABを一方の電極20に押し当てて接合した後、ボンディングワイヤWを切断して一方の電極20にバンプ22を形成し、このバンプ22及びハンダ24を介して他方の電極20’を接続する方法が知られている。
As a method of connecting the electrode on the semiconductor element and the electrode of the substrate, as shown in FIG. 1, FAB (Free Air Ball) formed at the tip of the bonding wire W by discharge heating or the like is pressed against one of the
このようなボールボンディング法やバンプの形成に用いられるボンディングワイヤでは、化学的な安定性や大気中での取り扱いやすさから、純度4N(99.99質量%)のAu(金)からなるボンディングワイヤが用いられている。 Bonding wires used in such ball bonding methods and bump formation are made of Au (gold) with a purity of 4N (99.99% by mass) because of their chemical stability and ease of handling in the atmosphere. Is used.
しかしながら、純度4NのAuからなるボンディングワイヤをAl(アルミニウム)やAl合金の電極10,20に接合すると、電極10上に形成された接合部(以下、この接合部を「FAB接合部」ということもある)12と電極10との界面近傍や、電極20上に形成されたバンプ22と電極20との界面付近にAu−Al金属間化合物が生成される。生成されたAu−Al金属間化合物により、界面にクラックやカーケンダルボイドが生じやすい。
However, when a bonding wire made of Au having a purity of 4N is bonded to the
下記特許文献1には、AuにCu(銅)及びPd(パラジウム)を複合添加した合金からなるボンディングワイヤが提案されている。 Patent Document 1 below proposes a bonding wire made of an alloy in which Cu (copper) and Pd (palladium) are compounded added to Au.
しかしながら、Auを主成分とするボンディングワイヤにPdを添加すると、FAB接合部と電極との界面部分のクラックの発生をある程度防止できるが、カーケンダルボイドの発生の防止は難しく、接合信頼性を満足することができない。 However, when Pd is added to a bonding wire containing Au as a main component, it is possible to prevent the occurrence of cracks at the interface between the FAB bonding portion and the electrode to some extent, but it is difficult to prevent the generation of Kirkendal voids, and the bonding reliability is satisfied. Can not do it.
本発明は、上記事情に鑑みてなされたものであり、Al合金からなる電極に接合する場合でもボンディングワイヤと電極との接合部分のクラックやカーケンダルボイドの発生を抑制することができ、長期間にわたり接合信頼性が高いボンディングワイヤを提供することを目的とする。 The present invention has been made in view of the above circumstances, and even when bonding to an electrode made of an Al alloy, it is possible to suppress the occurrence of cracks and Kirkendal voids at the bonding portion between the bonding wire and the electrode, and for a long period of time. It is an object of the present invention to provide a bonding wire having high bonding reliability.
上記課題を解決するため、本発明のボンディングワイヤは、Cuの含有量が0.1質量%以上5.0質量%以下、Caの含有量が1質量ppm以上100質量ppm以下、Nd、Sm、及びGdからなる群から選択された1種又は2種以上の元素の含有量の合計が1質量ppm以上100質量ppm以下、Caの含有量とNd、Sm、及びGdからなる群から選択された1種又は2種以上の元素の含有量の合計が5質量ppm以上150質量ppm以下であり、残部がAuからなるボンディングワイヤとする。 In order to solve the above problems, the bonding wire of the present invention has a Cu content of 0.1% by mass or more and 5.0% by mass or less, a Ca content of 1% by mass or more and 100% by mass or less, Nd, Sm. And Gd, the total content of one or more elements selected from the group consisting of 1 mass ppm or more and 100 mass ppm or less, the Ca content and the group consisting of Nd, Sm, and Gd. A bonding wire in which the total content of one or more elements is 5 mass ppm or more and 150 mass ppm or less, and the balance is Au.
上記本発明のボンディングワイヤにおいて、Cuの含有量が3質量%未満であることが好ましく、Cuの含有量が1質量%未満であることがより好ましい。また、Cuの含有量が0.3質量%以上であることが好ましい。また、Caの含有量とNd、Sm、及びGdからなる群から選択された1種又は2種以上の元素の含有量の合計が20質量ppm以上100質量ppm以下であることが好ましい。 In the bonding wire of the present invention, the Cu content is preferably less than 3% by mass, and more preferably the Cu content is less than 1% by mass. Further, the Cu content is preferably 0.3% by mass or more. Further, it is preferable that the total content of Ca and the content of one or more elements selected from the group consisting of Nd, Sm, and Gd is 20 mass ppm or more and 100 mass ppm or less.
本発明によれば、Al合金からなる電極に接合する場合でもボンディングワイヤと電極との接合部分にクラックやカーケンダルボイドが発生するのを抑制することができ、長期間にわたり接合信頼性の高いボンディングワイヤが得られる。 According to the present invention, even when bonding to an electrode made of an Al alloy, it is possible to suppress the occurrence of cracks and Kirkendal voids at the bonding portion between the bonding wire and the electrode, and bonding with high bonding reliability for a long period of time. The wire is obtained.
以下、本発明の一実施形態に係るボンディングワイヤについて図1を参照して説明する。 Hereinafter, the bonding wire according to the embodiment of the present invention will be described with reference to FIG.
本実施形態のボンディングワイヤWは、半導体パッケージ(例えば、パワーIC、LSI、トランジスタ、BGAP(Ball Grid Array Package)、QFN(Quad Flat Nonlead package)、LED(発光ダイオード)等)における半導体素子上の電極(例えば、Al合金電極、ニッケル・パラジウム・金被覆電極、Au被覆電極等)10と、回路配線基板(リードフレーム、セラミック基板、プリント基板等)の導体配線(電極)10'とをボールボンディング法によって接続するためのボンディングワイヤである。 The bonding wire W of the present embodiment is an electrode on a semiconductor element in a semiconductor package (for example, power IC, LSI, transistor, BGAP (Ball Grid Array Package), QFN (Quad Flat Nonlead package), LED (light emitting diode), etc.). (For example, Al alloy electrode, nickel / palladium / gold coated electrode, Au coated electrode, etc.) 10 and conductor wiring (electrode) 10'of a circuit wiring board (lead frame, ceramic substrate, printed circuit board, etc.) are bonded by a ball bonding method. It is a bonding wire for connecting by.
なお、本実施形態のボンディングワイヤWは、ボールボンディング法以外にもバンプの形成に使用することもでき、また、半導体パッケージ以外の種々の態様のボンディングワイヤとして使用することができる。 The bonding wire W of the present embodiment can be used for forming bumps other than the ball bonding method, and can be used as a bonding wire of various aspects other than the semiconductor package.
このボンディングワイヤWは、Cuの含有量が0.1〜5.0質量%、Caの含有量が1〜100質量ppm、Nd、Sm及びGdから選択された1種又は2種の元素の含有量の合計が1〜100質量ppm、Caの含有量とNd、Sm、及びGdからなる群から選択された1種又は2種以上の元素の含有量の合計が5質量ppm以上150質量ppm以下であり、残部がAuからなるものである。ボンディングワイヤWの線径は、用途に応じて種々の大きさとしてよいが、例えば、5μm以上150μm以下とすることができる。 This bonding wire W has a Cu content of 0.1 to 5.0% by mass, a Ca content of 1 to 100% by mass, and contains one or two elements selected from Nd, Sm and Gd. The total amount is 1 to 100 mass ppm, the total content of Ca and the content of one or more elements selected from the group consisting of Nd, Sm, and Gd is 5 mass ppm or more and 150 mass ppm or less. And the rest is made up of Au. The wire diameter of the bonding wire W may be various in size depending on the application, but can be, for example, 5 μm or more and 150 μm or less.
具体的には、ボンディングワイヤWを構成するAuは、精製上不可避的に存在する不純物を含有してもよい。Auでは、不純物として例えば、Ag、Pd、Cu、Fe(鉄)等を含有してもよい。 Specifically, Au constituting the bonding wire W may contain impurities that are inevitably present in purification. Au may contain, for example, Ag, Pd, Cu, Fe (iron) and the like as impurities.
Cuの含有量を0.1質量%以上とすることにより、図1に示すような電極10に溶融したFABを圧着することで電極10上に形成されたFAB接合部12と電極10の界面近傍にクラックやカーケンダルボイドが発生するのを抑えることができ、長期間にわたって接合信頼性の高いボンディングワイヤが得られる。
By setting the Cu content to 0.1% by mass or more, the vicinity of the interface between the
Cuの含有量を5.0質量%以下とすることにより、ボンディングワイヤの先端に形成されるFABが硬くなりすぎず、電極にFABを押し付けて接合する時に生じる電極の損傷を抑えることができる。 By setting the Cu content to 5.0% by mass or less, the FAB formed at the tip of the bonding wire does not become too hard, and damage to the electrode that occurs when the FAB is pressed against the electrode for bonding can be suppressed.
Cuの含有量の上限値は、3.0質量%以下とすることが好ましく、1.0質量%未満とすることがより好ましい。また、Cuの含有量の下限値は、0.3質量%以上であることが好ましい。 The upper limit of the Cu content is preferably 3.0% by mass or less, and more preferably less than 1.0% by mass. The lower limit of the Cu content is preferably 0.3% by mass or more.
Cuの含有量を3.0質量%以下とすることにより、上記した電極の損傷を更に抑えることができる。またCuの含有量を3.0質量%以下とすることにより、ボンディングワイヤの先端に形成されるFABの加工硬化が抑えられるので、電極にFABを押し付けて接合する時に生じる電極のめくれである「アルミスプラッシュ」を抑えることができる。Cuの含有量を1.0質量%未満とすることにより、電極の損傷及びアルミスプラッシュをより一層抑えることができる。Cuの含有量が0.3質量%以上であると接合信頼性や1stネック強度や2nd接合強度をより一層良好にすることができる。 By setting the Cu content to 3.0% by mass or less, the above-mentioned damage to the electrodes can be further suppressed. Further, by setting the Cu content to 3.0% by mass or less, work hardening of the FAB formed at the tip of the bonding wire is suppressed, so that the electrode is turned over when the FAB is pressed against the electrode to be joined. "Almis Splash" can be suppressed. By setting the Cu content to less than 1.0% by mass, damage to the electrodes and aluminum splash can be further suppressed. When the Cu content is 0.3% by mass or more, the joining reliability, the 1st neck strength, and the 2nd joining strength can be further improved.
1stネック強度とは、FAB接合部12とボンディングワイヤWとの境界部分(以下、この境界部分を「1stネック部」ということもある)14における強度のことである。2nd接合強度とは、ボンディングワイヤWの外周面を他方の電極10’に押し当てて形成された接合部(以下、この接合部を「2nd接合部」ということもある)16における強度のことである。
The 1st neck strength is the strength at the
Caを含有することにより、図1に示すようにボンディングワイヤWで電極10、10'を結線した時にできるループ高さHを小さくすることができる。また、Caを含有することにより、図2に示すようにボンディングワイヤWでバンプ22を形成した時にできるバンプ高さLを小さくすることができる。Caの含有量は、1質量ppm以上100質量ppm以下とすることができ、好ましくは10質量ppm以上30質量ppmである。
By containing Ca, the loop height H formed when the
Nd、Sm及びGdから選択された1種又は2種以上の元素(以下、「選択添加元素」ということもある)は、Caと同様、ボンディングワイヤWで電極10、10'を結線した時にできるループ高さHやバンプ高さLを小さくすることができる。選択添加元素の含有量は、1質量ppm以上100質量ppm以下とすることができ、好ましくは10質量ppm以上30質量ppmである。
One or more elements selected from Nd, Sm and Gd (hereinafter, also referred to as "selective additive elements") are formed when the
選択添加元素はCaと同様の作用効果を発揮するため、Ca及び選択添加元素のいずれか一方を添加しない場合であっても、他方の添加量を増加させることでループ高さHやバンプ高さLを小さくすることができる。 Since the selective additive element exerts the same action and effect as Ca, even when either Ca or the selective additive element is not added, the loop height H or the bump height can be increased by increasing the addition amount of the other element. L can be reduced.
Caのみを添加する場合や選択添加元素のみを添加する場合でもループ高さHやバンプ高さLの低減を図ることは可能である。しかし、Caや選択添加元素の添加量が多くなり過ぎるとFABの真球性が低下する。これに対して、Nd、Sm及びGdの選択添加元素をCaと併用した場合であると、Ca及び選択添加元素のいずれか一方のみ添加する場合に比べてFABの真球性が低下しにくくなる。そのため、Caのみの添加であると、所望のスペックを満たすようにループ高さHやバンプ高さLの低減を図ろうとすると、FABの真球性が低下する場合であっても、Caと選択添加元素を併用することでFABの真球性を維持することができる。従って、Caと選択添加元素を含有することにより、Caのみ使用した場合に比べFABの真球性を維持した上で、FABを形成バンプ高さHのより低減することができる。 It is possible to reduce the loop height H and the bump height L even when only Ca is added or when only the selective additive element is added. However, if the amount of Ca or selective additive added is too large, the sphericity of FAB deteriorates. On the other hand, when the selective additive elements of Nd, Sm and Gd are used in combination with Ca, the sphericity of FAB is less likely to decrease as compared with the case where only one of Ca and the selective additive element is added. .. Therefore, if only Ca is added, if the loop height H and the bump height L are reduced so as to satisfy the desired specifications, Ca is selected even when the sphericity of the FAB is lowered. The sphericity of FAB can be maintained by using the additive element in combination. Therefore, by containing Ca and the selective additive element, the FAB can be further reduced in the forming bump height H while maintaining the sphericity of the FAB as compared with the case where only Ca is used.
Ca及び選択添加元素を共に含有するにあたって、Ca及び選択添加元素の含有量の合計は、5質量ppm以上150質量ppm以下とすることができるが、好ましくは20質量ppm以上100質量ppm以下である。Ca及び選択添加元素の含有量の合計が5質量ppm以上であるとループ高さHやバンプ高さLについて有意な向上を得ることができ、Ca及び選択添加元素の含有量の合計が20質量ppm以上であるとその作用がより顕著となる。Ca及び選択添加元素の含有量の合計が150質量ppm以下であると真球度の高いFABを形成することができ、Ca及び選択添加元素の含有量の合計が100質量ppm以下であると更に真球度の高いFABを形成することができる。 When both Ca and the selective additive element are contained, the total content of Ca and the selective additive element can be 5 mass ppm or more and 150 mass ppm or less, but preferably 20 mass ppm or more and 100 mass ppm or less. .. When the total content of Ca and the selective additive element is 5 mass ppm or more, a significant improvement can be obtained for the loop height H and the bump height L, and the total content of Ca and the selective additive element is 20 mass. When it is ppm or more, the action becomes more remarkable. When the total content of Ca and the selective additive element is 150 mass ppm or less, FAB having high sphericity can be formed, and when the total content of Ca and the selective additive element is 100 mass ppm or less, further. FAB with high sphericity can be formed.
次に、このような構成のボンディングワイヤの製造方法の一例を説明する。 Next, an example of a method for manufacturing a bonding wire having such a configuration will be described.
まず、純度99.99質量%以上のAuに、Cuを0.1質量%以上5.0質量%以下、Caの含有量が1質量ppm以上100質量ppm以下、選択添加元素の含有量が1質量ppm以上100質量ppm以下となるようにCu、Ca、選択添加元素を添加したAu合金を作製する。得られたAu合金は、連続鋳造法にて所定の直径の棒状インゴットに鋳造される。 First, in Au having a purity of 99.99% by mass or more, Cu is 0.1% by mass or more and 5.0% by mass or less, the Ca content is 1% by mass or more and 100% by mass or less, and the content of the selective additive element is 1. An Au alloy to which Cu, Ca and selective additive elements are added so as to have a mass ppm of mass ppm or more and 100 mass ppm or less is prepared. The obtained Au alloy is cast into a rod-shaped ingot having a predetermined diameter by a continuous casting method.
次いで、棒状インゴットを伸線加工して所定の直径に達するまで縮径してボンディングワイヤとする。なお、必要に応じて伸線加工の途中で軟化熱処理を行っても良い。 Next, the rod-shaped ingot is wire-drawn and reduced in diameter until it reaches a predetermined diameter to form a bonding wire. If necessary, softening heat treatment may be performed during the wire drawing process.
そして、所定の直径まで伸線加工を行った後、必要に応じて熱処理炉中を走行させて調質熱処理を行い、ボンディングワイヤが得られる。 Then, after wire drawing to a predetermined diameter, the wire is run in a heat treatment furnace as necessary to perform heat treatment for tempering, and a bonding wire is obtained.
以上、本発明の実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.
以下、本発明を実施例によって更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
純度99.99質量%以上のAu、純度99.9質量%以上のCu、Ca、Nd、Sm及びGdを用いて、下記表1に示すような組成のAu合金を溶解し、連続鋳造法にて棒状インゴットを作製した。作製した棒状インゴットに対して伸線加工を施して直径20μmに達するまで縮径し、その後、調質熱処理を施し、実施例1〜23及び比較例1〜8のボンディングワイヤを得た。なお、実施例1〜23及び比較例1〜8のボンディングワイヤの線径(直径)はいずれも20μmである。 Using Au having a purity of 99.99% by mass or more and Cu, Ca, Nd, Sm and Gd having a purity of 99.9% by mass or more, an Au alloy having a composition as shown in Table 1 below was melted and used in a continuous casting method. A rod-shaped ingot was produced. The produced rod-shaped ingot was wire-drawn to reduce its diameter until it reached a diameter of 20 μm, and then subjected to a heat treatment for tempering to obtain bonding wires of Examples 1 to 23 and Comparative Examples 1 to 8. The wire diameter (diameter) of the bonding wires of Examples 1 to 23 and Comparative Examples 1 to 8 is 20 μm.
得られた実施例1〜23及び比較例1〜8のボンディングワイヤにつき、(1)FAB真球性、(2)FAB接合部と電極との接合信頼性、(3)バンプ高さ、(4)チップ損傷、(5)電極のアルミスプラッシュ、について評価を行った。具体的な評価方法は以下のとおりである。 Regarding the obtained bonding wires of Examples 1 to 23 and Comparative Examples 1 to 8, (1) FAB sphericity, (2) bonding reliability between the FAB bonding portion and the electrode, (3) bump height, (4). ) Chip damage and (5) Electrode aluminum splash were evaluated. The specific evaluation method is as follows.
(1)FAB真球性
ワイヤボンダー(株式会社カイジョー製、ワイヤボンダーFB−780)にてワイヤ直径の1.9〜2.1倍の大きさのFABを大気中で作製した。FAB真球性の評価としては、実施例1〜23及び比較例1〜8のボンディングワイヤ毎にFABを100個ずつ作製した後、汎用型電子顕微鏡(日本電子(株)製、JSM−6510LA)にて外観観察を行い、作製したFABのワイヤ平行方向と垂直方向の長さをそれぞれ測定した。FABのワイヤ平行方向の長さXと垂直方向の長さYの比(X/Y)の平均値が90%以上110%以下であれば「真球性が高い」と判断し「◎」、FABのワイヤ平行方向の長さXと垂直方向の長さYの比(X/Y)の平均値が85%以上90%未満または110%を超えて115%以下であれば「真球性あり」と判断し「○」、上記以外もしくは目視して略円形でなければ「×」とした。(1) FAB A spherical wire bonder (manufactured by Kaijo Co., Ltd., wire bonder FB-780) was used to prepare a FAB having a size of 1.9 to 2.1 times the wire diameter in the atmosphere. As an evaluation of FAB sphericity, after producing 100 FABs for each of the bonding wires of Examples 1 to 23 and Comparative Examples 1 to 8, a general-purpose electron microscope (JSM-6510LA manufactured by JEOL Ltd.) The appearance was observed in the above, and the lengths of the produced FAB in the parallel direction and the vertical direction of the wire were measured. If the average value of the ratio (X / Y) of the length X in the parallel direction of the wire of the FAB to the length Y in the vertical direction is 90% or more and 110% or less, it is judged as "high sphericity" and "◎", If the average value of the ratio (X / Y) of the length X in the parallel direction of the wire of the FAB to the length Y in the vertical direction is 85% or more and less than 90%, or more than 110% and 115% or less, it is "spherical". , And if it is not a circle other than the above or visually, it is marked as "x".
(2)FAB接合部と電極との接合信頼性
上記(1)で用いたワイヤボンダーを使用してワイヤ直径の1.9〜2.1倍の大きさのFABを大気中で作製し、作製したFABを半導体素子上のAl電極上に接合した後、ボンディングワイヤを切断してAl電極上にバンプを形成して熱処理前のサンプルを作製した。また、熱処理前のサンプルを更に260℃で500時間熱処理したサンプルと、熱処理前のサンプルを1000時間熱処理したサンプルを作製した。熱処理前のサンプルと2種類の熱処理後のサンプルそれぞれ30個ずつについて、ボンドテスター2400(dage社製)にてバンプとAl電極とのシェア強度を測定し、測定値の平均値から単位面積当たりのシェア強度を計算した。熱処理後のサンプルの単位面積当たりのシェア強度が熱処理前のサンプルの単位面積当たりのシェア強度以上であることを判断基準とし、1000時間の熱処理後で判断基準を満たせば「接合強度の信頼性が非常に高い」と判断し「◎」、1000時間の熱処理後では判断基準を満たさないが、500時間の熱処理後で判断基準を満たす場合は「接合強度の信頼性がある」と判断し「○」、500時間の熱処理後で判断基準を満たさない場合は「接合強度の信頼性が低い」と判断し「×」とした。(2) Bonding reliability between FAB bonding part and electrode Using the wire bonder used in (1) above, FAB having a size of 1.9 to 2.1 times the wire diameter is produced in the air and produced. After bonding the FAB on the Al electrode on the semiconductor element, the bonding wire was cut to form a bump on the Al electrode to prepare a sample before heat treatment. Further, a sample before heat treatment was further heat-treated at 260 ° C. for 500 hours, and a sample before heat treatment was heat-treated for 1000 hours to prepare a sample. For each of 30 samples before heat treatment and 30 samples after two types of heat treatment, the share strength between the bump and the Al electrode was measured with a bond tester 2400 (manufactured by Dage), and the average value of the measured values was measured per unit area. The share strength was calculated. Based on the judgment criteria that the share strength per unit area of the sample after heat treatment is equal to or greater than the share strength per unit area of the sample before heat treatment, and if the judgment criteria are met after 1000 hours of heat treatment, "reliability of bonding strength is high. Judged as "very high" and "◎", the judgment criteria are not met after 1000 hours of heat treatment, but if the judgment criteria are met after 500 hours of heat treatment, it is judged as "reliable joint strength" and "○" If the judgment criteria are not satisfied after the heat treatment for 500 hours, it is judged that "the reliability of the joint strength is low" and the value is "x".
(3)バンプ高さ
上記(1)で用いたワイヤボンダーを使用してワイヤ直径の1.9〜2.1倍の大きさのFABを大気中で作製し、作製したFABをAl電極に接合した後、ボンディングワイヤを切断してAl電極上にバンプを30個作製した。作製したバンプを光学顕微鏡で観察してその高さを測定した。測定値の平均値が、50μm未満であれば「◎」、50μm以上60μm未満であれば「○」、60μm以上であれば「×」とした。(3) Bump height Using the wire bonder used in (1) above, a FAB having a size of 1.9 to 2.1 times the wire diameter was prepared in the air, and the prepared FAB was bonded to the Al electrode. After that, the bonding wire was cut to prepare 30 bumps on the Al electrode. The height of the prepared bump was measured by observing it with an optical microscope. When the average value of the measured values was less than 50 μm, it was evaluated as “⊚”, when it was 50 μm or more and less than 60 μm, it was evaluated as “◯”, and when it was 60 μm or more, it was evaluated as “x”.
(4)チップ損傷
上記(1)で用いたワイヤボンダーを使用してワイヤ直径の1.9〜2.1倍の大きさのFABを大気中で形成し、形成したFABをSiチップ上のAl電極に接合したサンプルを作製した。作製したサンプルの電極膜(Al電極)を王水で溶解し、Siチップのクラックを走査型電子顕微鏡(SEM)で観察した。100個の接合部を観察して3μm以上のクラックがなく、かつ、3μm未満の微小なピットが1個もしくはまったく見られない場合は「◎」、3μm以上のクラックが2個以上5個未満の場合は実用上問題がないとして「〇」、3μm以上のクラックが5個以上の場合は「×」とした。(4) Chip damage Using the wire bonder used in (1) above, a FAB with a size of 1.9 to 2.1 times the wire diameter was formed in the atmosphere, and the formed FAB was formed into Al on the Si chip. A sample bonded to the electrode was prepared. The electrode film (Al electrode) of the prepared sample was dissolved in aqua regia, and cracks in the Si chip were observed with a scanning electron microscope (SEM). When observing 100 joints and there are no cracks of 3 μm or more and there is no or no minute pits of less than 3 μm, “◎” indicates that there are 2 or more and less than 5 cracks of 3 μm or more. In the case, it was evaluated as "○" because there was no practical problem, and when there were 5 or more cracks of 3 μm or more, it was evaluated as “×”.
(5)電極のアルミスプラッシュ
上記(1)で用いたワイヤボンダーを使用してワイヤ直径の1.9〜2.1倍の大きさのFABを大気中で形成し、形成したFABをSiチップ上のAl電極に接合したサンプルを作製した。作製したサンプルの電極の外観を走査型電子顕微鏡(SEM)で観察した。100個の電極を観察して、FABとの接合部周辺の電極にアルミニウムのめくれが見られない又は1個以上5個未満の場合は「◎」、5個以上10個未満の場合は「〇」、10個以上の場合は「×」とした。(5) Aluminum splash of electrodes Using the wire bonder used in (1) above, a FAB with a size of 1.9 to 2.1 times the wire diameter was formed in the atmosphere, and the formed FAB was placed on the Si chip. A sample bonded to the Al electrode of was prepared. The appearance of the electrodes of the prepared sample was observed with a scanning electron microscope (SEM). Observing 100 electrodes, if there is no aluminum turning over at the electrodes around the joint with the FAB, or if there are 1 or more and less than 5, "◎", if 5 or more and less than 10, "○" In the case of 10 or more, it was set as "x".
(6)総合評価
各評価で全て「◎」のものを「◎」、「○」が一つもしくは二つで他全て「◎」のものを「○」、「×」が一つでもあるものを「×」とした。なお、この評価において、「◎」のものは勿論のこと、「×」以外の「○」のものは、半導体素子の種類により接合条件に制約がない場合等の使用条件によれば、この発明の作用効果を発揮して使用し得る。
(6) Comprehensive evaluation In each evaluation, all "◎" are "◎", "○" is one or two, and all others are "◎" are "○" and "×". Was set to "x". In this evaluation, not only those with "◎" but also those with "○" other than "x" are the inventions according to the usage conditions such as when there are no restrictions on the joining conditions depending on the type of semiconductor element. It can be used by exerting the effects of.
結果は、表2に示すとおりであり、実施例1〜23では、全ての評価項目において「◎」又は「○」となり、いずれの評価項目も良好な結果が得られた。特に、Cuの含有量が3質量%以下である実施例1〜14、17〜23では電極のアルミスプラッシュが「◎」となり、Cuの含有量が1質量%未満である実施例1〜13、17,18ではチップ損傷及び電極のアルミスプラッシュの双方が「◎」となった。また、Cuの含有量が0.3質量%以上である実施例1〜16、19〜23では接合信頼性が「◎」となった。Caと選択添加元素の含有量の合計が20質量ppm以上100質量ppm以下である実施例1〜7、9、14〜20、22では、FAB真球性及びバンプ高さの双方が「◎」となった。Cuの含有量が0.3質量%以上1質量%未満、かつCaと選択添加元素の含有量の合計が20質量ppm以上100質量ppm以下である実施例1〜7、9では全ての評価項目において「◎」となり優れたワイヤであった。 The results are as shown in Table 2. In Examples 1 to 23, all the evaluation items were "⊚" or "○", and good results were obtained for all the evaluation items. In particular, in Examples 1 to 14 and 17 to 23 in which the Cu content is 3% by mass or less, the aluminum splash of the electrode is “⊚”, and the Cu content is less than 1% by mass in Examples 1 to 13. In 17 and 18, both the chip damage and the aluminum splash of the electrode became "◎". Further, in Examples 1 to 16 and 19 to 23 in which the Cu content was 0.3% by mass or more, the bonding reliability was "⊚". In Examples 1 to 7, 9, 14 to 20, 22 in which the total content of Ca and the selective additive element is 20 mass ppm or more and 100 mass ppm or less, both FAB sphericity and bump height are “◎”. It became. All evaluation items in Examples 1 to 7 and 9 in which the Cu content is 0.3% by mass or more and less than 1% by mass, and the total content of Ca and the selective additive element is 20% by mass or more and 100% by mass or less. It became "◎" and was an excellent wire.
一方、Cuを含有しないかまたは含有量が0.1%に満たない比較例1及び2ではFAB接合部と電極との接合強度の信頼性が「×」となり、選択添加元素を含有しない比較例3や、Caの含有量が100質量ppmを越える比較例4や、選択添加元素の含有量が100質量ppmを越える比較例5ではFAB真球性が「×」となり、Caを含有しない比較例6ではバンプ高さが「×」となり、Caと選択添加元素の総量が5ppmに満たない比較例7はバンプ高さが「×」となり、Cuの含有量が5.0質量%を超える比較例8ではチップ損傷及び電極のアルミスプラッシュが「×」となった。 On the other hand, in Comparative Examples 1 and 2 in which Cu is not contained or the content is less than 0.1%, the reliability of the bonding strength between the FAB bonding portion and the electrode is “x”, and the comparative example does not contain the selective additive element. In Comparative Example 4 in which the Ca content exceeds 100 mass ppm, and Comparative Example 5 in which the content of the selective additive element exceeds 100 mass ppm, the FAB sphericity becomes “x” and Ca is not contained in Comparative Example 3. In Comparative Example 7, the bump height is “x” and the total amount of Ca and the selective additive element is less than 5 ppm. In Comparative Example 7, the bump height is “x” and the Cu content exceeds 5.0% by mass. In No. 8, the chip damage and the aluminum splash of the electrode became “x”.
W…ボンディングワイヤ
10、10‘…電極
12…FAB接合部
14…1stネック部
16…2nd接合部
20、20’…電極
22…バンプ
24…ハンダW ...
Claims (5)
Caの含有量が1質量ppm以上100質量ppm以下、
Nd及びSmからなる群から選択された1種又は2種の元素の含有量の合計が1質量ppm以上100質量ppm以下であり、
Caの含有量とNd及びSmからなる群から選択された1種又は2種の元素の含有量の合計が5質量ppm以上150質量ppm以下であり、
残部がAuからなるボンディングワイヤ。Cu content is 0.1% by mass or more and 5.0% by mass or less,
Ca content is 1 mass ppm or more and 100 mass ppm or less,
The total content of one or two elements selected from the group consisting of Nd and Sm is 1 mass ppm or more and 100 mass ppm or less.
The total content of Ca and the content of one or two elements selected from the group consisting of Nd and Sm is 5 mass ppm or more and 150 mass ppm or less.
Bonding wire with the rest made of Au.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018014063 | 2018-01-30 | ||
JP2018014063 | 2018-01-30 | ||
PCT/JP2019/002449 WO2019151130A1 (en) | 2018-01-30 | 2019-01-25 | Bonding wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019151130A1 JPWO2019151130A1 (en) | 2021-02-04 |
JP6926245B2 true JP6926245B2 (en) | 2021-08-25 |
Family
ID=67478219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019569076A Active JP6926245B2 (en) | 2018-01-30 | 2019-01-25 | Bonding wire |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6926245B2 (en) |
KR (1) | KR102460206B1 (en) |
CN (1) | CN111656501B (en) |
TW (1) | TWI750449B (en) |
WO (1) | WO2019151130A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112981165A (en) * | 2021-02-06 | 2021-06-18 | 贵研铂业股份有限公司 | Gold-copper-gadolinium alloy used as light-load electric contact material, wire and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3586909B2 (en) | 1995-01-20 | 2004-11-10 | 住友金属鉱山株式会社 | Bonding wire |
JP3744131B2 (en) * | 1997-07-10 | 2006-02-08 | 住友金属鉱山株式会社 | Bonding wire |
JP3641231B2 (en) * | 2001-10-30 | 2005-04-20 | 新日本製鐵株式会社 | Semiconductor device and bonding wire for semiconductor device |
US7390370B2 (en) * | 2002-04-05 | 2008-06-24 | Nippon Steel Corporation | Gold bonding wires for semiconductor devices and method of producing the wires |
JP3697227B2 (en) * | 2002-06-24 | 2005-09-21 | 新日本製鐵株式会社 | Gold bonding wire for semiconductor device and manufacturing method thereof |
SG190370A1 (en) * | 2011-03-01 | 2013-06-28 | Tanaka Electronics Ind | Gold alloy bonding wire |
DE112011100491T5 (en) * | 2011-06-10 | 2013-06-13 | Tanaka Denshi Kogyo K.K. | Bonding wire made of Au alloy with high strength and high elongation rate |
KR101926215B1 (en) * | 2011-07-22 | 2018-12-06 | 미쓰비시 마테리알 가부시키가이샤 | Copper strand for bonding wire and method for producing copper strand for bonding wire |
KR101323246B1 (en) * | 2011-11-21 | 2013-10-30 | 헤레우스 머티어리얼즈 테크놀로지 게엠베하 운트 코 카게 | Bonding wire for semiconductor devices, and the manufacturing method, and light emitting diode package including the bonding wire for semiconductor devices |
-
2019
- 2019-01-25 JP JP2019569076A patent/JP6926245B2/en active Active
- 2019-01-25 WO PCT/JP2019/002449 patent/WO2019151130A1/en active Application Filing
- 2019-01-25 KR KR1020207020700A patent/KR102460206B1/en active IP Right Grant
- 2019-01-25 CN CN201980008520.8A patent/CN111656501B/en active Active
- 2019-01-29 TW TW108103261A patent/TWI750449B/en active
Also Published As
Publication number | Publication date |
---|---|
KR102460206B1 (en) | 2022-10-27 |
WO2019151130A1 (en) | 2019-08-08 |
TW201936931A (en) | 2019-09-16 |
JPWO2019151130A1 (en) | 2021-02-04 |
CN111656501B (en) | 2024-10-01 |
TWI750449B (en) | 2021-12-21 |
KR20200113192A (en) | 2020-10-06 |
CN111656501A (en) | 2020-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4771562B1 (en) | Ag-Au-Pd ternary alloy bonding wire | |
JP5616739B2 (en) | Multilayer copper bonding wire bonding structure | |
KR100899322B1 (en) | Au ALLOY BONDING WIRE | |
JP5529992B1 (en) | Bonding wire | |
JP2007142271A (en) | Bump material and bonding structure | |
JP6926245B2 (en) | Bonding wire | |
JP3994113B2 (en) | Wire bump | |
JP6103806B2 (en) | Ball bonding wire | |
JP6369994B2 (en) | Copper alloy thin wire for ball bonding | |
JPH09272931A (en) | Fine gold alloy wire for semiconductor device | |
JPH0555580B2 (en) | ||
JP6714150B2 (en) | Bonding wire and semiconductor device | |
JP2013048169A (en) | Wire for ball bonding | |
JP7542583B2 (en) | Bonding wire and semiconductor device | |
JP3426473B2 (en) | Gold alloy wires for semiconductor devices | |
JP3426399B2 (en) | Gold alloy fine wire for semiconductor devices | |
JP3426397B2 (en) | Gold alloy fine wire for semiconductor devices | |
JP5339101B2 (en) | Bump wire | |
JP3120940B2 (en) | Spherical bump for semiconductor device | |
JP3747023B2 (en) | Gold bonding wire for semiconductor | |
JPH07335684A (en) | Bonding wire | |
JP2008027951A (en) | Gold alloy for connecting semiconductor device | |
JPH07335685A (en) | Bonding wire | |
JPH07201867A (en) | Pd alloy wire for bump formation, formation of bump and semiconductor device using the pd alloy wire | |
JP2006100720A (en) | Au-ALLOY BONDING WIRE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210720 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6926245 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |