JP2014116331A - 結晶成長装置、結晶成長方法及びサセプタ - Google Patents

結晶成長装置、結晶成長方法及びサセプタ Download PDF

Info

Publication number
JP2014116331A
JP2014116331A JP2012259507A JP2012259507A JP2014116331A JP 2014116331 A JP2014116331 A JP 2014116331A JP 2012259507 A JP2012259507 A JP 2012259507A JP 2012259507 A JP2012259507 A JP 2012259507A JP 2014116331 A JP2014116331 A JP 2014116331A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
upper plate
crystal growth
lower plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012259507A
Other languages
English (en)
Inventor
Masahito Miyashita
雅仁 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2012259507A priority Critical patent/JP2014116331A/ja
Publication of JP2014116331A publication Critical patent/JP2014116331A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】サセプタ上に載置された基板上に成長層を均一に成長させる。
【解決手段】サセプタ10においては、従来のサセプタ90に対応する部分として下部プレート11が用いられている。基板50を固定するためには、下部プレート11と別体の上部プレート12が用いられる。上部プレート12の熱伝導率を下部プレート11、基板50よりも低く設定していることにより、上部プレート12への熱伝導効率は、基板50への熱伝導効率よりも更に低くなり、上部プレート12の表面の温度を低下させることができる。また、基板50の側面と対向する開口部121の内側面の温度は、従来のサセプタ90における凹部91の内側面の温度よりも低くなる。
【選択図】図2

Description

本発明は、化学気相成長(CVD)法によって基板上に成長層を形成させるために用いられる結晶成長装置、及び結晶成長方法、これらに用いられるサセプタに関する。
GaNに代表されるIII族窒化物半導体は、そのバンドギャップが広いために、紫外、青色、緑色等のLED(発光ダイオード)、LD(レーザーダイオード)等の発光素子やパワー素子の材料として広く用いられている。シリコン等を用いたLSI等の半導体装置を製造するに際しては、大口径のバルク結晶を切り出して得られた大口径のウェハが用いられるのに対して、こうしたIII族窒化物半導体においては、大口径(例えば4インチ径以上)のバルク結晶を得ることが極めて困難である。このため、こうしたIII族窒化物半導体を用いた半導体装置を製造するに際しては、これと異なる材料からなる基板上にこのIII族窒化物半導体をエピタキシャル成長(ヘテロエピタキシャル成長)させたウェハを用いるのが一般的である。
III族窒化物半導体に対するエピタキシャル成長方法としては、MBE(分子線エピタキシー法)やMOCVD(有機金属化学気相成長法)が知られている。この中で、MOCVD法は、MBE法よりも量産性が高いため、好ましく用いられている。MOCVD法においては、チャンバ内において、基板となるウェハがサセプタ上で所定の温度(例えば1000℃以上)に保持されて載置された状態で、半導体の原材料を構成する元素を含む有機金属ガス(原料ガス)等が流される。原料ガスがこの温度下において基板の表面で反応することによって、基板上に単結晶の良質な半導体層を形成することができる。
この際に、基板を高温下で保持するサセプタが、成長した半導体層(成長層)の特性に対して与える影響は大きい。サセプタに対しては、(1)熱伝導率が高く基板の温度を一定に保持することができること、(2)半導体中において電気的又は光学的に活性となる(電気的又は光学的に特性に影響を与える)不純物元素を含まないこと、(3)充分な機械的強度及び耐熱性をもつこと、等が要求される。このため、一般には、サセプタの素材としては熱伝導率の高い黒鉛等が用いられる。また、サセプタ上には結晶成長毎に新たな基板が載置されて結晶成長が行われるが、サセプタはその寿命内においては繰り返し使用される。このため、同一のサセプタを用いて長期間にわたり同等の特性の半導体層を再現性よく得ることができることも要求される。こうした要求を満たすような構造をもつ各種のサセプタが提案されている。
特許文献1、2には、結晶成長毎の再現性を向上させるために、サセプタの上部に交換可能な構造物を新たに設けた構造が記載されている。この構造物は、特許文献1に記載の技術においてはSiC製のカバーであり、特許文献2に記載の技術においては薄い黒鉛製の防着板である。こうした構造においては、これらの構造物を適宜交換、洗浄することができる構成とされている。これにより、基板側からサセプタに不純物が拡散し、これが更に新たに載置された別の基板やこの上の半導体層に拡散することが抑制される。すなわち、この構成によって基板間の不純物の転写が抑制され、長期間にわたり良好な特性の半導体層を再現性よく得ることができる。
特開平3−69113号公報 特開平6−314655号公報
上記の技術によって良好な特性の半導体層を再現性よく得ることができるものの、実際には、1枚の基板上に形成された半導体層において、その結晶性や膜厚は中心部と周辺部とでは異なっていた。すなわち、成長毎の再現性は良好ではあるが、半導体層(成長層)の面内均一性は良好とはなっていなかった。
MOCVD法に限らず、他のCVD法等、温度制御されたサセプタ上に載置された基板上に成長層を形成する場合には、こうした状況は同様に発生する。
すなわち、サセプタ上に載置された基板上に成長層を均一に成長させることは困難であった。
また、基板以外においても、チャンバ内壁やサセプタ等の構造物の表面においても原料ガスは反応を生じるため、反応生成物(一般には半導体層と類似組成の多結晶層)が、チャンバ内壁、サセプタや構造物の表面にも形成される。反応生成物は必ずしも不純物となるものではないが、反応生成物が厚くなって部分的に剥離して基板表面に付着すると、これが付着した箇所において結晶成長が阻害されるため、歩留まり低下の原因となる。更に、反応生成物が厚くなると、このために表面温度が変移し、基板上の半導体層の膜厚や諸特性の変動の原因ともなる。このため、チャンバ、サセプタ等は定期的に交換、清掃される必要があるが、そのメインテナンスは容易であることが好ましい。
本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。
本発明は、上記課題を解決すべく、以下に掲げる構成とした。
本発明の結晶成長装置は、サセプタの上に基板が載置され、当該基板上に化学気相成長(CVD)法によって成長層を形成する結晶成長装置であって、前記サセプタは、前記基板をその表面に載置させた状態で加熱される下部プレートと、前記基板に対応した箇所に設けられた開口部を有し、当該開口部の中に前記基板が配置される状態で前記下部プレート上に設置され、前記下部プレート及び前記基板の上下方向における熱伝導率よりも低い上下方向における熱伝導率を有する上部プレートと、を具備することを特徴とする。
本発明の結晶成長装置は、前記下部プレートにおいて、前記基板が載置される領域である基板載置部の周囲の領域の上面は、当該基板載置部と同じ高さ、もしくは当該基板載置部より低くされたことを特徴とする。
本発明の結晶成長装置は、前記基板が載置された前記下部プレート上に前記上部プレートが設置された状態において、前記上部プレートにおける前記開口部の内側面と前記基板の側面とが対向することを特徴とする。
本発明の結晶成長装置において、前記基板はサファイアであり、前記下部プレートを構成する主な材料は黒鉛、前記上部プレートを構成する主な材料はパイロリテックグラファイト(熱分解炭素)であることを特徴とする。
本発明の結晶成長装置は、前記下部プレートの最表面に、表面保護層を具備することを特徴とする。
本発明の結晶成長装置において、前記表面保護層はパイロリティックボロンナイトライド(pBN)またはシリコンカーバイド(SiC)で構成されたことを特徴とする。
本発明の結晶成長方法は、前記結晶成長装置を用い、チャンバ内において、前記基板が前記サセプタの上に載置され加熱された状態で前記成長層の原料が含まれる原料ガスを流すことを特徴とする。
本発明の結晶成長方法は、前記成長層の成長時の前記基板の温度を1000℃以上とすることを特徴とする。
本発明の結晶成長方法において、前記成長層は窒化物半導体であることを特徴とする。
本発明のサセプタは、基板を保持し、当該基板上に化学気相成長(CVD)法によって成長層を形成するためのサセプタであって、前記基板をその表面に載置させた状態で加熱される下部プレートと、前記基板に対応した箇所に設けられた開口部を有し、当該開口部の中に前記基板が配置される状態で前記下部プレート上に設置され、前記下部プレート及び前記基板の上下方向における熱伝導率よりも低い上下方向における熱伝導率を有する上部プレートと、を具備することを特徴とする。
本発明のサセプタにおいて、前記上部プレートを構成する主な材料はパイロリテックグラファイト(熱分解炭素)であることを特徴とする。
本発明は以上のように構成されているので、サセプタ上に載置された基板上に成長層を均一に成長させることができる。更に、メインテナンスが容易となるサセプタを提供することができる。
本発明の実施の形態に係る結晶成長装置において用いられるサセプタの斜視図(a:組立前、b:組立後)である 従来のサセプタ(a)と、本発明の実施の形態に係る結晶成長装置において用いられるサセプタを用いた場合(b)における、上下方向に沿った断面における組立図である。 従来のサセプタにおける熱伝導の状況を模式的に示す図である。 本発明の実施の形態に係る結晶成長装置において用いられるサセプタの変形例を用いた場合における、上下方向に沿った断面における組立図である。 比較例1と実施例における半導体層の膜厚分布の温度依存性を測定した結果である。
以下、本発明の実施の形態に係る結晶成長装置について説明する。発明者は、MOCVD法によってサセプタ上に載置された基板上に半導体層を成長させる場合に生じる半導体層の特性(結晶性、膜厚等)の面内不均一性は、成長時の基板温度の面内不均一性に起因することを知見した。この基板温度の面内不均一性の原因を調べ、以下に説明する構造のサセプタを用いることによって、この不均一性が低減されることが示された。これによって、成長した半導体層の特性の面内不均一性が低減される。
図1は、この結晶成長装置において用いられるサセプタ10の斜視図(a:組立前、b:組立後)である。ここで、このサセプタ10は、下部プレート11と上部プレート12で構成される。この結晶成長装置においては、チャンバ内において、このサセプタ10に基板が設置されその温度が制御された状態で、原料ガスが流される。原料ガスが基板の表面で化学反応を起こすことによって半導体層が基板上に形成される。ここで形成される半導体層は例えば窒化物半導体(例えば窒化アルミニウム)であり、基板としては例えばサファイア基板が用いられる。この場合の原料ガスとしては、TMA(トリメチルアルミニウム)、NH(アンモニア)等が用いられる。この場合、成長温度は1000℃以上とされる。
下部プレート11の表面(基板50が載置される側の面)は、基板50の裏面との間における隙間が少なくなる形状であることが好ましく、例えば平坦であることが好ましい。また、この表面は、使用する基板50よりも充分に大きく、この表面に略円板状の基板(ウェハ)50を載置することができる構成とされる。下部プレート11は、基板50をこの上に載置させて所望の温度に保持するために用いられ、従来の結晶成長装置において用いられる従来のサセプタに対応する。このため、下部プレート11を構成する材料は、従来のサセプタと同様であり、例えば熱伝導率の高い黒鉛が用いられる。また、図1(a)では下部プレート11は矩形体形状としているが、上記の表面を具備する形状であれば、表面よりも下側の形状は任意である。また、下部プレート11は単一の材料で構成されている必要はなく、表面の耐衝撃性や化学安定性を高めるために、表面保護層として、例えば黒鉛にパイロリティックボロンナイトライド(pBN)またはシリコンカーバイド(SiC)をコーティングした構成を用いることもできる。
下部プレート11は、例えばヒーターや高周波加熱の加熱手段によって加熱される構成とされる。また、下部プレート11には温度センサも取り付けられ、ここで測定された温度をフィードバックして加熱手段が制御され、下部プレート11を所定の温度(例えば1000℃以上)に保持することができる。
一方、上部プレート12は、下部プレート11よりも薄くすることができ、中央部には開口部121が設けられている。開口部121は、基板50の形状に適合した形状とされる。ここで用いられる基板(ウェハ)50のサイズは任意であり、例えば直径2インチの円形とされる。この場合、開口部121の直径は、その中に基板50が載置されるように、2インチよりもわずかに大きな円形とされる。また、上部プレート12は、図1(b)に示されるように、下部プレート11の表面に設置されて使用されるため、その外形は下部プレート11の表面に適合した形状とされる。このため、図1(b)の状態において、開口部121中に基板50を載置し、この基板50の温度を下部プレート11に近い温度に保持した状態で、結晶成長を行うことができる。上部プレート12を下部プレート11上に設置するに際しては、これらのうちの一方の一部に凹部を、他方にこれに対応する凸部を設けることによってこれらを固定するほぞ接ぎやだぼ接ぎ、端部をビス止めする等の方法を用いて、着脱自在に固定することができる。なお、こうした固定のために用いられる固定部が基板50の温度に与える影響を小さくするために、固定部は、下部プレート11、上部プレート12において基板50から離れた箇所に設けることが好ましい。
なお、図1においては、基板50の形状を単純な円形として単純化して記載しているが、実際には基板50は完全な円形ではなく、その円周の一部にオリエンテーションフラット(オリフラ)が設けられている場合が多い。開口部121の形状は、基板50をこの中に載置できるように設定され、このオリフラ付きの基板50の形状に対応した形状とすることができる。
ここで、上部プレート12を構成する主な材料は、下部プレート11を構成する主な材料とは異なる。ここで、主な材料とは、体積比で50%を越える材料を意味するものとする。特に、上下方向(基板あるいは上部プレート12における厚さ方向)における熱伝導率が、これらを構成する主な材料においては異なり、上部プレート12を構成する材料のこの方向における熱伝導率は、下部プレート11を構成する材料の同方向における熱伝導率よりも小さく設定される。また、上部プレート12を構成する材料の同方向における熱伝導率は、同方向における基板の熱伝導率よりも低く設定される。なお、熱伝導率の値としては、例えばJISA 1412に記載の測定方法によるものを用いることができる。
例えば、下部プレート11が黒鉛で構成された場合、1000℃以上の温度域におけるその熱伝導率を40〜100W/m/K程度とすることができる。また、基板としてサファイアが用いられた場合、1000℃以上の温度域における厚さ方向(c軸方向)の熱伝導率は8W/m/K程度である。この場合には、例えば上部プレート12を、パイロリテックグラファイト(PG:熱分解炭素)で構成することができる。PGの構成元素は通常の黒鉛と同様に炭素であるが、黒鉛からなる基材の上にCVDにて数mm程度の厚さの厚膜を成形した後に基材を剥がして作られているため、異方性が高く、その面内方向と厚さ方向では熱伝導率は大きく異なる。このため、PGで薄板状の上部プレート12を形成すれば、その厚さ方向の熱伝導率を、1000℃以上の温度域において、例えば1.5W/m/K程度とすることができる。こうした材料構成の場合には、上記の熱伝導率の関係は満たされる。なお、一般的には、黒鉛は高温下でアンモニアガスと反応して消耗するものの、緻密に形成されたPGはアンモニアガスとの間の反応性が低く、長期間の使用にも耐えうる。こうしたアンモニア耐性のあるPGを用いることが特に好ましい。なお、ここで用いられる熱伝導率の値としては、各材料を製造するメーカーが提示するカタログ等に記載のものを用いることができる。
従来のサセプタ90を用いた場合(a)と、上記のサセプタ10を用いた場合(b)について、基板の厚さ方向(上下方向)に沿った断面における組立図を、図2に示す。従来のサセプタ90においては、サセプタ90は一体とされているが、基板50をこの上で固定するために、その表面において基板50の形状に対応した凹部91が形成されている。凹部91の底面は平坦とされる。ここで、基板50の厚さは例えば430μm程度、凹部91の深さは0.5mm程度であり、その形状は、この中に基板50を保持することのできる形状、例えば2インチ径の基板50が用いられる場合には直径2インチをわずかに上回る円形形状とされる。凹部91の断面形状は、基板50の表面への原料ガスの供給、排気が円滑に行われる形状であればよい。上記の構成では、載置された基板50の表面とその周囲のサセプタ90の表面とはほぼ同一の高さとなり、この点において好ましい。
これに対して、上記のサセプタ10においては、基板50は、上部プレート12の開口部121中に保持されることによって固定される。すなわち、上記のサセプタ10においては、下部プレート11が凹部91のない従来のサセプタ90に対応し、上部プレート12の開口部121が凹部91に対応する。このため、基板50の厚さが430μm程度の場合、例えば、上部プレート12の厚さは前記の凹部91の深さと同様の0.5mm程度、開口部121は、直径2インチをわずかに上回る円形形状とすることができる。
上記の構成のサセプタ10を用いることによって、基板温度の不均一性が解消される点について以下に説明する。
発明者は、図2(a)に示した従来のサセプタ90を用いて2種類のサイズ(2インチ径と4インチ径)の基板(ウェハ)50上に半導体層を成長させ、形成された半導体層の電気的特性、結晶性を調べた。その結果、どちらの場合でも、半導体層の中心部と周辺部では特性(結晶性や膜厚)が異なっていた。しかしながら、4インチ径の場合に得られた半導体層の特性を詳細に調べた結果、4インチ径のウェハの中心部の2インチ径相当の領域の特性は、2インチ径のウェハの結果とは大きく異なり、ほぼ一様に中心部と同等の特性を示し、均一であった。また、放射温度計を用いて非接触で温度を測定したところ、サセプタ90上に載置された基板50の表面の温度は、厳密には成長温度や圧力等の条件によって異なるものの、その周囲のサセプタの表面の温度よりもおよそ50〜100℃程度低くなっていることが確認された。
この事実より、この面内不均一性は基板の全面で生じてはおらず、基板の大きさに関わらずにその端部でのみ発生していることがわかる。これは、前記の温度測定の結果より、基板の周囲において温度が高くなる領域が発生しているためであると考えられる。従って、基板の温度が不均一となる領域が発生しにくくなる構造のサセプタを用いることにより、面内不均一性は低減すると考えられる。
図2(a)の従来の構成において、サセプタ90から基板50への熱伝導の状況を図3に模式的に示す。ここで、基板50が載置された状況における凹部91の端部を含む領域の断面を拡大して示しており、図中の矢印が熱伝導の方向である。まず、基板50の中央部(凹部91の端部から離れた領域)においては、サセプタ90の表面から上側に向かう上下方向の熱伝導が支配的であることは明らかである。しかしながら、基板50の端部においては、この上下方向の熱伝導と、サセプタ90における凹部91の端部からの横方向の熱伝導の2種類の熱伝導を考慮する必要がある。この横方向からの熱伝導は、基板50の端面と対向する凹部91の内側面から基板50に向かう熱伝導である。なお、実際には熱伝導だけでなく、サセプタ90からの輻射によっても基板50は加熱されるが、この影響についても同様である。
ここで、サセプタ90上において、基板50とサセプタ90との間は面接触の状態となるものの、載置された基板50は重力によってのみ固定される状態である。このため、基板50の裏面とサセプタ90の表面が共に平坦であっても、これらの間の密着度は低く、基板50とサセプタ90との間の熱抵抗は小さくはない。このため、前記の通り上下方向の熱伝導が支配的であることが好ましいものの、サセプタ90や基板50の厚さ方向の熱伝導率が共に高い場合であっても、実際にはこの上下方向の熱伝導の効率は高くはならない。
また、例えば成長温度が800℃以上の場合、基板50とサセプタ90との間においては、接触による熱伝導よりも、サセプタ90からの輻射による加熱の影響が強くなる。更に、III族窒化物半導体を成長させる場合のように成長温度を1000℃以上とする場合には、輻射の方が支配的となる。これは、熱伝導が2つの物体(基板50とサセプタ90)の温度差にほぼ比例して決まるのに対して、輻射によるエネルギーの放出は熱源(サセプタ90)の温度の4乗に比例するためである。従って、図3において、基板50の端部における横方向からの熱伝導や輻射の影響は無視できない。
このため、基板直下のサセプタの温度をある一定の温度とした場合において、基板の周囲(基板が載置されていない領域)におけるサセプタ表面の温度を基板表面温度と同等かそれより低くすることができれば、基板端部の温度の不均一性は低減すると考えられる。結晶成長に直接影響を与えるのは基板の表面の温度であるため、サセプタの温度は、基板の表面の温度が所望の温度となるように、この所望の温度よりも高い温度に設定すればよい。
そこで、上記のサセプタ10においては、従来のサセプタ90に対応する部分として下部プレート11が用いられている。基板50を固定するためには、下部プレート11と別体の上部プレート12が用いられる。ただし、基板50が下部プレート11に載置された状態において、温度の高い下部プレート11の一部が基板50の内側面と対向しないように、従来のサセプタ90とは異なり、凹部は設けられていない。すなわち、下部プレート11の表面は、サセプタ90とは異なり、平坦とされる。代わりに、基板50の側面と対向するのは、上部プレート12の開口部121の内側面である。
上部プレート12は、基板50と同様に、下部プレート11の上に重力によって載置された状態となっている。このため、基板50と下部プレート11との間と同様に、上部プレート12と下部プレート11との間の熱抵抗も同様に高い。更に、上部プレート12の熱伝導率を下部プレート11、基板50よりも低く設定していることにより、上部プレート12への熱伝導効率は、基板50への熱伝導効率よりも更に低くなり、上部プレート12の表面の温度を低下させることができる。また、基板50の側面と対向する開口部121の内側面の温度は、従来のサセプタ90における凹部91の内側面の温度よりも低くなる。このため、図2(b)の構成における基板50に対する上部プレート12からの横方向の熱伝導や輻射の影響は、図2(a)、図3の構成における基板50に対するサセプタ90の凹部91の端部からの横方向の熱伝導や輻射の影響よりも小さくなる。このため、図2(a)の従来の構成と比べて、基板50端部における温度の不均一性を低減することができる。また、前記の熱伝導と輻射による加熱の温度依存性より、成長温度を1000℃以上とした場合には、特に高い効果が得られる。
また、下部プレート11と別体の上部プレート12を用いることにより、特許文献1、2と同様の効果を奏することは明らかである。すなわち、この構成においては、最表面にある上部プレート12の方が下部プレート11よりも汚染されやすいが、この場合に、上部プレート12の交換、洗浄等を容易に行うことができ、これによって再現性の高い結晶成長を行うことができる。また、上部プレート12の表面温度が低くなれば、一般にはその表面における化学反応は生じにくくなる。このため、従来のサセプタ90と比べて、上部プレート12の表面に付着する反応生成物の量も低減される。
また、このサセプタ10はチャンバ内に設置され、このチャンバ内で基板50上に半導体層が形成される。この際、チャンバ内壁も、対向するサセプタや基板からの輻射によって加熱されるため、チャンバ内壁にも反応生成物が付着する。このため、一般には反応生成物が付着したチャンバを適切な頻度で交換、清掃等のメインテナンスをすることが必要である。これに対して、上記のサセプタ10を用いた場合には、上部プレート12の表面温度が低下するために、これと対向するチャンバ内壁の温度も低下する。このため、チャンバ内壁に付着する反応生成物の量も低減する。
すなわち、このサセプタ10を用いる場合には、サセプタ10やチャンバに付着する反応生成物の量も低減させることができるためにメインテナンスの頻度を低くすることができ、かつ反応生成物が付着した上部プレート12の交換や清掃を容易に行うことができる。
この清掃が特に容易となる材料で上部プレート12を構成することも可能である。例えば、反応生成物が例えば熱膨張係数が4〜6ppm/K程度であるAlInGaNとなる場合、熱膨張係数が1ppm/K程度である上記のPGを上部プレート12の材料として用いれば、熱膨張係数の違いによって、反応生成物を剥離、清掃することは特に容易となる。
また、下部プレート11は熱伝導率の高い材料が選択されて用いられるため、一般には基板50の材料の熱伝導率はこれよりも低い。上部プレート12の材料は、基板50の材料に応じ、これよりも熱伝導率の低い材料を適宜用いることができる。例えば、SiC(1000℃以上の温度域における熱伝導率〜70W/m/K程度)、TaC(同、9〜22W/K程度)は、前記のサファイアよりも熱伝導率が高いが、これらよりも熱伝導率が高い材料を基板50として用いる場合には、用いることができる。
なお、上部プレート12は、使用されるガス(アンモニアや水素等)と反応を生じないか反応性が低い材料で構成されることが必要である。この点において、上記の材料はいずれも問題なく使用することができる。下部プレート11についても同様である。
上記のサセプタ10の変形例となるサセプタ20の断面における組立図を図4に示す。このサセプタ20においては、下部プレート21と上部プレート22が用いられ、上部プレート22への熱伝導が更に抑制される。ここで、下部プレート21、上部プレート22を構成する材料は、それぞれ前記の下部プレート11、上部プレート12と同じであり、その形状のみが異なる。
下部プレート21においては、図2(a)に示された従来のサセプタ90とは逆に、基板50が載置される領域である基板載置部211がその周囲よりも高くされている。あるいは、基板載置部211以外の下部プレート21の表面は基板載置部211よりも掘り下げられた構成とされる。基板載置部211の表面は、前記の下部プレート11の表面と同様に平坦とされる。
上部プレート22においては、前記の上部プレート12と同様に、基板50に対応した開口部221が形成される。また、この場合には、上部プレート22と下部プレート21を組み合わせた際に、開口部221は基板載置部211と対応するように設定される。すなわち、このサセプタ20を使用する際には、基板50は開口部221中で基板載置部211上に搭載される。
一方、下部プレート21における基板載置部211以外の領域は、基板載置部211から掘り下げられた形状となっている。このため、上部プレート22と下部プレート21とを組み合わせた状態における上部プレート22の上面と基板50の上面との高さの関係を前記のサセプタ10と同一にする場合には、上部プレート22を、下部プレート21の表面が掘り下げられた分だけ厚くすることができる。すなわち、前記のサセプタ10と比べて、上部プレート22を厚くすることができる。熱伝導率の低い上部プレート22が厚くなるため、上部プレート22の表面の温度を更に低下させることができる。このため、基板50端部における温度の不均一性を更に低減することができる。
また、このサセプタ20においては、下部プレート21の凸部(基板載置部211)と上部プレート22の開口部221を嵌合させる形態となるために、上部プレート22の下部プレート21への設置、固定がより確実に行われる。
上記の図2(b)、図4のいずれの場合においても、上部プレート22(12)の表面の温度を基板50の表面の温度と同等かそれよりも低くするためには、基板50の厚さをT、その熱伝導率をλ、上部プレート22(12)の厚さをTTP、その熱伝導率をλTPとした場合に、以下の関係が成立していればよい。
Figure 2014116331
なお、より厳密には、上部プレートにおける裏面と表面との温度差δTTP、基板における裏面と表面との温度差δTを(1)式の左辺、右辺に乗じた熱流量の関係式(2)を用いることができる。
Figure 2014116331
具体的には、例えば上部プレートにPGを用い、基板としてサファイアを用いた場合は、λTP=1.5W/m/K、λ=8W/m/Kであり、TTP=T=0.5mmとした場合、(1)式に代入すると、左辺=1.5/0.5、右辺=8/0.5となり、(1)式の関係が満たされる。また、この値を(2)式に代入すると、δTTP≦5.333×δTとなる。実際には、δT=50〜100℃、δTTP=100〜150℃程度の値となり、(1)式が満たされれば(2)式も充分に満たされる。このため、実際には簡易的に(1)式を用いて上部プレート等の設計を行うことができる。
実際には、通常用いられる基板厚さとの関係から上部プレート12、22の厚さは2000μm程度が上限となる。また、下部プレート11、21と別体の薄板として取り扱えることが必要となるために、上部プレート12、22の厚さの下限は、材料によって可搬性のある薄板として製造できる厚さとして、例えばPGでは200μm程度となる。
ただし、原料ガスの基板表面への供給が面内で均一に行われる限りにおいて、基板の上面の高さと上部プレートの上面の高さを厳密に一致させる必要はない。上部プレートの上面が基板の上面よりも高い場合には、上部プレートの上面の温度を更に低下させることができる。また、上部プレートの上面が基板の上面よりも低い場合であっても、上部プレートの上面の温度を、従来のサセプタと比べて低くできることは明らかである。
なお、上記の例では、1組のサセプタに1枚の基板を載置する場合について記載したが、実際には、複数の基板を適宜配置することができる。この場合には、上部プレートにおける開口部や下部プレートにおける基板載置部等を、基板を配置する構成に応じて形成すればよい。こうした場合であっても、上記の構成により、個々の基板においてより高い温度均一性が得られ、これによって、面内均一性が高い半導体層が各々で得られることは明らかである。特にサセプタ上に複数の基板を載置する場合には、基板間の均一性を向上させるためにサセプタや個々の基板を回転させる場合もあるが、この場合においても、同様の効果を奏することは明らかである。こうした場合においては、例えば2インチ径等の小口径基板を多数サセプタ上に配置するように基板載置部を設け、上部プレートを、基板(基板載置部)間を埋めるような形状とすればよい。
上部プレートは、PGのような単一の材料で一様に構成されていることが好ましいが、必ずしもその必要はなく、上部プレートを構成する主な材料の上下方向の熱伝導率が、基板や下部プレートよりも低いという条件を満たす範囲内で、複合材、例えば母材に表面保護層を厚く形成した構成とすることもできる。例えば、母材として黒鉛を用い、これに熱伝導率の低いPGを厚く(主な材料となる程度に厚く)コーティングして上部プレートを構成することもできる。また、母材としてPGを用い、単体では柔らかいために上部プレートを構成することが難しいpBN(熱伝導率:2.7W/m/K程度)をこの上にコーティングすることもできる。こうした場合であっても、上部プレートの表面温度を基板の表面温度よりも低くすることができ、同様の効果を奏することができる。ただし、こうした場合には、母材とコーティング層との間の熱膨張係数の差の影響が出るため、一般には上部プレートを単一の材料で構成することが好ましく、この場合の材料としてはPGが特に好ましい。
(実施例、比較例1)
実際に図2(a:比較例1)(b:実施例)の2種類の形態のサセプタを用いて、サセプタ以外を同一条件としてサファイア基板上にAlNの結晶成長を行った。基板としては2インチ径、430μm厚のサファイア基板(1000℃以上の温度帯における垂直方向の熱伝導率:約8W/m/K)を用い、原料ガスとしてTMA、NHを用いた。
比較例1におけるサセプタの材質は厚さ6.5mmの黒鉛(1000℃以上の温度帯における垂直方向の熱伝導率:40〜100W/m/K)であり、表面に150μmのpBNをコーティングしている。凹部の深さは0.5mmである。実施例における下部プレートは厚さ6mmの平板構造であり、材質は比較例のサセプタと同一である。実施例における上部プレートの材質はPG(1000℃以上の温度帯における垂直方向の熱伝導率:約1.5W/m/K)であり、厚さは0.5mmである。
比較例1と実施例によって得られた半導体層についての測定結果を表1に示す。成長温度(非接触で測定された実際の基板表面の温度)を1150℃とした。ここでは、2インチ径の面内における中央の1点を含む合計25箇所において半導体層の膜厚分布を測定し、均一性として、以下の式による膜厚分布を計算した。
Figure 2014116331
また、結晶性を示す量として、半導体層(AlN)の(002)面のX線回折ロッキングカーブ(XRC)の半値全幅(FWHM)値(arcsec)の中心と、中心から20mm離れた4点の計5点における測定値の最大値と最小値の差(ΔXRC(002))、同じく(102)面について同様に求めた最大値と最小値の差(ΔXRC(102))を測定した。
Figure 2014116331
この結果より、比較例1と実施例では平均的な成長速度は大差ないが、膜厚分布が実施例で低減されていることが確認できる。また、結晶性についても、ΔXRC(002)、ΔXRC(102)が共に実施例で小さく、高い均一性が得られていることが確認できる。なお、実施例の(002)面のFWHMの最小値は55arcsecであり、(102)面のFWHMの最小値は1030arcsecであった。
次に、比較例1と実施例のサセプタを用い、成長温度を変えた場合の膜厚分布を測定した。図5は、この測定結果である。ここで示された温度は、前記の、非接触で測定された実際の基板表面の温度である。この結果より、良好な特性の半導体層が得られる1100〜1150℃、及びこの前後の温度域(例えば1000〜1300℃)では、実施例において均一性が向上していることが明らかである。
また、比較例1のサセプタでは、サセプタ上に付着したAlNを除去するためには、アルカリ溶液に浸漬することが必要であり、再使用するためのクリーニングが容易ではなかった。これに対し、実施例のサセプタにおいては、上部プレートに付着したAlNをワイパー等を用いて軽い力でなでるだけで除去することができ、クリーニングは容易であった。
(比較例2)
次に、図2(b:実施例)に示す形態のサセプタにおいて、上部プレートの材質を、PGからSiC(1000℃以上の温度帯における垂直方向の熱伝導率:約35W/m/K)に替えたサセプタを準備し、実施例と同様にしてサファイア基板上にAlN単結晶の結晶成長を行った。このサセプタにおいては、上部プレートの熱伝導率が、下部プレートよりも低くなっているが、基板(サファイア)よりも高い点が、上記の実施例と異なる。
その結果、得られたAlN層の膜厚分布の値は2.2%となり、比較例1の場合よりも大きくなった。この際、膜厚は、基板外周部において薄く、中心部で厚いという同心円状の分布を有していた。また、上部プレートに付着したAlNは容易には剥がれなかった。よって、上部プレートの上下方向における熱伝導率は、下部プレートだけでなく、基板の上下方向における熱伝導率よりも低いものでなければ、膜厚分布を改善しないことがわかった。
(比較例3)
次に、図2(a:比較例1)に示す形態のサセプタにおいて、表面のコーティングの材質を、pBNからPGに替えた以外は、比較例1と同様のサセプタを準備し、同様にしてサファイア基板上にAlN単結晶の結晶成長を行った。
その結果、成長によって得られたAlN層が白濁した。PGやサセプタにおける黒鉛の熱分解が発生し、AlN層へのカーボンの混入が結晶成長中に起こったことがこの原因であることが、白濁したAlN層のSIMS分析により明らかになった。この結果より、PGを薄く表面にコーティングした場合においては、使用に耐えることができず、PGが主な材料となる程度に厚く形成されなければ、適さないことがわかった。この点において、実施例で用いたPG製の上部プレートは、黒鉛上に厚くPGを成長させた後に黒鉛から剥離させたものであり、実施例ではこのような白濁は見られなかった。このため、実施例のサセプタが特に結晶成長に適していることが分かった。
上記の例では、AlNを成長させる例について記載したが、AlGaNを成長させた場合でも同様の結果が得られた。このように、成長層が他の材料である場合にも、成長層の特性に対する成長温度の影響が存在する限りにおいて、同様の効果を奏することは明らかである。例えば、成長層は半導体層に限定されず、任意の材料とすることができる。また、成長層が複数の層の積層構造であり、各々の層の成長温度が同一もしくは異なる場合において、少なくとも一つの層において上記の構成によって上記の効果が得られれば、有効であることは明らかである。また、上記の例ではMOCVD法を用いた場合について記載したが、高温の基板上で原料ガスを反応させるCVD法であれば、ガスの種類に関わらず同様の効果を奏することは明らかである。
10、20、90 サセプタ
11、21 下部プレート
12、22 上部プレート
50 基板
91 凹部
121、221 開口部
211 基板載置部

Claims (11)

  1. サセプタの上に基板が載置され、当該基板上に化学気相成長(CVD)法によって成長層を形成する結晶成長装置であって、
    前記サセプタは、
    前記基板をその表面に載置させた状態で加熱される下部プレートと、
    前記基板に対応した箇所に設けられた開口部を有し、当該開口部の中に前記基板が配置される状態で前記下部プレート上に設置され、前記下部プレート及び前記基板の上下方向における熱伝導率よりも低い上下方向における熱伝導率を有する上部プレートと、
    を具備することを特徴とする結晶成長装置。
  2. 前記下部プレートにおいて、前記基板が載置される領域である基板載置部の周囲の領域の上面は、当該基板載置部と同じ高さ、もしくは当該基板載置部より低くされたことを特徴とする請求項1に記載の結晶成長装置。
  3. 前記基板が載置された前記下部プレート上に前記上部プレートが設置された状態において、
    前記上部プレートにおける前記開口部の内側面と前記基板の側面とが対向することを特徴とする請求項1又は2に記載の結晶成長装置。
  4. 前記基板はサファイアであり、
    前記下部プレートを構成する主な材料は黒鉛、前記上部プレートを構成する主な材料はパイロリテックグラファイト(熱分解炭素)であることを特徴とする請求項1から請求項3までのいずれか1項に記載の結晶成長装置。
  5. 前記下部プレートの最表面に、表面保護層を具備することを特徴とする請求項1から請求項4までのいずれか1項に記載の結晶成長装置。
  6. 前記表面保護層はパイロリティックボロンナイトライド(pBN)またはシリコンカーバイド(SiC)で構成されたことを特徴とする請求項5に記載の結晶成長装置。
  7. 請求項1から請求項6までのいずれか1項に記載の結晶成長装置を用い、
    チャンバ内において、前記基板が前記サセプタの上に載置され加熱された状態で前記成長層の原料が含まれる原料ガスを流すことを特徴とする結晶成長方法。
  8. 前記成長層の成長時の前記基板の温度を1000℃以上とすることを特徴とする請求項7に記載の結晶成長方法。
  9. 前記成長層は窒化物半導体であることを特徴とする請求項7又は8に記載の結晶成長方法。
  10. 基板を保持し、当該基板上に化学気相成長(CVD)法によって成長層を形成するためのサセプタであって、
    前記基板をその表面に載置させた状態で加熱される下部プレートと、
    前記基板に対応した箇所に設けられた開口部を有し、当該開口部の中に前記基板が配置される状態で前記下部プレート上に設置され、前記下部プレート及び前記基板の上下方向における熱伝導率よりも低い上下方向における熱伝導率を有する上部プレートと、
    を具備することを特徴とするサセプタ。
  11. 前記上部プレートを構成する主な材料はパイロリテックグラファイト(熱分解炭素)であることを特徴とする請求項10項に記載のサセプタ。
JP2012259507A 2011-11-30 2012-11-28 結晶成長装置、結晶成長方法及びサセプタ Pending JP2014116331A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259507A JP2014116331A (ja) 2011-11-30 2012-11-28 結晶成長装置、結晶成長方法及びサセプタ

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011261680 2011-11-30
JP2011261680 2011-11-30
JP2012249902 2012-11-14
JP2012249902 2012-11-14
JP2012259507A JP2014116331A (ja) 2011-11-30 2012-11-28 結晶成長装置、結晶成長方法及びサセプタ

Publications (1)

Publication Number Publication Date
JP2014116331A true JP2014116331A (ja) 2014-06-26

Family

ID=51172065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259507A Pending JP2014116331A (ja) 2011-11-30 2012-11-28 結晶成長装置、結晶成長方法及びサセプタ

Country Status (1)

Country Link
JP (1) JP2014116331A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017043165A1 (ja) * 2015-09-11 2017-09-07 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP2020188148A (ja) * 2019-05-15 2020-11-19 住友電気工業株式会社 サセプタ、および半導体素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139815A (ja) * 1990-10-01 1992-05-13 Kokusai Electric Co Ltd Cvd装置
JP2004072054A (ja) * 2002-06-13 2004-03-04 Nikko Materials Co Ltd 気相成長装置および気相成長方法
JP2006173560A (ja) * 2004-11-16 2006-06-29 Sumitomo Electric Ind Ltd ウエハガイド、有機金属気相成長装置および窒化物系半導体を堆積する方法
JP2007176777A (ja) * 2005-12-28 2007-07-12 Mitsubishi Chemicals Corp Ga含有窒化物半導体の製造方法
WO2008117781A1 (ja) * 2007-03-28 2008-10-02 Tokyo Electron Limited Cvd成膜装置
JP2009252969A (ja) * 2008-04-04 2009-10-29 Sumitomo Electric Ind Ltd サセプタおよび気相成長装置
JP2011230955A (ja) * 2010-04-27 2011-11-17 Sumitomo Electric Ind Ltd GaN基板および発光デバイス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139815A (ja) * 1990-10-01 1992-05-13 Kokusai Electric Co Ltd Cvd装置
JP2004072054A (ja) * 2002-06-13 2004-03-04 Nikko Materials Co Ltd 気相成長装置および気相成長方法
JP2006173560A (ja) * 2004-11-16 2006-06-29 Sumitomo Electric Ind Ltd ウエハガイド、有機金属気相成長装置および窒化物系半導体を堆積する方法
JP2007176777A (ja) * 2005-12-28 2007-07-12 Mitsubishi Chemicals Corp Ga含有窒化物半導体の製造方法
WO2008117781A1 (ja) * 2007-03-28 2008-10-02 Tokyo Electron Limited Cvd成膜装置
JP2009252969A (ja) * 2008-04-04 2009-10-29 Sumitomo Electric Ind Ltd サセプタおよび気相成長装置
JP2011230955A (ja) * 2010-04-27 2011-11-17 Sumitomo Electric Ind Ltd GaN基板および発光デバイス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017043165A1 (ja) * 2015-09-11 2017-09-07 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP2019104679A (ja) * 2015-09-11 2019-06-27 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
US10865501B2 (en) 2015-09-11 2020-12-15 Sumitomo Electric Industries, Ltd. Silicon carbide epitaxial substrate and method of manufacturing silicon carbide semiconductor device
JP2020188148A (ja) * 2019-05-15 2020-11-19 住友電気工業株式会社 サセプタ、および半導体素子の製造方法
JP7230679B2 (ja) 2019-05-15 2023-03-01 住友電気工業株式会社 半導体素子の製造方法

Similar Documents

Publication Publication Date Title
JP6062436B2 (ja) サセプタ、結晶成長装置および結晶成長方法
US9064696B2 (en) Apparatus for manufacturing compound semiconductor, method for manufacturing compound semiconductor, and compound semiconductor
US8753448B2 (en) Apparatus and method for manufacturing compound semiconductor, and compound semiconductor manufactured thereby
US8591656B2 (en) Compound semiconductor manufacturing device, compound semiconductor manufacturing method, and jig for manufacturing compound semiconductor
JP5737189B2 (ja) 単結晶基板、それを用いて得られるiii族窒化物結晶及びiii族窒化物結晶の製造方法
CN107881557B (zh) 氮化物晶体衬底的制造方法及氮化物晶体层叠体
US20080118733A1 (en) Nitride semiconductor ingot, nitride semiconductor substrate fabricated from the same and method for making nitride semiconductor ingot
JP6704386B2 (ja) 窒化物半導体テンプレート及びその製造方法、並びにエピタキシャルウエハ
JP5228583B2 (ja) サセプタおよび気相成長装置
KR100718118B1 (ko) 크랙이 없는 GaN 벌크 단결정의 성장 방법 및 장치
JP2005060195A (ja) 窒化物半導体基板及びその製造方法
JP2014116331A (ja) 結晶成長装置、結晶成長方法及びサセプタ
CN109312491B (zh) 氮化物半导体模板、氮化物半导体模板的制造方法以及氮化物半导体自支撑基板的制造方法
JP5904101B2 (ja) 化合物半導体の製造装置およびウェハ保持体
JP2008124151A (ja) 単結晶基板及び窒化物半導体単結晶の製造方法
JP2010030846A (ja) 窒化物体の製造方法
JP5333156B2 (ja) 気相成長装置
JP2010083683A (ja) 単結晶体の製造方法および単結晶体の製造装置
JP2011091196A (ja) 単結晶体の製造方法
JP5440636B2 (ja) GaN単結晶体およびその製造方法
KR20060087138A (ko) GaN 단결정 제조장치 및 이를 이용한 GaN 단결정잉고트의 제조방법
JP2010052978A (ja) 3族窒化物単結晶体の製造方法
JP2015103652A (ja) 気相成長装置
JP3104677B2 (ja) Iii族窒化物結晶成長装置
JP4957751B2 (ja) GaN単結晶体およびその製造方法、ならびに半導体デバイスおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110