JP2014114020A - 医療用多層容器 - Google Patents

医療用多層容器 Download PDF

Info

Publication number
JP2014114020A
JP2014114020A JP2012267218A JP2012267218A JP2014114020A JP 2014114020 A JP2014114020 A JP 2014114020A JP 2012267218 A JP2012267218 A JP 2012267218A JP 2012267218 A JP2012267218 A JP 2012267218A JP 2014114020 A JP2014114020 A JP 2014114020A
Authority
JP
Japan
Prior art keywords
group
oxygen
acid
absorbing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012267218A
Other languages
English (en)
Other versions
JP6102229B2 (ja
Inventor
Kenichiro Usuda
健一郎 薄田
Takashi Kashiba
隆史 加柴
Takashi Ogawa
俊 小川
Shota Arakawa
翔太 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012267218A priority Critical patent/JP6102229B2/ja
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to KR1020147016211A priority patent/KR20140107257A/ko
Priority to TW101147842A priority patent/TWI595049B/zh
Priority to EP12857852.3A priority patent/EP2792713B1/en
Priority to CN201280062259.8A priority patent/CN103998523B/zh
Priority to US14/364,416 priority patent/US9840359B2/en
Priority to PCT/JP2012/082610 priority patent/WO2013089268A1/ja
Publication of JP2014114020A publication Critical patent/JP2014114020A/ja
Application granted granted Critical
Publication of JP6102229B2 publication Critical patent/JP6102229B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Laminated Bodies (AREA)
  • Polyamides (AREA)

Abstract

【課題】酸素吸収後の低分子量有機化合物の発生が抑制され、優れた酸素バリア性能を有し、長期保存時でも強度が維持され、不純物の溶出量が少ない新規な酸素吸収性医療用多層成形容器を提供する。また、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有する、酸素吸収性医療用多層成形容器を提供する。
【解決手段】熱可塑性樹脂を少なくとも含有する第1の樹脂層と、ポリアミド化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層と、熱可塑性樹脂を少なくとも含有する第2の樹脂層の少なくとも3層をこの順に有する、酸素吸収性医療用多層成形容器であって、前記ポリアミド化合物が、少なくとも1つのテトラリン環を有する構成単位を含有する、酸素吸収性医療用多層成形容器。
【選択図】なし

Description

本発明は、酸素バリア性能および酸素吸収機能を有する医療用容器に関する。
食品、飲料、医薬品、化粧品等に代表される、酸素の影響を受けて変質或いは劣化しやすい各種物品の酸素酸化を防止し、長期に保存する目的で、これらを収納した包装体内の酸素除去を行う酸素吸収剤が使用されている。
酸素吸収剤としては、酸素吸収能力、取り扱い易さ、安全性の点から、鉄粉を反応主剤とする酸素吸収剤が一般的に用いられている。しかし、この鉄系酸素吸収剤は、金属探知機に感応するために、異物検査に金属探知機を使用することが困難であった。また、鉄系酸素吸収剤を同封した包装体は、鉄粉の酸化反応には水分が必須であるため、被保存物が高水分系であるものでしか、酸素吸収の効果を発現することができなかった。
また、熱可塑性樹脂に鉄系酸素吸収剤を配合した酸素吸収性樹脂組成物からなる酸素吸収層を配した多層材料で容器を構成することにより、容器のガスバリア性の向上を図るとともに容器自体に酸素吸収機能を付与した包装容器の開発が行われている(特許文献1参照)。具体的には、この多層材料は、ヒートシール層及びガスバリア層が積層された従来構成のガスバリア性多層フィルムの層間に、鉄系酸素吸収剤を分散した熱可塑性樹脂からなる酸素吸収層を設けた酸素吸収性多層フィルムであって、外部からの酸素透過を防ぐ機能に加えて、容器内の酸素を吸収する機能が付与されたものであり、押し出しラミネート、共押し出しラミネート、ドライラミネート等の従来公知の製造方法を利用して製造されている。しかし、これも同様に、食品等の異物検知に使用される金属探知機に検知される、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。さらに、不透明性の問題により内部視認性が不足するといった課題を有している。
上記のような事情から、有機系の物質を反応主剤とする酸素吸収剤が望まれている。有機系の物質を反応主剤とする酸素吸収剤としては、アスコルビン酸を主剤とする酸素吸収剤が知られている(特許文献2参照)。
一方、樹脂と遷移金属触媒からなる酸素吸収性樹脂組成物が知られている。例えば、酸化可能有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属触媒からなる樹脂組成物が知られている(特許文献3および4参照)。さらに、この特許文献3および4には、この樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムも例示されている。
また、酸素吸収に水分を必要としない酸素吸収性樹脂組成物として、炭素−炭素不飽和結合を有する樹脂と遷移金属触媒からなる酸素吸収性樹脂組成物が知られている(特許文献5参照)。
さらに、酸素を捕集する組成物として、置換されたシクロヘキセン官能基を含むポリマーまたは該シクロヘキセン環が結合した低分子量物質と遷移金属とからなる組成物が知られている(特許文献6参照)。
他方、従来から、薬液を密閉状態で充填し保管するための医療用包装容器として、ガラス製のアンプル、バイアル、プレフィルドシリンジ等が使用されている。しかしながら、これらのガラス製容器は、保管中に容器中の内容液にナトリウムイオン等が溶出する、フレークスという微細な物質が発生する、金属で着色した遮光性ガラス製容器を使用する場合には着色用の金属が内容物に混入する、落下等の衝撃により割れやすい、などの問題があった。また、比較的に比重が大きいため、医療用包装容器が重いという問題点もあった。そのため、代替材料の開発が期待されている。具体的には、ガラスに比べて軽量なプラスチック、例えば、ポリエステル、ポリカーボネート、ポリプロピレン、シクロオレフィンポリマー等が、ガラス代替として検討されている。
例えば、ポリエステル系樹脂材料からなる医療用容器が提示されている(特許文献7参照)。
一方、プラスチックからなる容器にガスバリア性を付与するために、ガスバリア層を中間層として有する多層容器の検討が行われている。具体的には、ポリオレフィン系樹脂からなる最内層および最外層と、酸素バリア性に優れた樹脂組成物からなる中間層と有する、酸素バリア性を向上させたプレフィルドシリンジが提示されている(特許文献8参照)。他にも、メタキシリレンジアミンとアジピン酸とから得られるポリアミド(以下、「ナイロンMXD6」と称することがある。)、エチレン−ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニリデン、アルミ箔、カーボンコート、無機酸化物蒸着等のガスバリア層を樹脂層に積層した多層容器も検討されている。
他方、近年においては、ナイロンMXD6に少量の遷移金属化合物を添加、混合して、酸素吸収機能を付与し、これを容器や包装材料を構成する酸素バリア材料として利用することが提案されている(特許文献9参照)。
特開平09−234832号公報 特開昭51−136845号公報 特開2001−252560号公報 特開2009−108153号公報 特開平05−115776号公報 特表2003−521552号公報 特開平08−127641号公報 特開2004−229750号公報 特開平02−500846号公報
しかしながら、特許文献2の酸素吸収剤は、そもそも酸素吸収性能が低く、また、被保存物が高水分系のものしか効果を発現しない、比較的に高価である、といった課題を有している。
また、特許文献3の樹脂組成物は、遷移金属触媒を含有させキシリレン基含有ポリアミド樹脂を酸化させることで酸素吸収機能を発現させるものであるため、酸素吸収後に樹脂の酸化劣化による高分子鎖の切断が発生し、包装容器そのものの強度が低下するという問題を有している。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。また、特許文献4では層間剥離の改善方法が記載されているが、効果は限定的である。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。
さらに、特許文献5の酸素吸収性樹脂組成物は、上記と同様に樹脂の酸化にともなう高分子鎖の切断により臭気成分となる低分子量の有機化合物が生成し、酸素吸収後に臭気が発生するという問題がある。
一方、特許文献6の組成物は、シクロヘキセン官能基を含む特殊な材料を用いる必要があり、また、この材料は比較的に臭気が発生しやすい、という課題が依然として存在する。
他方、上記従来の医療用多層容器は、酸素バリア性、水蒸気バリア性、薬液吸着性、容器の耐久性等の基本性能が十分ではなく、そのため、薬液等の内容物の保存性の観点から改善が求められている。
とりわけ、従来のガスバリア性多層容器を用いて薬液等を保存する場合、如何にガス置換操作を行ったとしても、包装容器内の酸素を完全に除去することは困難或いは極めて不経済であるという実情がある。すなわち、内容物の液中に溶存する酸素、内容物の混合時に発生し混入する気泡に含まれる酸素、水を添加する場合にはそれに溶存する酸素等を完全に排除することは困難である。原料の選別・調製条件や製造条件において高度な管理を行なって、酸素を可能な限り除去することは可能であるものの、このような経済性を無視した取り扱いは現実的ではない。しかも、上記のとおりガスバリア性多層容器の酸素バリア性が十分ではないため、容器の壁部を透過して外部から侵入してくる微量酸素を完全に排除することができない。
例えば、特許文献7のポリエステル系樹脂製の医療用容器は、比較的に優れた酸素バリア性を有するものの、酸素を完全に遮断するには酸素バリア性が不十分であり、また、ポリオレフィン系樹脂からなる容器と比較すると水蒸気バリア性にも劣る。しかも、このポリエステル系樹脂は、酸素吸収性能を有さない。そのため、外部から酸素が容器内に侵入した場合に、または、容器の内容物の上部に存在するヘッドスペースに酸素が残存している場合には、容器内の薬液の劣化を防げないという問題があった。
また、特許文献8のプレフィルドシリンジは、比較的に優れた酸素バリア性および水蒸気バリア性を有するものの、酸素を完全に遮断するには酸素バリア性が不十分である。しかも、中間層の酸素バリア性樹脂組成物は、酸素吸収性能を有さない。そのため、外部から酸素が容器内に侵入した場合に、または、容器の内容物の上部に存在するヘッドスペースに酸素が残存している場合には、容器内の薬液の劣化を防げないという問題があった。
一方、特許文献9の樹脂組成物は、上記の特許文献3および4と同様に、酸化吸収後に樹脂の酸化劣化による強度低下が発生し、包装容器そのものの強度が低下するという問題を有している。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。
本発明は、上記課題を鑑みてなされたものであり、その目的は、酸素吸収後の低分子量化合物の生成が著しく抑制され、優れた酸素バリア性能を有し、好ましくは優れた水蒸気バリア性能をも有し、長期保存時でも強度が維持され、不純物の溶出量が極めて少ない新規な酸素吸収性医療用多層成形容器を提供することにある。また、本発明の他の別の目的は、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有する、酸素吸収性医療用多層成形容器を提供することにある。
本発明者らは、酸素吸収性医療用多層成形容器について鋭意検討を進めた結果、所定のテトラリン環を有するポリアミド化合物と遷移金属触媒とを用いることにより、上記課題が解決されることを見出し、本発明を完成した。
すなわち、本発明は、以下<1>〜<4>を提供する。
<1> 熱可塑性樹脂を少なくとも含有する第1の樹脂層と、ポリアミド化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層と、熱可塑性樹脂を少なくとも含有する第2の樹脂層の少なくとも3層をこの順に有する、酸素吸収性医療用多層成形容器であって、
前記ポリアミド化合物が、下記一般式(1)〜(2)で表される構成単位;
Figure 2014114020
(式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。各式中、mは、それぞれ独立して、0〜3の整数を示し、各式中、nは、それぞれ独立して、0〜7の整数を示し、テトラリン環のベンジル位には少なくとも1つ以上の水素原子が結合している。各式中、Xは、それぞれ独立して、芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基および複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を示す。)
からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有する、酸素吸収性多層体。
<2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、上記<1>に記載の酸素吸収性医療用多層成形容器。
<3> 前記遷移金属触媒が、前記ポリアミド化合物100質量部に対し、遷移金属量として0.001〜10質量部含まれる、上記<1>または<2>に記載の酸素吸収性医療用多層成形容器。
<4> 前記一般式(1)で表される構成単位が、下記式(3)〜(6)で表される構成単位;
Figure 2014114020
からなる群より選択される少なくとも1つである、上記<1>〜<3>のいずれかに記載の酸素吸収性医療用多層成形容器。
本発明によれば、低湿度から高湿度までの広範な湿度条件下で優れた酸素吸収性能を有し、酸素バリア性が良好で、好適な態様ではさらに水蒸気バリアに優れる、バイアルやプレフィルドシリンジ等の酸素吸収性医療用多層成形容器を実現することができる。そして、この酸素吸収性医療用多層成形容器は、被保存物の水分の有無によらず酸素吸収することができる。また、酸素吸収後も酸化による上記のテトラリン環を有するポリアミド化合物の強度低下が極めて小さく、長期の利用においても酸素吸収層の強度が維持されるため、層間剥離が生じにくい酸素吸収性医療用多層成形容器を実現することもできる。さらに、酸素吸収後の低分子有機化合物の生成が著しく抑制されているので、この低分子量有機化合物の内容物への混入が極めて少ない酸素吸収性医療用多層成形容器を実現することもできる。そのため、本発明の酸素吸収性医療用多層成形容器は、低酸素濃度下で保存が要求される医薬品、バイオ医薬、医療品等の保存において殊に有用である。
以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
本実施形態の酸素吸収性医療用多層成形容器は、熱可塑性樹脂を少なくとも含有する第1の樹脂層(層B)と、酸素吸収性樹脂組成物からなる酸素吸収層(層A)と、熱可塑性樹脂を少なくとも含有する第2の樹脂層(層B)との少なくとも3層をこの順に有する。
本実施形態の酸素吸収性医療用多層成形容器は、容器内の酸素を吸収して、容器外から容器壁面を透過する或いは侵入する酸素がわずかでもある場合にはこの透過或いは侵入する酸素をも吸収して、保存する内容物品(被保存物)の酸素による変質等を防止することができる。
本実施形態の酸素吸収性医療用多層成形容器における層構成は、これらの層がB/A/Bの順に配列されている限り、酸素吸収層(層A)および樹脂層(層B)の数や種類は特に限定されない。例えば、1つの層A、2つの層B1および2つの層B2からなるB1/B2/A/B2/B1の5層構成であってもよい。また、本実施形態の酸素吸収性医療用多層成形容器は、必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、B1/AD/B2/A/B2/AD/B1の7層構成であってもよい。
[酸素吸収層(層A)]
本実施形態の酸素吸収性医療用多層成形容器において、酸素吸収層(層A)は、上記一般式(1)〜(2)で表される構成単位からなる群より選択される少なくとも1種のテトラリン環含有ポリアミド化合物(以下、単に「テトラリン環含有ポリアミド化合物」ともいう。)と遷移金属触媒を含有する酸素吸収性樹脂組成物からなる。
<テトラリン環含有ポリアミド化合物>
本実施形態の酸素吸収性樹脂組成物において用いられるテトラリン環含有ポリアミド化合物は、上記一般式(1)〜(2)で表される構成単位のうち、少なくとも1種を含有するものである。また、上記一般式(1)で表される構成単位は、上記式(3)〜(6)で表される構成単位からなる群より選択される少なくとも1つであることが好ましい。ここで、「構成単位を含有する」とは、化合物中に当該構成単位を1以上有することを意味する。かかる構成単位は、テトラリン環含有ポリアミド化合物中に繰り返し単位として含まれていることが好ましい。このようにテトラリン環含有ポリアミド化合物が重合体である場合、上記構成単位のホモポリマー、上記構成単位と他の構成単位とのランダムコポリマー、上記構成単位と他の構成単位とのブロックコポリマーのいずれであっても構わない。
上記一般式(1)〜(2)で表される構成単位において、Rで示した一価の置換基としては、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数が1〜15、より好ましくは炭素数が1〜6の直鎖状、分岐状または環状アルキル基、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基)、アルケニル基(好ましくは炭素数が2〜10、より好ましくは炭素数が2〜6の直鎖状、分岐状または環状アルケニル基、例えば、ビニル基、アリル基)、アルキニル基(好ましくは炭素数が2〜10、より好ましくは炭素数が2〜6のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素数が6〜16、より好ましくは炭素数が6〜10のアリール基、例えば、フェニル基、ナフチル基)、複素環基(好ましくは炭素数が1〜12、より好ましくは炭素数が2〜6の5員環或いは6員環の芳香族または非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる一価の基、例えば、1−ピラゾリル基、1−イミダゾリル基、2−フリル基)、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基(好ましくは炭素数が1〜10、より好ましくは炭素数が1〜6の直鎖状、分岐状または環状アルコキシ基、例えば、メトキシ基、エトキシ基)、アリールオキシ基(好ましくは炭素数が6〜12、より好ましくは炭素数が6〜8のアリールオキシ基、例えば、フェノキシ基)、アシル基(ホルミル基を含む。好ましくは炭素数が2〜10、より好ましくは炭素数が2〜6のアルキルカルボニル基、好ましくは炭素数が7〜12、より好ましくは炭素数が7〜9のアリールカルボニル基、例えば、アセチル基、ピバロイル基、ベンゾイル基)、アミノ基(好ましくは炭素数が1〜10、より好ましくは炭素数が1〜6のアルキルアミノ基、好ましくは炭素数が6〜12、より好ましくは炭素数が6〜8のアニリノ基、好ましくは炭素数が1〜12、より好ましくは炭素数が2〜6の複素環アミノ基、例えば、アミノ基、メチルアミノ基、アニリノ基)、メルカプト基、アルキルチオ基(好ましくは炭素数が1〜10、より好ましくは炭素数が1〜6のアルキルチオ基、例えば、メチルチオ基、エチルチオ基)、アリールチオ基(好ましくは炭素数が6〜12、より好ましくは炭素数が6〜8のアリールチオ基、例えば、フェニルチオ基)、複素環チオ基(好ましくは炭素数が2〜10、より好ましくは炭素数が1〜6の複素環チオ基、例えば、2−ベンゾチアゾリルチオ基)、イミド基(好ましくは炭素数が2〜10、より好ましくは炭素数が4〜8のイミド基、例えば、N−スクシンイミド基、N−フタルイミド基)等が例示されるが、これらに特に限定されない。
なお、上記の一価の置換基Rが水素原子を有する場合、その水素原子が置換基T(ここで、置換基Tは、上記の一価の置換基Rで説明したものと同義である。)でさらに置換されていてもよい。その具体例としては、ヒドロキシ基で置換されたアルキル基(例えば、ヒドロキシエチル基)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基)、アリール基で置換されたアルキル基(例えば、ベンジル基)、第1級或いは第2級アミノ基で置換されたアルキル基(例えば、アミノエチル基)、アルキル基で置換されたアリール基(例えば、p−トリル基)、アルキル基で置換されたアリールオキシ基(例えば、2−メチルフェノキシ基)等が挙げられるが、これらに特に限定されない。なお、上記の一価の置換基Rが一価の置換基Tを有する場合、上述した炭素数には、置換基Tの炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と看做し、フェニル基で置換された炭素数7のアルキル基とは看做さない。また、上記の一価の置換基Rが置換基Tを有する場合、その置換基Tは複数あってもよい。
上記一般式(1)〜(2)で表される構成単位において、Xは、芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基および複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を示す。芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基および複素環基は、置換されていても無置換でもよい。また、Xは、ヘテロ原子を含有していてもよく、或いは、エーテル基、スルフィド基、カルボニル基、ヒドロキシ基、アミノ基、スルホキシド基、スルホン基等を含有していてもよい。
ここで、芳香族炭化水素基としては、例えば、o−フェニレン基、m−フェニレン基、p−フェニレン基、メチルフェニレン基、o−キシリレン基、m−キシリレン基、p−キシリレン基、ナフチレン基、アントラセニレン基、フェナントリレン基、ビフェニレン基、フルオニレン基等が挙げられるが、これらに特に限定されない。脂環式炭化水素基としては、例えば、シクロペンチレン基、シクロへキシレン基、メチルシクロへキシレン基、シクロヘプチレン基、シクロオクチレン基等のシクロアルキレン基や、シクロヘキセニレン基等のシクロアルケニレン基が挙げられるが、これらに特に限定されない。脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、イソプロピリデン基、テトラメチレン基、イソブチリデン基、sec‐ブチリデン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等の直鎖状または分枝鎖状アルキレン基や、ビニレン基、プロペニレン基、1−ブテニレン基、2−ブテニレン基、1,3−ブタジエニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、3−ヘキセニレン基等のアルケニレン基等が挙げられるが、これらに特に限定されない。これらは、さらに置換基を有していてもよく、その具体例としては、例えば、ハロゲン、アルコキシ基、ヒドロキシ基、カルボキシル基、カルボアルコキシ基、アミノ基、アシル基、チオ基(例えばアルキルチオ基、フェニルチオ基、トリルチオ基、ピリジルチオ基等)、アミノ基(例えば非置換アミノ基、メチルアミノ基、ジメチルアミノ基、フェニルアミノ基等)、シアノ基、ニトロ基等が挙げられるが、これらに特に限定されない。
上記一般式(1)で表される構成単位を含有するテトラリン環含有ポリアミド化合物は、例えば、テトラリン環を有するジカルボン酸またはその誘導体(I)と、ジアミンまたはその誘導体(II)、とを重縮合することによって得ることができる。
テトラリン環を有するジカルボン酸またはその誘導体(I)としては、例えば、下記一般式(7)で表される化合物が挙げられる。テトラリン環を有するジカルボン酸またはその誘導体(I)は、1種を単独でまたは2種以上を組み合わせて用いることができる。
Figure 2014114020
(式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0〜3の整数を示し、nは0〜7の整数を示し、テトラリン環のベンジル位には少なくとも1つ以上の水素原子が結合している。)
なお、上記一般式(7)で表される化合物は、例えば、下記一般式(8)で表されるナフタレン環を有するジカルボン酸またはその誘導体を水素と反応させることによって得ることができる。
Figure 2014114020
(式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは、それぞれ独立して0〜3の整数を示す。)
ジアミンまたはその誘導体(II)としては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン等の直鎖飽和脂肪族ジアミン、2−メチルペンタメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2−メチルオクタメチレンジアミン、2,4−ジメチルオクタメチレンジアミン等の分岐状飽和脂肪族アミン、1,3−シクロヘキサンジアミン、1,4−シクロヘキサンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン等の脂環族アミン、メタキシリレンジアミン、パラキシリレンジアミンアミン、メタフェニレンジアミン、パラフェニレンジアミン等の芳香族アミン、またはこれらの誘導体が挙げられる。ジアミンまたはその誘導体(II)は、1種を単独でまたは2種以上を組み合わせて用いることができる。
また、上記一般式(2)で表される構成単位を含有するテトラリン環含有ポリアミド化合物は、例えば、テトラリン環を有するジアミンまたはその誘導体(III)と、ジカルボン酸またはその誘導体(IV)を重縮合することによって得ることができる。
テトラリン環を有するジアミンまたはその誘導体(III)としては、例えば、下記一般式(9)で表される化合物が挙げられる。テトラリン環を有するジアミンまたはその誘導体(III)は、1種を単独でまたは2種以上を組み合わせて用いることができる。
Figure 2014114020
(式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0〜3の整数を示し、nは0〜7の整数を示し、テトラリン環のベンジル位には少なくとも1つ以上の水素原子が結合している。)
上記一般式(9)で表される化合物は、例えば、下記一般式(10)で表されるナフタレン環を有するジアミンまたはその誘導体を水素と反応させることによって得ることができる。
Figure 2014114020
(式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは、それぞれ独立して0〜3の整数を示す。)
ジカルボン酸またはその誘導体(IV)としては、例えば、シュウ酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、3,3−ジメチルペンタン二酸、フタル酸、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸、2,6−ナフタレンジカルボン酸等のナフタレンジカルボン酸、アントラセンジカルボン酸、フェニルマロン酸、フェニレンジ酢酸、フェニレンジ酪酸、4,4−ジフェニルエーテルジカルボン酸、p-フェニレンジカルボン酸、またはこれらの誘導体等が挙げられる。ジカルボン酸またはその誘導体(IV)は、1種を単独でまたは2種以上を組み合わせて用いることができる。
また、上記一般式(1)または(2)で表される構成単位を含有するテトラリン環含有ポリアミド化合物は、例えば、下記一般式(11)または(12)で表される構成単位を含有するポリアミド化合物を水素と反応させることによって得ることができる。
Figure 2014114020
(式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは、それぞれ独立して0〜3の整数を示す。Xは芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基および複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を示す。)
Figure 2014114020
(式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは、それぞれ独立して0〜3の整数を示す。Xは芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基および複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を示す。)
上記一般式(7)〜(12)で表される構成単位においてRで示した一価の置換基およびXで示した2価の基の具体例は、上記一般式(1)〜(2)で表される構成単位において説明したものと同一である。そのため、ここでの重複した説明は省略する。
本実施形態の酸素吸収性樹脂組成物において用いられるテトラリン環含有ポリアミド化合物は、上記一般式(1)〜(2)で表される構成単位以外の、他のテトラリン環を有する構成単位、および/または、テトラリン環を有さない構成単位を共重合成分として含んでいてもよい。具体的には、前述したジアミンまたはその誘導体(II)やジカルボン酸またはその誘導体(IV)において示した化合物を共重合成分として用いることができる。また、下記一般式(13)で表されるω−アミノカルボン酸単位を更に含有してもよい。
Figure 2014114020
(式中、lは、2〜18の整数を表す。)
上記一般式(13)で表されるω−アミノカルボン酸単位を構成しうる化合物としては、炭素数3〜19のω−アミノカルボン酸や炭素数3〜19のラクタムが挙げられる。炭素数3〜19のω−アミノカルボン酸としては、例えば、6−アミノヘキサン酸及び12−アミノドデカン酸などが挙げられ、炭素数3〜19のラクタムとしては、例えば、ε−カプロラクタム及びラウロラクタムを挙げることができるが、これらに限定されるものではない。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。
上記一般式(1)で表される構成単位を含有するテトラリン環含有ポリアミド化合物のなかで、より好ましいものとしては、上記式(3)〜(6)で表される構成単位を含有するテトラリン環含有ポリアミド化合物が挙げられる。
上記のテトラリン環含有ポリアミド化合物の分子量は、所望する性能や取扱性などを考慮して適宜設定することができ、特に限定されない。一般的には、重量平均分子量(Mw)が1.0×10〜8.0×10であることが好ましく、より好ましくは5.0×10〜5.0×10である。また同様に、数平均分子量(Mn)が1.0×10〜1.0×10であることが好ましく、より好ましくは5.0×10〜5.0×10である。なお、ここでいう分子量は、いずれもポリスチレン換算の値を意味する。なお、上記のテトラリン環含有ポリアミド化合物は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、上記のテトラリン環含有ポリアミド化合物のガラス転移温度(Tg)は、特に限定されないが、0〜150℃であることが好ましく、より好ましくは10〜130℃である。なお、ここでいうガラス転移温度は、示差走査熱量測定により測定される値を意味する。
上記のテトラリン環含有ポリアミド化合物を製造する方法は、特に制限されず、従来公知のポリアミドの製造方法をいずれも適用することができる。ポリアミドの製造方法としては、例えば、加圧塩法、常圧滴下法、加圧滴下法等が挙げられる。これらの中でも、加圧塩法が好適である。
加圧塩法は、ジカルボン酸とジアミンの塩を原料として加圧下にて重縮合を行う方法である。具体的には、ジカルボン酸とジアミンとからなる設定モル比のジカルボン酸とジアミンの塩を含む水溶液を調製した後、該水溶液を濃縮し、次いで加圧下にて昇温し、縮合水を除去しながら重縮合させる方法である。
常圧滴下法は、ジカルボン酸を加熱溶融した後に、常圧下にてジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる方法である。この際、生成するポリアミドの融点よりも反応温度が下回らないように昇温しながら重縮合反応を行う。設定モル比に達したらジアミンの滴下を終了し、ポリアミドの融点より10℃程度高い温度まで昇温して所定時間保持し、重縮合を継続する。
加圧滴下法は、ジカルボン酸成分を加熱溶融した後に、加圧下にて、好ましくは0.3〜0.4MPaG程度に加圧して、ジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる方法である。この際、生成するポリアミドの融点よりも反応温度が下回らないように昇温しながら重縮合反応を行う。設定モル比に達したらジアミン成分の滴下を終了し、徐々に常圧に戻しながら、ポリアミドの融点より10℃程度高い温度まで昇温して所定時間保持し、重縮合を継続する。
上記重縮合方法で製造されたポリアミドは、そのまま使用することもできるが、更に重合度を高めるための工程を経てもよい。更に重合度を高める工程としては、押出機内での反応押出や固相重合等が挙げられる。固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミドの固相重合を行う場合は、上述の装置の中で回転ドラム式の加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから好ましく用いられる。
テトラリン環含有ポリアミド化合物の製造時には、熱安定剤、光安定剤等の各種安定剤、重合調整剤等の従来公知のものをいずれも用いることができる。これらの種類や使用量は、反応速度、テトラリン環含有ポリアミド化合物の分子量、ガラス転移温度、粘度、色調、安全性、熱安定性、耐候性、自身の溶出性などに応じて適宜選択すればよく、特に限定されない。
なお、テトラリン環含有ポリアミド化合物の好ましい相対粘度は、成形品の強度や外観、成形加工性の観点から、好ましくは1.8〜4.2、より好ましくは1.9〜4.0、更に好ましくは2.0〜3.8である。
なお、ここでいう相対粘度は、テトラリン環含有ポリアミド化合物1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t)の比であり、次式で示される。
相対粘度=t/t
上述したテトラリン環含有ポリアミド化合物は、いずれも、テトラリン環のベンジル位に水素を有するものであり、上述した遷移金属触媒と併用することでベンジル位の水素が引き抜かれ、これにより優れた酸素吸収能を発現する。
また、本実施形態の酸素吸収性樹脂組成物は、酸素吸収後の低分子量化合物の生成が著しく抑制されたものである。その理由は明らかではないが、例えば以下の酸化反応機構が推測される。すなわち、上記のテトラリン環含有ポリアミド化合物においては、まずテトラリン環のベンジル位にある水素が引き抜かれてラジカルが生成し、その後、ラジカルと酸素との反応によりベンジル位の炭素が酸化され、ヒドロキシ基またはケトン基が生成すると考えられる。そのため、本実施形態の酸素吸収性樹脂組成物においては、上記従来技術のような酸化反応による酸素吸収主剤の分子鎖の切断がなく、テトラリン環含有ポリアミド化合物の構造が維持され、不純物溶出の原因となる低分子量の有機化合物が酸素吸収後に生成され難いためと推測される。
<遷移金属触媒>
本実施形態の酸素吸収性樹脂組成物において使用される遷移金属触媒としては、上記のテトラリン環含有ポリアミド化合物の酸化反応の触媒として機能し得るものであれば、公知のものから適宜選択して用いることができ、特に限定されない。
かかる遷移金属触媒の具体例としては、遷移金属の有機酸塩、ハロゲン化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩、硫酸塩、酸化物、水酸化物等が挙げられる。ここで、遷移金属触媒に含まれる遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム等が挙げられるが、これらに限定されない。これらの中でも、マンガン、鉄、コバルト、ニッケル、銅が好ましい。また、有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、2−エチルヘキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸等が挙げられるが、これらに限定されない。遷移金属触媒は、上述した遷移金属と有機酸とを組み合わせたものが好ましく、遷移金属がマンガン、鉄、コバルト、ニッケルまたは銅であり、有機酸が酢酸、ステアリン酸、2−エチルヘキサン酸、オレイン酸またはナフテン酸である組み合わせがより好ましい。なお、遷移金属触媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
本実施形態の酸素吸収性樹脂組成物におけるテトラリン環含有ポリアミド化合物および遷移金属触媒の含有割合は、使用するテトラリン環含有ポリアミド化合物や遷移金属触媒の種類および所望の性能に応じて適宜設定することができ、特に限定されない。酸素吸収性樹脂組成物の酸素吸収量の観点から、遷移金属触媒の含有量は、テトラリン環含有ポリアミド化合物100質量部に対し、遷移金属量として0.001〜10質量部であることが好ましく、より好ましくは0.002〜2質量部、さらに好ましくは0.005〜1質量部である。
<他の熱可塑性樹脂>
また、本実施形態の酸素吸収性樹脂組成物は、必要に応じて、上記テトラリン環含有ポリアミド化合物以外の、他の熱可塑性樹脂をさらに含有していてもよい。他の熱可塑性樹脂を併用することで、成形性や取扱性を高めることができる。
他の熱可塑性樹脂としては、公知のものを適宜用いることができる。低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、或いはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同士のランダムまたはブロック共重合体等のポリオレフィン;無水マレイン酸グラフトポリエチレンや無水マレイン酸グラフトポリプロピレン等の酸変性ポリオレフィン;エチレン−酢酸ビニル共重合体、エチレン−塩化ビニル共重合体、エチレン−(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン−メタクリル酸メチル共重合体等のエチレン−ビニル化合物共重合体;ポリスチレン、アクリロニトリル−スチレン共重合体、α−メチルスチレン−スチレン共重合体等のスチレン系樹脂;ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリビニル化合物、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ポリメタキシリレンアジパミド(MXD6)等のポリアミド;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、グリコール変性ポリエチレンテレフタレート(PETG)、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシアルカノエート等のポリエステル;ポリカーボネート;ポリエチレンオキサイド等のポリエーテル等或いはこれらの混合物等が挙げられるが、これらに限定されない。これらの熱可塑性樹脂は、1種を単独でまたは2種以上を組み合わせて用いることができる。
テトラリン環含有ポリアミド化合物及び遷移金属触媒並びに必要に応じて含有される熱可塑性樹脂は、公知の方法で混合する事が出来る。また、押出機を用いてこれらを混練することにより、より高い分散性を有する酸素吸収性樹脂組成物を得ることもできる。
<各種添加剤>
ここで、本実施形態の酸素吸収性樹脂組成物は、本実施形態の効果を過度に損なわない範囲で、当業界で公知の各種添加剤を含有していてもよい。かかる任意成分としては、例えば、乾燥剤、顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等が挙げられるが、これらに特に限定されない。
さらに、本実施形態の酸素吸収性樹脂組成物は、酸素吸収反応を促進させるために、必要に応じて、さらにラジカル発生剤や光開始剤を含有していてもよい。ラジカル発生剤の具体例としては、各種のN−ヒドロキシイミド化合物が挙げられる。具体的には、N−ヒドロキシコハクイミド、N−ヒドロキシマレイミド、N,N’−ジヒドロキシシクロヘキサンテトラカルボン酸ジイミド、N−ヒドロキシフタルイミド、N−ヒドロキシテトラクロロフタルイミド、N−ヒドロキシテトラブロモフタルイミド、N−ヒドロキシヘキサヒドロフタルイミド、3−スルホニル−N−ヒドロキシフタルイミド、3−メトキシカルボニル−N−ヒドロキシフタルイミド、3−メチル−N−ヒドロキシフタルイミド、3−ヒドロキシ−N−ヒドロキシフタルイミド、4−ニトロ−N−ヒドロキシフタルイミド、4−クロロ−N−ヒドロキシフタルイミド、4−メトキシ−N−ヒドロキシフタルイミド、4−ジメチルアミノ−N−ヒドロキシフタルイミド、4−カルボキシ−N−ヒドロキシヘキサヒドロフタルイミド、4−メチル−N−ヒドロキシヘキサヒドロフタルイミド、N−ヒドロキシヘット酸イミド、N−ヒドロキシハイミック酸イミド、N−ヒドロキシトリメリット酸イミド、N,N−ジヒドロキシピロメリット酸ジイミド等が挙げられるが、これらに特に限定されない。また、光開始剤の具体例としては、ベンゾフェノンとその誘導体、チアジン染料、金属ポルフィリン誘導体、アントラキノン誘導体等が挙げられるが、これらに特に限定されない。なお、これらのラジカル発生剤および光開始剤は、1種を単独で或いは2種以上を組み合わせて用いることができる。
本実施形態の酸素吸収性医療用多層成形容器において、酸素吸収層(層A)の厚みは、用途や所望する性能に応じて適宜設定でき、特に限定されないが、高い酸素吸収性能を有し、医療用多層成形容器に要求される諸物性を確保するという観点から、1〜1000μmが好ましく、より好ましくは50〜900μm、さらに好ましくは100〜800μmである。
[熱可塑性樹脂を含有する樹脂層(層B)]
本実施形態の酸素吸収性医療用多層成形容器において、樹脂層(層B)は、熱可塑性樹脂を含有する層である。層Bにおける熱可塑性樹脂の含有率は、適宜設定することができ、特に限定されないが、層Bの総量に対して、70〜100質量%であることが好ましく、より好ましくは80〜100質量%、さらに好ましくは90〜100質量%である。
本実施形態の酸素吸収性医療用多層成形容器は、層Bを複数有していてもよく、複数の層Bの構成は互いに同一であっても異なっていてもよい。層Bの厚みは、用途に応じて適宜決定することができ、特に限定されないが、医療用多層成形容器に要求される諸物性を確保するという観点から、50〜10000μmが好ましく、より好ましくは100〜7000μm、さらに好ましくは300〜5000μmである。
本実施形態の層Bで用いる熱可塑性樹脂としては、任意の熱可塑性樹脂を使用することができ、特に限定されない。具体的には、上記第1実施形態で例示した熱可塑性樹脂が挙げられる。とりわけ、本実施形態の層Bで用いる熱可塑性樹脂は、ポリオレフィン、ポリエステル、ポリアミド、エチレン−ビニルアルコール共重合体、植物由来樹脂および塩素系樹脂からなる群から選ばれる少なくとも一種であることが好ましい。なお、本実施形態の層Bで用いる熱可塑性樹脂は、上述した第1実施形態のテトラリン環含有ポリアミド化合物以外の熱可塑性樹脂の含有量が、50〜100質量%であることが好ましく、70〜100質量%がより好ましく、90〜100質量%が特に好ましい。
<ポリオレフィン>
本実施形態の層Bで用いられるポリオレフィンの具体例としては、ポリエチレン(低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン)、ポリプロピレン、ポリブテン−1、ポリ−4−メチルペンテン−1、エチレンとα−オレフィンとの共重合体、プロピレンとα−オレフィン共重合体、エチレン−α,β−不飽和カルボン酸共重合体、エチレン−α,β−不飽和カルボン酸エステル共重合体等が挙げられるが、これらに特に限定されない。これらポリオレフィンの具体例としては、ノルボルネンもしくはテトラシクロドデセンまたはそれらの誘導体などのシクロオレフィン類開環重合体およびその水素添加物、ノルボルネンもしくはテトラシクロドデセンまたはその誘導体などのシクロオレフィンと、エチレンまたはプロピレンとの重合により分子鎖にシクロペンチル残基や置換シクロペンチル残基が挿入された共重合体である樹脂がより好ましい。ここで、シクロオレフィンは、単環式および多環式のものを含む。また、熱可塑性ノルボルネン系樹脂または熱可塑性テトラシクロドデセン系樹脂もより好ましいものの1つである。熱可塑性ノルボルネン系樹脂としては、ノルボルネン系単量体の開環重合体、その水素添加物、ノルボルネン系単量体の付加型重合体、ノルボルネン系単量体とオレフィンの付加型重合体などが挙げられる。熱可塑性テトラシクロドデセン系樹脂としては、テトラシクロドデセン系単量体の開環重合体、その水素添加物、テトラシクロドデセン系単量体の付加型重合体、テトラシクロドデセン系単量体とオレフィンの付加型重合体などが挙げられる。熱可塑性ノルボルネン系樹脂は、例えば特開平3−14882号公報、特開平3−122137号公報、特開平4−63807号公報などに記載されている。
特に好ましいのは、ノルボルネンとエチレン等のオレフィンを原料とした共重合体、およびテトラシクロドデセンとエチレン等のオレフィンを原料とした共重合体であるシクロオレフィンコポリマー(COC)である。また、ノルボルネンを開環重合し、水素添加した重合物であるシクロオレフィンポリマー(COP)も特に好ましい。このようなCOCおよびCOPは、例えば特開平5−300939号公報或いは特開平5−317411号公報などに記載されている。
COCは、例えば三井化学株式会社製、アペル(登録商標)として市販されており、またCOPは、例えば日本ゼオン株式会社製、ゼオネックス(登録商標)またはゼオノア(登録商標)や株式会社大協精工製、Daikyo Resin CZ(登録商標)として市販されている。COCおよびCOPは、耐熱性や耐光性などの化学的性質や耐薬品性はポリオレフィン樹脂としての特徴を示し、機械特性、溶融、流動特性、寸法精度などの物理的性質は非晶性樹脂としての特徴を示すことから最も好ましい材質である。
<ポリエステル>
この本実施形態の層Bで用いられるポリエステルの具体例としては、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種または二種以上とグリコールを含む多価アルコールから選ばれる一種または二種以上とからなるもの、またはヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、または環状エステルからなるもの等が挙げられる。エチレンテレフタレート系熱可塑性ポリエステルは、エステル反復単位の大部分、一般に70モル%以上をエチレンテレフタレート単位が占めるものであり、ガラス転移点(Tg)が50〜90℃、融点(Tm)が200〜275℃の範囲にあるものが好適である。エチレンテレフタレート系熱可塑性ポリエステルとしてポリエチレンテレフタレートが耐圧性、耐熱性、耐熱圧性等の点で特に優れているが、エチレンテレフタレート単位以外にイソフタル酸やナフタレンジカルボン酸等のジカルボン酸とプロピレングリコール等のジオールからなるエステル単位の少量を含む共重合ポリエステルも使用できる。
ジカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3−シクロブタンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2,5−ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸等のナフタレンジカルボン酸類、4,4’−ビフェニルジカルボン酸、4,4’−ビフェニルスルホンジカルボン酸、4,4’−ビフェニルエーテルジカルボン酸、1,2−ビス(フェノキシ)エタン−p,p’−ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸またはこれらのエステル形成性誘導体、5−ナトリウムスルホイソフタル酸、2−ナトリウムスルホテレフタル酸、5−リチウムスルホイソフタル酸、2−リチウムスルホテレフタル酸、5−カリウムスルホイソフタル酸、2−カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸またはそれらの低級アルキルエステル誘導体等が挙げられる。
上記のジカルボン酸のなかでも、得られるポリエステルの物理特性等の観点から、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸類の使用が好ましい。なお、必要に応じて他のジカルボン酸を共重合してもよい。
これらジカルボン酸以外の多価カルボン酸の具体例としては、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’−ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体等が挙げられる。
グリコールの具体例としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、2,3−ブチレングリコール、1,4−ブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジエタノール、1,10−デカメチレングリコール、1,12−ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’−ジヒドロキシビスフェノ−ル、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、1,4−ビス(β−ヒドロキシエトキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)エーテル、ビス(p−ヒドロキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)メタン、1,2−ビス(p−ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5−ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。
上記のグリコールのなかでも、特に、エチレングリコール、1,3−プロピレングリコール、1,4−ブチレングリコール、1,4−シクロヘキサンジメタノールを主成分として使用することが好適である。
これらグリコール以外の多価アルコールの具体例としては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロ−ル、ヘキサントリオール等が挙げられる。
ヒドロキシカルボン酸の具体例としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3−ヒドロキシ酪酸、p−ヒドロキシ安息香酸、p−(2−ヒドロキシエトキシ)安息香酸、4−ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体等が挙げられる。
環状エステルの具体例としては、ε−カプロラクトン、β−プロピオラクトン、β−メチル−β−プロピオラクトン、δ−バレロラクトン、グリコリド、ラクチド等が挙げられる。
多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体の具体例としては、これらのアルキルエステル、酸クロライド、酸無水物等が挙げられる。
上述したものの中でも、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸類またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。
なお、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。同様に、主たる酸成分がナフタレンジカルボン酸類またはそのエステル形成性誘導体であるポリエステルは、ナフタレンジカルボン酸類またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。
上述したナフタレンジカルボン酸類またはそのエステル形成性誘導体の中でも、ジカルボン酸類において例示した1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。
また、上述した主たるグリコール成分がアルキレングリコールであるポリエステルは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。なお、ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよい。
上記テレフタル酸/エチレングリコール以外の共重合成分は、透明性と成形性とを両立する観点から、イソフタル酸、2,6−ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、1,2−プロパンジオール、1,3−プロパンジオールおよび2−メチル−1,3−プロパンジオールからなる群より選ばれる少なくとも1種以上であることが好ましく、イソフタル酸、ジエチレングリコール、ネオペンチルグリコールおよび1,4−シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上であることがより好ましい。
本実施形態の酸素吸収性多層体の層Bに用いるポリエステルの好ましい一例は、主たる繰り返し単位がエチレンテレフタレートから構成されるポリエステルである。より好ましくはエチレンテレフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレンテレフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのはエチレンテレフタレート単位を90モル%以上含む線状ポリエステルである。
また本実施形態の酸素吸収性多層体の層Bに用いるポリエステルの好ましい他の一例は、主たる繰り返し単位がエチレン−2,6−ナフタレートから構成されるポリエステルである。より好ましくはエチレン−2,6−ナフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレン−2,6−ナフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのは、エチレン−2,6−ナフタレート単位を90モル%以上含む線状ポリエステルである。
また、本実施形態の酸素吸収性多層体の層Bに用いるポリエステルの好ましいその他の例としては、プロピレンテレフタレート単位を70モル%以上含む線状ポリエステル、プロピレンナフタレート単位を70モル%以上含む線状ポリエステル、1,4−シクロヘキサンジメチレンテレフタレート単位を70モル%以上含む線状ポリエステル、ブチレンナフタレート単位を70モル%以上含む線状ポリエステル、またはブチレンテレフタレート単位を70モル%以上含む線状ポリエステルである。
透明性と成形性との両立の観点から、特に好適なポリエステルとしては、ポリエステル全体の組み合わせとして、テレフタル酸/イソフタル酸/エチレングリコールの組み合わせ、テレフタル酸/エチレングリコール/1,4−シクロヘキサンジメタノールの組み合わせ、テレフタル酸/エチレングリコール/ネオペンチルグリコールの組み合わせである。なお、当然ではあるが、上記のポリエステルは、エステル化(エステル交換)反応や重縮合反応中のエチレングリコールの二量化により生じるジエチレングリコールを少量(5モル%以下)含んでいてもよいことは言うまでもない。
また本実施形態の酸素吸収性多層体の層Bに用いるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。なお、このポリグリコール酸は、ラクチド等の他成分が共重合されているものであってもよい。
とりわけ、本実施形態の層Bで用いるポリエステルとしては、主たる酸成分がテレフタル酸類もしくはそのエステル形成性誘導体、または、ナフタレンジカルボン酸類もしくはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。そして、上述したジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、これらを70モル%以上含むことが好ましい。これらジカルボン酸の中でも、特にテレフタル酸および/または2,6−ナフタレンジカルボン酸が好ましい。また、テレフタル酸および/または2,6−ナフタレンジカルボン酸を70モル%以上含むことが物理特性等の点で好ましく、90モル%以上含むことがより好ましい。必要に応じて他のジカルボン酸を共重合してもよい。さらに、イソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、1,2−プロパンジオール、1,3−プロパンジオールおよび2−メチル−1,3−プロパンジオールからなる群より選ばれる少なくとも1種以上の共重合成分の使用が、透明性と成形性とを両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上がより好ましい。
<ポリアミド>
以下で説明するポリアミドは、層Bの熱可塑性樹脂として例示するポリアミドであって、本実施形態のテトラリン環含有ポリアミド化合物を含まない。本実施形態の酸素吸収性多層体の層Bで用いるポリアミドの具体例としては、ラクタムもしくはアミノカルボン酸から誘導される単位を主構成単位とするポリアミドや、脂肪族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする脂肪族ポリアミド、脂肪族ジアミンと芳香族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド、芳香族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド等が挙げられる。なお、ここで言うポリアミドは、必要に応じて、主構成単位以外のモノマー単位が共重合されたものであってもよい。
ラクタムもしくはアミノカルボン酸の具体例としては、ε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラ−アミノメチル安息香酸のような芳香族アミノカルボン酸等が挙げられる。
脂肪族ジアミンの具体例としては、炭素数2〜12の脂肪族ジアミン或いはその機能的誘導体、脂環族のジアミン等が挙げられる。なお、脂肪族ジアミンは、直鎖状の脂肪族ジアミンであっても分岐を有する鎖状の脂肪族ジアミンであってもよい。このような直鎖状の脂肪族ジアミンの具体例としては、エチレンジアミン、1−メチルエチレンジアミン、1,3−プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミン等が挙げられる。また、脂環族ジアミンの具体例としては、シクロヘキサンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン等が挙げられる。
また、脂肪族ジカルボン酸の具体例としては、直鎖状の脂肪族ジカルボン酸や脂環族ジカルボン酸等が挙げられる。とりわけ、炭素数4〜12のアルキレン基を有する直鎖状脂肪族ジカルボン酸が好ましい。直鎖状脂肪族ジカルボン酸としては、アジピン酸、セバシン酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸およびこれらの機能的誘導体等が挙げられる。また、脂環族ジカルボン酸としては、1,4−シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等が挙げられる。
また、芳香族ジアミンの具体例としては、メタキシリレンジアミン、パラキシリレンジアミン、パラ−ビス(2−アミノエチル)ベンゼン等が挙げられる。
また、芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸およびその機能的誘導体等が挙げられる。
具体的なポリアミドとしては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド9T、ポリアミド6IT、ポリメタキシリレンアジパミド(ポリアミドMXD6)、イソフタル酸共重合ポリメタキシリレンアジパミド(ポリアミドMXD6I)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカナミド(ポリアミドMXD12)、ポリ1,3−ビスアミノシクロヘキサンアジパミド(ポリアミドBAC6)、ポリパラキシリレンセバカミド(ポリアミドPXD10)等がある。より好ましいポリアミドとしては、ポリアミド6、ポリアミドMXD6、ポリアミドMXD6Iが挙げられる。
また、前記ポリアミドに共重合されていてもよい共重合成分としては、少なくとも一つの末端アミノ基、もしくは末端カルボキシル基を有する数平均分子量が2000〜20000のポリエーテル、または前記末端アミノ基を有するポリエーテルの有機カルボン酸塩、または前記末端カルボキシル基を有するポリエーテルのアミノ塩を用いることもできる。その具体例としては、ビス(アミノプロピル)ポリ(エチレンオキシド)(数平均分子量が2000〜20000のポリエチレングリコール)が挙げられる。
また、前記部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸等の3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。
<エチレン−ビニルアルコール共重合体>
本実施形態の酸素吸収性多層体の層Bで用いるエチレンビニルアルコール共重合体としては、エチレン含量が15〜60モル%であり、且つ、酢酸ビニル成分のケン化度が90モル%以上のものが好適である。エチレン含量は、好ましくは20〜55モル%であり、より好ましくは29〜44モル%である。また、酢酸ビニル成分のケン化度は、好ましくは95モル%以上である。なお、エチレンビニルアルコール共重合体は、プロピレン、イソブテン、α−オクテン、α−ドデセン、α−オクタデセン等のα−オレフィン、不飽和カルボン酸またはその塩、部分アルキルエステル、完全アルキルエステル、ニトリル、アミド、無水物、不飽和スルホン酸またはその塩等の少量のコモノマーをさらに含んでいてもよい。
<植物由来樹脂>
本実施形態の酸素吸収性多層体の層Bで用いる植物由来樹脂は、原料として植物由来物質を含む樹脂であればよく、その原料となる植物は特に限定されない。植物由来樹脂の具体例としては、脂肪族ポリエステル系生分解性樹脂が挙げられる。また、脂肪族ポリエステル系生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)等のポリ(α−ヒドロキシ酸);ポリブチレンサクシネート(PBS)、ポリエチレンサクシネート(PES)等のポリアルキレンアルカノエート等が挙げられる。
<塩素系樹脂>
本実施形態の酸素吸収性多層体の層Bで用いる塩素系樹脂は、構成単位に塩素を含む樹脂であればよく、公知の樹脂を用いることができる。塩素系樹脂の具体例としては、ポリ塩化ビニル、ポリ塩化ビニリデン、および、これらと酢酸ビニル、マレイン酸誘導体、高級アルキルビニルエーテル等との共重合体等が挙げられる。
本実施形態の酸素吸収性医療用多層成形容器は、所望する性能等に応じて、上述した酸素吸収層(層A)および熱可塑性樹脂を含有する樹脂層(層B)の他に、任意の層を含んでいてもよい。そのような任意の層としては、例えば、接着層等が挙げられる。
例えば、隣接する2つの層の間の層間接着強度をより高める観点から、当該2つの層の間に接着層(層AD)を設けることが好ましい。接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂;ポリエステル系ブロック共重合体を主成分としたポリエステル系熱可塑性エラストマー等が挙げられる。また、上述した樹脂層(層B)との接着性を高める観点からは、層Bに用いられている熱可塑性樹脂と同種の樹脂を変性したものが好ましい。なお、接着層の厚みは、特に限定されないが、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、2〜100μmであることが好ましく、より好ましくは5〜90μm、さらに好ましくは10〜80μmである。
本実施形態の酸素吸収性医療用多層成形容器の製造方法は、各種材料の性状や目的とする形状等に応じて、公知の方法を適用することができ、特に限定されない。例えば、各種の射出成形法を適用して、多層成形容器を製造することができる。
本実施形態の酸素吸収性医療用多層成形容器の厚みは、特に限定されないが、酸素吸収性能を高めるとともに医療用多層成形容器に要求される諸物性を確保するという観点から、3〜5000μmが好ましく、より好ましくは5〜4500μmであり、さらに好ましくは10〜4000μmである。
また、射出成形法以外の方法としては、例えば、圧縮成形法により多層成形体を得ることができ、得られた多層成形体に上述した二次加工を施すことにより、所望の容器形状に成形することもできる。例えば、熱可塑性樹脂溶融物中に酸素吸収性樹脂組成物を設け、その溶融塊を雄型に供給するとともに、雌型により圧縮し、圧縮成形物を冷却固化することにより多層成形体を得ることができる。また、二次加工としては、例えば押出成形、圧縮成形(シート成形、ブロー成形)等が適用可能である。
本実施形態の酸素吸収性医療用多層成形容器の使用態様としては、特に限定されず、種々の用途および形態で用いることができる。好ましい使用態様としては、例えば、バイアル、アンプル、プレフィルドシリンジ、真空採血管等が挙げられるが、これらに特に限定されない。以下、好ましい使用態様について詳述する。
〔バイアル〕
本実施形態の酸素吸収性医療用多層成形容器は、バイアルとして使用することができる。一般的には、バイアルは、ボトル、ゴム栓、キャップから構成され、薬液をボトルに充填後、ゴム栓をして、さらにその上からキャップを巻締めることで、ボトル内が密閉されている。このバイアルのボトル部分に、本実施形態の酸素吸収性医療用多層成形容器を用いることができる。
本実施形態の酸素吸収性医療用多層成形容器をバイアルのボトル部分に成形する方法としては、例えば、射出ブロー成形、押出しブロー成形等が好適である。その具体例として、射出ブロー成形方法を以下に示す。例えば、2台以上の射出機を備えた成形機および射出用金型を用いて、層Aを構成する材料および層Bを構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、射出用金型のキャビティー内に射出することにより、射出用金型のキャビティー形状に対応した形状を有する、3層構造B/A/Bの多層インジェクション成形体を製造することができる。また、先ず、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出してキャビティーを満たすことにより、3層構造B/A/Bの多層インジェクション成形体を製造することができる。さらに、先ず、層Bを構成する材料を射出し、次いで層Aを構成する材料を単独で射出し、最後に層Bを構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造B/A/B/A/Bの多層インジェクション成形体を製造することができる。またさらに、先ず、層B1を構成する材料を射出シリンダーから射出し、次いで層B2を構成する材料を別の射出シリンダーから、層B1を構成する樹脂と同時に射出し、次に層Aを構成する樹脂を層B1、層B2を構成する樹脂と同時に射出し、次に層B1を構成する樹脂を必要量射出してキャビティーを満たすことにより、5層構造B1/B2/A/B2/B1の多層インジェクション成形体を製造することができる。そして、この射出ブロー成形では、上記方法により得られた多層インジェクション成形体をある程度加熱された状態を保ったまま最終形状金型(ブロー金型)に嵌め、空気を吹込み、膨らませて金型に密着させ、冷却固化させることで、ボトル状に成形することができる。
〔アンプル〕
また、本実施形態の酸素吸収性医療用多層成形容器は、アンプルとして使用することができる。一般的には、アンプルは、頸部が細く形成された小容器から構成され、薬液を容器内に充填後、頸部の先を熔封することで、容器内が密閉されている。このアンプル(小容器)に本実施形態の酸素吸収性医療用多層成形容器を用いることができる。本実施形態の酸素吸収性医療用多層成形容器をアンプルに成形する方法としては、例えば、射出ブロー成形、押出しブロー成形等が好適である。
〔プレフィルドシリンジ〕
さらに、本実施形態の酸素吸収性医療用多層成形容器は、プレフィルドシリンジとして使用することができる。一般的には、プレフィルドシリンジは、少なくとも薬液を充填するためのバレル、バレルの一端に注射針を接合するための接合部および使用時に薬液を押し出すためのプランジャーから構成され、予めバレル内に薬剤を密封状態に収容しておき、使用時に前記バレルの先端側を開封して注射針を装着するように構成された注射器であり、その使用簡便性のために広く用いられている。このバレルに本実施形態の酸素吸収性医療用多層成形容器を用いることができる。
本実施形態の酸素吸収性医療用多層成形容器をプレフィルドシリンジのバレルに成形する方法としては、例えば、射出成形法が好適である。具体的には、先ず層Bを構成する樹脂を射出用金型のキャビティー内に一定量射出し、次いで層Aを構成する樹脂を一定量射出し、再び層Bを構成する樹脂を一定量射出することにより、多層インジェクション成形体としてバレルを製造することができる。なお、バレルと接合部は一体のものとして成形してもよいいし、別々に成形したものを接合してもよい。また、薬液を充填後、接合部の先端は封をする必要があるが、その方法は特に限定されず、公知の方法を採用することができる。例えば、接合部先端の樹脂を溶融状態に加熱し、ペンチ等で挟み込んで融着させる等すればよい。
プレフィルドシリンジのバレルの容器の厚さは、使用目的や大きさに応じて適宜設定することができ、特に限定されない。一般的には、薬液の長期保存安定性、成型性およびシリンジの操作性の観点から、0.5〜20mm程度が好ましく、より好ましくは0.5〜5mm程度である。また、厚さは均一であっても、厚さを変えたものであってもいずれでもよい。またバレル表面には、長期保存安定の目的で、他のガスバリア膜や遮光膜がさらに形成されていてもよい。これらの任意の膜およびその形成方法については、例えば、特開2004−323058号公報などに記載されている。
〔真空採血管〕
また、本実施形態の酸素吸収性医療用多層成形容器は、真空採血管として使用することができる。一般的には、真空採血管は、管状体および栓体から構成されている。この管状体に、本実施形態の酸素吸収性医療用多層成形容器を用いることができる。
本実施形態の酸素吸収性医療用多層成形容器を真空採血管の管状体に成形する方法としては、例えば、射出成形法が好適である。具体的には、先ず層Bを構成する樹脂を射出用金型のキャビティー内に一定量射出し、次いで層Aを構成する樹脂を一定量射出し、再び層Bを構成する樹脂を一定量射出することにより、多層インジェクション成形体として管状体を製造することができる。
〔被保存物〕
本実施形態の酸素吸収性医療用多層成形容器に充填される被保存物(充填物)は、特に限定されない。例えば、ビタミンA、ビタミンB2、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンKなどのビタミン剤、アトロピンなどのアルカロイド、アドレナリン、インシュリンなどのホルモン剤、ブドウ糖、マルトースなどの糖類、セフトリアキソン、セファロスポリン、シクロスポリンなどの抗生物質、オキサゾラム、フルニトラゼパム、クロチアゼパム、クロバザムなどのベンゾジアゼピン系薬剤等、任意の天然物や化合物を充填可能である。本実施形態の酸素吸収性医療用多層成形容器は、これらの天然物や化合物を充填した場合、これらの天然物や化合物の吸着量が少なく、またこれらの酸化による変質を抑制することができ、また、溶媒(例えば水分)の蒸散を抑制することもできる。
なお、これらの被保存物の充填前後に、被保存物に適した形で、医療用多層容器や被保存物の殺菌処理を施すことができる。殺菌方法としては、例えば、100℃以下での熱水処理、100℃以上の加圧熱水処理、121℃以上の高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。
以下、実施例と比較例を用いて本発明の酸素吸収性医療用多層成形容器をさらに詳しく説明するが、本発明はこれによって限定されるものではない。なお、以下の実施例ではバイアルを例に挙げて実証しているが、本願明細書に示したとおり、アンプル、プレフィルドシリンジ、真空採血管に対する要求特性はバイアルに対するものと同様であるため、本発明は以下の実施例により何ら限定されるものではない。なお、特に記載が無い限り、NMR測定は室温で行った。
[モノマー合成例]
(合成例1)
内容積18Lのオートクレーブに、ナフタレン−2,6−ジカルボン酸ジメチル2.20kg、2−プロパノール11.0kg、5%パラジウムを活性炭に担持させた触媒350g(50wt%含水品)を仕込んだ。次いで、オートクレーブ内の空気を窒素と置換し、さらに窒素を水素と置換した後、オートクレーブ内の圧力が0.8MPaとなるまで水素を供給した。次に、撹拌機を起動し、回転速度を500rpmに調整し、30分かけて内温を100℃まで上げた後、さらに水素を供給し圧力1MPaとした。その後、反応の進行による圧力低下に応じ、1MPaを維持するよう水素の供給を続けた。7時間後に圧力低下が無くなったので、オートクレーブを冷却し、未反応の残存水素を放出した後、オートクレーブから反応液を取り出した。反応液を濾過し、触媒を除去した後、分離濾液から2−プロパノールをエバポレーターで蒸発させた。得られた粗生成物に、2−プロパノールを4.40kg加え、再結晶により精製し、テトラリン−2,6−ジカルボン酸ジメチルを80%の収率で得た。尚、NMRの分析結果は下記の通りである。1H‐NMR(400MHz CDCl3)δ7.76-7.96(2H m)、7.15(1H d)、3.89(3H s)、3.70(3H s)、2.70-3.09(5H m)、1.80-1.95(1H m)。
次いで、10Lフラスコに、上記で得たテトラリン−2,6−ジカルボン酸ジメチル1.00kg、16wt%エタノール水溶液8.0kg、水酸化ナトリウム360gを添加し、80℃で4時間撹拌し、加水分解した。その後、pHが7になるまで36%塩酸を加え、析出したテトラリン−2,6−ジカルボン酸を濾過により分離後、真空乾燥し、90%の収率で得た。尚、NMRの分析結果は下記の通りである。1H‐NMR(400MHz ((DC)S=O)δ12.41-12.75(2H br)、7.65(2H m)、7.23(1H d)、3.70(3H s)、2.60-3.45(5H m)、2.05-2.13(1H m)、1.70-1.79(1H m)。
[ポリマー製造例]
(製造例1)
温度計、圧力計、窒素導入口、放圧口を備えた200mLオートクレーブに、合成例1で得たテトラリン−2,6−ジカルボン酸17.18g(78.0mmol)、ドデカメチレンジアミン15.63g(78.0mmol)、蒸留水19gを仕込み、容器内を窒素置換した。2時間かけて220℃まで昇温し、圧力2MPaGで2時間保持した。その後、1時間かけて320℃まで昇温するとともに、その昇温の間に圧力を常圧まで下げ、30分間、320℃、常圧で保持した後に冷却することでテトラリン環含有ポリアミド化合物(1)を得た。得られたポリアミド化合物(1)のガラス転移温度と融点をDSCにより測定を行った結果、ガラス転移温度は111℃、融点は262℃であった。また、相対粘度は3.74であった。仕込み組成を表1に示す。
(製造例2)
製造例1と同様のオートクレーブに、合成例1で得たテトラリン−2,6−ジカルボン酸11.64g(52.9mmol)、アゼライン酸2.48g(13.2mmol)、ドデカメチレンジアミン13.24g(66.1mmol)、蒸留水12gを仕込み、製造例1と同様の方法でテトラリン環含有ポリアミド化合物(2)を合成した。ポリアミド化合物(2)のガラス転移温度は94℃、融点は246℃、相対粘度は3.5であった。仕込み組成を表1に示す。
(製造例3)
製造例1と同様のオートクレーブに、合成例1で得たテトラリン−2,6−ジカルボン酸15.11g(68.6mmol)、セバシン酸13.88g(68.6mmol)、ヘキサメチレンジアミン15.95g(137.2mmol)、蒸留水12gを仕込み、製造例1と同様の方法でテトラリン環含有ポリアミド化合物(3)を合成した。ポリアミド化合物(3)のガラス転移温度は87℃、融点は250℃、相対粘度は2.6であった。仕込み組成を表1に示す。
(製造例4)
製造例1と同様のオートクレーブに、合成例1で得たテトラリン−2,6−ジカルボン酸11.22g(51.0mmol)、ヘキサメチレンジアミン5.93g(50.9mmol)、ε−カプロラクタム11.54g(102.0mmol)、蒸留水12gを仕込み、製造例1と同様の方法でテトラリン環含有ポリアミド化合物(4)を合成した。ポリアミド化合物(4)のガラス転移温度は96℃、融点は219℃、相対粘度は2.4であった。仕込み組成を表1に示す。
Figure 2014114020
(実施例1)
ポリアミド化合物(1)100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.1質量部となるようドライブレンドして得られた混合物を、直径37mmのスクリューを2本有する2軸押出機に15kg/hの速度で供給し、シリンダー温度290℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングすることにより、酸素吸収性樹脂組成物(1)を得た。次いで、下記に示すとおり、この酸素吸収性樹脂組成物(1)を用いて、多層インジェクション成形容器であるバイアルを製造した。その後、得られたバイアルの性能評価を、以下に示すとおりに行った。評価結果を表2に示す。
[バイアルの製造]
下記の条件により、樹脂層(層B)を構成する熱可塑性樹脂を射出シリンダーから射出し、次いで酸素吸収層(層A)を構成する酸素吸収性樹脂組成物(1)を別の射出シリンダーから、層Bを構成する熱可塑性樹脂と同時に射出し、次に層Bを構成する熱可塑性樹脂を必要量射出して射出金型内キャビティーを満たすことにより、B/A/Bの3層構成の射出成形体を得た。その後、得られた射出成形体を所定の温度まで冷却し、ブロー金型へ移行し、ブロー成形を行うことで、バイアル(ボトル部)を製造した。ここで、バイアルの総質量は24gとし、層Aの質量はバイアルの総質量の30質量%とした。また、層Bを構成する熱可塑性樹脂としては、シクロオレフィンコポリマー(Ticona GmbH製、商品名:TOPAS6013)を使用した。
(バイアルの形状)
全長89mm、外径40mmφ、肉厚1.8mmとした。なお、バイアルの製造には、射出ブロー一体型成形機(UNILOY製、型式:IBS 85、4個取り)を使用した。
(バイアルの成形条件)
層A用の射出シリンダー温度:280℃
層B用の射出シリンダー温度:280℃
射出金型内樹脂流路温度 :280℃
ブロー温度 :150℃
ブロー金型冷却水温度 : 15℃
[バイアルの性能評価]
得られたバイアルの酸素透過率の測定、成形後の外観評価、落下試験、溶出試験について、以下の方法および基準にしたがって測定し、評価した。
(1)バイアルの酸素透過率(OTR)
23℃、成形体外部の相対湿度50%、成形体内部の相対湿度100%の雰囲気下にて、測定開始から30日目の酸素透過率を測定した。測定は、酸素透過率測定装置(MOCON社製、商品名:OX−TRAN 2−21 ML)を使用した。測定値が低いほど、酸素バリア性が良好であることを示す。なお、測定の検出下限界は酸素透過率5×10−5mL/(0.21atm・day・package)である。
(2)成形後の外観
成形後のバイアルの白化の有無を、目視にて観察した。
(3)落下試験
バイアルを40℃、90%RH下にて1カ月保存した後、純水50mLを満杯充填し、その後、ゴム栓およびアルミキャップにて密封した。このようにして得られた密封容器を2mの高さから落下させ、そのときの容器外観を調査した。
(4)溶出試験
バイアルを40℃、90%RH下にて1カ月保存した後、純水50mLを満杯充填し、その後、ゴム栓およびアルミキャップにて密封した。このようにして得られた密封容器を40℃、60%RH下にて4カ月保存し、その後、純水中のトータルカーボン量(以下、TOC)を測定した。
(TOC測定)
装置 ;株式会社島津製作所製 TOC−VCPH
燃焼炉温度 ;720℃
ガス・流量 ;高純度空気、TOC計部150mL/min
注入量 ;150μL
検出限界 ;1μg/mL
(実施例2〜4)
ポリアミド化合物(1)に代えて、表2に示すポリアミド化合物をそれぞれ用いること以外は、実施例1と同様に行い、酸素吸収性樹脂組成物およびバイアルをそれぞれ製造した。得られたバイアルの性能評価を実施例1と同様にそれぞれ行った。評価結果を表2に示す。
(比較例1)
酸素吸収性樹脂組成物(1)に代えてTicona GmbH社製シクロオレフィンコポリマー(Ticona GmbH社製 TOPAS6013)100質量部を用いること以外は、実施例1と同様に行い、実施例1と同形状の単層のバイアルを製造した。得られたバイアルの性能評価を実施例1と同様に行った。評価結果を表2に示す。
(比較例2)
ナイロンMXD6(三菱ガス化学株式会社製S7007)100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.04質量部となるようドライブレンドして得られた混合物を、直径37mmのスクリューを2本有する2軸押出機に15kg/hの速度で供給し、シリンダー温度280℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングすることにより、酸素吸収性樹脂組成物(M)を得た。酸素吸収性樹脂組成物(1)に代えてこの酸素吸収性樹脂組成物(M)を用いること以外は、実施例1と同様に行い、バイアルを製造した。得られたバイアルの性能評価を実施例1と同様に行った。評価結果を表2に示す。
Figure 2014114020
表2から明らかなように、実施例1〜4のバイアルは、良好な酸素バリア性を有し、長期保存後も良好な強度を維持し、容器から内容物への溶出量も低いことが確認された。さらに、実施例1〜4のバイアルは、容器内部の視認性が確保され、透明性に優れていることが確認された。

Claims (4)

  1. 熱可塑性樹脂を少なくとも含有する第1の樹脂層と、ポリアミド化合物および遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層と、熱可塑性樹脂を少なくとも含有する第2の樹脂層の少なくとも3層をこの順に有する、酸素吸収性医療用多層成形容器であって、
    前記ポリアミド化合物が、下記一般式(1)〜(2)で表される構成単位;
    Figure 2014114020

    (式中、Rは、それぞれ独立して、一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基およびイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。各式中、mは、それぞれ独立して、0〜3の整数を示し、各式中、nは、それぞれ独立して、0〜7の整数を示し、テトラリン環のベンジル位には少なくとも1つ以上の水素原子が結合している。各式中、Xは、それぞれ独立して、芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基および複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を示す。)
    からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有する、酸素吸収性医療用多層成形容器。
  2. 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、請求項1に記載の酸素吸収性医療用多層成形容器。
  3. 前記遷移金属触媒が、前記ポリアミド化合物100質量部に対し、遷移金属量として0.001〜10質量部含まれる、請求項1または2に記載の酸素吸収性医療用多層成形容器。
  4. 前記一般式(1)で表される構成単位が、下記式(3)〜(6)で表される構成単位;
    Figure 2014114020

    からなる群より選択される少なくとも1つである、
    請求項1〜3のいずれか一項に記載の酸素吸収性医療用多層成形容器。
JP2012267218A 2011-12-16 2012-12-06 医療用多層容器 Active JP6102229B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012267218A JP6102229B2 (ja) 2012-12-06 2012-12-06 医療用多層容器
TW101147842A TWI595049B (zh) 2011-12-16 2012-12-17 氧吸收性樹脂組成物與使用此組成物所成的多層體、容器、噴射成形體及醫療用容器
EP12857852.3A EP2792713B1 (en) 2011-12-16 2012-12-17 Oxygen-absorbing resin molded article obtained from an oxygen-absorbing resin composition, and multilayer body, container, injection-molded article and medical container using the composition
CN201280062259.8A CN103998523B (zh) 2011-12-16 2012-12-17 吸氧性树脂组合物、以及使用其的多层体、容器、注射成型体及医疗用容器
KR1020147016211A KR20140107257A (ko) 2011-12-16 2012-12-17 산소 흡수성 수지 조성물, 및 이를 이용한 다층체, 용기, 인젝션 성형체 및 의료용 용기
US14/364,416 US9840359B2 (en) 2011-12-16 2012-12-17 Oxygen-absorbing resin composition, and multilayer body, container, injection-molded body, and medical container using same
PCT/JP2012/082610 WO2013089268A1 (ja) 2011-12-16 2012-12-17 酸素吸収性樹脂組成物、並びにこれを用いた多層体、容器、インジェクション成形体および医療用容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267218A JP6102229B2 (ja) 2012-12-06 2012-12-06 医療用多層容器

Publications (2)

Publication Number Publication Date
JP2014114020A true JP2014114020A (ja) 2014-06-26
JP6102229B2 JP6102229B2 (ja) 2017-03-29

Family

ID=51170480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267218A Active JP6102229B2 (ja) 2011-12-16 2012-12-06 医療用多層容器

Country Status (1)

Country Link
JP (1) JP6102229B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534002A (en) * 1967-03-03 1970-10-13 Marathon Oil Co Polyamides from dicarboxy derivatives of hydronaphthalenes and processes for their manufacture
US20050228122A1 (en) * 2004-03-31 2005-10-13 General Electric Company Esteramide compositions, copolymers and blends thereof
JP2009248983A (ja) * 2008-04-03 2009-10-29 Nipro Corp 医薬製剤
JP2010105318A (ja) * 2008-10-31 2010-05-13 C I Kasei Co Ltd 多層フィルム及び該多層フィルムを用いた包装容器
WO2010147097A1 (ja) * 2009-06-15 2010-12-23 三菱瓦斯化学株式会社 酸素吸収樹脂組成物
JP2011225638A (ja) * 2010-04-15 2011-11-10 Mitsubishi Gas Chemical Co Inc 成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534002A (en) * 1967-03-03 1970-10-13 Marathon Oil Co Polyamides from dicarboxy derivatives of hydronaphthalenes and processes for their manufacture
US20050228122A1 (en) * 2004-03-31 2005-10-13 General Electric Company Esteramide compositions, copolymers and blends thereof
JP2009248983A (ja) * 2008-04-03 2009-10-29 Nipro Corp 医薬製剤
JP2010105318A (ja) * 2008-10-31 2010-05-13 C I Kasei Co Ltd 多層フィルム及び該多層フィルムを用いた包装容器
WO2010147097A1 (ja) * 2009-06-15 2010-12-23 三菱瓦斯化学株式会社 酸素吸収樹脂組成物
JP2011225638A (ja) * 2010-04-15 2011-11-10 Mitsubishi Gas Chemical Co Inc 成形体

Also Published As

Publication number Publication date
JP6102229B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
US9840359B2 (en) Oxygen-absorbing resin composition, and multilayer body, container, injection-molded body, and medical container using same
JP6102234B2 (ja) 医療用多層容器
WO2014136918A1 (ja) 酸素吸収性医療用多層容器及びバイオ医薬の保存方法
JPWO2014136844A1 (ja) 酸素吸収性樹脂組成物、およびこれを用いた酸素吸収性多層インジェクション成形体および酸素吸収性多層容器
JP5974871B2 (ja) 酸素吸収性多層インジェクション成形体
JP6048742B2 (ja) 酸素吸収性医療用多層容器
JP6056439B2 (ja) プレフィルドシリンジ
JP6102229B2 (ja) 医療用多層容器
JP6015322B2 (ja) 医療用多層容器
JP6056440B2 (ja) バイオ医薬の保存方法
JP6048743B2 (ja) 酸素吸収性医療用多層容器
JP6020108B2 (ja) 医療用多層容器
JP6086220B2 (ja) バイオ医薬の保存方法
JP6015344B2 (ja) バイオ医薬の保存方法
JP5966852B2 (ja) プレフィルドシリンジ
JP6048746B2 (ja) 酸素吸収性医療用多層容器
JP6051896B2 (ja) バイオ医薬の保存方法
JP6094940B2 (ja) 酸素吸収性プレフィルドシリンジ
JP2018135310A (ja) アドレナリン含有薬液の保存方法
JP5962425B2 (ja) つゆ類の保存方法
JP5935656B2 (ja) 医療用多層容器
JP6048175B2 (ja) 医療用多層容器
JP5962427B2 (ja) アルコール飲料の保存方法
JP5962426B2 (ja) 液状茶又はペースト状茶の保存方法
JP2014084150A (ja) 医療用多層容器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151