JP2006100720A - Au-ALLOY BONDING WIRE - Google Patents

Au-ALLOY BONDING WIRE Download PDF

Info

Publication number
JP2006100720A
JP2006100720A JP2004287566A JP2004287566A JP2006100720A JP 2006100720 A JP2006100720 A JP 2006100720A JP 2004287566 A JP2004287566 A JP 2004287566A JP 2004287566 A JP2004287566 A JP 2004287566A JP 2006100720 A JP2006100720 A JP 2006100720A
Authority
JP
Japan
Prior art keywords
mass
alloy
wire
bonding
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287566A
Other languages
Japanese (ja)
Inventor
Atsushi Chiba
淳 千葉
Hiroshi Murai
博 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2004287566A priority Critical patent/JP2006100720A/en
Publication of JP2006100720A publication Critical patent/JP2006100720A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Au-alloy bonding wire wherein, even when it is a thin wire having a wire diameter not larger than 23 μm, the dispersing quality of trace elements is good in such an alloy matrix as Au-Ag, and the mutual diffusion of Au-Al can be delayed, and also, no leaning is generated, and further, the complete sphericity of a fused ball is maintained, and moreover, the complete circularity of a pressingly bonded ball is made possible. <P>SOLUTION: The Au alloy is such an alloy that trace elements are dispersed in an Au-alloy matrix wherein at least one kind of Ag or Cu having a high purity not smaller than 99.99 mass% are contained as much as 0.2-2 mass% in an Au having a high purity not smaller than 99.99 mass%. Further, the trace elements comprise Mg of 10-100 mass ppm, Ce of 5-100 mass ppm, and at least one kind of Y, Gd, Be, La, and Si contained respectively as much as 5-100 mass ppm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体の集積回路素子上の電極と回路配線基板の外部リードを接続するために使用する半導体素子のワイヤボンディング用のAu合金ボンディング・ワイヤに関し、更に詳しくは、第一ボンドと第二ボンドの接合性が向上されたAu合金ボンディング・ワイヤに関する。   The present invention relates to an Au alloy bonding wire for wire bonding of a semiconductor element used for connecting an electrode on a semiconductor integrated circuit element and an external lead of a circuit wiring board. More specifically, the present invention relates to a first bond and a second bond. The present invention relates to an Au alloy bonding wire with improved bondability.

従来から半導体装置に用いられるICチップ電極と外部リードを接続する線径25〜35μm程度の線としては、純度99.99質量%以上の高純度金に、PdやPt等の貴金属元素を数%含有させた金合金に微量元素を添加したAu合金ボンディング・ワイヤが、極細線の強度と第一ボンドにおける信頼性において優れているとして多用されている。通常、Au合金ボンディング・ワイヤを接続する方法においては、第一ボンドでは、超音波併用熱圧着ボンディング法が主として用いられている。この方法では、ワイヤ先端をアーク入熱で加熱溶融し、表面張力によりボールを形成させた後に、150〜300℃の範囲内で加熱した半導体素子の電極上にボール部を圧着接合せしめ、その後の第二ボンドでは、直接ボンディング・ワイヤを外部リード側に超音波圧着によりウェッジ接合させる。トランジスタやIC等の半導体装置として使用するためには、前記のボンディング・ワイヤによるボンディングの後に、Siチップ、ボンディング・ワイヤ、およびSiチップが取り付けられた部分のリードフレーム等を保護する目的で、エポキシ樹脂で封止する。   Conventionally, a wire having a wire diameter of about 25 to 35 μm for connecting an IC chip electrode and an external lead used in a semiconductor device has a high purity gold of 99.99 mass% or more and a few percent of noble metal elements such as Pd and Pt. Au alloy bonding wires in which trace elements are added to the contained gold alloy are often used because they are excellent in the strength of the fine wires and the reliability in the first bond. Usually, in the method of connecting the Au alloy bonding wires, the ultrasonic bonding combined thermocompression bonding method is mainly used for the first bond. In this method, the wire tip is heated and melted by arc heat input to form a ball by surface tension, and then the ball portion is bonded to the electrode of the semiconductor element heated within a range of 150 to 300 ° C. In the second bond, the direct bonding wire is wedge-bonded to the external lead side by ultrasonic pressure bonding. In order to use it as a semiconductor device such as a transistor or an IC, an epoxy is used for the purpose of protecting the Si chip, the bonding wire, and the lead frame where the Si chip is attached after the bonding with the bonding wire. Seal with resin.

最近は、半導体装置の小型化、薄型化、高機能化および高信頼性化の要求が高まる中で、金ボンディング・ワイヤに必要とされる特性も多様化しており、ICチップの多ピン化及びこれに伴う狭ピッチ化に対応するため、金ボンディング・ワイヤの細線化による強度の向上、あるいは第一ボンドにおけるボールの真円性や第二ボンドにおける接合性等が要求されている。特に半導体装置の一層の小型化、薄型化および高機能化に伴い、半導体装置の大きさが小さくなっている。それに伴って、単位面積あたりの入出力端子の数が増大して、Alパッドの大きさも100μm角から80μm角、60μm角へと小さくなってきている。このためボンディング・ワイヤの線径も25μmから23μm以下へと細くなり始めてきた。ところが、ボンディング・ワイヤの線径が細くなると、ワイヤ自身の絶対的な剛性が低下するため、25μmの線径では問題にならなかったような不具合が発生するようになった。例えば、剛性が低下すると、第一ボンドと第二ボンドの間に張られたワイヤが左右に倒れ、隣接するワイヤ同士の間隔が狭くなったり接触したりする、いわゆる「リーニング」と呼ばれる不具合が発生する。また、高温環境で長時間使用された場合、第一ボンドのAuワイヤとAlパッド間の界面における化合物の成長が急速に進んだ結果、生成した化合物によりボール接合性を低下させる不具合が発生することがある。このため、希土類元素等を微量に添加することにより剛性を高めたり、Pd等の貴金属元素を数%Auに含有させて界面におけるAu−Alの相互拡散を遅延させ化合物の成長を抑制したりしていた。   Recently, as the demands for smaller, thinner, higher functionality and higher reliability of semiconductor devices are increasing, the characteristics required for gold bonding wires are also diversifying. In order to cope with the narrow pitch accompanying this, it is required to improve the strength by thinning the gold bonding wire or the roundness of the ball in the first bond or the bonding property in the second bond. In particular, as semiconductor devices are further reduced in size, thickness, and functionality, the size of the semiconductor devices is decreasing. Along with this, the number of input / output terminals per unit area has increased, and the size of Al pads has also decreased from 100 μm square to 80 μm square and 60 μm square. For this reason, the wire diameter of the bonding wire has begun to decrease from 25 μm to 23 μm or less. However, when the wire diameter of the bonding wire is reduced, the absolute rigidity of the wire itself is lowered, so that a problem that does not become a problem with a wire diameter of 25 μm has occurred. For example, when the rigidity decreases, the wire stretched between the first bond and the second bond falls to the left and right, causing a problem called “leaning” in which the distance between adjacent wires becomes narrower or contacts each other. To do. In addition, when used for a long time in a high-temperature environment, the compound grows rapidly at the interface between the Au wire of the first bond and the Al pad, and as a result, a defect that reduces the ball bondability due to the generated compound occurs. There is. For this reason, it is possible to increase the rigidity by adding a small amount of rare earth elements or the like, or to add several percent of noble metal elements such as Pd to Au to delay the interdiffusion of Au-Al at the interface and suppress the compound growth. It was.

ところが、微量元素は高濃度にすればするほどAu−Pd等合金ワイヤの絶対的な剛性が高くなり、ループ形成性が向上する傾向にあるが、Au素地に溶質した微量元素によってAuボールの形成性が悪くなってしまう。そのため、溶融ボールの形状や圧着ボールの形状がいびつになり、狭いピッチ間隔のボール・ボンディングが困難となる等の問題があり、300ppmを超えての微量元素の添加をすることはできない。このため従来は、例えばAu−0.2〜2質量%Pd合金マトリックスに対して主にCaを1〜50PPm微量添加して強度を確保していた。ところが、Caは極細線の表面に部分的に析出することがあり、この表面析出したCaが酸化された結果、第一ボンドのボール形状や接合性が安定せず圧着ボールの真円性が悪かったり、第二ボンドのウェッジ接合性を悪くしたりすることがあった。また、添加する微量元素が複雑になると、Au−Pd等のAu合金中ではこれらの元素が複雑に分散して溶融ボールの表面に析出することがあり、良好な初期接合が得られず、信頼性の高い第一ボンドと第二ボンドの接合性が得られなかった。   However, the higher the concentration of the trace element, the higher the absolute rigidity of the alloy wire such as Au—Pd and the like, and the loop formation tends to be improved. However, the formation of the Au ball by the trace element dissolved in the Au substrate. It becomes worse. For this reason, the shape of the molten ball or the shape of the press-bonded ball becomes distorted, which makes it difficult to perform ball bonding with a narrow pitch interval, and it is impossible to add trace elements exceeding 300 ppm. For this reason, conventionally, for example, a trace amount of Ca 1 to 50 PPm was mainly added to an Au-0.2 to 2 mass% Pd alloy matrix to ensure the strength. However, Ca may be partially deposited on the surface of the ultrafine wire. As a result of oxidation of the Ca deposited on the surface, the ball shape and bondability of the first bond are not stable, and the roundness of the press-bonded ball is poor. Or the wedge bondability of the second bond may be deteriorated. In addition, when the trace elements to be added are complicated, these elements may be dispersed in a complicated manner in the Au alloy such as Au-Pd and deposited on the surface of the molten ball, and a good initial bonding cannot be obtained. High bondability between the first bond and the second bond was not obtained.

なお、前記ワイヤボンティングに関する文献を示すと、以下の通りである。   The literature related to the wire bonding is as follows.

特開2003−133362号公報JP 2003-133362 A 特開平11−87396号公報Japanese Patent Laid-Open No. 11-87396 特開平11−214425号公報JP-A-11-214425 特開平11−222639号公報Japanese Patent Laid-Open No. 11-222639

本発明は、線径が23μm以下の細いワイヤであっても、Au−Ag等合金マトリックス中で微量元素の分散性が良く、Au−Alの相互拡散を遅延させることができ、リーニングが発生せず、溶融ボールの真球性が維持され、さらに圧着ボールが真円性を有することができるボンディング・ワイヤを提供することをその課題とし、また、添加元素量が300ppm以下と微量であり、大気中でボール・ボンディングしてもその溶融ボールや極細線の表面に酸化膜が形成することのないボンディング・ワイヤを提供することを他の課題とし、さらに、これまではボール・ボンディングでは余り考慮されてこなかった超音波圧着による第二ボンドのウェッジ接合性を向上したボンディング・ワイヤを提供することをさらに他の課題とする。   In the present invention, even a thin wire having a wire diameter of 23 μm or less has good dispersibility of trace elements in an alloy matrix such as Au—Ag, can delay inter-diffusion of Au—Al, and cause leaning. Therefore, it is an object of the present invention to provide a bonding wire capable of maintaining the true sphericity of the molten ball and further allowing the pressure-bonded ball to have a roundness. Another issue is to provide a bonding wire that does not form an oxide film on the surface of the molten ball or ultrafine wire even when ball bonding is performed. It is still another object to provide a bonding wire that improves the wedge bondability of the second bond by ultrasonic pressure bonding that has not been performed.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下に示すAu合金ボンディング・ワイヤが提供される。
(1)99.99質量%以上の高純度Auに99.99質量%以上の高純度のAg又はCuのうち少なくとも1種を0.2〜2質量%含有させたAu合金マトリックス中に微量元素を分散させた合金であって、該微量元素が10〜100質量ppmのMgと、5〜100質量ppmのCeと、5〜100質量ppmのY、Gd、Be、LaおよびSiのうちの少なくとも1種とからなるAu合金からなることを特徴とするAu合金ボンディング・ワイヤ。
(2)99.99質量%以上の高純度Auに99.99質量%以上の高純度のAg又はCuのうち少なくとも1種を0.2〜2質量%含有させたAu合金マトリックス中に微量元素を分散させた合金であって、該微量元素が10〜100質量ppmのMgと、5〜100質量ppmのBeと、5〜100質量ppmのY、Eu、LaおよびSiのうちの少なくとも1種とからなるAu合金からなることを特徴とするAu合金ボンディング・ワイヤ。
(3)該微量元素の合計が100質量ppm以下であることを特徴とする(1)または(2)に記載のAu合金ボンディング・ワイヤ。
(4)該ワイヤの線径が23μm以下であることを特徴とする(1)〜(3)のいずれかに記載のAu合金ボンディング・ワイヤ。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the present invention, the following Au alloy bonding wire is provided.
(1) Trace elements in an Au alloy matrix containing 99.99 mass% or more of high-purity Au of 0.2 to 2 mass% of at least one of 99.99 mass% or more of high-purity Ag or Cu In which the trace element is 10 to 100 ppm by mass of Mg, 5 to 100 ppm by mass of Ce, and 5 to 100 ppm by mass of Y, Gd, Be, La and Si. An Au alloy bonding wire comprising an Au alloy composed of one kind.
(2) Trace elements in an Au alloy matrix containing 99.99% by mass or more of high purity Au of 99.99% by mass or more and containing 0.2-2% by mass of Ag or Cu having a purity of 99.99% by mass or more. In which the trace element is 10 to 100 mass ppm of Mg, 5 to 100 mass ppm of Be, and 5 to 100 mass ppm of Y, Eu, La and Si. An Au alloy bonding wire comprising an Au alloy consisting of
(3) The Au alloy bonding wire according to (1) or (2), wherein the total amount of the trace elements is 100 mass ppm or less.
(4) The Au alloy bonding wire according to any one of (1) to (3), wherein a wire diameter of the wire is 23 μm or less.

本発明で溶融ボールについていう真球性は、ワイヤの無い側からワイヤの長手方向へ溶融ボールを見て溶融ボールの縦横の直径を測定し、その比(横の直径/縦の直径)で定義する。その値は0.99〜1.01、好ましくは0.995〜1.005である。また、圧着ボールの真円性は、超音波の印加方向に平行方向の圧着径と垂直方向の圧着径を測定し、その比(垂直方向の圧着径/平行方向の圧着径)で定義する。その値は0.98〜1.02、好ましくは0.99〜1.01である。   In the present invention, the true sphericity of the molten ball is defined by measuring the length of the molten ball from the side without the wire in the longitudinal direction of the wire and measuring the vertical and horizontal diameters of the molten ball (lateral diameter / longitudinal diameter). To do. The value is 0.99 to 1.01, preferably 0.995 to 1.005. Further, the roundness of the press-bonded ball is defined by measuring the press-bonded diameter in the direction parallel to the ultrasonic wave application direction and the press-bonded diameter in the vertical direction, and the ratio (vertical press-bonded diameter / parallel-bonded diameter). The value is 0.98 to 1.02, preferably 0.99 to 1.01.

本発明によれば、ボンディング・ワイヤの線径が23μm以下の細い線径であっても、Au−Alの相互拡散の遅延効果とウェッジ接合の向上効果、リーニング抑制効果、溶融ボールの真球性効果、並びに圧着ボールの真円性効果を併せ持つことができる。本発明では、従来のように添加する微量元素は300質量ppmを超えて増加させる必要がないので、大気中でボール・ボンデイングしても、その溶融ボールや極細線の表面に酸化膜が形成されることのないボンディング・ワイヤを実現することができる。   According to the present invention, even if the wire diameter of the bonding wire is a thin wire diameter of 23 μm or less, the effect of delaying the interdiffusion of Au—Al, the effect of improving the wedge bonding, the effect of suppressing the leaning, the sphericity of the molten ball It is possible to have both the effect and the roundness effect of the press-bonded ball. In the present invention, it is not necessary to increase the amount of trace elements to be added exceeding 300 ppm by mass as in the prior art, so even if ball bonding is performed in the atmosphere, an oxide film is formed on the surface of the molten ball or ultrafine wire. It is possible to realize a bonding wire that does not occur.

本発明のAu合金ボンディング・ワイヤは、マトリックス合金として、(i)Auと(ii)Ag及び/又はCuを含有し、そのマトリックス合金中に分散させる微量元素として、(iii)Mgを必須成分の元素とするほか、(iv)Ce、(v)Y、Gd、Be、La、及びSiの中から選ばれる少なくとも1種の元素を組み合わせたもの、または(vi)Beと(vii)Y、Eu、La及びSiの中から選ばれる少なくとも1種類の元素を組み合わせたものからなる。本発明で用いる微量金属は、マトリックス合金に対して良好な分散性を有することを特徴とする。   The Au alloy bonding wire of the present invention contains (i) Au and (ii) Ag and / or Cu as a matrix alloy, and (iii) Mg as an essential component as a trace element dispersed in the matrix alloy. In addition to an element, (iv) a combination of at least one element selected from Ce, (v) Y, Gd, Be, La, and Si, or (vi) Be and (vii) Y, Eu , La and Si, and a combination of at least one element selected from La and Si. The trace metals used in the present invention are characterized by having good dispersibility with respect to the matrix alloy.

本発明において用いるマトリックス合金において、そのAuは高純度Auであって、その純度は99.99質量%以上、好ましくは99.999質量%以上である。また、そのAg及び/又はCuは、高純度のもので、その純度は、99.99質量%以上、好ましくは99.999質量%以上である。
マトリックス合金中のAg及び/又はCuの含有量は、マトリックス合金に対し、0.2〜2質量%、好ましくは0.5〜1.5質量%である。
マトリックス合金中にAgとCuの両方を添加するときには、特に制限はない。Auに対してAgもCuも同等のマトリックス効果を発揮するからである。
In the matrix alloy used in the present invention, the Au is high-purity Au, and the purity thereof is 99.99 mass% or more, preferably 99.999 mass% or more. Further, the Ag and / or Cu is of high purity, and the purity thereof is 99.99% by mass or more, preferably 99.999% by mass or more.
The content of Ag and / or Cu in the matrix alloy is 0.2 to 2% by mass, preferably 0.5 to 1.5% by mass with respect to the matrix alloy.
When both Ag and Cu are added to the matrix alloy, there is no particular limitation. This is because Ag and Cu exhibit the same matrix effect as Au.

前記マトリックス合金(Au合金)中に分散させる微量元素において、そのMgの純度は99.9質量%以上、好ましくは99.99質量%以上である。その含有量は、マトリックス合金に対して、10〜100質量ppm、好ましくは40〜80質量ppmである。
Mgは、Au合金マトリックス中において、超音波圧着による第一ボンドのウェッジ接合性を向上させることができる元素であることがわかった。Mgは10〜100質量ppm含有していると、上記のウェッジ接合性の向上効果を示す。10質量ppm未満ではウェッジ接合性を向上させることができず、100質量ppmを超えるとボール表面にMgが析出、酸化した結果、第一ボンドにおいて接合性が悪化する。
In the trace element dispersed in the matrix alloy (Au alloy), the purity of Mg is 99.9% by mass or more, preferably 99.99% by mass or more. The content thereof is 10 to 100 ppm by mass, preferably 40 to 80 ppm by mass with respect to the matrix alloy.
It has been found that Mg is an element that can improve the wedge bondability of the first bond by ultrasonic pressure bonding in the Au alloy matrix. When Mg is contained in an amount of 10 to 100 mass ppm, the effect of improving the wedge bondability is exhibited. If it is less than 10 ppm by mass, the wedge bondability cannot be improved, and if it exceeds 100 ppm by mass, Mg is precipitated and oxidized on the ball surface, resulting in poor bondability in the first bond.

前記マトリックス合金(Au合金)中に分散させる微量元素において、その「Ce」と「Y、Gd、Be、LaおよびSiのうちの少なくとも1種」または「Be」と「Y、Eu、LaおよびSiのうちの少なくとも1種」の各々の元素の純度は99.9質量%以上、好ましくは99.99質量%以上である。それぞれの含有量は、マトリックス合金に対して、5〜100質量ppm、好ましくはLa、Siにおいては5〜80質量PPm、それ以外の元素においては5〜30質量ppmである。
CeとY、Gd、Be、LaおよびSi、またはBeとY、Eu、LaおよびSiはAu合金マトリックス中において、線径が23μm以下の細い線径であっても、極細線自身の剛性を増すことにより、ループ形成性を維持するとともに、第一ボンディングにおける圧着ボールの真円性を維持することができる元素であることがわかった。「Ce」と「Y、Gd、Be、LaおよびSiのうちの少なくとも1種」または「Be」と「Y、Eu、LaおよびSiのうちの少なくとも1種」は1元素あたりの量が5質量ppm未満か、もしくはこれらの元素の総量が10質量ppm未満ではAu−Ag等合金ワイヤのループ形成性を維持するとともに、第一ボンディングにおける圧着ボールの真円性を維持することができず、1元素あたりの量が100質量ppmか、もしくはこれらの元素とMgを合わせた微量元素の総量が300質量ppmを超えると溶融ボールがいびつに変形したり、極細線自身の剛性が大きくなりすぎて半導体チップを割ってしまいやすくなったりする。また、Au−Ag等合金の溶融ボール表面に微量元素が析出し、酸化することにより、第一ボンドにおいて接合性が悪化したり、圧着ボールの真円性が悪くなったりすることがある。真円性効果は高い順にSi、La、Be、Ce、Eu、Y、Gdであった。
In the trace elements dispersed in the matrix alloy (Au alloy), “Ce” and “at least one of Y, Gd, Be, La and Si” or “Be” and “Y, Eu, La and Si” The purity of each element of “at least one of the above” is 99.9% by mass or more, preferably 99.99% by mass or more. Each content is 5 to 100 mass ppm with respect to the matrix alloy, preferably 5 to 80 mass PPm for La and Si, and 5 to 30 mass ppm for the other elements.
Ce and Y, Gd, Be, La and Si, or Be and Y, Eu, La and Si increase the rigidity of the ultrafine wire itself even if the wire diameter is a thin wire diameter of 23 μm or less in the Au alloy matrix. As a result, it was found that the element can maintain the loop formability and maintain the roundness of the press-bonded ball in the first bonding. “Ce” and “at least one of Y, Gd, Be, La and Si” or “Be” and “at least one of Y, Eu, La and Si” have an amount of 5 mass per element. If it is less than ppm, or if the total amount of these elements is less than 10 ppm by mass, the loop formability of the alloy wire such as Au—Ag can be maintained, and the roundness of the press-bonded ball in the first bonding cannot be maintained. If the amount per element is 100 ppm by mass, or if the total amount of trace elements including these elements and Mg exceeds 300 ppm by mass, the molten ball will be deformed, or the rigidity of the ultrafine wire itself will become too large. It becomes easy to break the chip. Further, when trace elements are precipitated on the surface of the molten ball of an alloy such as Au—Ag and oxidized, the bondability of the first bond may be deteriorated, or the roundness of the press-bonded ball may be deteriorated. The roundness effect was Si, La, Be, Ce, Eu, Y, Gd in descending order.

本発明で用いる微量元素における「Mg」と「Ce」と「Y、Gd、Be、LaおよびSiのうちの少なくとも1種」または「Mg」と「Be」と「Y、Eu、LaおよびSiのうちの少なくとも1種」は、すべて高純度のAu−Ag等合金の希薄なAu合金中で分散性が良い添加元素であり、CaやZnのように希薄なAu合金の表面に不意に析出して酸化膜を形成することがない。したがって、「Mg」と「Ce」と「Y、Gd、Be、LaおよびSiのうちの少なくとも1種」または「Mg」と「Be」と「Y、Eu、LaおよびSiのうちの少なくとも1種」とを組み合わせることによってAu合金ボンディング・ワイヤにおける相互拡散の遅延効果に加え、ウェッジ接合性の向上効果、並びに溶融ボールの真球性効果、極細線におけるループ形成効果、圧着ボールの真円性効果を併せ持たせることができる。   Among the trace elements used in the present invention, “Mg” and “Ce” and “at least one of Y, Gd, Be, La and Si” or “Mg” and “Be” and “Y, Eu, La and Si” “At least one of them” is an additive element that is highly dispersible in a dilute Au alloy such as a high-purity Au—Ag alloy, and is unexpectedly deposited on the surface of a dilute Au alloy such as Ca or Zn. Thus, no oxide film is formed. Therefore, “Mg” and “Ce” and “at least one of Y, Gd, Be, La and Si” or “Mg” and “Be” and “at least one of Y, Eu, La and Si” In addition to the effect of retarding interdiffusion in Au alloy bonding wires, the effect of improving wedge bondability, the sphericity effect of molten balls, the loop formation effect of ultrafine wires, and the roundness effect of crimped balls Can be held together.

これまでMgと希土類元素とをAu−Ag合金ボンディング・ワイヤに共添加することは文献上は知られていたし(特許文献2〜4)、実際に共添加した例もあった(特許文献1)。しかし、特許文献1に記載のZnを含むAu合金は極細線上に酸化膜を簡単に形成しやすいため極細線が細くなればなるほど圧着ボールの真円性が得られにくくなる。また、Caを含むAu合金は他の添加元素の有無にかかわらず不規則に表面へ析出して酸化するため、第一ボンドの接合信頼性や圧着ボールの真円性が得られないという不具合がある。したがって、従来でも「Mg」と「Ce」または「Be」とを組み合わせることが考えられていたが、Mg等が高純度のAu−Ag等合金の希薄なAu合金中で分散性が良い元素であり、かつ、大気中でボール・ボンディングしても溶融ボールや極細線の表面に酸化膜が形成されることがない微量元素であることは知られていなかった。従って、「Mg」と「Ce」と「Y、Gd、Be、LaおよびSiのいずれか1種」または「Mg」と「Be」と「Y、Eu、LaおよびSiのうち少なくとも1種」とを組み合わせることによって、これらの微量元素がすべて希薄なAu合金中で分散性が良い微量元素であり、表面析出を起こさないことから、ボンディング・ワイヤとしての安定した品質が得られるということは予測不可能であった。   So far, it has been known in the literature to co-add Mg and rare earth elements to Au—Ag alloy bonding wires (Patent Documents 2 to 4), and there are examples of actual co-addition (Patent Document 1). . However, the Au alloy containing Zn described in Patent Document 1 easily forms an oxide film on the fine wire, so that the roundness of the press-bonded ball becomes difficult to obtain as the fine wire becomes thinner. Moreover, since the Au alloy containing Ca is irregularly deposited and oxidized on the surface regardless of the presence or absence of other additive elements, there is a problem that the bonding reliability of the first bond and the roundness of the press-bonded ball cannot be obtained. is there. Therefore, in the past, it was considered to combine “Mg” with “Ce” or “Be”, but Mg or the like is a highly dispersible element in a rare Au alloy of an alloy such as high-purity Au—Ag. In addition, it has not been known that it is a trace element that does not form an oxide film on the surface of a molten ball or ultrafine wire even when ball bonding is performed in the air. Therefore, “Mg” and “Ce” and “any one of Y, Gd, Be, La and Si” or “Mg” and “Be” and “at least one of Y, Eu, La and Si” It is unpredictable that stable quality as a bonding wire can be obtained because these trace elements are all trace elements with good dispersibility in a dilute Au alloy and do not cause surface precipitation. It was possible.

次に、本発明を実施例により詳述する。   Next, the present invention will be described in detail by examples.

表1に実施例の各試料の組成を示す。純度99.999質量%の高純度Auと純度99.99質量%の高純度Ag、Cuとの合金に微量元素として表1に記載の数値(質量ppm)になるように配合し、真空溶解炉で溶解鋳造した。これを伸線加工して、線径が25μm、22μm、20μmまたは15μmのところで最終熱処理し、伸び率を4%に調整した。なお、各ボンディング・ワイヤの伸びと引張り強さは、10cm長に切り出したワイヤを各10本引張り試験し、その平均値を求めることで評価した。この極細線をSiチップ上の60μm角のAlパッド(Al膜厚:約1μm)に大気中で超音波併用熱圧着方式によるボール・ボンデイング法により第一次ボンデイングをし、その後Agめっきされた42アロイから成るリードとの間で超音波併用熱圧着方式によるウェッジ方式ボンディング法により第一次ボンデイングをして結線した。その際、ループ・スパンは5mm、ループ高さは200μmとし、本数は200本とした。第一ボンドではすべてのボールが60μm角のAlパッド内に形成されていた。また、第二ボンドではすべてリード上に強固に接合されていた。結線したワイヤの内、任意の40本のワイヤを用いて各評価を行った。その評価結果を表3に示す。   Table 1 shows the composition of each sample of the example. An alloy of high purity Au with a purity of 99.999% by mass and high purity Ag, Cu with a purity of 99.99% by mass is blended so as to have the numerical values (mass ppm) shown in Table 1 as trace elements, and a vacuum melting furnace And melt cast. This was drawn and subjected to final heat treatment when the wire diameter was 25 μm, 22 μm, 20 μm or 15 μm, and the elongation was adjusted to 4%. The elongation and tensile strength of each bonding wire were evaluated by conducting a tensile test on each of 10 wires cut to a length of 10 cm and obtaining the average value. This ultra fine wire was first bonded to a 60 μm square Al pad (Al film thickness: about 1 μm) on a Si chip by a ball bonding method using a thermocompression bonding method in the air, and then Ag plated 42 Primary bonding was performed with lead made of alloy by a wedge bonding method using a thermocompression bonding method using ultrasonic waves. At that time, the loop span was 5 mm, the loop height was 200 μm, and the number was 200. In the first bond, all the balls were formed in a 60 μm square Al pad. Further, all the second bonds were firmly bonded on the leads. Each evaluation was performed using arbitrary 40 wires among the connected wires. The evaluation results are shown in Table 3.

比較例1Comparative Example 1

表2に、実施例と微量元素の成分組成が異なる比較例の各試料の組成を示す。Au合金極細線は実施例と同様にして線径が25μm、22μm、20μmまたは15μmのところで最終熱処理し、伸び率を4%に調整し、実施例と同様に評価した。その評価結果を表3に併せて示す。   Table 2 shows the composition of each sample of the comparative example in which the component composition of the trace element is different from that of the example. The Au alloy ultrafine wire was subjected to final heat treatment when the wire diameter was 25 μm, 22 μm, 20 μm, or 15 μm in the same manner as in the example, the elongation was adjusted to 4%, and evaluation was performed in the same manner as in the example. The evaluation results are also shown in Table 3.

各ボンディング・ワイヤの特性は、以下のようにしてそれぞれ評価した。第一ボンドおよび第二ボンドの「ボンドの良否」の評価は、5000本のループを形成したときに、剥離等の不良がでなかったものを良好であるとして◎印で、1本発生した場合は○印で、2本以上の場合は△印で示した。   The characteristics of each bonding wire were evaluated as follows. The evaluation of “bond quality” of the first bond and the second bond is the case where 5,000 marks are formed and one is generated with ◎ marks as good if there are no defects such as peeling. Is indicated by ◯, and in the case of two or more, it is indicated by △.

「Au−Alの形成量」は,Alパッドを10%のNaOH水溶液中で溶かし、接合面を走査電子顕微鏡にて観察し、接合面におけるAu−Alが合金化した部位の割合を求めた。接合面の70%以上でAu−Alが形成された場合は特に良好であるとして◎印で、50%以上70%未満の場合は良好であるとして○印で、50%未満の場合は普通であるとして△印で示した。   “Au—Al formation amount” was obtained by dissolving the Al pad in a 10% NaOH aqueous solution, observing the joint surface with a scanning electron microscope, and determining the proportion of the alloyed portion of Au—Al on the joint surface. When Au—Al is formed on 70% or more of the joint surface, it is marked as ◎, especially when it is 50% or more and less than 70%, and when it is less than 50%, it is normal. It is indicated by a Δ mark.

「溶融ボール」の評価は、溶融ボールの下面(ワイヤ側が上面)の縦横の直径を測定し、その比が、0.995〜1.005の範囲にあるものを◎印で、左記を除き、0.99〜1.01の範囲にあるものを○印で示した。これら範囲外の場合は△印で示した。   The evaluation of the “molten ball” is to measure the vertical and horizontal diameters of the lower surface of the molten ball (the wire side is the upper surface), and the ratio is in the range of 0.995 to 1.005, except for the left, Those in the range of 0.99 to 1.01 are indicated by ◯. When outside these ranges, it is indicated by Δ.

「圧着ボールの真円性」の評価は、超音波の印可方向に平行方向の圧着径および垂直方向の圧着径を測定し、その比が、0.99〜1.01の範囲にあるものを◎印で、左記を除き、0.98〜1.02の範囲にあるものを○印で示した。これら以外を△印で示した。   Evaluation of the “roundness of the press-bonded ball” is made by measuring the press-bonded diameter in the direction parallel to the ultrasonic application direction and the press-bonded diameter in the vertical direction, and the ratio is in the range of 0.99 to 1.01. A mark in the range of 0.98 to 1.02 is indicated by a circle, except for the left mark. Other than these are indicated by Δ.

「プルテスト」の評価は、ループ・スパンの中央付近をフックで上方に持ち上げ、破断したときの荷重で判断した。6g以上を◎印、4〜6gを○印、4g未満を△印で示した。   The evaluation of the “pull test” was judged based on the load at the time when the center of the loop / span was lifted upward with a hook and then fractured. 6 g or more is indicated by ◎, 4-6 g is indicated by ○, and less than 4 g is indicated by Δ.

「総合評価」は、上記6つの評価のうち、◎が3つ以上かつ、△がないものを特に良好として◎印で、◎が2つ以下で△がないものを良好として○印で、△が1つでもあるものは普通として△印でそれぞれ示した。   “Comprehensive evaluation” means that among the above six evaluations, ◎ is 3 or more and there is no △ especially good as ◎, and ◎ is 2 or less and no △ is good as ◯ Those having at least one are indicated by Δ as normal.

上記の結果から明らかなように、本発明のAu合金ボンディング・ワイヤは微量元素の添加量が規定値内であれば、極細線の線径が23μm以下になっていっても満足のいくボンディング効果が得られることがわかる。これに対し従来のAu合金ボンディング・ワイヤの場合は、微量元素の添加量が規定値外だったり、線径が23μm以下であったりした場合、満足のいくボンディング効果が得られないことがわかる。   As is apparent from the above results, the Au alloy bonding wire of the present invention has a satisfactory bonding effect even when the wire diameter of the ultrafine wire is 23 μm or less as long as the addition amount of the trace element is within the specified value. It can be seen that On the other hand, in the case of the conventional Au alloy bonding wire, it can be seen that a satisfactory bonding effect cannot be obtained if the amount of the trace element added is out of the specified value or the wire diameter is 23 μm or less.

Figure 2006100720
Figure 2006100720

Figure 2006100720
Figure 2006100720

Figure 2006100720
Figure 2006100720

Claims (4)

99.99質量%以上の高純度Auに99.99質量%以上の高純度のAg又はCuのうち少なくとも1種を0.2〜2質量%含有させたAu合金マトリックス中に微量元素を分散させた合金であって、該微量元素が10〜100質量ppmのMgと、5〜100質量ppmのCeと、5〜100質量ppmのY、Gd、Be、LaおよびSiのうちの少なくとも1種とからなるAu合金からなることを特徴とするAu合金ボンディング・ワイヤ。   Trace elements are dispersed in an Au alloy matrix containing 99.99% by mass or more of high purity Au of 99.99% by mass or more of 0.2 to 2% by mass of Ag or Cu having a purity of 99.99% by mass or more. An alloy of which the trace element is 10 to 100 mass ppm of Mg, 5 to 100 mass ppm of Ce, and 5 to 100 mass ppm of at least one of Y, Gd, Be, La and Si. An Au alloy bonding wire comprising an Au alloy comprising: 99.99質量%以上の高純度Auに99.99質量%以上の高純度のAg又はCuのうち少なくとも1種を0.2〜2質量%含有させたAu合金マトリックス中に微量元素を分散させた合金であって、該微量元素が10〜100質量ppmのMgと、5〜100質量ppmのBeと、5〜100質量ppmのY、Eu、LaおよびSiのうちの少なくとも1種からなるAu合金からなることを特徴とするAu合金ボンディング・ワイヤ。   Trace elements are dispersed in an Au alloy matrix containing 99.99% by mass or more of high purity Au of 99.99% by mass or more of 0.2 to 2% by mass of Ag or Cu having a purity of 99.99% by mass or more. Au, wherein the trace element is composed of 10 to 100 ppm by mass of Mg, 5 to 100 ppm by mass of Be, and 5 to 100 ppm by mass of at least one of Y, Eu, La and Si. An Au alloy bonding wire characterized by comprising an alloy. 該微量元素の合計が100質量ppm以下であることを特徴とする請求項1または2に記載のAu合金ボンディング・ワイヤ。   The Au alloy bonding wire according to claim 1, wherein the total amount of the trace elements is 100 mass ppm or less. 該ワイヤの線径が23μm以下であることを特徴とする請求項1〜3のいずれかに記載のAu合金ボンディング・ワイヤ。   The Au alloy bonding wire according to claim 1, wherein the wire has a wire diameter of 23 μm or less.
JP2004287566A 2004-09-30 2004-09-30 Au-ALLOY BONDING WIRE Pending JP2006100720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287566A JP2006100720A (en) 2004-09-30 2004-09-30 Au-ALLOY BONDING WIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287566A JP2006100720A (en) 2004-09-30 2004-09-30 Au-ALLOY BONDING WIRE

Publications (1)

Publication Number Publication Date
JP2006100720A true JP2006100720A (en) 2006-04-13

Family

ID=36240207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287566A Pending JP2006100720A (en) 2004-09-30 2004-09-30 Au-ALLOY BONDING WIRE

Country Status (1)

Country Link
JP (1) JP2006100720A (en)

Similar Documents

Publication Publication Date Title
JP3969671B2 (en) Au alloy bonding wire
JP4771562B1 (en) Ag-Au-Pd ternary alloy bonding wire
JP4596467B2 (en) Gold alloy wire for bonding wire with high bonding reliability, high roundness of crimped ball, high straightness and high resin flow resistance
JP5529992B1 (en) Bonding wire
JP4130843B1 (en) High reliability gold alloy bonding wire and semiconductor device
WO2012117512A1 (en) BONDING WIRE OF GOLD (Au) ALLOY
JP2922388B2 (en) Gold alloy fine wire for bonding
WO2006134825A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property, high resin flow resistance and low specific resistance
JP6103806B2 (en) Ball bonding wire
JP3612179B2 (en) Gold-silver alloy fine wire for semiconductor devices
WO2006134824A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
KR102460206B1 (en) bonding wire
JP2006100720A (en) Au-ALLOY BONDING WIRE
JP2013048169A (en) Wire for ball bonding
JP5024907B2 (en) Gold (Au) alloy bonding wire
JP2017048431A (en) Copper alloy fine wire for ball bonding
JP2003133362A (en) Semiconductor device and bonding wire for the same
JP5339101B2 (en) Bump wire
JPH0888242A (en) Bonding wire
JP4713149B2 (en) Semiconductor device
JP2009105250A (en) Gold alloy wire for ball bonding
JP2003031609A (en) Au BONDING WIRE FOR CONNECTING SEMICONDUCTOR DEVICE
JPH05160185A (en) Fine pd wire for semiconductor element
JP2003045909A (en) Bonding wire for connecting electronic circuit
JP2004022887A (en) Gold alloy wire for bonding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100203