JP2004022887A - Gold alloy wire for bonding - Google Patents

Gold alloy wire for bonding Download PDF

Info

Publication number
JP2004022887A
JP2004022887A JP2002177298A JP2002177298A JP2004022887A JP 2004022887 A JP2004022887 A JP 2004022887A JP 2002177298 A JP2002177298 A JP 2002177298A JP 2002177298 A JP2002177298 A JP 2002177298A JP 2004022887 A JP2004022887 A JP 2004022887A
Authority
JP
Japan
Prior art keywords
mass
ppm
gold alloy
alloy wire
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002177298A
Other languages
Japanese (ja)
Other versions
JP3907534B2 (en
Inventor
Yuichi Hirata
平田 勇一
Hiroyuki Shigyo
執行 裕之
Tetsuya Kawanabe
川鍋 鉄弥
Shinichi Hanada
花田 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2002177298A priority Critical patent/JP3907534B2/en
Publication of JP2004022887A publication Critical patent/JP2004022887A/en
Application granted granted Critical
Publication of JP3907534B2 publication Critical patent/JP3907534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gold alloy wire for bonding a semiconductor element which is effective to prevent the wire from being disconnected even when the wire is connected at high temperatures and which has excellent roundness and uniformity of a diameter. <P>SOLUTION: The gold alloy wire for bonding the semiconductor element contains Sn of 1 to 50 mass ppm, Pt of 2 to 50 mass ppm, Y of 1 to 100 mass ppm, further arbitrarily one type or more selected from the group consisting of La, Ce, Eu, Gd, Mg and Ag of 1 to 100 mass ppm, and further arbitrarily at least one type selected from the group consisting of Be and Ca of 1 to 50 mass ppm, so that total sum of these added element is 6 to 150 mass ppm, and a residue is Au and unavoidable impurities. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の電極と外部リードを接続するために使用するボンディング用金合金線に関する。
【0002】
【従来の技術】
従来から半導体装置は半導体素子と端子を金属ワイヤで配線する方法として超音波併用熱圧着ボンディング法が主として用いられ、その後樹脂封止して用いられている。
【0003】
図1は従来の半導体装置の製造工程の1例として端子としてリードを用いた例を示す図である。まず図1(a)に示すように金属ワイヤ2をキャピラリー1に挿通し、その先端に電気トーチ3を対向させ金属ワイヤ2との間で放電させることにより、金属ワイヤ2の先端を加熱、溶融してボール4を形成する。ついで図1(b)に示す様にキャピラリー1を下降させて該ボール4を半導体素子6上のAl電極5の上に押圧接合する。この時半導体素子6はヒーターブロック(図示省略)で加熱される為、上記ボール4は熱圧着され、圧着ボール4’となる。次いで図1(c)に示すようにキャピラリー1は所定の軌跡を描いてリード8の上に移動し、下降する。この時リードはヒータブロック(図示省略)で加熱される為金属ワイヤ2’の軸方向側面がリード8上に熱圧着される。次いで図1(d)に示すようにクランパ7は金属ワイヤ2をクランプしたまま上昇することにより、金属ワイヤ2が切断され配線が完了する。ここでファースト側接合点9は金属ワイヤがボールボンディングされ、セカンド側接合点10は金属ワイヤ2が軸方向側面で熱圧着して接合される所謂ステッチボンディングされ、セカンド側接合点10で金属ワイヤ2が切断され配線2’が形成される。
【0004】
次いで半導体素子6と配線された金属ワイヤ2’とを封止する樹脂封止(図示省略)を行う。このようにして製造された半導体装置の断面図を図2に示す。
【0005】
次いで図2に示す半導体装置12は、封止樹脂11から露出したリード8を直角に折り曲げ、これを端子としてプリント基板のスルーホール(図示省略)に接合して基板へ搭載される。ここで半導体装置12のリード8と基板のスルーホールの接合には半田材料を用いてその溶融点以上の温度まで加熱して接合されている。
【0006】
一方前述の半田材料として37%Pb−Sn組成(質量%)の共晶半田組成のものが共晶温度183℃と低温で半田溶融が出来る長所を利用して用いられてきた。
【0007】
しかしながら、近年、廃棄された電子機器から溶出する鉛による環境汚染が問題になっており、電子機器製造においては、半田材料としてPbを含有しない所謂無鉛半田材料の使用が開始されてきた。
【0008】
また、半導体装置の高密度化は図1に示すAl電極5の間隔の縮小を推進し、図1に示す圧着ボール4’が隣接する間隔が狭くなる為、その接触を避けることが要求されている。これの対応として圧着ボールの上から見た形状を真円に近くすることが考えられ、特開2000−150562号公報には圧着ボールの真円度を向上させるボンディング用金合金線の組成が提案されている。
【0009】
【発明が解決しようとする課題】
ここで前記半田材料への要求に対して、電子機器に用いる無鉛半田材料としてSn−Cu系合金が代表的であり、これらにNi,Ag,Ge等を添加したものが実用化されてきている。ここで、前述の半導体装置のリードをプリント基板のスルーホールへ接合する際の無鉛半田材料としてSn−Cu系合金を用いて接合したところ、図2に示す半導体装置12の配線2’に断線が発生するという問題が生じてきた。本発明者等の検討の結果、半田材料をSn−Cu系合金とすることにより、前記接合温度が従来よりも高温で行われることに起因して配線2’に断線が生じているとの知見を得た。
【0010】
また、半導体装置の高密度化に伴い、圧着ボール同士の接触の機会が増加することを防止する為に本発明者等の検討の結果、前述した圧着ボールの真円度の向上を図るだけでは未だ不十分であり、これに加えて、圧着ボールの直径のばらつき抑制が必要であるとの知見を得た。
【0011】
本発明は前述の事情に鑑みてなされたものであり、半導体装置を基板に接合して搭載するに際して、接合温度が従来の230℃から無鉛半田材料としてSn−Cu系合金を用いて250〜270℃という高温で接合しても半導体装置を構成する配線の断線防止に有効であり、且つ圧着ボールの真円度の向上に加えて、圧着ボールの直径のばらつき抑制に有効な半導体素子ボンディング用金合金線を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者等は、前述の問題を鋭意検討の結果、まず半導体装置を基板に接合して搭載する際に無鉛半田材料を用いると、図2に示す半導体装置12に於いて、断線箇所はリード8上面に前記金属ワイヤ10の側面を接合したセカンド側接合点10であることを見い出した。
【0013】
更に検討を進める中で得られた本発明は、次の組成のボンディング用金合金線を用いることにより、半導体装置を基板に接合して搭載する際に無鉛半田材料を用いても、セカンド側接合点10に於ける断線を有効に防止すると共に、圧着ボールの真円度の向上に加えて、圧着ボールの直径のばらつきを有効に抑制出来るものである。
(1)1〜50質量ppm のSn、2〜50質量ppm のPt、1〜100質量ppm のYを含有し、これらの合計量が6〜150質量ppm であり、残部がAuと不可避不純物からなる半導体素子ボンディング用金合金線。
(2)1〜50質量ppm のSn、2〜50質量ppm のPt、1〜100質量ppm のY、1〜100質量ppm のLa,Ce,Eu,Gd,Mg及びAgのうち少なくとも1種を含有し、これらの合計量が6〜150質量ppm であり、残部がAuと不可避不純物からなる半導体素子ボンディング用金合金線。
(3)更に1〜50質量ppm のBe及びCaのうち少なくとも1種を含有し、且つ添加元素の合計量が6〜150質量ppm であり、残部がAuと不可避不純物からなる請求項2記載の半導体素子ボンディング用金合金線。
【0014】
【発明の実施の形態】
(1)組成
a)原料金
原料金としては少なくとも99.99質量%以上に精製した高純度金を用いることが好ましい。更に好ましくは99.995質量%以上であり、最も好ましくは99.999質量%以上の高純度金である。特に99.999質量%以上の高純度金を用いると全ての元素を1質量ppm 未満に低減出来る為、有害成分の影響を除去出来て好ましい。
【0015】
b)[Sn]
本発明に用いる金合金線を所定量のPtとYの共存において、Snの含有量を1〜50質量ppm とすることにより前記課題を達成出来る。
【0016】
Sn含有量が1質量ppm 未満の場合と対比して、270℃という高温に晒されても配線の断線防止に有効に作用すると共に圧着ボールが真円度向上に加えて圧着ボールの直径のばらつき抑制に効果を有する。
【0017】
Sn含有量が50質量ppm を超える場合、所定量のPtとYの共存において、図1(a)に示す形成されたボール4の表面に酸化膜が形成され接合性能が劣化してくる。
【0018】
この為、所定量のPtとYの共存において、Snの含有量を1〜50質量ppm とした。
【0019】
c)[Pt]
本発明に用いる金合金線を所定量のSnとYの共存において、Ptの含有量を2〜50質量ppm とすることにより前記課題を達成出来る。
【0020】
Pt含有量が2質量ppm 未満の場合と対比して、270℃という高温に晒されても配線の断線防止に有効に作用すると共に圧着ボールが真円度向上に加えて圧着ボールの直径のばらつき抑制に効果を有する。
【0021】
Pt含有量が50質量ppm を超える場合、所定量のSnとYの共存において、半導体素子に割れを生じ易くなる。
【0022】
この為、所定量のSnとYの共存において、Ptの含有量を2〜50質量ppm とした。
【0023】
d)[Y]
本発明に用いる金合金線を所定量のSnとPtの共存において、Yの含有量を1〜100質量ppm とすることにより前記課題を達成出来る。
【0024】
Y含有量が1質量ppm 未満の場合と対比して、270℃という高温に晒されても配線の断線防止に有効に作用すると共に圧着ボールが真円度向上に加えて圧着ボールの直径のばらつき抑制に効果を有する。
【0025】
Y含有量が100質量ppm を超える場合、所定量のSnとPtの共存において、図1(a)に示す形成されたボール4の表面に酸化膜が形成され接合性能が劣化してくる。
【0026】
この為、所定量のSnとPtの共存において、Yの含有量を1〜100質量ppm とした。
【0027】
e)[La,Ce,Eu,Gd,Mg及びAg](以下「第1群元素」という)
本発明に用いる金合金線を所定量のSn,Pt及びYとの共存に於いて第1群元素の少なくとも1種を1〜100質量ppm 添加することにより、添加しない場合と対比して、圧着ボールの真円度が更に向上することに加えて圧着ボールの直径のばらつきが更に抑制されるという効果を有する。
【0028】
この為、所定量のSn,Pt及びYとの共存に於いて第1群元素の少なくとも1種を1〜100質量ppm 添加することが好ましい。
【0029】
f)[Be及びCa](以下「第2群元素」という)
本発明に用いる金合金線を所定量のSn,Pt,Y及び所定量の第1群元素との共存において第2群元素の少なくとも1種を1〜50質量ppm 添加することにより、添加しない場合と対比して金合金線を高強度ワイヤとすることが出来る。通常、金合金線の破断強度を235N/mm 以上の高強度にすると、伸び率のバラツキの為、伸び率の小さいものが生じ、安定したループ形状が得られないという問題がある。
【0030】
ここで第2群元素を含有した本発明合金線は破断強度を235N/mm 以上の高強度ワイヤとしても伸び率のばらつきを抑制する事が出来る為、安定したループ形状が得られるという優れた効果を有している。
【0031】
更に請求項1の金合金線と対比して圧着ボールの真円度が更に向上することに加えて圧着ボールの直径のばらつきが更に抑制されるという効果を有する。
【0032】
g)添加量の合計量
本発明に用いる金合金線は添加量の合計量が6〜150質量ppm であることが必要である。6質量ppm 未満の時、高温に晒された時の断線率及び圧着ボールの直径のばらつき防止に不充分であり、150質量ppm を超えるとボール4の表面に酸化膜が形成され接合性能が劣化したり半導体素子に割れが生じるようになる。
(2)金合金線の製造工程
本発明に用いる半導体素子ボンディング用金合金線の製造工程の一例を説明する。まず所定組成の金合金を熔解し、インゴットに鋳造した後、溝型圧延機を用いて圧延し、中間焼鈍を交えて最終冷間加工により直径10〜100μmの細線とした後、伸び率を4〜6%になるように最終アニールを施し、ついでワイヤ表面に潤滑防錆剤を塗布する。高強度線を必要とする時は、第2群元素の添加に加えて伸び率を4%と小さくすればよい。
【0033】
最後に加工工程を終了したワイヤを主として外径50.3mmのスプールに所定張力で所定長さを巻き替えて製品とする。所定長さとしては100〜3,000mが用いられ更に長尺になりつつある。
(3)用途
本発明に用いる半導体素子ボンディング用金合金線は一般に半導体素子電極と外部リードの接続用に用いられ、接続方法としてはボールボンディング法により配線して接合する方法及び金合金線を用いてバンプを形成し、該バンプを介して接続する方法に用いられる。
(4)圧着ボールのばらつき
図1(a)に示すボール4を図1(b)に示す圧着ボール4’に圧着した時、圧着ボールには真円度(最小直径/最大直径)低下と直径{(最大直径+最小直径)/2}にばらつきが生じてくる。本発明金合金では真円度に優れていると共に直径のばらつきが抑制出来るという効果を有するものである。
【0034】
即ち、真円度の評価は圧着ボールの二次元的ばらつきを示す指標であることに対してこれに直径のばらつきの評価を加えることは圧着ボールの三次元的ばらつきを示す指標となってくる。
【0035】
本発明では、直径のばらつきをCpkで表示する。Cpkは次式で表示される。
【0036】
【数1】

Figure 2004022887
【0037】
圧着ボール直径の平均値が規格幅の中心の時、標準偏差をσとすると、Cpk=規格幅/6σとなる。規格幅が一定であるため、Cpk値が大きい程σは小さいことを意味している。規格幅=Aσで表すと、下表(a)欄の通りCpk値が大きい程Aの値は大きくなる。規格を外れる片側頻度をAの値を基に数値表から求めると下表(b)欄の様になる。片側頻度をCpk=1.20を基準に指数で表示すると(c)欄の様になる。即ち規格を外れる片側頻度(圧着平均直径が規格より大きいものが生じる頻度)は下表の通りCpk値の向上とともに低減していくことが下表(b)欄の片側頻度及び下表(c)欄の片側頻度の指数から判る。
【0038】
【表1】
Figure 2004022887
【0039】
(5)機構の推定
本発明になるSn−Pt−Y含有金合金線が半導体装置を高温で加熱しても配線の断線が少なく、且つ圧着ボール直径のばらつき防止に有効な理由は明らかではないが次の様に考えられる。
【0040】
即ち配線の断線が少なくなる理由は、図2に示すセカンド側接合点10において本発明になる金合金線は、強固で且つ均質なステッチボンディングされている為、半導体装置を高温で加熱してもその接合点での断線が防止出来ると考えられる。
【0041】
又圧着ボールの真円度の向上に加えて、圧着ボール直径のばらつき抑制に有効な理由は、本発明になる金合金線の優れた加工性が二次元的に止まらず、三次元的に優れた加工性を有していることに起因していると考えられる。
【0042】
【実施例】
(実施例1)
純度99.999質量%の高純度金に表2に示す元素を所定量添加し、真空溶解炉で熔解した後、鋳造して表2に示す組成の金合金インゴットを得て、これに溝ロール、伸線機を用いた冷間加工と、中間アニールを施し、最終冷間加工により直径25μmとし、伸び率4%となるように最終アニールを行い、更に表面に潤滑剤を被覆して金合金線に仕上げて、測定に供した。
【0043】
第1に圧着ボール形成試験を行った。高速自動ボンダUTC−200型(株式会社新川製)を用いてまず、電気トーチによるアーク放電で金合金線先端に直径65μmのボールを形成し、圧着ボールの規格値70〜90μmに対してダイ温度200℃で半導体素子Al電極上に超音波併用熱圧着方式により熱圧着した。次いで圧着ボール径を超音波印可方向に垂直方向の圧着径(以下「最小直径」という)と平行方向の圧着径(以下「最大直径」という)をボール50個について測定した。(最小直径/最大直径)を真円度とし{(最大直径+最小直径)/2}を圧着ボール直径として真円度及び圧着ボール直径のばらつきを前記Cpkで表示して表2に示した。
【0044】
第2に半導体装置加熱試験を行った。図1に示す要領で100ピンの配線を行い樹脂封止して図2に示す半導体装置を10個作成した。該半導体装置を加熱条件270℃で5分間加熱した後、樹脂を硝酸を用いて除去して配線の断線状況を金属顕微鏡で観察した。セカンド側接合点の断線の数をカウントして、その結果を断線率として表2に示した。
(実施例2〜22)(比較例1〜7)
試験に用いた金合金線の組成を表2のようにしたこと以外は実施例1と同様にして試験を行った。その測定結果を表2に示した。
(実施例23〜51)(比較例8〜16)
試験に用いた金合金線の組成を表2〜4のようにしたこと以外は実施例1と同様にして試験を行い、更に引張試験を行って破断荷重と伸び率を同一組成について10点測定した。その測定結果を表2〜4に示した。
【0045】
【表2】
Figure 2004022887
【0046】
【表3】
Figure 2004022887
【0047】
【表4】
Figure 2004022887
【0048】
(試験結果)
(1)請求項1に係る金合金線である実施例1〜8のものは、断線率は0%であり無鉛半田材料を用いて高温で基板に接合しても断線が抑制出来るという優れた効果を有していることが判る。又真円度が0.97以上、圧着ボール直径のばらつき(Cpk)が1.33以上であり、真円度、直径のばらつき共優れていることが判る。
(2)請求項2に係る金合金線である実施例9〜22のものは、断線率は0%と優れた効果を有しており、又真円度が0.98以上、圧着ボール直径のばらつき(Cpk)が1.50以上であり、真円度、直径のばらつき共、更に優れていることが判る。
(3)請求項3に係る金合金線である実施例23〜51のものは、請求項1及び請求項2に係る金合金線と同様に断線率は0%と優れた効果を有しており、又真円度が0.98以上、圧着ボール直径のばらつき(Cpk)が1.50以上であり、真円度、直径のばらつき共優れていることが判る。
【0049】
更に本合金線はBe,Caのうち少なくとも1種を所定量含有することにより破断強度235N/mm 以上と高強度にしても伸び率の標準偏差を0.5と抑制することが出来る。即ち高強度でありながら、安定した伸び率にする事が出来る為、安定したループ形状が得られるという更に優れた効果を有している。
(4)請求項1に係る金合金線の必須元素である所定量のSn,Pt,Yの全てを含有しない比較例1〜3のものは、断線率は1%であり無鉛半田材料を用いて高温で基板に接合すると断線が生じるようになることが判る。又真円度は0.97以上、を維持出来るが圧着ボール直径のばらつき(Cpk)が1.2であり、直径のばらつきは本発明合金の方が優れていることが判る。
(5)請求項1に係る金合金線の必須元素であるSn,Pt,Yの全てを含有するものの、その合計量が3質量ppm である比較例4のものは、比較例1〜3のものと同等の性能を示し、断線率、圧着ボール直径のばらつき(Cpk)において、本発明合金の方が優れていることが判る。
(6)請求項1に係る金合金線の必須元素である所定量のSn,Pt,Yの全てを含有しないものに、所定量の第1群元素を含有した比較例5〜6のものは、比較例1〜3のものと同等の性能を示し、断線率、圧着ボール直径のばらつき(Cpk)において、本発明合金の方が優れていることが判る。
(7)請求項1に係る金合金線の必須元素である所定量のSn,Pt,Yの全てを含有しないものに、所定量の第1群元素と第2群元素を含有させた比較例8〜10のもの、及び所定量の第2群元素を含有させた比較例11〜14のものは、断線率は5%、圧着ボールのばらつき(Cpk)は1.2であり、235N/mm 以上の高強度にすると、伸び率の標準偏差は0.6となり本発明合金の方が優れていることが判る。
(8)請求項1に係る金合金線の必須元素である所定量のSn,Pt,Yの全てを含有し、更に第1群元素と第2群元素を含有するものの、含有量合計が1000質量ppm である比較例15,16のものは、断線率は15%、圧着ボールのばらつき(Cpk)は1であり、235N/mm 以上の高強度にすると、伸び率の標準偏差は0.7となり本発明合金の方が優れていることが判る。
【図面の簡単な説明】
【図1】半導体装置のワイヤボンディング工程を説明する図である。
【図2】樹脂封止半導体装置の断面図である。
【符号の説明】
1…キャピラリー
2…金属ワイヤ
3…電気トーチ
4…ボール
4’…圧着ボール
5…Al電極
6…半導体素子
8…リード
9…ファースト側接合点
10…セカンド側接合点
11…封止樹脂
12…半導体装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gold alloy wire for bonding used for connecting an electrode of a semiconductor element and an external lead.
[0002]
[Prior art]
Conventionally, as a method of wiring a semiconductor element and a terminal with a metal wire, a semiconductor device has been mainly used an ultrasonic combined thermocompression bonding method, and then used after being sealed with a resin.
[0003]
FIG. 1 is a diagram showing an example in which leads are used as terminals as an example of a manufacturing process of a conventional semiconductor device. First, as shown in FIG. 1 (a), the metal wire 2 is inserted into the capillary 1, and the tip of the metal wire 2 is heated and melted by discharging between the metal wire 2 with the electric torch 3 facing the tip. Thus, the ball 4 is formed. Next, as shown in FIG. 1B, the capillary 1 is lowered to press-bond the ball 4 onto the Al electrode 5 on the semiconductor element 6. At this time, since the semiconductor element 6 is heated by a heater block (not shown), the ball 4 is thermocompression-bonded to form a press-bonded ball 4 ′. Next, as shown in FIG. 1C, the capillary 1 moves on the lead 8 along a predetermined locus and descends. At this time, since the lead is heated by a heater block (not shown), the axial side surface of the metal wire 2 ′ is thermocompression bonded onto the lead 8. Next, as shown in FIG. 1 (d), the clamper 7 is raised while the metal wire 2 is clamped, whereby the metal wire 2 is cut and the wiring is completed. Here, the first side junction 9 is ball-bonded with a metal wire, and the second side junction 10 is so-called stitch bonded in which the metal wire 2 is bonded by thermocompression on the side surface in the axial direction. Is cut to form the wiring 2 ′.
[0004]
Next, resin sealing (not shown) for sealing the semiconductor element 6 and the wired metal wire 2 ′ is performed. A cross-sectional view of the semiconductor device manufactured in this way is shown in FIG.
[0005]
Next, the semiconductor device 12 shown in FIG. 2 is mounted on the substrate by bending the lead 8 exposed from the sealing resin 11 at a right angle, joining this to a through hole (not shown) of the printed circuit board as a terminal. Here, the lead 8 of the semiconductor device 12 and the through hole of the substrate are joined by heating to a temperature equal to or higher than the melting point using a solder material.
[0006]
On the other hand, the eutectic solder composition having a composition of 37% Pb-Sn (mass%) as the solder material described above has been used taking advantage of the fact that the solder can be melted at a eutectic temperature of 183 ° C.
[0007]
However, in recent years, environmental pollution due to lead eluted from discarded electronic devices has become a problem, and in the manufacture of electronic devices, so-called lead-free solder materials that do not contain Pb have been started as solder materials.
[0008]
Further, the increase in the density of the semiconductor device promotes the reduction of the interval between the Al electrodes 5 shown in FIG. 1, and the interval between the adjacent press-bonded balls 4 ′ shown in FIG. Yes. To cope with this, it is conceivable that the shape of the press-bonded ball viewed from above is close to a perfect circle, and Japanese Patent Application Laid-Open No. 2000-150562 proposes a composition of a gold alloy wire for bonding that improves the roundness of the press-bonded ball. Has been.
[0009]
[Problems to be solved by the invention]
Here, in response to the demand for the solder material, a Sn-Cu alloy is representative as a lead-free solder material used in an electronic device, and a material obtained by adding Ni, Ag, Ge or the like to these has been put into practical use. . Here, when the lead of the above-described semiconductor device is joined using Sn—Cu based alloy as a lead-free solder material when joining the lead hole of the printed circuit board, the wire 2 ′ of the semiconductor device 12 shown in FIG. The problem of occurring has arisen. As a result of the study by the present inventors, knowledge that the wire 2 'is disconnected due to the fact that the soldering temperature is higher than the conventional temperature by using a Sn-Cu alloy as the solder material. Got.
[0010]
In addition, as a result of studies by the present inventors in order to prevent an increase in the chances of contact between the press-bonded balls as the density of the semiconductor device increases, it is only necessary to improve the roundness of the press-bonded balls described above. It was still insufficient, and in addition to this, it was found that it was necessary to suppress variations in the diameter of the press-bonded balls.
[0011]
The present invention has been made in view of the above-described circumstances. When a semiconductor device is bonded and mounted on a substrate, the bonding temperature is 250 to 270 using a Sn—Cu alloy as a lead-free solder material from the conventional 230 ° C. Even if it is bonded at a high temperature of ℃, it is effective in preventing disconnection of the wiring constituting the semiconductor device, and in addition to improving the roundness of the press-bonded ball, it is effective in suppressing variation in the diameter of the press-bonded ball. An object is to provide an alloy wire.
[0012]
[Means for Solving the Problems]
As a result of diligent examination of the above problems, the present inventors first used a lead-free solder material when bonding and mounting the semiconductor device to the substrate. In the semiconductor device 12 shown in FIG. 8 It was found that this is the second-side joining point 10 in which the side surface of the metal wire 10 is joined to the upper surface.
[0013]
In the present invention obtained through further investigation, the second-side bonding can be performed even when a lead-free solder material is used when a semiconductor device is mounted on a substrate by using a bonding gold alloy wire having the following composition. In addition to effectively preventing disconnection at the point 10, in addition to improving the roundness of the press-bonded ball, it is possible to effectively suppress variations in the diameter of the press-bonded ball.
(1) 1-50 mass ppm of Sn, 2-50 mass ppm of Pt, 1-100 mass ppm of Y, the total amount thereof is 6-150 mass ppm, and the balance is from Au and inevitable impurities A gold alloy wire for bonding semiconductor elements.
(2) 1-50 mass ppm of Sn, 2-50 mass ppm of Pt, 1-100 mass ppm of Y, 1-100 mass ppm of La, Ce, Eu, Gd, Mg and Ag. A gold alloy wire for bonding a semiconductor element, the total amount of which is 6 to 150 ppm by mass, the balance being Au and inevitable impurities.
(3) The composition further comprises at least one of 1 to 50 ppm by mass of Be and Ca, the total amount of additive elements is 6 to 150 ppm by mass, and the balance is made of Au and inevitable impurities. Gold alloy wire for semiconductor element bonding.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
(1) Composition a) As a raw material fee, high-purity gold refined to at least 99.99% by mass or more is preferably used. More preferably, it is 99.995 mass% or more, Most preferably, it is high purity gold of 99.999 mass% or more. In particular, it is preferable to use high-purity gold of 99.999 mass% or more because all the elements can be reduced to less than 1 mass ppm, so that the influence of harmful components can be removed.
[0015]
b) [Sn]
In the gold alloy wire used in the present invention, in the presence of a predetermined amount of Pt and Y, the above problem can be achieved by setting the Sn content to 1 to 50 ppm by mass.
[0016]
Compared to the case where the Sn content is less than 1 ppm by mass, it effectively works to prevent the disconnection of the wiring even when exposed to a high temperature of 270 ° C. Has an effect on suppression.
[0017]
When the Sn content exceeds 50 ppm by mass, an oxide film is formed on the surface of the formed ball 4 shown in FIG. 1A in the coexistence of a predetermined amount of Pt and Y, and the bonding performance deteriorates.
[0018]
For this reason, in the coexistence of a predetermined amount of Pt and Y, the Sn content is set to 1 to 50 ppm by mass.
[0019]
c) [Pt]
In the gold alloy wire used in the present invention, in the presence of a predetermined amount of Sn and Y, the above problem can be achieved by setting the Pt content to 2 to 50 ppm by mass.
[0020]
Compared to the case where the Pt content is less than 2 ppm by mass, it effectively works to prevent disconnection of the wiring even when exposed to a high temperature of 270 ° C. Has an effect on suppression.
[0021]
When the Pt content exceeds 50 ppm by mass, the semiconductor element tends to crack in the presence of a predetermined amount of Sn and Y.
[0022]
For this reason, in the coexistence of a predetermined amount of Sn and Y, the content of Pt was set to 2 to 50 ppm by mass.
[0023]
d) [Y]
In the gold alloy wire used in the present invention, in the coexistence of a predetermined amount of Sn and Pt, the above problem can be achieved by setting the Y content to 1 to 100 ppm by mass.
[0024]
Compared to the case where the Y content is less than 1 ppm by mass, it effectively works to prevent disconnection of the wiring even when exposed to a high temperature of 270 ° C. Has an effect on suppression.
[0025]
When the Y content exceeds 100 ppm by mass, an oxide film is formed on the surface of the formed ball 4 shown in FIG. 1A in the presence of a predetermined amount of Sn and Pt, and the bonding performance deteriorates.
[0026]
For this reason, in the coexistence of a predetermined amount of Sn and Pt, the Y content is set to 1 to 100 ppm by mass.
[0027]
e) [La, Ce, Eu, Gd, Mg and Ag] (hereinafter referred to as “first group element”)
When the gold alloy wire used in the present invention is added in an amount of 1 to 100 ppm by mass of at least one of the first group elements in the coexistence with a predetermined amount of Sn, Pt, and Y, it is compared with the case where it is not added. In addition to further improving the roundness of the ball, there is an effect that variation in the diameter of the press-bonded ball is further suppressed.
[0028]
For this reason, it is preferable to add 1 to 100 mass ppm of at least one element of the first group element in the coexistence with predetermined amounts of Sn, Pt and Y.
[0029]
f) [Be and Ca] (hereinafter referred to as “second group element”)
When the gold alloy wire used in the present invention is not added by adding 1 to 50 ppm by mass of at least one second group element in the coexistence of a predetermined amount of Sn, Pt, Y and a predetermined amount of the first group element In contrast, the gold alloy wire can be made a high strength wire. Usually, when the breaking strength of a gold alloy wire is set to a high strength of 235 N / mm 2 or more, there is a problem that due to the variation in the elongation rate, a small elongation rate occurs and a stable loop shape cannot be obtained.
[0030]
Here, the alloy wire of the present invention containing the second group element can suppress variation in elongation even as a high-strength wire having a breaking strength of 235 N / mm 2 or more, so that an excellent loop shape can be obtained. Has an effect.
[0031]
Further, in comparison with the gold alloy wire according to the first aspect, in addition to further improving the roundness of the press-bonded ball, there is an effect that the variation in the diameter of the press-bonded ball is further suppressed.
[0032]
g) Total amount of addition The gold alloy wire used in the present invention needs to have a total amount of addition of 6 to 150 ppm by mass. If it is less than 6 ppm by mass, it is insufficient to prevent the disconnection rate and the diameter variation of the press-bonded ball when exposed to high temperature. If it exceeds 150 ppm by mass, an oxide film is formed on the surface of the ball 4 and the bonding performance deteriorates. Or cracks in the semiconductor element.
(2) Manufacturing process of gold alloy wire An example of a manufacturing process of a gold alloy wire for bonding semiconductor elements used in the present invention will be described. First, a gold alloy having a predetermined composition is melted and cast into an ingot, then rolled using a grooved rolling mill, subjected to intermediate annealing to form a thin wire having a diameter of 10 to 100 μm by final cold working, and an elongation rate of 4 Final annealing is performed so as to be ˜6%, and then a lubricating rust inhibitor is applied to the wire surface. When a high-strength wire is required, the elongation should be reduced to 4% in addition to the addition of the second group element.
[0033]
Finally, the wire that has finished the processing step is wound around a spool having an outer diameter of 50.3 mm with a predetermined tension to obtain a product. As the predetermined length, 100 to 3,000 m is used and it is becoming longer.
(3) Applications The gold alloy wires for bonding semiconductor elements used in the present invention are generally used for connecting semiconductor element electrodes and external leads. As the connection method, a method of wiring and bonding using a ball bonding method and a gold alloy wire are used. Are used in a method of forming bumps and connecting via the bumps.
(4) Dispersion of pressure-bonded balls When the ball 4 shown in FIG. 1 (a) is pressed onto the pressure-bonded ball 4 ′ shown in FIG. 1 (b), the roundness (minimum diameter / maximum diameter) decreases and the diameter of the pressure-bonded ball Variation occurs in {(maximum diameter + minimum diameter) / 2}. The gold alloy of the present invention is excellent in roundness and has an effect of suppressing variation in diameter.
[0034]
That is, the evaluation of the roundness is an index indicating two-dimensional variation of the press-bonded ball, and the evaluation of the variation of diameter added thereto is an index indicating the three-dimensional variation of the press-bonded ball.
[0035]
In the present invention, the variation in diameter is displayed in Cpk. Cpk is expressed by the following equation.
[0036]
[Expression 1]
Figure 2004022887
[0037]
When the average value of the diameters of the press-bonded balls is at the center of the standard width, assuming that the standard deviation is σ, Cpk = standard width / 6σ. Since the standard width is constant, it means that the larger the Cpk value is, the smaller σ is. When the standard width = Aσ, the value of A increases as the Cpk value increases as shown in the table (a) below. When the one-side frequency out of the standard is obtained from the numerical table based on the value of A, it becomes as shown in the table (b) below. When the one-side frequency is displayed as an index based on Cpk = 1.20, it becomes as shown in (c) column. That is, the one-side frequency out of the standard (the frequency with which the average diameter of the crimp is larger than the standard) decreases as the Cpk value increases as shown in the table below. It can be seen from the index of the frequency on one side of the column.
[0038]
[Table 1]
Figure 2004022887
[0039]
(5) Estimation of mechanism The reason why the Sn-Pt-Y-containing gold alloy wire according to the present invention is less likely to cause disconnection of the wiring even when the semiconductor device is heated at a high temperature and is effective in preventing variation in the diameter of the press-bonded ball is not clear. Is considered as follows.
[0040]
In other words, the reason why the disconnection of the wiring is reduced is that the gold alloy wire according to the present invention is strong and homogeneous stitch bonding at the second side junction 10 shown in FIG. It is considered that disconnection at the junction can be prevented.
[0041]
In addition to improving the roundness of the press-bonded ball, the effective reason for suppressing variations in the diameter of the press-bonded ball is that the excellent workability of the gold alloy wire according to the present invention does not stop two-dimensionally but is excellent three-dimensionally. This is thought to be due to having excellent workability.
[0042]
【Example】
Example 1
A predetermined amount of the elements shown in Table 2 is added to high-purity gold having a purity of 99.999% by mass, melted in a vacuum melting furnace, cast to obtain a gold alloy ingot having the composition shown in Table 2, and a groove roll , Cold work using a wire drawing machine and intermediate annealing are performed, the final cold working is performed to make the diameter 25 μm, the final annealing is performed so that the elongation rate is 4%, and the surface is coated with a lubricant to form a gold alloy The wire was finished and used for measurement.
[0043]
First, a press-bonded ball formation test was conducted. First, using a high-speed automatic bonder UTC-200 type (manufactured by Shinkawa Co., Ltd.), a ball having a diameter of 65 μm is formed at the tip of the gold alloy wire by arc discharge using an electric torch, and the die temperature is compared with the standard value of the pressure ball of 70 to 90 μm. Thermocompression bonding was performed on a semiconductor element Al electrode at 200 ° C. by a thermocompression bonding method using ultrasonic waves. Next, the pressure-bonded ball diameter was measured for 50 balls by measuring the pressure-bonded diameter in the direction perpendicular to the ultrasonic application direction (hereinafter referred to as “minimum diameter”) and the pressure-bonded diameter in the parallel direction (hereinafter referred to as “maximum diameter”). Table 2 shows the variation in roundness and pressure-bonded ball diameter expressed in Cpk, where (minimum diameter / maximum diameter) is roundness and {(maximum diameter + minimum diameter) / 2} is the pressure-bonded ball diameter.
[0044]
Second, a semiconductor device heating test was performed. Ten semiconductor devices shown in FIG. 2 were prepared by performing 100-pin wiring in the manner shown in FIG. The semiconductor device was heated at 270 ° C. for 5 minutes, and then the resin was removed using nitric acid, and the disconnection state of the wiring was observed with a metal microscope. The number of disconnections at the second side junction was counted, and the results are shown in Table 2 as disconnection rates.
(Examples 2 to 22) (Comparative Examples 1 to 7)
The test was conducted in the same manner as in Example 1 except that the composition of the gold alloy wire used in the test was as shown in Table 2. The measurement results are shown in Table 2.
(Examples 23 to 51) (Comparative Examples 8 to 16)
A test was conducted in the same manner as in Example 1 except that the composition of the gold alloy wire used in the test was as shown in Tables 2 to 4, and a tensile test was conducted to measure the breaking load and the elongation at 10 points for the same composition. did. The measurement results are shown in Tables 2-4.
[0045]
[Table 2]
Figure 2004022887
[0046]
[Table 3]
Figure 2004022887
[0047]
[Table 4]
Figure 2004022887
[0048]
(Test results)
(1) Examples 1 to 8 which are gold alloy wires according to claim 1 have an excellent disconnection rate of 0% and can be suppressed even when bonded to a substrate at high temperature using a lead-free solder material. It turns out that it has an effect. In addition, the roundness is 0.97 or more, and the variation (Cpk) in the diameter of the press-bonded ball is 1.33 or more, indicating that both the roundness and the variation in diameter are excellent.
(2) The gold alloy wires according to Examples 9 to 22 which are the gold alloy wires according to claim 2 have an excellent effect of the disconnection rate of 0%, and the roundness is 0.98 or more. Variation (Cpk) of 1.50 or more, it can be seen that both roundness and variation in diameter are more excellent.
(3) Examples 23 to 51, which are gold alloy wires according to claim 3, have an excellent disconnection rate of 0% as in the case of the gold alloy wires according to claims 1 and 2. In addition, the roundness is 0.98 or more, and the variation (Cpk) in the diameter of the press-bonded ball is 1.50 or more, indicating that both the roundness and the variation in diameter are excellent.
[0049]
Furthermore, this alloy wire contains a predetermined amount of at least one of Be and Ca, so that the standard deviation of the elongation rate can be suppressed to 0.5 even if the breaking strength is 235 N / mm 2 or more. That is, it has a further excellent effect that a stable loop shape can be obtained because the elongation can be made stable while having high strength.
(4) In Comparative Examples 1 to 3, which do not contain all of the predetermined amount of Sn, Pt, Y, which are essential elements of the gold alloy wire according to claim 1, the disconnection rate is 1%, and a lead-free solder material is used. It can be seen that disconnection occurs when bonded to a substrate at a high temperature. Further, the roundness can be maintained at 0.97 or more, but the variation (Cpk) in the diameter of the press-bonded ball is 1.2, and it can be understood that the alloy of the present invention is superior in the variation in diameter.
(5) Although all of Sn, Pt, and Y, which are essential elements of the gold alloy wire according to claim 1, are contained in Comparative Example 4 having a total amount of 3 mass ppm, It can be seen that the alloy of the present invention is superior in terms of the disconnection rate and the variation (Cpk) in the diameter of the press-bonded ball.
(6) In Comparative Examples 5 to 6 containing a predetermined amount of the first group element in addition to all of the predetermined amount of Sn, Pt, Y which are essential elements of the gold alloy wire according to claim 1 The same performance as that of Comparative Examples 1 to 3 is shown, and it can be seen that the alloy of the present invention is superior in the disconnection rate and the variation (Cpk) in the diameter of the press-bonded ball.
(7) A comparative example in which a predetermined amount of the first group element and the second group element are contained in a material that does not contain all of the predetermined amount of Sn, Pt, Y, which are essential elements of the gold alloy wire according to claim 1 8 to 10 and those of Comparative Examples 11 to 14 containing a predetermined amount of the second group element had a disconnection rate of 5% and a variation (Cpk) of the press-bonded ball of 1.2, and 235 N / mm When the strength is 2 or more, the standard deviation of the elongation is 0.6, indicating that the alloy of the present invention is superior.
(8) Although it contains all of a predetermined amount of Sn, Pt, Y, which are essential elements of the gold alloy wire according to claim 1, and further contains a first group element and a second group element, the total content is 1000 In Comparative Examples 15 and 16 having mass ppm, the disconnection rate is 15%, the variation (Cpk) of the press-bonded balls is 1, and when the strength is 235 N / mm 2 or more, the standard deviation of the elongation is 0. 7 indicating that the alloy of the present invention is superior.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a wire bonding process of a semiconductor device.
FIG. 2 is a cross-sectional view of a resin-encapsulated semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Capillary 2 ... Metal wire 3 ... Electric torch 4 ... Ball 4 '... Crimp ball 5 ... Al electrode 6 ... Semiconductor element 8 ... Lead 9 ... First side junction 10 ... Second side junction 11 ... Sealing resin 12 ... Semiconductor apparatus

Claims (3)

1〜50質量ppm のSn、2〜50質量ppm のPt、1〜100質量ppm のYを含有し、これらの合計量が6〜150質量ppm であり、残部がAuと不可避不純物からなる半導体素子ボンディング用金合金線。1 to 50 ppm by mass of Sn, 2 to 50 ppm by mass of Pt, 1 to 100 ppm by mass of Y, the total amount of which is 6 to 150 ppm by mass, and the balance is Au and inevitable impurities Gold alloy wire for bonding. 1〜50質量ppm のSn、2〜50質量ppm のPt、1〜100質量ppm のY、1〜100質量ppm のLa,Ce,Eu,Gd,Mg及びAgのうち少なくとも1種を含有し、これらの合計量が6〜150質量ppm であり、残部がAuと不可避不純物からなる半導体素子ボンディング用金合金線。1-50 mass ppm of Sn, 2-50 mass ppm of Pt, 1-100 mass ppm of Y, 1-100 mass ppm of La, Ce, Eu, Gd, Mg and Ag. The total amount of these is 6-150 mass ppm, and the remainder is Au and the gold alloy wire for semiconductor element bonding which consists of unavoidable impurities. 更に1〜50質量ppm のBe及びCaのうち少なくとも1種を含有し、且つ添加元素の合計量が6〜150質量ppm であり、残部がAuと不可避不純物からなる請求項2記載の半導体素子ボンディング用金合金線。3. The semiconductor element bonding according to claim 2, further comprising at least one of 1 to 50 ppm by mass of Be and Ca, a total amount of additive elements of 6 to 150 ppm by mass, and the balance consisting of Au and inevitable impurities. Gold alloy wire.
JP2002177298A 2002-06-18 2002-06-18 Gold alloy wire for bonding Expired - Fee Related JP3907534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177298A JP3907534B2 (en) 2002-06-18 2002-06-18 Gold alloy wire for bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177298A JP3907534B2 (en) 2002-06-18 2002-06-18 Gold alloy wire for bonding

Publications (2)

Publication Number Publication Date
JP2004022887A true JP2004022887A (en) 2004-01-22
JP3907534B2 JP3907534B2 (en) 2007-04-18

Family

ID=31175371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177298A Expired - Fee Related JP3907534B2 (en) 2002-06-18 2002-06-18 Gold alloy wire for bonding

Country Status (1)

Country Link
JP (1) JP3907534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060698A1 (en) * 2007-11-06 2009-05-14 Tanaka Denshi Kogyo K. K. Gold alloy wire for ball bonding
US8440137B2 (en) * 2004-11-26 2013-05-14 Tanaka Denshi Kogyo K.K. Au bonding wire for semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440137B2 (en) * 2004-11-26 2013-05-14 Tanaka Denshi Kogyo K.K. Au bonding wire for semiconductor device
WO2009060698A1 (en) * 2007-11-06 2009-05-14 Tanaka Denshi Kogyo K. K. Gold alloy wire for ball bonding
EP2209136A1 (en) * 2007-11-06 2010-07-21 Tanaka Denshi Kogyo K.K. Gold alloy wire for ball bonding
EP2209136A4 (en) * 2007-11-06 2013-08-07 Tanaka Electronics Ind Gold alloy wire for ball bonding

Also Published As

Publication number Publication date
JP3907534B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
KR101583865B1 (en) Alloy Bonding Wire Based on Ag-Au-Pd
KR100899322B1 (en) Au ALLOY BONDING WIRE
KR101536554B1 (en) Bonding wire
JP3382918B2 (en) Gold wire for connecting semiconductor elements
JPS6238414B2 (en)
JP2010245390A (en) Bonding wire
JP7126321B2 (en) aluminum bonding wire
KR20180041553A (en) Copper alloy wire for ball bonding
WO2011118009A1 (en) HIGH-PURITY Cu BONDING WIRE
KR20090087123A (en) Bonding wire
JP2737953B2 (en) Gold alloy wire for gold bump
JPH01110741A (en) Composite bonding wire
JP3907534B2 (en) Gold alloy wire for bonding
JP3994113B2 (en) Wire bump
JP3323185B2 (en) Gold wire for connecting semiconductor elements
JPH02215140A (en) Fine gold alloy wire for semiconductor element and its bonding method
JP2003059964A (en) Bonding wire and manufacturing method therefor
JPH1167811A (en) Gold and silver alloy thin wire for semiconductor device
JPH0726167B2 (en) Au alloy extra fine wire for bonding wire of semiconductor device
JP3356082B2 (en) Gold alloy wires for bonding semiconductor devices
JP6898705B2 (en) Copper alloy thin wire for ball bonding
JP2000150562A (en) Bonding gold alloy fine wire for semiconductor device
CN111656501A (en) Bonding wire
JP4134261B1 (en) Gold alloy wire for ball bonding
JP4655426B2 (en) Au bonding wire for connecting semiconductor element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees