JP2014100679A - Anaerobic wastewater treatment method using carrier - Google Patents

Anaerobic wastewater treatment method using carrier Download PDF

Info

Publication number
JP2014100679A
JP2014100679A JP2012254970A JP2012254970A JP2014100679A JP 2014100679 A JP2014100679 A JP 2014100679A JP 2012254970 A JP2012254970 A JP 2012254970A JP 2012254970 A JP2012254970 A JP 2012254970A JP 2014100679 A JP2014100679 A JP 2014100679A
Authority
JP
Japan
Prior art keywords
carrier
treatment capacity
capacity
anaerobic
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012254970A
Other languages
Japanese (ja)
Other versions
JP6046990B2 (en
Inventor
Misa Baba
美佐 馬場
Hiroaki Fujii
弘明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2012254970A priority Critical patent/JP6046990B2/en
Publication of JP2014100679A publication Critical patent/JP2014100679A/en
Application granted granted Critical
Publication of JP6046990B2 publication Critical patent/JP6046990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method in which organic matter containing wastewater flows into a carrier holding reaction vessel and treated biologically by anaerobic microorganisms that have grown onto the carrier and which is characterized in that if the treatment capacity which has already reached a predetermined treatment capacity of wastewater treatment has decreased, or the reaction vessel has reached a predetermined treatment capacity using anaerobic digestion sludge as seed sludge, the treatment capacity is improved by promoting the microbial growth onto a further carrier and the efficiency of contact with the substrate.SOLUTION: The organic wastewater flows after methanogen granules and/or a ground product thereof is added to the reaction vessel whose treatment capacity has decreased, or to the carrier holding reaction vessel whose treatment capacity has reached a predetermined capacity with the anaerobic digestion sludge. Preferably, the amount of methanogen granules and/or the ground product thereof added is in a range of 1 to 900 g per 1 L of carrier.

Description

本発明は有機性排水の処理方法に関する。詳しくは、有機物を含有する排水を、担体を保持する反応槽に通水して該担体に増殖した嫌気性微生物により生物学的に処理する排水処理方法において、すでに一定の処理能力に達した該反応槽の処理能力が低下した場合に、担体への微生物増殖および基質との接触効率を促進させることにより処理能力を回復させる/または、嫌気性消化汚泥を種汚泥として一定の処理能力に達した該反応槽に対し、さらなる担体への微生物増殖および基質との接触効率を促進させることにより処理能力を向上させる方法に関する。   The present invention relates to a method for treating organic waste water. Specifically, in a wastewater treatment method in which wastewater containing organic matter is biologically treated with anaerobic microorganisms grown on the carrier by passing it through a reaction tank holding the carrier, the wastewater treatment method that has already reached a certain treatment capacity. When the processing capacity of the reaction vessel is reduced, the processing capacity is restored by promoting the growth of microorganisms on the carrier and the contact efficiency with the substrate, or a certain processing capacity is achieved using anaerobic digested sludge as seed sludge. The present invention relates to a method for improving the treatment capacity of the reaction vessel by promoting the growth of microorganisms on a further carrier and the contact efficiency with a substrate.

有機物を含有する排水(有機性排水)の処理方法として、メタンガスの回収、再利用が可能な嫌気処理法は、広く産業排水の処理方法として用いられている。なかでも沈降性良好なグラニュール形成し、有機性排水を上向流で通水し、高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法は、特に中〜高濃度排水を処理する方法として発展してきた。また、このUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通水し、高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket)法も実用化されている。   As a method for treating wastewater containing organic matter (organic wastewater), an anaerobic treatment method capable of collecting and reusing methane gas is widely used as a method for treating industrial wastewater. Among them, the UASB (Upflow Anaerobic Sludge Blanket) method, which forms granules with good sedimentation, passes organic wastewater in an upward flow, and performs high-load high-speed treatment, is particularly medium- It has been developed as a method for treating highly concentrated wastewater. As an extension of the UASB method, the EGSB (Expanded Granule Sludge Blanket) method, which uses a high-height reaction tank to pass water at a higher flow rate and performs anaerobic treatment with a high load, has also been put to practical use. Yes.

また、固定床担体や流動床担体を使用する方法も用いられている。固定床担体は生物膜を保持する支持床を反応槽内部に固定し、その表面に生育する微生物を利用するものであり、流動床担体は比重や大きさを調整した担体を反応槽内部で流動させて、担体に生物を増殖させて処理を行なうものである。   A method using a fixed bed carrier or a fluidized bed carrier is also used. The fixed bed carrier uses a microorganism that grows on the surface of the reaction bed that holds the biofilm on the inside of the reaction vessel. The fluidized bed carrier allows a carrier with adjusted specific gravity and size to flow inside the reaction vessel. Thus, the organism is propagated on the carrier for treatment.

担体を用いる場合には高い処理能力が期待できるものの、固定床担体、流動床担体を問わず、立ち上げ及び処理能力維持・回復等には、嫌気性消化汚泥が使用されており、その排水処理能力は十分ではなかった(特許文献1および2)。   Although high treatment capacity can be expected when using a carrier, anaerobic digested sludge is used for starting up and maintaining / recovering treatment capacity regardless of whether it is a fixed bed carrier or fluidized bed carrier. The capacity was not sufficient (Patent Documents 1 and 2).

具体的には、何らかの理由で処理能力が低下した場合には、再び担体へ微生物を増殖させなければならないが、その際に嫌気性消化汚泥を使用した場合、能力回復に多大の時間を要するという大きな欠点があった。また、立ち上げ後の処理能力も十分ではなかった。   Specifically, if the treatment capacity decreases for some reason, the microorganisms must be grown again on the carrier, but if anaerobic digested sludge is used at that time, it takes a long time to recover the capacity. There were major drawbacks. Also, the processing capacity after startup was not sufficient.

特開2012−76000号公報JP 2012-76000 A 特開2012−110820号公報JP 2012-110820 A

本発明は、有機物を含有する排水を、担体を保持する反応槽に通水して該担体に増殖した嫌気性微生物により生物学的に処理する方法において、一定の処理能力に達した該反応槽の処理能力が低下した場合に、担体への微生物増殖および基質との接触効率を促進させることにより処理能力を回復させる方法および嫌気性消化汚泥を種汚泥として一定の処理能力に達した該反応槽に対し、さらなる担体への微生物増殖および基質との接触効率を促進させることにより処理能力を向上させる方法を提供することを課題とする。   The present invention relates to a method of biologically treating wastewater containing organic matter with anaerobic microorganisms that have passed through a reaction vessel holding a carrier and grown on the carrier, and that has reached a certain treatment capacity. The method of recovering the treatment capacity by promoting the growth of microorganisms on the carrier and the contact efficiency with the substrate when the treatment capacity of the substrate is reduced, and the reaction tank that has reached a certain treatment capacity using the anaerobic digested sludge as the seed sludge On the other hand, it is an object of the present invention to provide a method for improving the treatment capacity by promoting the growth of microorganisms on a further carrier and the contact efficiency with a substrate.

本発明者らは、鋭意検討を重ねた結果、すでに一定の処理能力に達した該反応槽の処理能力が低下または、嫌気性消化汚泥を種汚泥として一定の処理能力に達した反応槽に対し、該反応槽にメタン菌グラニュールおよび/またはその粉砕物を、適切な量添加し、効率よくメタン菌を増殖させる運転条件を採用することにより、上記課題を解決することができることを見出した。   As a result of intensive studies, the inventors have reduced the processing capacity of the reaction tank that has already reached a certain processing capacity, or a reaction tank that has reached a certain processing capacity using anaerobic digested sludge as seed sludge. It has been found that the above problem can be solved by adding an appropriate amount of methane bacteria granules and / or a pulverized product thereof to the reaction vessel and adopting operating conditions for efficiently growing methane bacteria.

本発明について、以下具体的に説明する。   The present invention will be specifically described below.

[1]有機物を含有する排水を、担体を保持する反応槽に通水して該担体に増殖した嫌気性微生物により生物学的に処理する有機性排水の処理方法において、すでに運転されている反応槽にメタン菌グラニュールおよび/またはその粉砕物を添加することを特徴とする有機性排水の処理方法。 [1] An already operated reaction in a method for treating organic wastewater in which wastewater containing organic matter is passed through a reaction tank holding a carrier and biologically treated with anaerobic microorganisms grown on the carrier. A method for treating organic wastewater, comprising adding methane bacteria granules and / or a pulverized product thereof to a tank.

[2]メタン菌グラニュールおよび/またはその粉砕物を、担体1Lあたり1〜900gの範囲で存在させることを特徴とする、請求項1に記載の有機性排水の処理方法。 [2] The method for treating organic waste water according to claim 1, wherein the methanogenic granules and / or the pulverized product thereof are present in an amount of 1 to 900 g per liter of the carrier.

[3]担体がポリビニルアルコール系担体である、請求項1または2に記載の有機性排水の処理方法。 [3] The method for treating organic waste water according to claim 1 or 2, wherein the carrier is a polyvinyl alcohol carrier.

本発明によれば、有機物を含有する排水を、担体を保持する反応槽に通水して該担体に増殖した嫌気性微生物により生物学的に処理する方法において、すでに一定の処理能力に達した該反応槽の処理能力が低下した場合、または、嫌気性消化汚泥を種汚泥として一定の処理能力に達した該反応槽に対し、担体への微生物増殖および基質との接触効率を促進させることにより処理能力を回復させることができる。   According to the present invention, in a method of biologically treating wastewater containing organic matter through an anaerobic microorganism grown on a carrier through a reaction tank holding the carrier, a certain treatment capacity has already been reached. By promoting the growth of microorganisms on the carrier and the contact efficiency with the substrate for the reaction tank that has reached a certain treatment capacity when the treatment capacity of the reaction tank is reduced or anaerobic digested sludge is used as seed sludge The processing power can be restored.

従来、担体法で処理能力が低下した場合には、一旦その担体で処理できる負荷まで通水量を下げ、担体への微生物増殖に合わせて徐々に通水量を上げていく方法をとる。
しかし、嫌気性消化汚泥に含まれるメタン菌の場合には、菌の増殖速度が非常に小さいため、能力回復に1〜3ヵ月かかるのが常であった。
また、嫌気性消化汚泥を種汚泥として使用した場合において、メタン菌以外の菌や固形物も多く含まれるため、種汚泥としては効率的でない。ちなみに嫌気性消化とは下水やし尿汚泥処理において発生する汚泥・固形分を、酸素との接触を断って嫌気性細菌によって分解することを指し、その汚泥を嫌気性消化汚泥と呼ぶ。自治体や管理者の許可が得られれば入手しやすいというメリットがあり、種汚泥としてよく利用されている。
Conventionally, when the treatment capacity is lowered by the carrier method, the water flow rate is once lowered to a load that can be treated with the carrier, and the water flow rate is gradually increased according to the growth of microorganisms on the carrier.
However, in the case of methane bacteria contained in anaerobic digested sludge, since the growth rate of the bacteria is very small, it was usual that the ability recovery took 1 to 3 months.
In addition, when anaerobic digested sludge is used as seed sludge, it is not efficient as seed sludge because it contains many bacteria and solids other than methane bacteria. Incidentally, anaerobic digestion refers to the decomposition of sludge and solids generated in sewage and human waste sludge treatment by anaerobic bacteria by refusing contact with oxygen. The sludge is called anaerobic digested sludge. It has the advantage of being easy to obtain with the permission of local governments and managers, and is often used as seed sludge.

本発明においては、すでに一定の処理能力に達した該反応槽の処理能力が低下した場合、または、嫌気性消化汚泥を種汚泥として一定の処理能力に達した該反応槽に対し、メタン菌グラニュールおよび/またはその粉砕物を、担体1Lあたり1〜900gの範囲で添加することにより短期間で処理能力を回復させることができる、または、さらなる担体への微生物増殖および基質との接触効率を促進させることにより処理能力を向上させることができる。   In the present invention, when the treatment capacity of the reaction tank that has already reached a certain treatment capacity is reduced or the reaction tank has reached a certain treatment capacity using anaerobic digested sludge as seed sludge, Can be recovered in a short period of time by adding 1 to 900 g per liter of support and / or pulverized product thereof, or promotes microbial growth and contact efficiency with substrate on further support By doing so, the processing capability can be improved.

反応槽に投入されたメタン菌グラニュールおよび/またはその粉砕物は、能力回復時においては、有機性排水の分解に寄与すると同時に種汚泥として担体への微生物の増殖を促進する。   The methane bacterium granules and / or pulverized product thereof introduced into the reaction tank contribute to the decomposition of the organic waste water and at the same time promote the growth of microorganisms on the carrier as seed sludge.

以上説明したとおり、本発明によれば、処理能力が低下した場合の処理能力回復に要する時間を大幅に短縮すると共に、処理能力回復後においても効率的な処理を行うことが可能、または、嫌気性消化汚泥を種汚泥として一定の処理能力に達した該反応槽の処理能力をさらに向上させることが可能となる。   As described above, according to the present invention, it is possible to significantly reduce the time required for recovering the processing capability when the processing capability is reduced, and to perform efficient processing even after the processing capability is recovered, or to anaerobic It is possible to further improve the treatment capacity of the reaction tank that has reached a certain treatment capacity using the digested sludge as seed sludge.

実施例および比較例で用いた生物処理装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the biological treatment apparatus used by the Example and the comparative example. 実施例1、比較例1及び比較例2における処理能力の経時変化を示すグラフである。6 is a graph showing changes in processing capability over time in Example 1, Comparative Example 1 and Comparative Example 2. 実施例2、比較例3及び比較例4における処理能力の経時変化を示すグラフである。6 is a graph showing a change in processing capability with time in Example 2, Comparative Example 3 and Comparative Example 4;

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の有機性排水の処理方法は、有機物を含有する排水を、担体を保持する反応槽に通水して該担体に増殖した嫌気性微生物により生物学的に処理する有機性排水の処理方法において、すでに一定の処理能力に達した該反応槽の処理能力が低下した場合、または、嫌気性消化汚泥を種汚泥として一定の処理能力に達した反応槽に対し、メタン菌グラニュールおよび/またはその粉砕物を、担体1Lあたり1〜900gの範囲で添加することを特徴とする。   The organic wastewater treatment method of the present invention is a method for treating organic wastewater, in which wastewater containing organic matter is passed through a reaction tank holding a carrier and biologically treated by anaerobic microorganisms grown on the carrier. In the case where the treatment capacity of the reaction tank that has already reached a certain treatment capacity decreases, or the reaction tank that has reached a certain treatment capacity using anaerobic digested sludge as seed sludge, and / or methane bacteria granules and / or The pulverized product is added in the range of 1 to 900 g per liter of the carrier.

処理能力低下の原因としては、さまざまなケースが考えられるが、たとえば、微生物に対して毒性のある物質が混入した場合、反応槽内が酸性またはアルカリ性になった場合、酸素が混入し嫌気性雰囲気が損なわれた場合、原水濃度や流量が大きく変動した場合、窒素・リンなどの栄養塩やカルシウム、マグネシウムなどのミネラルが不足した場合、反応槽内に揮発性有機酸が蓄積した場合などで、必要なCOD除去能力が得られない場合である。
また、嫌気性消化汚泥を種汚泥として立ち上げた場合、嫌気性消化汚泥は先に述べた通り、メタン菌以外の菌や固形物も多く含まれるため、担体に菌を増殖させるための種汚泥としては効率的でない。
There are various possible causes for the decline in processing capacity.For example, when a substance that is toxic to microorganisms is mixed, when the inside of the reaction tank becomes acidic or alkaline, oxygen is mixed in an anaerobic atmosphere. When the raw water concentration or flow rate fluctuates greatly, nutrient salts such as nitrogen and phosphorus, minerals such as calcium and magnesium are insufficient, volatile organic acids accumulate in the reaction tank, etc. This is a case where the required COD removal capability cannot be obtained.
In addition, when anaerobic digested sludge is started as seed sludge, anaerobic digested sludge contains a lot of bacteria and solids other than methane bacteria, as mentioned above. It is not efficient.

まずは、上記のような能力がダウンした原因を取り除き、正常な運転条件にすることが必要であるが、一旦担体に棲息する微生物がダメージを受けてしまうと容易に処理能力を回復させることができない。
また、嫌気性消化汚泥を種汚泥として立ち上げた場合、担体の排水処理能力はあるところで頭打ちとなってしまう。
First of all, it is necessary to remove the cause of the downage of the above-mentioned ability and to set it to normal operating conditions. However, once the microorganisms living on the carrier are damaged, the processing ability cannot be easily recovered. .
Moreover, when anaerobic digested sludge is started as seed sludge, the wastewater treatment capacity of the carrier reaches a certain level.

本発明では担体を保持しすでに一定の処理能力に達した反応槽で、処理能力が低下した後、または、嫌気性消化汚泥を種汚泥として一定の処理能力に達した反応槽に対し、メタン菌グラニュールおよび/またはその粉砕物を所定量添加することで担体への微生物の増殖を促進する効果を奏する。   In the present invention, in a reaction tank that holds a carrier and has already reached a certain treatment capacity, or after a reduction in treatment capacity, or for a reaction tank that has reached a certain treatment capacity using anaerobic digested sludge as seed sludge, By adding a predetermined amount of granules and / or pulverized product thereof, an effect of promoting the growth of microorganisms on the carrier is obtained.

本発明において、処理対象とする有機性排水は、嫌気性微生物により処理可能な有機物を含むものであればよく、そのCOD濃度・種類に規定はないが、具体的には、食品工場等の製造排水、化学工場等の有機性排水、一般下水等が挙げられる。しかし、何らこれらに限定されるものではない。   In the present invention, the organic wastewater to be treated is not limited as long as it contains an organic substance that can be treated by anaerobic microorganisms, and its COD concentration / type is not specified. Examples include wastewater, organic wastewater from chemical factories, and general sewage. However, it is not limited to these.

反応槽に投入するメタン菌グラニュールは、特に限定されるものではないが、UASB法やEGSB法で使用されているグラニュール(平均粒径0.5〜3.0mm)は嫌気処理を行なっているためメタン菌を多く含んでいるので、これらを用いるのが好ましい。また、担体との接触効率を上げるためにこれらのグラニュールを平均粒径450μm以下に粉砕したものを用いてもよい。またグラニュールと平均粒径450μm以下に粉砕したグラニュールを両方用いてもよい。
反応槽に投入するメタン菌としては、一般的に下水消化汚泥やグラニュールなどが挙げられるが、下水消化汚泥よりグラニュールの方がメタン比活性が高いことが知られている。よって、下水消化汚泥より、グラニュールの方が好ましい。
グラニュールを平均粒径450μm以下に粉砕させる場合の方法は特に限定されるものではないが、ボールミル等で粉砕させる方法、ポンプを通過させて粉砕させる方法、撹拌により粉砕させる方法が挙げられる。
The methane bacteria granules charged into the reaction tank are not particularly limited, but the granules (average particle size of 0.5 to 3.0 mm) used in the UASB method and the EGSB method are subjected to anaerobic treatment. Therefore, it is preferable to use these because they contain a lot of methane bacteria. Further, in order to increase the contact efficiency with the carrier, those granules pulverized to an average particle size of 450 μm or less may be used. Moreover, you may use both the granule and the granule grind | pulverized to the average particle diameter of 450 micrometers or less.
As methane bacteria to be introduced into the reaction tank, generally, sewage digested sludge, granules, and the like can be mentioned. It is known that granule has higher methane specific activity than sewage digested sludge. Therefore, granule is preferable to sewage digested sludge.
The method for pulverizing the granules to an average particle size of 450 μm or less is not particularly limited, and examples thereof include a method of pulverizing with a ball mill or the like, a method of pulverizing by passing through a pump, and a method of pulverizing by stirring.

本発明においては、メタン菌グラニュールを、担体1Lあたり1〜900gの範囲で存在させることが好ましく、担体1Lあたり1〜500gの範囲で存在させることがより好ましく、担体1Lあたり1〜150gの範囲で存在させることがさらに好ましい。ここで、メタン菌グラニュールの量は、揮発性浮遊性物質(Volatile Suspended Solid:VSS)の量のことである。VSSとは、有機性固形物の総量の目安となる指標をいう。担体1Lあたり1gよりもメタン菌グラニュールの投入量が少ないと本発明の効果を十分に得ることができず、担体1Lあたり900gよりも多いと粘度が上昇し撹拌が困難となる可能性がある。また、反応槽内からのメタン菌グラニュールの流出が多く、処理水の悪化が懸念されるため好ましくない。   In the present invention, the methane bacteria granules are preferably present in the range of 1 to 900 g per liter of support, more preferably in the range of 1 to 500 g per liter of support, and in the range of 1 to 150 g per liter of support. More preferably, it is made to exist. Here, the amount of methane bacteria granules is the amount of volatile suspended solids (VSS). VSS refers to an index that is a measure of the total amount of organic solids. If the input amount of methane bacteria granules is less than 1 g per liter of carrier, the effect of the present invention cannot be obtained sufficiently, and if it exceeds 900 g per liter of carrier, the viscosity increases and stirring may become difficult. . Moreover, since there are many outflows of the methane bacteria granule from the inside of a reaction tank and there exists a concern about deterioration of treated water, it is unpreferable.

使用する担体としては、特に制限は無いが微生物棲息性に優れた高分子ゲル状担体、特にポリビニルアルコール系ゲル担体が好ましい。担体の平均粒径は1〜10mm、特に2〜6mmであることが好ましい。
担体の表面から内部に連通する孔における孔径は、自由にコントロールできるが、バクテリアのみが担体内部に棲息できるものが好ましく、表面付近の孔径は0.1μm以上100μm以下のものが好ましく、0.5μm以上50μm以下がさらに好ましい。表面付近の孔径が0.1μmよりも小さいとバクテリアが内部に進入できないなどの問題があり、100μmよりも大きいとバクテリア以外の大きな生物が侵入し効率が低下する場合がある。担体中心付近の孔径については特に制限はない。
The carrier to be used is not particularly limited, but a polymer gel carrier excellent in microbial habitability, particularly a polyvinyl alcohol gel carrier is preferable. The average particle size of the carrier is preferably 1 to 10 mm, particularly preferably 2 to 6 mm.
The pore diameter in the hole communicating from the surface to the inside of the carrier can be freely controlled, but preferably only bacteria can inhabit the inside of the carrier, and the pore diameter near the surface is preferably from 0.1 μm to 100 μm, preferably 0.5 μm More preferably, it is 50 μm or less. If the pore diameter near the surface is smaller than 0.1 μm, there is a problem that bacteria cannot enter the inside. If it is larger than 100 μm, large organisms other than bacteria may invade and the efficiency may be lowered. There is no particular limitation on the pore diameter near the center of the carrier.

担体の形状は、限定されるものではなく、立方体、直方体、円柱状、球状、マカロニ状など任意の形状をとることができる。メタン菌との接触効率を考えると球状が好ましい。   The shape of the carrier is not limited, and can be any shape such as a cube, a rectangular parallelepiped, a cylinder, a sphere, or a macaroni. Considering the contact efficiency with methane bacteria, the spherical shape is preferable.

原水の有機物濃度は特に限定されるものではなく、CODCr500〜50000mg/Lなど幅広く適用できる。反応槽に流入する際の原液のpHは6.5〜7.5程度であることが好ましく、従って、原水は必要に応じてpH調整を行ってから反応槽に通水することが好ましい。   The organic substance density | concentration of raw | natural water is not specifically limited, CODCr500-50000mg / L etc. can apply widely. The pH of the undiluted solution when flowing into the reaction tank is preferably about 6.5 to 7.5. Therefore, it is preferable that the raw water is adjusted to the pH if necessary and then passed through the reaction tank.

反応槽の負荷も特に限定はないが、5〜50kg−CODCr/m・日と高負荷をかけることも可能である。また、反応槽内の温度は通常のメタン発酵の条件と同様で25〜40℃、特に30〜38℃とすることが好ましい。 The load on the reaction tank is not particularly limited, but a high load of 5 to 50 kg-CODCr / m 3 · day can be applied. The temperature in the reaction tank is 25 to 40 ° C., particularly 30 to 38 ° C., as in the usual methane fermentation conditions.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these Examples.

[実施例1]
図1に示すフローに従って、食品会社Fの実排水による嫌気性排水処理を実施した。反応槽の仕様並びに処理条件は下記の通りとした。
[Example 1]
In accordance with the flow shown in FIG. The specifications and processing conditions of the reaction vessel were as follows.

・反応槽の仕様
反応槽:容量8L
槽内温度:35〜37℃
反応槽に充填する担体:アセタール化ポリビニルアルコール系ゲル状担体(直径約4mm,比重1.025)
反応槽担体充填量:40容量%(槽容積に対する。)
・処理条件
原水CODCr濃度:5000mg/L
・ Reaction tank specifications Reaction tank: Capacity 8L
Tank temperature: 35-37 ° C
Carrier filled in reaction tank: acetalized polyvinyl alcohol gel carrier (diameter: about 4 mm, specific gravity: 1.025)
Reaction tank carrier filling amount: 40% by volume (relative to tank volume)
・ Treatment conditions Raw water CODCr concentration: 5000 mg / L

担体を使用した嫌気性流動床として、上記反応槽の仕様および処理条件にて容積負荷20kg−CODCr/m・日で連続運転を実施している系列において、高濃度の原水が流入し、反応槽内に揮発性有機酸が蓄積したことによって処理能力が低下し、容積負荷13kg−CODCr/m・日まで下げざるを得ない状況となった。その際、グラニュールを15(g−VSS/L−担体)投入した。結果、数日間で元の容積負荷20kg−CODCr/m・日まで回復することができた。更に1ヶ月以上連続運転を継続したが、処理能力の低下は起こらず、CODCr除去率は、常に90%以上を推移し、非常に良好であった。 As an anaerobic fluidized bed using a carrier, high-concentration raw water flows in a series in which continuous operation is carried out at a volumetric load of 20 kg-CODCr / m 3 · day under the above specifications and processing conditions of the reaction tank, Due to the accumulation of volatile organic acid in the tank, the treatment capacity was lowered, and the volume load had to be reduced to 13 kg-CODCr / m 3 · day. At that time, 15 (g-VSS / L-carrier) of granules were added. As a result, the original volumetric load of 20 kg-CODCr / m 3 · day could be recovered within a few days. Further, the continuous operation was continued for one month or more, but the processing capacity did not decrease, and the CODCr removal rate always remained 90% or more, which was very good.

[比較例1]
図1に示すフローに従い、反応槽の仕様槽容量および処理条件を実施例1と同じとし、容積負荷20kg−CODCr/m・日で連続運転を実施している系列において、高濃度の原水が流入し、反応槽内に揮発性有機酸が蓄積したことによって処理能力が低下し、容積負荷13kg−CODCr/m・日まで下げざるを得ない状況となった。そのまま運転を継続したところ、徐々に処理能力が低下していき、30日後には運転を継続することが困難となった。
[Comparative Example 1]
According to the flow shown in FIG. 1, in a series in which the specification tank capacity and processing conditions of the reaction tank are the same as those in Example 1, and continuous operation is performed at a volume load of 20 kg-CODCr / m 3 · day, Inflow and accumulation of volatile organic acid in the reaction tank lowered the treatment capacity, and the volume load had to be reduced to 13 kg-CODCr / m 3 · day. When the operation was continued as it was, the processing capacity gradually decreased, and it became difficult to continue the operation after 30 days.

[比較例2]
図1に示すフローに従い、反応槽の仕様槽容量および処理条件を実施例1と同じとし、容積負荷20kg−CODCr/m・日で連続運転を実施している系列において、高濃度の原水が流入し、反応槽内に揮発性有機酸が蓄積したことによって処理能力が低下し、容積負荷13kg−CODCr/m・日まで下げざるを得ない状況となった。その際、嫌気性消化汚泥を15(g−VSS/L−担体)投入した。結果、10日程度で容積負荷17kg−CODCr/m・日まで回復したものの、その後、徐々に処理能力が低下していった。
[Comparative Example 2]
According to the flow shown in FIG. 1, in a series in which the specification tank capacity and processing conditions of the reaction tank are the same as those in Example 1, and continuous operation is performed at a volume load of 20 kg-CODCr / m 3 · day, Inflow and accumulation of volatile organic acid in the reaction tank lowered the treatment capacity, and the volume load had to be reduced to 13 kg-CODCr / m 3 · day. At that time, 15 (g-VSS / L-carrier) of anaerobic digested sludge was added. As a result, although the volume load recovered to 17 kg-CODCr / m 3 · day in about 10 days, the processing capacity gradually decreased thereafter.

[実施例2]
図1に示すフローに従い、反応槽の仕様槽容量および処理条件を実施例1と同じとし、嫌気性消化汚泥を種汚泥として使用し立上げ、最大容積負荷20kg−CODCr/m・日で連続運転を実施している系列において、更に処理能力を上昇させるために、グラニュールを15(g−VSS/L−担体)投入した。結果、1週間程度で容積負荷30kg−CODCr/m・日に到達した。その後、同負荷にて更に1ヶ月以上連続運転を実施したが、処理能力の低下は起こらず、CODCr除去率は、常に90%以上を推移し、非常に良好であった。なお、40日間の積算した除去量は1072kg−CODCrであった。
[Example 2]
According to the flow shown in FIG. 1, the specification tank capacity and processing conditions of the reaction tank are the same as those in Example 1, and anaerobic digested sludge is used as seed sludge. The maximum volume load is 20 kg-CODCr / m 3 · day continuously. In order to further increase the processing capacity in the series in which the operation was carried out, 15 granules (g-VSS / L-carrier) were added. As a result, the volume load reached 30 kg-CODCr / m 3 · day in about one week. Thereafter, continuous operation was carried out for another month or more under the same load, but the processing capacity did not decrease, and the CODCr removal rate always remained at 90% or more, which was very good. The accumulated removal amount for 40 days was 1072 kg-CODCr.

[比較例3]
図1に示すフローに従い、反応槽の仕様槽容量および処理条件を実施例1と同じとし、嫌気性消化汚泥を種汚泥として使用し立上げ、最大容積負荷20kg−CODCr/m・日で連続運転を実施している系列をそのまま運転し続けた。なお、40日間の積算した除去量は811kg−CODCrであった。
[Comparative Example 3]
According to the flow shown in FIG. 1, the specification tank capacity and processing conditions of the reaction tank are the same as those in Example 1, and anaerobic digested sludge is used as seed sludge. The maximum volume load is 20 kg-CODCr / m 3 · day continuously. Continued to drive the series that was running. The accumulated removal amount for 40 days was 811 kg-CODCr.

[比較例4]
図1に示すフローに従い、反応槽の仕様槽容量および処理条件を実施例1と同じとし、嫌気性消化汚泥を種汚泥として使用し立上げ、最大容積負荷20kg−CODCr/m・日で連続運転を実施している系列において、嫌気性消化汚泥を15(g−VSS/L−担体)投入した。結果、1週間程度で容積負荷23kg−CODCr/m・日には到達したものの、その後、徐々に処理能力が低下していった。なお、40日間の積算した除去量は858kg−CODCrであった。
[Comparative Example 4]
According to the flow shown in FIG. 1, the specification tank capacity and processing conditions of the reaction tank are the same as those in Example 1, and anaerobic digested sludge is used as seed sludge. The maximum volume load is 20 kg-CODCr / m 3 · day continuously. In the series in which the operation was carried out, 15 (g-VSS / L-carrier) of anaerobic digested sludge was charged. As a result, although the volume load reached 23 kg-CODCr / m 3 · day in about one week, the processing capacity gradually decreased thereafter. The accumulated removal amount for 40 days was 858 kg-CODCr.

1・・・原水
2・・・嫌気反応槽
3・・・反応ガス
4・・・処理水
DESCRIPTION OF SYMBOLS 1 ... Raw water 2 ... Anaerobic reaction tank 3 ... Reaction gas 4 ... Treated water

Claims (3)

有機物を含有する排水を、担体を保持する反応槽に通水して該担体に増殖した嫌気性微生物により生物学的に処理する有機性排水の処理方法において、すでに運転されている反応槽にメタン菌グラニュールおよび/またはその粉砕物を添加することを特徴とする有機性排水の処理方法。
In an organic wastewater treatment method in which wastewater containing organic matter is passed through a reaction vessel holding a carrier and biologically treated by anaerobic microorganisms grown on the carrier, methane is added to the already operated reaction vessel. A method for treating organic wastewater, comprising adding fungus granules and / or pulverized products thereof.
メタン菌グラニュールおよび/またはその粉砕物を、担体1Lあたり1〜900gの範囲で存在させることを特徴とする、請求項1に記載の有機性排水の処理方法。   The method for treating organic waste water according to claim 1, wherein the methanogenic granules and / or the pulverized product thereof are present in an amount of 1 to 900 g per liter of the carrier. 担体がポリビニルアルコール系担体である、請求項1または2に記載の有機性排水の処理方法。   The method for treating organic waste water according to claim 1 or 2, wherein the carrier is a polyvinyl alcohol carrier.
JP2012254970A 2012-11-21 2012-11-21 Anaerobic wastewater treatment method using carrier Active JP6046990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254970A JP6046990B2 (en) 2012-11-21 2012-11-21 Anaerobic wastewater treatment method using carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254970A JP6046990B2 (en) 2012-11-21 2012-11-21 Anaerobic wastewater treatment method using carrier

Publications (2)

Publication Number Publication Date
JP2014100679A true JP2014100679A (en) 2014-06-05
JP6046990B2 JP6046990B2 (en) 2016-12-21

Family

ID=51023713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254970A Active JP6046990B2 (en) 2012-11-21 2012-11-21 Anaerobic wastewater treatment method using carrier

Country Status (1)

Country Link
JP (1) JP6046990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077534A (en) * 2013-10-15 2015-04-23 栗田工業株式会社 Anaerobic treatment method and device
CN104986853A (en) * 2015-06-29 2015-10-21 上海医药工业研究院 Method for treating spiramycin fermentation wastewater
JP2016007574A (en) * 2014-06-24 2016-01-18 オルガノ株式会社 Anaerobic biological treatment device and anaerobic biological treatment method

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326995A (en) * 1991-04-26 1992-11-16 Toshiba Corp Anaerobic water treatment apparatus
JPH06182382A (en) * 1992-12-17 1994-07-05 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment
JPH08103794A (en) * 1994-09-30 1996-04-23 Kurita Water Ind Ltd Anaerobic treatment device
JPH0975982A (en) * 1995-09-07 1997-03-25 Nisshin Seito Kk Mixed bed type anaerobic treatment device for organic waste water
US5747311A (en) * 1995-08-22 1998-05-05 Microgen Corporation Process for chemical modification of reactants by microbes
JPH10180289A (en) * 1996-12-25 1998-07-07 Kurita Water Ind Ltd Anaerobic treating device
JPH11165189A (en) * 1997-12-01 1999-06-22 Shinko Pantec Co Ltd Apparatus and method for treating water
JP2002113491A (en) * 2000-10-05 2002-04-16 Kurita Water Ind Ltd Biological denitrifying apparatus
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2003024988A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method
JP2003039093A (en) * 2001-07-31 2003-02-12 Kurita Water Ind Ltd Denitrification method and denitrification apparatus
JP2003326294A (en) * 2002-05-15 2003-11-18 Kurita Water Ind Ltd Anaerobic water treatment apparatus
JP2004255269A (en) * 2003-02-25 2004-09-16 Kurita Water Ind Ltd Denitrification method and denitrification apparatus
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2005324095A (en) * 2004-05-12 2005-11-24 Sumitomo Heavy Ind Ltd Anaerobic treatment method and anaerobic treatment system
JP2006007220A (en) * 2005-09-16 2006-01-12 Toshiba Corp Anaerobic water treatment apparatus
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP2008068233A (en) * 2006-09-15 2008-03-27 Hitachi Plant Technologies Ltd Nitrogen elimination measure and nitrogen removing apparatus
JP2008086862A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Anaerobic treatment method and arrangement
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011067821A (en) * 2011-01-13 2011-04-07 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment system and anaerobic treatment method
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
JP2012076000A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd One tank type anaerobic wastewater treatment apparatus
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
WO2012070459A1 (en) * 2010-11-24 2012-05-31 栗田工業株式会社 Method and apparatus for anaerobic treatment
JP2012110820A (en) * 2010-11-24 2012-06-14 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326995A (en) * 1991-04-26 1992-11-16 Toshiba Corp Anaerobic water treatment apparatus
JPH06182382A (en) * 1992-12-17 1994-07-05 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment
JPH08103794A (en) * 1994-09-30 1996-04-23 Kurita Water Ind Ltd Anaerobic treatment device
US5747311A (en) * 1995-08-22 1998-05-05 Microgen Corporation Process for chemical modification of reactants by microbes
JPH0975982A (en) * 1995-09-07 1997-03-25 Nisshin Seito Kk Mixed bed type anaerobic treatment device for organic waste water
JPH10180289A (en) * 1996-12-25 1998-07-07 Kurita Water Ind Ltd Anaerobic treating device
JPH11165189A (en) * 1997-12-01 1999-06-22 Shinko Pantec Co Ltd Apparatus and method for treating water
JP2002113491A (en) * 2000-10-05 2002-04-16 Kurita Water Ind Ltd Biological denitrifying apparatus
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2003024988A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method
JP2003039093A (en) * 2001-07-31 2003-02-12 Kurita Water Ind Ltd Denitrification method and denitrification apparatus
JP2003326294A (en) * 2002-05-15 2003-11-18 Kurita Water Ind Ltd Anaerobic water treatment apparatus
JP2004255269A (en) * 2003-02-25 2004-09-16 Kurita Water Ind Ltd Denitrification method and denitrification apparatus
JP2004283758A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd Biological denitrification method
JP2005324095A (en) * 2004-05-12 2005-11-24 Sumitomo Heavy Ind Ltd Anaerobic treatment method and anaerobic treatment system
JP2006007220A (en) * 2005-09-16 2006-01-12 Toshiba Corp Anaerobic water treatment apparatus
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP2008068233A (en) * 2006-09-15 2008-03-27 Hitachi Plant Technologies Ltd Nitrogen elimination measure and nitrogen removing apparatus
JP2008086862A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Anaerobic treatment method and arrangement
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011251255A (en) * 2010-06-02 2011-12-15 Kumamoto Univ Waste liquid treatment method and waste liquid treatment device
JP2012076000A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd One tank type anaerobic wastewater treatment apparatus
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
WO2012070459A1 (en) * 2010-11-24 2012-05-31 栗田工業株式会社 Method and apparatus for anaerobic treatment
JP2012110820A (en) * 2010-11-24 2012-06-14 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment
JP2011067821A (en) * 2011-01-13 2011-04-07 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment system and anaerobic treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077534A (en) * 2013-10-15 2015-04-23 栗田工業株式会社 Anaerobic treatment method and device
JP2016007574A (en) * 2014-06-24 2016-01-18 オルガノ株式会社 Anaerobic biological treatment device and anaerobic biological treatment method
CN104986853A (en) * 2015-06-29 2015-10-21 上海医药工业研究院 Method for treating spiramycin fermentation wastewater

Also Published As

Publication number Publication date
JP6046990B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
Zhao et al. Evaluation of revolving algae biofilm reactors for nutrients and metals removal from sludge thickening supernatant in a municipal wastewater treatment facility
Tang et al. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater
Mirzoyan et al. Anaerobic digestion of sludge from intensive recirculating aquaculture systems
Skouteris et al. Anaerobic membrane bioreactors for wastewater treatment: A review
Chong et al. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment–a state-of-the-art review
Manonmani et al. Granulation of anammox microorganisms for autotrophic nitrogen removal from wastewater
JP6046991B2 (en) Anaerobic wastewater treatment method using carrier
Zhou et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective
CN105254155B (en) A kind of biological wall breaking method improving dewatering performance of sludge
Saini et al. Biofilm-mediated wastewater treatment: a comprehensive review
JP6196767B2 (en) Anaerobic wastewater treatment method using carrier
Yan et al. Effect of Fe (II) on nitrogen removal of anammox under organic matter inhibition
JP2012076001A (en) Anaerobic wastewater treatment apparatus
JP6046990B2 (en) Anaerobic wastewater treatment method using carrier
JP6185708B2 (en) Anaerobic wastewater treatment method
Wang et al. Performance of a combined low-consumption biotreatment system with cost-effective ecological treatment technology for rural domestic sewage treatment
CN107032493A (en) Pharmacy wastewater treatment method and processing system
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
CN102153227B (en) Method for treating ultrahigh-concentration organic industrial wastewater
JPWO2016103949A1 (en) Method and apparatus for treating oil-containing wastewater
JP6644586B2 (en) Anaerobic wastewater treatment method using carrier
Das et al. Present Scenario of Dairy Wastewater Treatment: A State of Art Review
Rajathi Efficiency of HUASB reactor for treatment of different types of wastewater—a review
CN205668982U (en) A kind of water purification system being applicable to high ammonia nitrogen livestock breeding wastewater
CN205088063U (en) Handle high -concentration ammonia nitrogen organic waste water's equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R150 Certificate of patent or registration of utility model

Ref document number: 6046990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150