JP2014103402A - Rectangular conductor for solar cell, process of manufacturing the same, lead wire for solar cell, and solar cell module - Google Patents

Rectangular conductor for solar cell, process of manufacturing the same, lead wire for solar cell, and solar cell module Download PDF

Info

Publication number
JP2014103402A
JP2014103402A JP2013262628A JP2013262628A JP2014103402A JP 2014103402 A JP2014103402 A JP 2014103402A JP 2013262628 A JP2013262628 A JP 2013262628A JP 2013262628 A JP2013262628 A JP 2013262628A JP 2014103402 A JP2014103402 A JP 2014103402A
Authority
JP
Japan
Prior art keywords
solar cell
conductor
lead wire
less
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262628A
Other languages
Japanese (ja)
Other versions
JP5569642B2 (en
Inventor
Hirohisa Endo
裕寿 遠藤
Takashi Nemoto
孝 根本
Hiromitsu Kuroda
洋光 黒田
Atsushi Otake
敦志 大竹
Shuji Kawasaki
修慈 川崎
Chu Bando
宙 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013262628A priority Critical patent/JP5569642B2/en
Publication of JP2014103402A publication Critical patent/JP2014103402A/en
Application granted granted Critical
Publication of JP5569642B2 publication Critical patent/JP5569642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a rectangular conductor for a solar cell, a lead wire for a solar cell, and a solar cell module, that hardly cause warpage or breakage of a silicon crystal wafer during bonding of lead wires for connection even when a silicon crystal wafer is made to be a thin plate.SOLUTION: The rectangular conductor for a solar cell 10 has volume resistivity of 26.7 μΩ mm or less and has 0.2% yield strength value of 90 MPa or less (excluding 49 MPa or less) in a tension test, (excluding a rectangular conductor formed by cladding copper-invar-copper), and a lead wire 20 for a solar cell is formed by coating a solder plating film 13 on a surface of the rectangular conductor.

Description

本発明は、太陽電池用の平角導体とその製造方法及び平角導体を用いたリード線並びに太陽電池モジュールに関し、特に、太陽電池のシリコンセルとはんだ接続してもシリコンセルの反りが少なく、かつ電気的特性にも優れた太陽電池用の平角導体とその製造方法及び太陽電池用リード線並びに太陽電池モジュールに関するものである。   The present invention relates to a flat conductor for a solar cell, a method for manufacturing the same, a lead wire using the flat conductor, and a solar cell module. The present invention relates to a flat conductor for a solar cell that is excellent in mechanical characteristics, a manufacturing method thereof, a lead wire for a solar cell, and a solar cell module.

基板上にシリコン結晶を成長させた太陽電池においては、図3に示すように、通常、シリコン結晶ウェハ(Siセル)51の所定の領域に接続用リード線53を接合し、これを通じて電力を伝送する構成としている。   In a solar cell in which a silicon crystal is grown on a substrate, as shown in FIG. 3, usually, a connecting lead wire 53 is joined to a predetermined region of a silicon crystal wafer (Si cell) 51, and electric power is transmitted therethrough. It is configured to do.

上記接続用リード線は、平角導体の表面に、セルとの接続のためのはんだめっき膜が形成される。例えば、図4に示すように、平角導体61としてタフピッチ銅や無酸素銅などの純銅を用い、その外側に形成されたはんだめっき膜63として、Sn−Pb共晶はんだを用いたものがある(例えば、特許文献1参照)。また、近年、環境への配慮から、はんだめっき膜の構成材として、Pbを含まないはんだ(Pbフリーはんだ)への切り替えが検討されている(例えば、特許文献2参照)。   In the connection lead wire, a solder plating film for connection to the cell is formed on the surface of the flat conductor. For example, as shown in FIG. 4, pure copper such as tough pitch copper or oxygen-free copper is used as the flat conductor 61, and Sn—Pb eutectic solder is used as the solder plating film 63 formed on the outside (see FIG. 4). For example, see Patent Document 1). In recent years, switching to a solder containing no Pb (Pb-free solder) as a constituent material of a solder plating film has been studied in consideration of the environment (for example, see Patent Document 2).

ところで、太陽電池を構成する部材のうち、シリコン結晶ウェハが材料コストの大半を占めていることから、製造コストの低減を図るべくシリコン結晶ウェハの薄板化が検討されている。しかし、シリコン結晶ウェハを薄板化すると、接続用リード線のはんだ接合時における加熱プロセスや、太陽電池使用時における温度変化により、図5に示すように、はんだめっき55を介して接続したSiセル51と接続用リード線53が反ったり、破損したりするおそれがあった。このため、これに対処すべく、接続用リード線53として、熱膨張が小さい線材のニーズが高まっている。   By the way, since the silicon crystal wafer occupies most of the material cost among the members constituting the solar cell, the thinning of the silicon crystal wafer is being studied in order to reduce the manufacturing cost. However, when the silicon crystal wafer is thinned, the Si cells 51 connected via the solder plating 55 as shown in FIG. 5 due to the heating process at the time of soldering the connecting lead wires and the temperature change at the time of using the solar battery. The connection lead wire 53 may be warped or damaged. For this reason, in order to cope with this, there is an increasing need for a wire material having a small thermal expansion as the connecting lead wire 53.

熱膨張が小さい接続用リード線の一例として、図6に示すように、熱膨張が小さいインバー(Fe−36mass%Ni)73を銅材71でクラッドし、表面にはんだめっき膜75を形成したものがある。   As an example of a connecting lead wire having a small thermal expansion, as shown in FIG. 6, an invar (Fe-36 mass% Ni) 73 having a small thermal expansion is clad with a copper material 71 and a solder plating film 75 is formed on the surface. There is.

特開平11−21660号公報Japanese Patent Laid-Open No. 11-21660 特開2002−263880号公報JP 2002-263880 A

表1に、銅−インバー−銅(Cu/Fe−36mass%Ni/Cu)の材料特性を、Cu単独、インバー単独(Fe−36mass%Ni)、シリコン単独の材料特性と比較して示す。   Table 1 shows the material characteristics of copper-invar-copper (Cu / Fe-36 mass% Ni / Cu) in comparison with the material characteristics of Cu alone, Invar alone (Fe-36 mass% Ni), and silicon alone.

Figure 2014103402
Figure 2014103402

表1より、低熱膨張であるインバーを用いて、銅−インバー−銅をクラッドした平角導体を製造すると、Siとの熱膨張整合が可能になるものの、Cuに比べて体積抵抗率が増大するため、導電率が低下して太陽電池としての発電効率が下落する。しかも、インバーにはニッケルが36%程度も含まれているため、高価になってしまう。   From Table 1, when a rectangular conductor clad with copper-invar-copper is manufactured using invar having low thermal expansion, although thermal expansion matching with Si is possible, volume resistivity is increased as compared with Cu. As a result, the electrical conductivity is lowered and the power generation efficiency as a solar cell is lowered. Moreover, since Invar contains about 36% of nickel, it becomes expensive.

また、上記の銅−インバー−銅の3層構造によるリードフレームでは、インバーの両側に配置されている銅材料の結晶の配向、または結晶粒の不均一によって、反りなどの変形が生ずることがあった。これらは、太陽電池モジュールの生産性低下や、長期間使用した際の発電効率低下など信頼性を低下させる原因となっていた。加えて、側面の銅−インバー−銅接合部が水分にさらされることにより、局部電池化し腐食する恐れもあった。   In addition, in the lead frame having the three-layer structure of copper-invar-copper described above, deformation such as warping may occur due to the crystal orientation of the copper material arranged on both sides of the invar or the nonuniformity of crystal grains. It was. These have been the cause of lowering reliability, such as lower productivity of solar cell modules and lowering of power generation efficiency when used for a long time. In addition, when the copper-invar-copper joint on the side surface is exposed to moisture, there is a risk that it becomes a local battery and corrodes.

更に、インバーを用いたリードフレームでは、回路形成時に打抜き加工を行うため、無駄になる材料が大量に生じてしまい、製造コストの上昇を招くという課題もあった。   Furthermore, in the lead frame using invar, since punching is performed at the time of circuit formation, a large amount of wasted material is generated, resulting in an increase in manufacturing cost.

従って、本発明の目的は、シリコン結晶ウェハを薄板化した場合でも接続用リード線の接合時にシリコン結晶ウェハの反りもしくは破損が生じにくい太陽電池用平角導体及び太陽電池用リード線並びに太陽電池モジュールを提供することにある。   Accordingly, an object of the present invention is to provide a rectangular solar cell conductor, a solar cell lead wire, and a solar cell module that are less likely to warp or break the silicon crystal wafer when the connection lead wire is joined even when the silicon crystal wafer is thinned. It is to provide.

また、本発明の他の目的は、導電率が良好な太陽電池用平角導体及び太陽電池用リード線を提供することにある。   Another object of the present invention is to provide a solar cell flat conductor and a solar cell lead having good electrical conductivity.

更に、本発明の他の目的は、製造コストの上昇を抑えることができる太陽電池用平角導体の製造方法を提供することにある。   Furthermore, the other object of this invention is to provide the manufacturing method of the flat conductor for solar cells which can suppress the raise of manufacturing cost.

上記課題を解決するため、本発明の太陽電池用平角導体(ただし、銅−インバー−銅をクラッドした平角導体を除く)は、体積抵抗率が26.7μΩ・mm以下で、かつ引張り試験における0.2%耐力値が90MPa以下(ただし、49MPa以下を除く)であることを特徴とする。   In order to solve the above problems, the flat conductor for solar cells of the present invention (except for a flat conductor clad with copper-invar-copper) has a volume resistivity of 26.7 μΩ · mm or less and 0 in a tensile test. .2% proof stress is 90 MPa or less (excluding 49 MPa or less).

前記平角導体はCu,Al,Ag及びAuからなる群から選ばれた1種とすることができる。   The rectangular conductor may be one selected from the group consisting of Cu, Al, Ag, and Au.

また、上記課題を解決するため、本発明の太陽電池用平角導体(ただし、銅−インバー−銅をクラッドした平角導体を除く)の製造方法は、体積抵抗率が26.7μΩ・mm以下の導体を圧延によって平角状断面に成形後、熱処理を施して引張り試験における0.2%耐力値を90MPa以下(ただし、49MPa以下を除く)とすることを特徴とする。   In order to solve the above problems, the method for producing a flat conductor for solar cells of the present invention (excluding a flat conductor clad with copper-invar-copper) is a conductor having a volume resistivity of 26.7 μΩ · mm or less. After forming into a rectangular cross section by rolling, heat treatment is performed to make the 0.2% proof stress value in the tensile test 90 MPa or less (excluding 49 MPa or less).

前記熱処理は、ヒータによるバッチ式加熱方式もしくは通電加熱方式により行うことができる。   The heat treatment can be performed by a batch heating method using a heater or an electric heating method.

また、前記太陽電池用平角導体の表面の一部又は全部にはんだめっきを施して太陽電池用リード線とすることができる。   Moreover, a part or all of the surface of the flat conductor for solar cell may be subjected to solder plating to form a solar cell lead wire.

前記はんだめっきは、Sn−Ag−Cu系の鉛フリーはんだとすることができる。   The solder plating can be Sn-Ag-Cu-based lead-free solder.

また、太陽光のエネルギーを電気エネルギーに変換するために使用される複数の太陽電池セルが配置されており、上記複数の太陽電池セルは、上記の太陽電池用平角導体により接続されている太陽電池モジュールとすることができる。   Moreover, the several photovoltaic cell used in order to convert the energy of sunlight into an electrical energy is arrange | positioned, and the said several photovoltaic cell is connected by said rectangular conductor for photovoltaic cells It can be a module.

また、太陽光のエネルギーを電気エネルギーに変換するために使用される複数の太陽電池セルが配置されており、上記複数の太陽電池セルは、上記の太陽電池用リード線により接続されている太陽電池モジュールとすることができる。   Moreover, the several photovoltaic cell used in order to convert the energy of sunlight into an electrical energy is arrange | positioned, and the said several photovoltaic cell is connected by said solar cell lead wire It can be a module.

本発明においては、導体の0.2%耐力値を低減させているので、はんだ接続後の導体の熱収縮によって発生する、セルを反らせる力を低減できる。このため、シリコンセルとはんだ接続後の熱収縮の際に、セルの反りを減少させることができる。
また、体積抵抗率が50μΩ・mm以下の導体を用いているので、高導電性を有する太陽電池の接続用リード線を提供することができる。
In the present invention, since the 0.2% proof stress value of the conductor is reduced, it is possible to reduce the cell warping force generated by the thermal contraction of the conductor after the solder connection. For this reason, the curvature of a cell can be reduced in the case of the thermal contraction after a solder connection with a silicon cell.
Moreover, since the conductor whose volume resistivity is 50 microhm * mm or less is used, the lead wire for the connection of the solar cell which has high electroconductivity can be provided.

更に、本発明の製造方法によれば、熱処理により導体の0.2%耐力値を低減させているので、コストがかからず簡易な方法で太陽電池用平角導体を提供することができる。   Furthermore, according to the manufacturing method of the present invention, since the 0.2% proof stress value of the conductor is reduced by heat treatment, the rectangular conductor for solar cell can be provided by a simple method without cost.

本発明の太陽電池用平角導体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the flat conductor for solar cells of this invention. 本発明の太陽電池用リード線の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the lead wire for solar cells of this invention. 太陽電池セルヘの接続用リード線の接続状態を示す斜視図である。It is a perspective view which shows the connection state of the lead wire for a connection to a photovoltaic cell. 従来の太陽電池用リード線を示す断面図である。It is sectional drawing which shows the conventional lead wire for solar cells. Siセルと接続用リード線とをはんだ接続する際に発生する反りを示す説明図である。It is explanatory drawing which shows the curvature which generate | occur | produces when soldering the Si cell and the connecting lead wire. 従来の太陽電池用リード線を示す断面図である。It is sectional drawing which shows the conventional lead wire for solar cells.

以下、本発明の実施形態について添付図面を参照しつつ説明する。
(太陽電池用平角導体)
図1に、本発明の太陽電池用平角導体の一実施形態を示す。
この太陽電池用平角導体10は、セルヘのはんだ接続が容易となるように、軟質材の導体1の外形形状が平角状とされている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(Flat rectangular conductor for solar cells)
In FIG. 1, one Embodiment of the flat conductor for solar cells of this invention is shown.
In this flat battery 10 for solar battery, the outer shape of the soft conductor 1 is flat so that solder connection to the cell is easy.

(導体の体積抵抗率)
導体1は、太陽電池の発電ロスを軽減する観点から、体積抵抗率が比較的小さい導体材料(例えば、体積抵抗率が50μΩ・mm以下の材料)を用いることが好ましい。
体積抵抗率が比較的小さい導体材料としては、表2に示すように、Cuの他にAu,Ag,Alなどがある。この中で体積抵抗率が最も低いのはAgであり、発電効率を最大限にすることが可能である。一方、低コスト化を優先するときにはCuが良く、軽量化を図りたいときにはAlを選択するのが望ましい。
(Volume resistivity of conductor)
The conductor 1 is preferably made of a conductor material having a relatively low volume resistivity (for example, a material having a volume resistivity of 50 μΩ · mm or less) from the viewpoint of reducing power generation loss of the solar cell.
As shown in Table 2, there are Au, Ag, Al, etc. in addition to Cu as conductive materials having a relatively small volume resistivity. Among these, Ag has the lowest volume resistivity and can maximize power generation efficiency. On the other hand, when priority is given to cost reduction, Cu is good, and when weight reduction is desired, it is desirable to select Al.

Figure 2014103402
Figure 2014103402

(導体の0.2%耐力値)
一般に熱膨張率の異なる異種金属を高温で接続した場合には、温度変化に熱膨張率、ヤング率を積算した値が反りを発生させる力となる。しかし、太陽電池のように接続する両部材の剛性が著しく異なり、またはんだ接続温度も200℃以上と高温のものでは、断面積が少ない導体の方が降伏してしまい、上記熱膨張率、ヤング率による力がそのまま反り発生力とはならない。
(0.2% proof stress value of conductor)
In general, when dissimilar metals having different thermal expansion coefficients are connected at a high temperature, a value obtained by integrating the thermal expansion coefficient and Young's modulus with the temperature change is a force for generating warpage. However, the rigidity of both members to be connected as in the case of a solar cell is significantly different, or when the soldering temperature is as high as 200 ° C. or higher, the conductor having a smaller cross-sectional area yields. The force due to the rate does not become the warp generation force.

導体の場合、降伏応力が小さいと少ない力で塑性変形してしまい、それ以上の変形抵抗とならない。即ち、低強度および低耐力であるほど、接合時のシリコン結晶ウェハへの負荷が軽減する。このため、塑性変形の指標として引張り試験における0.2%耐力値を用い、導体1の0.2%耐力が90MPa以下、好ましくは80MPa以下、より好ましくは、70MPa以下とする。このような0.2%耐力値の低い軟質の導体を選択することにより、シリコン結晶ウェハヘ導体接合の際の熱応力を低減することができる。また、0.2%耐力を80MPa以下にすることにより銅−インバー−銅のクラッド材よりもSi反りを低減することが可能となり、実用上大きな効果が得られる。   In the case of a conductor, if the yield stress is small, it is plastically deformed with a small force, and no further deformation resistance is obtained. That is, the lower the strength and the lower the proof stress, the less the load on the silicon crystal wafer during bonding. For this reason, the 0.2% proof stress value in the tensile test is used as an index of plastic deformation, and the 0.2% proof stress of the conductor 1 is 90 MPa or less, preferably 80 MPa or less, and more preferably 70 MPa or less. By selecting such a soft conductor having a low 0.2% proof stress value, it is possible to reduce the thermal stress during conductor bonding to the silicon crystal wafer. Further, by setting the 0.2% proof stress to 80 MPa or less, Si warp can be reduced as compared with a copper-invar-copper clad material, and a practically significant effect can be obtained.

(太陽電池用平角導体の製造方法)
この太陽電池用平角導体10は、導体1をダイス伸線もしくはロール圧延、あるいはそれらの複合工程により平角状に成形した後、通電方式もしくはバッチ式の設備で熱処理して0.2%耐力を低減することで得られる。ここで、0.2%耐力を低減するための熱処理方式としては、通電加熱方式よりも熱エネルギーを十分に与えられるヒータによるバッチ式加熱方式が望ましい。あるいは酸化を防止する観点から水素還元雰囲気の炉を用いることもできる。
(Method for producing flat conductor for solar cell)
The flat conductor 10 for a solar cell is formed by forming the conductor 1 into a rectangular shape by die drawing, roll rolling, or a composite process thereof, and then heat-treating with a current-carrying type or batch type equipment to reduce 0.2% proof stress. It is obtained by doing. Here, as a heat treatment method for reducing the 0.2% proof stress, a batch-type heating method using a heater that can sufficiently apply heat energy is preferable to an electric heating method. Alternatively, a furnace in a hydrogen reducing atmosphere can be used from the viewpoint of preventing oxidation.

(太陽電池用リード線)
図2に、本発明の太陽電池用リード線の一実施形態を示す。
この太陽電池用リード線20は、図1に示す導体1の表面全体に、はんだめっき膜13を施したものである。はんだめっき13は、環境面から鉛フリー品とし、外周全体について実施する。
(Solar cell lead wire)
In FIG. 2, one Embodiment of the lead wire for solar cells of this invention is shown.
This solar cell lead wire 20 is obtained by applying a solder plating film 13 to the entire surface of the conductor 1 shown in FIG. The solder plating 13 is a lead-free product from the environmental aspect, and is performed on the entire outer periphery.

また、はんだ組成についてはこれまでセルとの熱膨張整合を考慮して低温接続が可能なものが求められていたが、本実施形態の導体1を用いることで接続温度が高いSn−Ag−Cu系の組成のはんだを用いることが可能となる。   In addition, a solder composition that has been required to be able to be connected at a low temperature in consideration of thermal expansion matching with the cell has been required so far. By using the conductor 1 of the present embodiment, Sn-Ag-Cu having a high connection temperature is required. It is possible to use a solder having a composition of the system.

この太陽電池用リード線を、太陽電池モジュールにおけるセル面の所定の接点領域(例えば、Agメッキ領域)に接続することで、太陽電池アセンブリが得られる。   The solar cell assembly is obtained by connecting the solar cell lead wire to a predetermined contact region (for example, an Ag plating region) on the cell surface of the solar cell module.

(本太陽電池用平角導体及び太陽電池用リード線の効果)
以上説明したように、本実施形態の太陽電池用平角導体及び太陽電池用リード線は、導体の0.2%耐力値として90MPa以下のものを用いているので、はんだ接続後の導体の熱収縮によって発生する、セルを反らせる力を低減できる。このため、シリコンセルとはんだ接続後の熱収縮の際に、セルの反りを減少させることができる。
また、本実施形態の太陽電池用平角導体及び太陽電池用リード線は、体積抵抗率が50μΩ・mm以下の高導電性を有する導体を用いているので、太陽電池としての発電効率を良好に維持することができる。
(Effects of the flat conductor for the solar cell and the lead wire for the solar cell)
As explained above, since the flat conductor for solar cell and the lead wire for solar cell of this embodiment use a conductor having a 0.2% proof stress of 90 MPa or less, the heat shrinkage of the conductor after solder connection. The force which warps the cell which generate | occur | produces by can be reduced. For this reason, the curvature of a cell can be reduced in the case of the thermal contraction after a solder connection with a silicon cell.
In addition, since the flat conductor for solar cell and the lead wire for solar cell of this embodiment use a highly conductive conductor having a volume resistivity of 50 μΩ · mm or less, the power generation efficiency as a solar cell is maintained well. can do.

更に、本実施形態の製造方法によれば、熱処理により導体の0.2%耐力値を低減させているので、コストがかからず簡易な方法で太陽電池用平角導体を提供することができる。   Furthermore, according to the manufacturing method of the present embodiment, since the 0.2% proof stress value of the conductor is reduced by heat treatment, the rectangular conductor for solar cell can be provided by a simple method without cost.

幅2.0mm、厚さ0.16mmのCu材料を平角線状に圧延成形し、図2に示す導体1とし、その周囲をSn−3%Ag−0.5%Cu系の鉛フリーはんだで被覆してはんだめっき膜13を形成し、太陽電池用リード線20とした。
この太陽電池用リード線20を、熱処理条件を変えて表3に示すように種々の0.2%耐力のものを製作し、縦150mm×横150mm、厚み200μmのSiセルにはんだ接続したものの反りを調べた。
A Cu material having a width of 2.0 mm and a thickness of 0.16 mm is rolled and formed into a rectangular wire shape to form the conductor 1 shown in FIG. 2, and the periphery thereof is made of Sn-3% Ag-0.5% Cu-based lead-free solder. A solder plating film 13 was formed so as to cover the solar cell lead wire 20.
This solar cell lead wire 20 is manufactured with various 0.2% proof stress as shown in Table 3 under different heat treatment conditions and warped by soldering to a Si cell 150 mm long × 150 mm wide and 200 μm thick. I investigated.

Figure 2014103402
Figure 2014103402

表3の結果より、0.2%耐力の低下とともに反りも低減し、0.2%耐力が40MPaのものでは従来のCu導体(140MPa)を用いたものよりも1/3程度に反りが低減できることが分かった。   From the results in Table 3, warpage is reduced as the 0.2% proof stress is lowered, and the warpage is reduced to about 1/3 when the 0.2% proof stress is 40 MPa than when the conventional Cu conductor (140 MPa) is used. I understood that I could do it.

比較としてCu−インバー−Cu(比率2:1:2)を接続したものと、0.2%耐力が40MPaのCu導体を接続したもののセル反りを調べたところ、3.0mmあったものが1.5mmと半分となることを確認できた。   As a comparison, when the cell warpage of a Cu-invar-Cu (ratio 2: 1: 2) connection and a 0.2% proof stress 40 MPa Cu conductor connection was examined, it was 3.0 mm. 0.5 mm and half.

1 導体
10 太陽電池用平角導体
13 はんだめっき膜
20 太陽電池用リード線
51 Siセル
53 接続用リード線
55 はんだめっき
61 平角導体
63 はんだめっき膜
71 銅材
73 インバー
75 はんだめっき膜
DESCRIPTION OF SYMBOLS 1 Conductor 10 Flat conductor for solar cells 13 Solder plating film 20 Lead wire for solar cells 51 Si cell 53 Lead wire for connection 55 Solder plating 61 Flat conductor 63 Solder plating film 71 Copper material 73 Invar 75 Solder plating film

Claims (5)

体積抵抗率が26.7μΩ・mm以下で、かつ引張り試験における0.2%耐力値が90MPa以下(ただし、49MPa以下を除く)であることを特徴とする太陽電池用平角導体(ただし、銅−インバー−銅をクラッドした平角導体を除く)。   A rectangular conductor for solar cells (however, copper--) having a volume resistivity of 26.7 μΩ · mm or less and a 0.2% proof stress value in a tensile test of 90 MPa or less (excluding 49 MPa or less) Invar—except for rectangular conductors clad with copper. 体積抵抗率が26.7μΩ・mm以下の導体を圧延によって平角状断面に成形後、熱処理を施して引張り試験における0.2%耐力値を90MPa以下(ただし、49MPa以下を除く)とすることを特徴とする太陽電池用平角導体(ただし、銅−インバー−銅をクラッドした平角導体を除く)の製造方法。   A conductor having a volume resistivity of 26.7 μΩ · mm or less is formed into a rectangular cross section by rolling, and then subjected to a heat treatment so that a 0.2% proof stress value in a tensile test is 90 MPa or less (except 49 MPa or less). A method for producing a featured flat conductor for a solar cell (excluding a copper-invar-copper-clad flat conductor). 請求項1記載の太陽電池用平角導体の表面の一部又は全部にはんだめっきを施したことを特徴とする太陽電池用リード線。   A lead wire for a solar cell, wherein a part or all of the surface of the flat conductor for a solar cell according to claim 1 is subjected to solder plating. 太陽光のエネルギーを電気エネルギーに変換するために使用される複数の太陽電池セルが配置されており、
前記複数の太陽電池セルは、請求項1記載の太陽電池用平角導体により接続されている太陽電池モジュール。
A plurality of solar cells used to convert solar energy into electrical energy are arranged,
The solar cell module in which the plurality of solar cells are connected by a rectangular conductor for solar cell according to claim 1.
太陽光のエネルギーを電気エネルギーに変換するために使用される複数の太陽電池セルが配置されており、
前記複数の太陽電池セルは、請求項3記載の太陽電池用リード線により接続されている太陽電池モジュール。
A plurality of solar cells used to convert solar energy into electrical energy are arranged,
The plurality of solar cells are solar cell modules connected by a solar cell lead wire according to claim 3.
JP2013262628A 2013-12-19 2013-12-19 Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module Active JP5569642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262628A JP5569642B2 (en) 2013-12-19 2013-12-19 Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262628A JP5569642B2 (en) 2013-12-19 2013-12-19 Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004235823A Division JP5491682B2 (en) 2004-08-13 2004-08-13 Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell

Publications (2)

Publication Number Publication Date
JP2014103402A true JP2014103402A (en) 2014-06-05
JP5569642B2 JP5569642B2 (en) 2014-08-13

Family

ID=51025597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262628A Active JP5569642B2 (en) 2013-12-19 2013-12-19 Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module

Country Status (1)

Country Link
JP (1) JP5569642B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121660A (en) * 1997-07-03 1999-01-26 Hitachi Cable Ltd Connecting wire for solar battery
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121660A (en) * 1997-07-03 1999-01-26 Hitachi Cable Ltd Connecting wire for solar battery
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery

Also Published As

Publication number Publication date
JP5569642B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5491682B2 (en) Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP5036545B2 (en) Method for producing electrode wire for solar cell
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP4622375B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP2010141050A (en) Lead wire for solar cell and method of manufacturing the same
JP2008098315A (en) Solder plating wire for solar cell and its production process
JP4656100B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP5565519B1 (en) Solar cell module
KR101110915B1 (en) Ribbon wire for solar cell module
JP4701716B2 (en) Flat rectangular conductor for solar cell and lead wire for solar cell
JP5569642B2 (en) Flat conductor for solar cell, manufacturing method thereof, lead wire for solar cell, and solar cell module
JP2012094625A (en) Solar battery conductor and its manufacturing method
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP6194814B2 (en) Manufacturing method of solar cell module
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof
JP4951856B2 (en) Manufacturing method of flat conductor
JP2011210868A (en) Composite flat wire for connecting solar cell and method for manufacturing the same
JP6471765B2 (en) Solar cell module
JP2012146730A (en) Lead wire for solar cell and solar cell using the same
JP2017045756A (en) Lead wire for solar cell and solar cell module
JP2019033279A (en) Solar cell module

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140306

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5569642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350