JP2012110820A - Method and apparatus for anaerobic treatment - Google Patents
Method and apparatus for anaerobic treatment Download PDFInfo
- Publication number
- JP2012110820A JP2012110820A JP2010261349A JP2010261349A JP2012110820A JP 2012110820 A JP2012110820 A JP 2012110820A JP 2010261349 A JP2010261349 A JP 2010261349A JP 2010261349 A JP2010261349 A JP 2010261349A JP 2012110820 A JP2012110820 A JP 2012110820A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- reaction tank
- bubbles
- water
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 112
- 229910001868 water Inorganic materials 0.000 claims abstract description 112
- 238000006243 chemical reaction Methods 0.000 claims abstract description 99
- 238000004062 sedimentation Methods 0.000 claims abstract description 37
- 239000012530 fluid Substances 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims 1
- 238000007667 floating Methods 0.000 abstract description 10
- 238000011049 filling Methods 0.000 abstract description 5
- 230000000903 blocking effect Effects 0.000 abstract description 2
- 239000006260 foam Substances 0.000 description 36
- 238000000926 separation method Methods 0.000 description 28
- 239000003795 chemical substances by application Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 239000010802 sludge Substances 0.000 description 18
- 239000004088 foaming agent Substances 0.000 description 16
- 230000005484 gravity Effects 0.000 description 16
- 239000000203 mixture Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 12
- 239000002351 wastewater Substances 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 11
- 239000008187 granular material Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 239000000155 melt Substances 0.000 description 9
- -1 polyethylene Polymers 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- 239000005038 ethylene vinyl acetate Substances 0.000 description 8
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 8
- 229920005672 polyolefin resin Polymers 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 238000005187 foaming Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 238000010097 foam moulding Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- NBOCQTNZUPTTEI-UHFFFAOYSA-N 4-[4-(hydrazinesulfonyl)phenoxy]benzenesulfonohydrazide Chemical compound C1=CC(S(=O)(=O)NN)=CC=C1OC1=CC=C(S(=O)(=O)NN)C=C1 NBOCQTNZUPTTEI-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- MWRWFPQBGSZWNV-UHFFFAOYSA-N Dinitrosopentamethylenetetramine Chemical compound C1N2CN(N=O)CN1CN(N=O)C2 MWRWFPQBGSZWNV-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000000696 methanogenic effect Effects 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- DUIOPKIIICUYRZ-UHFFFAOYSA-N semicarbazide Chemical compound NNC(N)=O DUIOPKIIICUYRZ-UHFFFAOYSA-N 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- POECFFCNUXZPJT-UHFFFAOYSA-M sodium;carbonic acid;hydrogen carbonate Chemical compound [Na+].OC(O)=O.OC([O-])=O POECFFCNUXZPJT-UHFFFAOYSA-M 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
本発明は、反応槽内に流動性を持つ非生物担体を充填し、該非生物担体の表面に生物膜を形成させて嫌気条件下で被処理水を通水して処理する嫌気性処理方法及び装置に関する。 The present invention relates to an anaerobic treatment method in which a non-biological carrier having fluidity is filled in a reaction tank, a biological film is formed on the surface of the non-biological carrier, and the treated water is passed under anaerobic conditions for treatment. Relates to the device.
有機性排水の嫌気性処理方法として、反応槽内に高密度で沈降性の大きいグラニュール汚泥を形成し、溶解性BODを含む有機性排水を上向流通水して、スラッジブランケットを形成した状態で接触させて高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法が採用されている。この方法は、消化速度の遅い固形有機物を分離して別途処理し、消化速度の速い溶解性有機物のみを、嫌気性微生物密度の高いグラニュール汚泥を用いる嫌気性処理によって高負荷で高速処理する方法である。また、このUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通水し、スラッジブランケットを高展開率で展開して、さらに高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket)法も行われている。 As an anaerobic treatment method for organic wastewater, a sludge blanket is formed by forming granular sludge with high density and high sedimentation in the reaction tank, and upwardly circulating organic wastewater containing soluble BOD. The UASB (Upflow Anaerobic Sludge Blanket) method, which performs high-load and high-speed processing by contacting with a slab, is employed. In this method, solid organic substances with a low digestion rate are separated and treated separately, and only soluble organic substances with a high digestion rate are processed at high speed with high load by anaerobic treatment using granular sludge with high anaerobic microorganism density. It is. In addition, as a development of this UASB method, EGSB is used to conduct anaerobic treatment at a higher load by passing water at a higher flow rate using a high-height reaction vessel, deploying a sludge blanket at a higher deployment rate. (Expanded Granule Sludge Blanket) method is also performed.
UASB法、EGSB法などのグラニュール汚泥を用いる嫌気性処理は、嫌気性微生物を含む汚泥をグラニュール状に維持、増殖させて処理する方法である。この方法は担体に汚泥を保持する固定床や流動床による処理と比較して高い汚泥保持濃度を達成することができるため、高負荷運転が可能であり、また、既に稼働中の処理系から余剰汚泥を調達することにより短期間で立上げが可能であり、最も効率的な嫌気性処理法として一般にも認識されている。 Anaerobic treatment using granular sludge, such as UASB method and EGSB method, is a method in which sludge containing anaerobic microorganisms is maintained and grown in a granular state for treatment. This method can achieve a high sludge retention concentration compared to the treatment with a fixed bed or fluidized bed that holds sludge on the carrier, so that it can be operated at a high load, and surplus sludge from an already operating treatment system. Can be started up in a short period of time, and is generally recognized as the most efficient anaerobic treatment method.
しかし、これらグラニュール汚泥を用いる方法は、排水のCOD濃度が高い(CODCr濃度として概ね2000mg/L以上)場合には非常に効率が高いが、COD濃度が低い場合(CODCr濃度として概ね2000mg/L以下)には反応槽に多くの水量を流す必要が生じ、グラニュールが流出してしまう危険性が増し、安定した性能を発揮し得ない傾向がある。 However, these methods using granular sludge are very efficient when the COD concentration of the wastewater is high (COD Cr concentration is approximately 2000 mg / L or more), but when the COD concentration is low (COD Cr concentration is approximately 2000 mg). / L or less), it is necessary to flow a large amount of water into the reaction tank, and there is a tendency that the risk of granule outflow increases and stable performance cannot be exhibited.
また、排水の種類によってはグラニュールが形成されにくい排水が存在し、初期に投入したグラニュールが徐々に解体してしまい、運転不能となる場合があることも知られている。 It is also known that depending on the type of drainage, there is drainage in which granule is difficult to form, and the initially charged granule gradually dismantles, making it impossible to operate.
これに対し、流動性の非生物担体を用いる方法では、スクリーン等の機械的な方法で反応槽からの担体の流出を防ぐことができ、また、担体表面は常に微生物の生育場所として確保できるため、低濃度のCOD排水やグラニュールが解体してしまうような排水に対しても適用できるという利点がある。 On the other hand, in the method using a fluid non-biological carrier, it is possible to prevent the carrier from flowing out of the reaction tank by a mechanical method such as a screen, and the carrier surface can always be secured as a place for growing microorganisms. There is an advantage that it can be applied to low-concentration COD wastewater and wastewater in which granules are dismantled.
また、非生物担体であれば比重や大きさの設計の自由度が高く、グラニュールと比較すると沈降速度を非常に大きく設定することも可能である。沈降速度の大きな担体を利用すると、グラニュール法において必要とされる固液分離のための機構(GSS)が不要となり、反応槽の有効体積を大きくするとともに建設コストも大幅に抑えることができるという利点もある。 In addition, the non-biological carrier has a high degree of freedom in designing the specific gravity and size, and the sedimentation rate can be set very large as compared with granules. If a carrier with a high sedimentation rate is used, the mechanism for solid-liquid separation (GSS) required in the granule method is not required, and the effective volume of the reaction vessel can be increased and the construction cost can be significantly reduced. There are also advantages.
しかしながら、流動性の非生物担体を用いる方法では、担体に微生物が付着して担体の表面に生物膜が形成され、生物膜内部でガスが発生する反応が進行し、発生したガスが担体に付着する結果、担体の見かけ比重が小さくなって担体が反応槽内で浮上し、処理水と共に流出してしまうという問題がある。このような問題は、比重が大きく、沈降速度の大きい担体を用いることにより軽減することは可能であるが、比重が過度に大きく、沈降速度が過度に大きい担体では、被処理水との接触効率が悪く十分な処理効率が得られず、また、沈降した担体の堆積層に固形物が蓄積して流路が閉塞するといった問題があり、一方で、このような問題のない担体を用いた場合、上述の発生ガスによる担体の浮上、流出を避けることは困難である。 However, in the method using a fluid non-biological carrier, microorganisms adhere to the carrier, a biofilm is formed on the surface of the carrier, a reaction that generates gas inside the biofilm proceeds, and the generated gas adheres to the carrier. As a result, there is a problem that the apparent specific gravity of the carrier becomes small, and the carrier floats in the reaction tank and flows out together with the treated water. Such problems can be alleviated by using a carrier having a large specific gravity and a large sedimentation speed. However, in the case of a carrier having an excessively large specific gravity and an excessively large sedimentation speed, the contact efficiency with the water to be treated. However, there is a problem that sufficient processing efficiency cannot be obtained and solid matter accumulates in the sedimentation layer of the settled carrier and the flow path is blocked. On the other hand, when a carrier that does not have such a problem is used It is difficult to avoid the floating and outflow of the carrier due to the generated gas.
従来、担体の浮上を防止するために、反応槽内を撹拌翼で撹拌し、撹拌による旋回流で担体に付着した気泡を分離除去して担体の沈降性を回復させる方法が提案されているが、この方法では撹拌翼と担体との衝突による担体の破損の問題がある。 Conventionally, in order to prevent the carrier from floating, a method has been proposed in which the inside of the reaction vessel is stirred with a stirring blade, and bubbles adhering to the carrier are separated and removed by a swirling flow by stirring to recover the sedimentation property of the carrier. In this method, there is a problem of breakage of the carrier due to collision between the stirring blade and the carrier.
これに対して、特許文献1,2では、浮上した担体を反応槽から抜き出し、抜き出した担体を反応槽外部に引き回した循環配管で再度反応槽に戻すようにした装置が提案されている。
On the other hand,
浮上した担体を反応槽から抜き出して循環配管で反応槽に循環させることにより、この循環配管を流通する過程で担体に付着した気泡を分離除去することは可能であるが、本発明者らの検討により、従来においては、担体の沈降性についての考慮がなされていないために、単に担体を循環するのみでは、反応槽内での担体の浮上や固着の問題を解決し得ないことが判明した。また、担体の沈降性と循環手段との関係が考慮されていないために、循環のために、複雑な機構が必要となり、設備構成が煩雑であることにより、保守管理の負担が大きいという問題もあった。例えば、特許文献1では、担体の循環のために複雑な回収、還流管と液流ジェット機構を設けているが、このような機構は既存の反応槽には容易に取り付けることはできない上に、故障し易く、また、保守管理が煩雑となる。また、特許文献2でも、担体の循環配管にエゼクター機構を設けているが、このような機構でも同様の問題がある。
It is possible to separate and remove bubbles adhering to the carrier in the process of circulating through the circulation pipe by extracting the floated carrier from the reaction tank and circulating it to the reaction tank through the circulation pipe. Thus, in the past, since the sedimentation property of the carrier has not been considered, it has been found that simply circulating the carrier cannot solve the problem of the floating and sticking of the carrier in the reaction tank. In addition, since the relationship between the sedimentation property of the carrier and the circulation means is not taken into account, there is a problem that a complicated mechanism is required for circulation, and the equipment configuration is complicated, so that the burden of maintenance management is large. there were. For example, in Patent Document 1, a complicated recovery, reflux pipe and liquid jet mechanism are provided for circulating the carrier, but such a mechanism cannot be easily attached to an existing reaction tank. It is easy to break down, and maintenance management becomes complicated. Also in
本発明は上記従来の問題点を解決し、反応槽内に流動性を持つ非生物担体を充填し、該非生物担体の表面に生物膜を形成させて嫌気条件下で被処理水を通水して嫌気性処理するに当たり、反応槽内の担体の浮上、固着による閉塞を防止すると共に、気泡の付着で浮上した担体の沈降性を簡易な手段で効果的に回復させて安定な高負荷処理を実現する嫌気性処理方法及び装置を提供することを課題とする。 The present invention solves the above-mentioned conventional problems, fills a reaction vessel with a non-biological carrier having fluidity, forms a biofilm on the surface of the non-biological carrier, and allows water to be treated to flow under anaerobic conditions. In anaerobic treatment, the carrier in the reaction vessel is prevented from floating and clogging due to sticking, and the sedimentation of the carrier that has floated due to the adhesion of bubbles is effectively recovered by simple means for stable high-load treatment. It is an object of the present invention to provide an anaerobic treatment method and apparatus that can be realized.
本発明者らは、上記課題を解決すべく検討を重ねた結果、流動性非生物担体として、特定の大きさと沈降速度を満たすものを用いることにより、担体の浮上、固着による閉塞を防止し、また、気泡の付着で浮上した担体の沈降性を簡易な手段で容易に回復させることができることを見出した。 As a result of repeated studies to solve the above-mentioned problems, the present inventors have used a fluid non-biological carrier that satisfies a specific size and settling velocity to prevent the carrier from floating and blocking due to fixation, Moreover, it discovered that the sedimentation property of the support | carrier which floated by bubble adhesion can be easily recovered by a simple means.
本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] 流動性の非生物担体を充填した反応槽に嫌気条件下で被処理水を通水し、該非生物担体の表面に生物膜を形成させて被処理水を処理する嫌気性処理方法において、大きさが1.0〜5.0mmで、沈降速度が200〜500m/hrの非生物担体を該反応槽に充填し、該反応槽から流出した処理水に含まれる該担体に付着した気泡を分離除去した後、該担体を該反応槽に返送することを特徴とする嫌気性処理方法。 [1] In an anaerobic treatment method in which water to be treated is passed through a reaction tank filled with a fluid non-biological carrier under anaerobic conditions to form a biofilm on the surface of the non-biological carrier to treat the water to be treated. , A non-biological carrier having a size of 1.0 to 5.0 mm and a sedimentation speed of 200 to 500 m / hr is filled in the reaction vessel, and bubbles attached to the carrier contained in the treated water flowing out of the reaction vessel An anaerobic treatment method characterized by returning the carrier to the reaction vessel after separating and removing.
[2] [1]において、該反応槽から流出した該担体を含む処理水を、落差50cm以上の配管に下向流で流通させることにより、該担体に付着した気泡を分離除去することを特徴とする嫌気性処理方法。 [2] In [1], the treated water containing the carrier that has flowed out of the reaction vessel is circulated in a downward flow through a pipe having a drop of 50 cm or more to separate and remove bubbles attached to the carrier. An anaerobic treatment method.
[3] [1]又は[2]において、該気泡を分離除去した担体と処理水とをスクリーン又は沈殿槽で分離した後、ポンプにより該反応槽に返送することを特徴とする嫌気性処理方法。 [3] The anaerobic treatment method according to [1] or [2], wherein the carrier from which the bubbles have been separated and the treated water are separated by a screen or a sedimentation tank and then returned to the reaction tank by a pump. .
[4] 流動性の非生物担体を充填した反応槽に嫌気条件下で被処理水を通水し、該非生物担体の表面に生物膜を形成させて被処理水を処理する嫌気性処理装置において、該反応槽に充填される担体の大きさが1.0〜5.0mmで、沈降速度が200〜500m/hrであり、該反応槽から流出した処理水に含まれる該担体に付着した気泡を分離除去する手段と、該気泡が分離除去された担体を該反応槽に返送する手段とを有することを特徴とする嫌気性処理装置。 [4] In an anaerobic treatment apparatus for treating treated water by passing treated water through a reaction tank filled with a fluid non-biological carrier under anaerobic conditions to form a biofilm on the surface of the non-biological carrier. The size of the carrier filled in the reaction tank is 1.0 to 5.0 mm, the sedimentation speed is 200 to 500 m / hr, and the bubbles attached to the carrier contained in the treated water flowing out from the reaction tank An anaerobic treatment apparatus comprising: means for separating and removing the carrier; and means for returning the carrier from which the bubbles are separated and removed to the reaction tank.
[5] [4]において、該担体に付着した気泡を分離除去する手段が、該反応槽から流出した該担体を含む処理水が下向流で流通される落差50cm以上の配管であることを特徴とする嫌気性処理装置。 [5] In [4], the means for separating and removing bubbles adhering to the carrier is a pipe having a drop of 50 cm or more through which the treated water containing the carrier that has flowed out of the reaction tank flows in a downward flow. An anaerobic treatment device characterized.
[6] [4]又は[5]において、該気泡が分離除去された担体を該反応槽に返送する手段が、該気泡が分離除去された担体と処理水とを分離するためのスクリーン又は沈殿槽と、該スクリーン又は沈殿槽を経た担体を該反応槽に返送するためのポンプとを備えることを特徴とする嫌気性処理装置。 [6] In [4] or [5], the means for returning the carrier from which the bubbles have been separated and removed to the reaction vessel is a screen or precipitate for separating the carrier from which the bubbles have been separated and removed from the treated water. An anaerobic treatment apparatus comprising a tank and a pump for returning the carrier that has passed through the screen or the precipitation tank to the reaction tank.
本発明によれば、反応槽内に流動性を持つ非生物担体を充填し、該非生物担体の表面に生物膜を形成させて嫌気条件下で被処理水を通水して嫌気性処理するに当たり、反応槽内の担体の浮上、固着による閉塞を防止すると共に、気泡の付着で浮上した担体の沈降性を簡易な手段で効果的に回復させて安定な高負荷処理を行うことができる。 According to the present invention, a non-biological carrier having fluidity is filled in a reaction tank, a biofilm is formed on the surface of the non-biological carrier, and the water to be treated is passed under anaerobic conditions for anaerobic treatment. In addition, it is possible to prevent clogging due to floating and sticking of the carrier in the reaction tank, and to effectively recover the sedimentation property of the carrier that has floated due to the adhesion of bubbles by simple means, thereby performing stable high-load processing.
以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明は、流動性の非生物担体を充填した反応槽に嫌気条件下で被処理水を通水し、該非生物担体の表面に生物膜を形成させて被処理水を嫌気性処理するに当たり、担体として大きさが1.0〜5.0mmで、沈降速度が200〜500m/hrのものを用い、反応槽内で浮上して処理水と共に流出した担体に付着した気泡を分離除去した後、該反応槽に返送することを特徴とする。 The present invention, when water to be treated is passed under anaerobic conditions into a reaction tank filled with a fluid non-biological carrier, a biofilm is formed on the surface of the non-biological carrier, and the water to be treated is anaerobically treated. Using a carrier having a size of 1.0 to 5.0 mm and a sedimentation speed of 200 to 500 m / hr, separating and removing bubbles adhering to the carrier that floated in the reaction tank and flowed out together with the treated water, It returns to this reaction tank, It is characterized by the above-mentioned.
まず、本発明で用いる流動性非生物担体について説明する。 First, the fluid non-biological carrier used in the present invention will be described.
本発明で用いる流動性非生物担体は、大きさが1.0〜5.0mmで、沈降速度が200〜500m/hrのものである。なお、ここで、担体の大きさ、沈降速度とは、反応槽に充填される、微生物や気泡が付着していない担体の大きさと沈降速度をさす。 The fluid non-biological carrier used in the present invention has a size of 1.0 to 5.0 mm and a sedimentation speed of 200 to 500 m / hr. Here, the size of the carrier and the sedimentation rate refer to the size and the sedimentation rate of the carrier that is filled in the reaction tank and to which no microorganisms or bubbles are attached.
担体の大きさが大き過ぎると反応槽体積当りの表面積が小さくなり、小さ過ぎると沈降速度が遅くなり、処理水との分離が困難になる。本発明で用いる担体の好ましい大きさは2.5〜4.0mmである。 If the size of the carrier is too large, the surface area per volume of the reaction vessel will be small, and if it is too small, the sedimentation rate will be slow and separation from the treated water will be difficult. The preferred size of the carrier used in the present invention is 2.5 to 4.0 mm.
なお、ここで、担体の大きさとは、通常「粒径」と称されるものであり、例えば直方体形状の担体であればその長辺の長さをさし、立方体形状の担体であればその一辺の長さをさし、円柱形状の担体であれば直径又は円柱の高さのうちいずれか大きい方をさす。また、これらの形状以外の異形形状の担体であれば、担体を2枚の平行な板で挟んだときに、この板の間隔が最も大きくなる部位の板の間隔をさす。
本発明において、担体の大きさは、その平均値が1.0〜5.0mm、好ましくは2.5〜4.0mmの範囲であればよく、すべての担体の大きさがこの範囲でなくてもよい。
Here, the size of the carrier is usually referred to as “particle size”. For example, in the case of a rectangular parallelepiped carrier, it indicates the length of the long side, and in the case of a cubic carrier, This refers to the length of one side, and in the case of a cylindrical carrier, the larger one of the diameter and the height of the cylinder. Further, in the case of a carrier having an irregular shape other than these shapes, when the carrier is sandwiched between two parallel plates, the interval between the plates where the interval between the plates becomes the largest is given.
In the present invention, the average size of the carrier may be in the range of 1.0 to 5.0 mm, preferably 2.5 to 4.0 mm. Also good.
また、担体の沈降速度が小さすぎると、水流や発生ガスにより浮上し易く、逆に、担体の沈降速度が大きすぎると被処理水との接触効率が悪くなり、十分な処理効率が得られない、或いは担体の堆積層に固形物が蓄積して流路が閉塞するといった弊害が出る。本発明で用いる担体の好ましい沈降速度は200〜500m/hrである。 In addition, if the sedimentation rate of the carrier is too small, it is likely to float due to water flow or generated gas. Conversely, if the sedimentation rate of the carrier is too large, the contact efficiency with the water to be treated is deteriorated and sufficient treatment efficiency cannot be obtained. Alternatively, there is a problem that solids accumulate in the deposited layer of the carrier and the flow path is blocked. The preferred sedimentation rate of the carrier used in the present invention is 200 to 500 m / hr.
なお、ここで、担体の沈降速度とは、担体を水(水道水等の清水)に浸して沈んだものを取り出し、これを水(水道水等の清水)に入れたメスシリンダーに投入し、単位時間当たりの沈降距離を測定して求められた値であり、本発明においては、10〜20個の担体について測定を行い、その平均値を沈降速度とした。 Here, the settling speed of the carrier is taken out by immersing the carrier in water (fresh water such as tap water) and taking it out and putting it into a graduated cylinder in water (fresh water such as tap water). It is a value obtained by measuring the sedimentation distance per unit time. In the present invention, 10 to 20 carriers were measured, and the average value was taken as the sedimentation speed.
本発明で用いる担体は、その大きさと沈降速度が上記範囲を満たすものであればよく、担体の構成材料には特に制限はないが、例えば、以下の(I)及び/又は(II)の発泡体が挙げられ、このような樹脂発泡体よりなるものであれば、比重や粒径の調整が容易である点においても好ましい。
(I) ポリオレフィン系樹脂を主体とする樹脂成分30〜95重量%と、セルロース系粉末の親水化剤5〜70重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体(以下「発泡体(I)」と記載する場合がある。)
(II) ポリオレフィン系樹脂を主体とする樹脂成分30〜95重量%と、セルロース系粉末の親水化剤4〜69重量%と、無機粉末1〜30重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体(以下「発泡体(II)」と記載する場合がある。)
The carrier used in the present invention is not particularly limited as long as its size and sedimentation rate satisfy the above ranges, and the constituent material of the carrier is not particularly limited. For example, the foaming of the following (I) and / or (II) If it consists of such a resin foam, it is preferable also in the point that adjustment of specific gravity and a particle size is easy.
(I) A foam containing 30 to 95% by weight of a resin component mainly composed of a polyolefin-based resin and 5 to 70% by weight of a hydrophilizing agent for cellulose powder, the surface of which has a melt fracture state ( Hereinafter, it may be referred to as “foam (I)”.
(II) A foam comprising 30 to 95% by weight of a resin component mainly composed of a polyolefin resin, 4 to 69% by weight of a hydrophilizing agent for cellulose powder, and 1 to 30% by weight of an inorganic powder, Has a melt fractured state (hereinafter sometimes referred to as “foam (II)”)
ここでメルトフラクチャーとは、プラスチック成形時に、成形品の表面に凹凸が生じる現象(平滑な表面を有さない状態)として、一般的に知られている。例えば、プラスチック材料の押出成形において、押出機の内圧が著しく高くなったり、押出速度が著しく大きくなったり、或いは、プラスチック材料の温度が低くなりすぎたりしたとき、成形品の表面に不規則な凹凸が生じたり、表面の光沢を失ったりする現象をいう。 Here, the melt fracture is generally known as a phenomenon in which irregularities are formed on the surface of a molded product during plastic molding (a state in which there is no smooth surface). For example, in the extrusion molding of plastic material, when the internal pressure of the extruder becomes extremely high, the extrusion speed becomes extremely large, or the temperature of the plastic material becomes too low, irregular irregularities on the surface of the molded product This refers to a phenomenon in which surface gloss or surface gloss is lost.
本発明に係る担体の好ましいメルトフラクチャー状態は、下記式(1)で示される比表面積比を満たすものである。
B/A=1.5〜4.0 ・・・(1)
A preferable melt fracture state of the carrier according to the present invention satisfies the specific surface area ratio represented by the following formula (1).
B / A = 1.5 to 4.0 (1)
ここで、Aは発泡体の見かけの比表面積、Bは発泡体の実比表面積を示す。
発泡体の見かけの比表面積Aとは、発泡体の表面が平滑な状態、つまり、メルトフラクチャーを生じていない状態での比表面積を示し、実比表面積Bとは、メルトフラクチャーが生じている状態での実際の比表面積を示す。即ち、上記式(1)で示されるB/Aの値は、メルトフラクチャーを生じることによる比表面積の増加の割合を示すものであり、B/Aが1であるものは、表面にメルトフラクチャーによる凹凸が全くないことを意味する。
Here, A indicates the apparent specific surface area of the foam, and B indicates the actual specific surface area of the foam.
The apparent specific surface area A of the foam indicates a specific surface area in a state where the surface of the foam is smooth, that is, a state where no melt fracture occurs, and the actual specific surface area B indicates a state where the melt fracture occurs. The actual specific surface area at is shown. That is, the value of B / A represented by the above formula (1) indicates the rate of increase in specific surface area due to the occurrence of melt fracture, and those having a B / A of 1 depend on the melt fracture on the surface. It means that there is no unevenness.
B/Aの値が1.5より小さいと、被処理水と担体との接触面積が小さくなるため、処理能力が小さくなり好ましくない。B/Aの値が4.0より大きいと、表面のメルトフラクチャーが使用時における担体同士の接触により容易に削られてしまい、好ましくない。なお、見かけの比表面積A及び実比表面積Bは、自動比表面積/細孔分布測定装置〔Tristar3000、(株)島津製作所製〕で測定した値を用いることができる。 When the value of B / A is less than 1.5, the contact area between the water to be treated and the carrier is small, and thus the treatment capacity is undesirably small. When the value of B / A is larger than 4.0, the melt fracture on the surface is easily scraped by contact between the carriers at the time of use, which is not preferable. As the apparent specific surface area A and the actual specific surface area B, values measured by an automatic specific surface area / pore distribution measuring device (Tristar 3000, manufactured by Shimadzu Corporation) can be used.
発泡体を構成する樹脂成分は、メルトフローインデックスが5〜25g/10minであるものが好ましい。メルトフローインデックスが5g/10minより小さいと樹脂成分の流動性に欠けるため、発泡体の成形に不向きであり、また、25g/10minより大きいと発泡成形時に潰れる現象が生じるおそれがある。 The resin component constituting the foam preferably has a melt flow index of 5 to 25 g / 10 min. If the melt flow index is less than 5 g / 10 min, the fluidity of the resin component is insufficient, so that it is unsuitable for foam molding, and if it exceeds 25 g / 10 min, a phenomenon of crushing during foam molding may occur.
ここでメルトフローインデックス(以下、単に「MFI」と略記する場合がある。)とは、溶融状態にある樹脂の流動性を示す尺度の一つで、一定圧力,一定温度の下に、規定の寸法をもつノズル(オリフィス)から樹脂が流出する量を測定し、10分間当たりの重量(単位:g/10min)で表した指数として一般的に知られている。本発明では、230℃、21.6N荷重(DIN53735)での値を採用する。 Here, the melt flow index (hereinafter, sometimes simply abbreviated as “MFI”) is one of the measures for the fluidity of a resin in a molten state, and is defined under a certain pressure and a certain temperature. It is generally known as an index expressed by weight per 10 minutes (unit: g / 10 min) by measuring the amount of resin flowing out from a nozzle (orifice) having dimensions. In the present invention, the value at 230 ° C. and 21.6 N load (DIN 53735) is adopted.
発泡体(I),(II)を構成する樹脂成分として好ましいものは、ポリエチレン(以下、単に「PE」と略記する場合がある。)、ポリプロピレン(以下、単に「PP」と略記する場合がある。)、エチレン−酢酸ビニル共重合体(以下、単に「EVA」と略記する場合がある。)等が挙げられる。これらの樹脂を単独で用いてもよく、適宜組み合わせた混合物として用いてもよい。また、発泡体(I),(II)を構成する樹脂成分は、ポリオレフィン系樹脂に他の熱可塑性樹脂成分を加えたものであってもよい。他の熱可塑性樹脂成分として、ポリスチレン(以下、単に「PS」と略記する場合がある。)、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリウレタン、ポリアミド、ポリアセタール、ポリ乳酸、ポリメチルメタクリレート、ABS樹脂等が挙げられる。 Preferred resin components constituting the foams (I) and (II) are polyethylene (hereinafter sometimes simply abbreviated as “PE”), polypropylene (hereinafter simply abbreviated as “PP”). ), An ethylene-vinyl acetate copolymer (hereinafter sometimes simply referred to as “EVA”), and the like. These resins may be used alone or as a mixture appropriately combined. Further, the resin component constituting the foams (I) and (II) may be one obtained by adding another thermoplastic resin component to a polyolefin resin. As other thermoplastic resin components, polystyrene (hereinafter sometimes abbreviated as “PS”), polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyurethane, polyamide, polyacetal, polylactic acid, polymethyl methacrylate , ABS resin and the like.
発泡体(I),(II)を構成する樹脂成分としてはポリエチレンが特に好ましいが、上記のMFIの範囲内であれば、PEと他のポリオレフィン系樹脂等との混合物、例えば、PEとPPの混合物、PEとEVAの混合物、PEとPPとEVAの混合物、PEとPPとPSの混合物、PEとPPとEVAとPSの混合物、或いはこれらに更に他の熱可塑性樹脂を混合した混合物でもよい。具体的には、PE、PP、EVA、PSを含む他の熱可塑性樹脂の組成比(重量比)が、樹脂全体を100として、PE:PP:EVA:PSを含む他の熱可塑性樹脂=100〜60:40〜0:20〜0:15〜0となることが好ましい。なお、担体の耐摩耗性を高めるためには、樹脂成分中にEVAを10重量%以上含有させることが好ましい。また、これらの樹脂成分は再生樹脂であってもよい。 Polyethylene is particularly preferable as the resin component constituting the foams (I) and (II). However, within the above MFI range, a mixture of PE and other polyolefin resins, for example, PE and PP It may be a mixture, a mixture of PE and EVA, a mixture of PE, PP and EVA, a mixture of PE, PP and PS, a mixture of PE, PP, EVA and PS, or a mixture obtained by further mixing other thermoplastic resins. Specifically, the composition ratio (weight ratio) of other thermoplastic resins including PE, PP, EVA, PS is 100, and other thermoplastic resins including PE: PP: EVA: PS = 100. It is preferable that it becomes -60: 40-0: 20-0: 15-0. In order to improve the wear resistance of the carrier, it is preferable to contain 10% by weight or more of EVA in the resin component. These resin components may be recycled resins.
一方、親水化剤としてのセルロース系粉末としては、木粉、セルロース粉末、麻セルロース粉末などが挙げられ、おがくず、アビセル、アーボセル、紙粉、セルロースビーズ、微結晶セルロース、ミクロフィブリル化セルロースなどが例示されるが、特に木粉を用いることが好ましい。これらはいずれかを単独で用いてもよく、また、2種類以上を任意の割合で混合して用いてもよい。 On the other hand, examples of the cellulose-based powder as the hydrophilizing agent include wood powder, cellulose powder, hemp cellulose powder, and the like, such as sawdust, avicel, arbocel, paper powder, cellulose beads, microcrystalline cellulose, and microfibrillated cellulose. However, it is particularly preferable to use wood flour. Any of these may be used alone, or two or more of them may be mixed and used in an arbitrary ratio.
親水化剤の形状は、球状、楕円状、くさび状、ウィスカー状、繊維状などであるが、これら以外の形状であってもよい。また、親水化剤の粒径は200メッシュパス品、好ましくは100メッシュパス品、さらに好ましくは40メッシュパス品がよい。 The hydrophilizing agent has a spherical shape, an elliptical shape, a wedge shape, a whisker shape, a fiber shape, and the like, but may have other shapes. The particle size of the hydrophilizing agent is 200 mesh pass product, preferably 100 mesh pass product, more preferably 40 mesh pass product.
本発明において、親水化剤は、独立気泡を有する発泡体に対し、水浸透機能を付与する役割を有するが、そのためには親水化剤は、発泡体の表面に露出ないし突出していることが望ましい。ここで露出とは、発泡体表面に親水化剤の表面の一部が出現していることを意味し、突出とは、発泡体表面から親水化剤の一部が突き出ていることを意味する。即ち、露出ないし突出しているとは、発泡体中に親水化剤の全体あるいは一部が埋没しており、かつ、発泡体表面に親水化剤の表面の一部が現れている状態、あるいは、親水化剤の一部が発泡体表面に突き出ている状態を意味する。 In the present invention, the hydrophilizing agent has a role of imparting a water permeation function to the foam having closed cells. For this purpose, the hydrophilizing agent is desirably exposed or protruded from the surface of the foam. . Here, exposure means that part of the surface of the hydrophilizing agent appears on the foam surface, and protrusion means that part of the hydrophilizing agent protrudes from the foam surface. . That is, being exposed or protruding means that the whole or part of the hydrophilizing agent is buried in the foam and a part of the surface of the hydrophilizing agent appears on the foam surface, or It means a state in which a part of the hydrophilizing agent protrudes from the foam surface.
また、発泡体(II)に用いられる無機粉末としては、硫酸バリウム、炭酸カルシウム、ゼオライト、タルク、酸化チタン、チタン酸カリウム、水酸化アルミニウム等が挙げられ、特に硫酸バリウムを用いることが好ましい。これらの無機粉末は、いずれかを単独で用いてもよく、2種類以上の無機粉末を用いてもよい。 Examples of the inorganic powder used for the foam (II) include barium sulfate, calcium carbonate, zeolite, talc, titanium oxide, potassium titanate, and aluminum hydroxide, and barium sulfate is particularly preferable. Any of these inorganic powders may be used alone, or two or more kinds of inorganic powders may be used.
発泡体(I),(II)において、樹脂成分の割合が上記範囲よりも多く、親水化剤の割合が少ないと、親水化剤を用いることによる水浸透機能の付与効果が十分でなく、水中に沈降する状態とするのに長い時間が必要となり、逆に樹脂成分の割合が上位範囲よりも少なく、親水化剤の割合が多いと担体の強度が低下してしまう。 In the foams (I) and (II), if the ratio of the resin component is larger than the above range and the ratio of the hydrophilizing agent is small, the effect of imparting the water penetration function by using the hydrophilizing agent is not sufficient, It takes a long time to settle in the resin, and conversely, if the proportion of the resin component is less than the upper range and the proportion of the hydrophilizing agent is large, the strength of the carrier is lowered.
また、発泡体(II)において、無機粉末は発泡の際の核材、ならびに比重調整のために配合されるが、更に樹脂成分や親水化剤の使用量を減らして製造コストの低減化を図るものである。無機粉末の割合が上記範囲よりも少ないとこのような無機粉末の配合効果を十分に得ることができず、多いと比重が高くなりすぎてしまう。 In addition, in the foam (II), the inorganic powder is blended for the purpose of adjusting the core material and the specific gravity during foaming, but further reducing the amount of resin components and hydrophilizing agents to reduce production costs. Is. If the proportion of the inorganic powder is less than the above range, such a blending effect of the inorganic powder cannot be sufficiently obtained, and if it is large, the specific gravity becomes too high.
発泡体(I),(II)は、後述のように、発泡剤を用いて発泡形成されるが、その発泡倍率は2〜10倍で、見かけ容積から求められる比重が0.10〜0.80g/mlであることが好ましい。 As will be described later, the foams (I) and (II) are foamed using a foaming agent. The foaming ratio is 2 to 10 times, and the specific gravity determined from the apparent volume is 0.10 to 0.00. It is preferably 80 g / ml.
発泡体(I),(II)の発泡倍率が上記下限より小さいと、比重が大きくなりすぎるため、水中で流動させる際に大きな力を必要とするため好ましくない。また、発泡倍率が上記上限より大きいと、比重が小さくなるため、水面に浮き易くなり、好ましくない。 If the expansion ratio of the foams (I) and (II) is smaller than the above lower limit, the specific gravity becomes too large, and a large force is required when flowing in water. On the other hand, if the expansion ratio is larger than the above upper limit, the specific gravity is small, and it tends to float on the water surface, which is not preferable.
また、見かけ容積から求められる比重が上記下限より小さくても大きくても、前述の本発明で規定される沈降速度を満足し得なくなる場合がある。なお、ここで発泡体の見かけ容積から求められる比重とは、発泡体を50mlメスシリンダーに見かけ容積で30ml量り取り、その重量から算出して求めた値(単位:g/ml)であって、実質的な比重を示すものとする。これは、発泡体(I),(II)が、その表面にメルトラクチャー状態を有しているため、真の体積を測定するのが非常に困難なためである。以下において、発泡体の見かけ容積から求められる比重を、単に「比重」と称す。 Moreover, even if the specific gravity calculated | required from an apparent volume is smaller or larger than the said minimum, it may become unable to satisfy the sedimentation speed prescribed | regulated by the above-mentioned this invention. Here, the specific gravity determined from the apparent volume of the foam is a value (unit: g / ml) obtained by measuring 30 ml of the foam in an apparent volume in a 50 ml graduated cylinder and calculating from the weight. It shall indicate a substantial specific gravity. This is because the foams (I) and (II) have a melt-lacquered state on the surface, and it is very difficult to measure the true volume. Hereinafter, the specific gravity obtained from the apparent volume of the foam is simply referred to as “specific gravity”.
発泡体(I),(II)は、前述のポリオレフィン系樹脂、親水化剤、更には無機粉末を溶融混練し、更に発泡剤を溶融混練して得られた混合物を発泡させた後、所定の大きさにカットすることにより製造することができる。 Foams (I) and (II) are prepared by melting and kneading the above-mentioned polyolefin resin, hydrophilizing agent, and further inorganic powder, and further foaming a mixture obtained by melting and kneading the foaming agent. It can be manufactured by cutting into a size.
発泡剤としては、重炭酸ナトリウム(重曹)、アゾジカルボンアミドなどが挙げられる。発泡剤は、これらに制限されるものではなく、化学的発泡剤や物理的発泡剤などが挙げられる。
化学的発泡剤としては、例えば、バリウムアゾジカルボキシレート等のアゾ化合物、N,N−ジニトロソペンタメチレンテトラミン等のニトロソ化合物、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)等のヒドラジン誘導体、セミカルバジド化合物、アジド化合物、トリアゾール化合物、イソシアネート化合物、重炭酸ナトリウム等の重炭酸塩、炭酸塩、亜硝酸塩、水素化物、重炭酸ナトリウムと酸の混合物(例えば、重炭酸ナトリウムとクエン酸等)、過酸化水素と酵素との混合物、亜鉛粉末と酸との混合物などが挙げられる。また、物理発泡剤としては、例えば、脂肪族炭化水素類(例えば、ブタン、ペンタン、ヘキサンなど)、塩化炭化水素類(例えば、ジクロロエタン、ジクロロメタンなど)、フッ化塩化炭化水素類(例えば、トリクロロモノフロロメタン、ジクロロジフロロメタン、ジクロロモノフロロメタン、ジクロロテトラフロロエタンなど)、代替フロン類、空気、炭酸ガス、窒素ガス、水などが挙げられる。中でも、分解温度が低く、安価であるという点から、重炭酸ナトリウム(重曹)を用いることが特に好ましい。
Examples of the foaming agent include sodium bicarbonate (bicarbonate) and azodicarbonamide. A foaming agent is not restricted to these, A chemical foaming agent, a physical foaming agent, etc. are mentioned.
Examples of the chemical foaming agent include azo compounds such as barium azodicarboxylate, nitroso compounds such as N, N-dinitrosopentamethylenetetramine, hydrazine derivatives such as 4,4′-oxybis (benzenesulfonylhydrazide), and semicarbazide. Compounds, azide compounds, triazole compounds, isocyanate compounds, bicarbonates such as sodium bicarbonate, carbonates, nitrites, hydrides, mixtures of sodium bicarbonate and acids (eg sodium bicarbonate and citric acid, etc.), peroxidation Examples thereof include a mixture of hydrogen and an enzyme, a mixture of zinc powder and an acid, and the like. Examples of the physical foaming agent include aliphatic hydrocarbons (eg, butane, pentane, hexane, etc.), chlorinated hydrocarbons (eg, dichloroethane, dichloromethane, etc.), fluorinated chlorohydrocarbons (eg, trichloromono). Fluoromethane, dichlorodifluoromethane, dichloromonofluoromethane, dichlorotetrafluoroethane, etc.), alternative chlorofluorocarbons, air, carbon dioxide, nitrogen gas, water and the like. Among these, it is particularly preferable to use sodium bicarbonate (sodium bicarbonate) from the viewpoint of low decomposition temperature and low cost.
更に、発泡剤として、いわゆる自立発泡剤(独立発泡剤、マイクロスフィア、熱膨張性マイクロカプセルともいう)を用いることができる。この自立発泡剤は、発泡により発泡剤自身が外壁面を有する中空球状粒子となることから、樹脂組成物を水中に押し出し発泡させる代わりに気相中(例えば、空気中)に押し出し発泡させても、発泡体の中空部分が潰れることなく維持され、所望の発泡倍率を有する発泡体が得られる。自立発泡剤としては、外壁用のポリマーとして例えば塩化ビニリデン−アクリロニトリル共重合体やアクリロニトリル−メタアクリロニトリル共重合体等を使用し、これに内包する揮発性の液体として例えばイソブタン、イソペンタン等を使用したものが挙げられる。具体的にはエクスパンセル(日本フィライト株式会社)やEPD−03(永和化成工業株式会社)などを例示することができる。なお、本発明では、セルロース系粉末の親水化剤の存在によって、自立発泡剤による発泡体へも水が透過することから、得られる発泡体は水透過性に優れたものとなる。 Furthermore, as the foaming agent, a so-called self-supporting foaming agent (also referred to as an independent foaming agent, microsphere, or thermally expandable microcapsule) can be used. Since this self-supporting foaming agent becomes hollow spherical particles having an outer wall surface by foaming, the resin composition may be extruded in the gas phase (for example, in the air) instead of being extruded and foamed in water. The hollow portion of the foam is maintained without being crushed, and a foam having a desired expansion ratio is obtained. As the self-supporting foaming agent, for example, vinylidene chloride-acrylonitrile copolymer or acrylonitrile-methacrylonitrile copolymer is used as the polymer for the outer wall, and isobutane, isopentane, etc. are used as the volatile liquid contained therein. Is mentioned. Specific examples include EXPANSEL (Nippon Philite Co., Ltd.) and EPD-03 (Eiwa Chemical Industry Co., Ltd.). In addition, in this invention, since water permeate | transmits also to the foam by a self-supporting foaming agent by presence of the hydrophilizing agent of a cellulose powder, the obtained foam becomes the thing excellent in water permeability.
これらの発泡剤は1種のみを用いてもよく2種以上を混合して用いてもよい。発泡剤は、前述の好適な発泡倍率を得るために、発泡体(I)においてはポリオレフィン系樹脂と親水化剤の合計100重量部に対して、発泡体(II)においてはポリオレフィン系樹脂と親水化剤と無機粉末の合計100重量部に対して、それぞれ0.5〜8重量部の割合で用いることが好ましい。 These foaming agents may be used alone or in combination of two or more. In order to obtain the above-mentioned preferable expansion ratio, the foaming agent is 100 parts by weight of the polyolefin resin and the hydrophilizing agent in the foam (I), and the polyolefin resin and the hydrophilic in the foam (II). It is preferably used in a ratio of 0.5 to 8 parts by weight with respect to a total of 100 parts by weight of the agent and the inorganic powder.
上述のような、大きさが1.0〜5.0mmで、沈降速度が200〜500m/hrの非生物担体を反応槽に充填して嫌気処理を行った場合、通常は担体が大量に浮上してくることはほとんどないが、大きな負荷変動があった時などに、担体表面に微細な気泡が付着し、見かけ比重が軽くなることにより担体が浮上して、処理水と共に反応槽外に流出してしまうことがある。 When anaerobic treatment is performed by filling a reaction vessel with a non-biological carrier having a size of 1.0 to 5.0 mm and a sedimentation speed of 200 to 500 m / hr as described above, the carrier usually floats in large quantities. However, when there is a large load fluctuation, fine bubbles adhere to the surface of the carrier, and the apparent specific gravity is reduced, so that the carrier floats up and flows out of the reaction tank together with the treated water. May end up.
本発明においては、反応槽内で浮上して、処理水と共に反応槽から流出した担体に付着した気泡を分離除去し、担体の沈降性を回復させた後、反応槽に返送する。 In the present invention, air bubbles floating on the reaction tank and flowing out of the reaction tank together with the treated water are separated and removed, and after the sedimentation property of the support has been recovered, it is returned to the reaction tank.
この気泡の分離除去方法としては、特に制限はないが、例えば、次のような方法を採用することができる。
(1) 50cm以上の落差を有する配管(以下、「気泡分離配管」と称す場合がある。)に、担体を含む処理水を下向流で流通させることにより、水流の落差を利用して気泡をはずす。
(2) スクリーンを設けた水槽に担体を含む処理水を導入し、水流、スクリーン洗浄用の気泡等の効果により気泡をはずす。即ち、スクリーンの下部には洗浄のための曝気装置が設けられているため、この曝気流によって気泡をはずすことができる。
Although there is no restriction | limiting in particular as this bubble separation / removal method, For example, the following methods are employable.
(1) By flowing the treated water containing the carrier in a downward flow through a pipe having a drop of 50 cm or more (hereinafter sometimes referred to as “bubble separation pipe”), bubbles are generated using the drop of the water flow. Remove.
(2) The treated water containing the carrier is introduced into the water tank provided with the screen, and the bubbles are removed by the effect of the water flow, bubbles for cleaning the screen, and the like. That is, since an aeration device for cleaning is provided at the lower part of the screen, bubbles can be removed by this aeration airflow.
このうち、特に、簡易な構成で気泡を効率的に分離除去することができることから、上記(1)の気泡分離配管を利用する方法を採用することが好ましい。 Among these, since the bubbles can be efficiently separated and removed with a simple configuration, it is preferable to employ the method using the bubble separation pipe (1).
上記(1)の方法において、気泡分離配管とは、鉛直方向に50cm以上の高低差のある配管であれば、途中に水平部を有していたり、鉛直方向に対して若干の傾きを有していてもよいが、気泡の分離除去効率の面から、気泡分離配管の鉛直方向に対する傾きは30°以下であることが好ましく、水平部等のない直管状であることが好ましい。 In the method of (1) above, the bubble separation pipe is a pipe having a height difference of 50 cm or more in the vertical direction, and has a horizontal portion in the middle or has a slight inclination with respect to the vertical direction. However, from the viewpoint of the efficiency of separating and removing bubbles, the inclination of the bubble separation pipe with respect to the vertical direction is preferably 30 ° or less, and is preferably a straight tube without a horizontal portion or the like.
また、この気泡分離配管の落差は、過度に小さいと気泡を十分に分離除去し得ず、過度に大きいと、配管回りが過大となることから、50〜500cm、特に100〜200cm程度であることが好ましい。 In addition, if the drop of the bubble separation pipe is excessively small, the bubbles cannot be sufficiently separated and removed. If the drop is excessively large, the circumference of the pipe is excessively large, and is about 50 to 500 cm, particularly about 100 to 200 cm. Is preferred.
また、気泡分離配管は、断面積が小さ過ぎると担体を含む処理水を円滑に流通させることが困難であるが、断面積が大き過ぎると、配管内で気泡の分離除去効果の高い下向流を形成し得ず、気泡の分離除去効果を十分に得ることができない場合があるため、この配管の断面積は、流通させる処理水量によっても異なるが、呼び径150A〜500A程度とすることが好ましく、特に担体を含む処理水が0.5〜3m/secの流速で流下するような大きさであることが好ましい。 Also, if the cross-sectional area of the bubble separation pipe is too small, it is difficult to circulate the treated water containing the carrier smoothly, but if the cross-sectional area is too large, the downward flow having a high effect of separating and removing bubbles in the pipe The cross-sectional area of this pipe varies depending on the amount of treated water to be circulated, but it is preferable to have a nominal diameter of about 150A to 500A. In particular, it is preferable that the size of the treated water containing the carrier flows down at a flow rate of 0.5 to 3 m / sec.
本発明で用いる特定の大きさ及び沈降速度を有する担体は、このような気泡分離配管を流下する間に、気泡がはずれることにより沈降性が回復し、更に速い速度で流下、沈降することにより、より一層高い気泡の分離除去効果を得ることができる。 The carrier having a specific size and settling velocity used in the present invention recovers the settling property by falling off the bubbles while flowing down such a bubble separation pipe, and flows down and settles at a higher rate, An even higher bubble separation and removal effect can be obtained.
このようにして気泡を分離除去した担体は、反応槽に返送されるが、その際、処理水を分離して、担体濃度の高い水を反応槽に返送することが水処理効率の面で好ましい。 The carrier from which bubbles have been separated and removed in this manner is returned to the reaction tank. At that time, it is preferable in terms of water treatment efficiency to separate the treated water and return the water having a high carrier concentration to the reaction tank. .
従って、気泡を分離除去した担体を含む処理水は、スクリーン又は沈殿槽(傾斜面を設けた槽など)で固液分離し、担体濃度を高めた処理水を反応槽に返送することが好ましい。本発明で用いる担体はそれ自体沈降速度が比較的大きく、従って、気泡をはずした担体は、直ちに沈降し、簡易な構成の固液分離手段で容易に濃縮することができる。 Therefore, the treated water containing the carrier from which bubbles have been separated and removed is preferably subjected to solid-liquid separation with a screen or a precipitation tank (such as a tank provided with an inclined surface), and the treated water having an increased carrier concentration is returned to the reaction tank. The carrier used in the present invention itself has a relatively high sedimentation speed. Therefore, the carrier from which bubbles are removed can immediately settle and can be easily concentrated by a solid-liquid separation means having a simple structure.
この担体の反応槽への返送は、ポンプ移送により円滑に行うことができる。担体の移送に用いるポンプの種類には特に制限はないが、移送される担体は汚泥よりも硬いため、粒状固体を含む水を移送できるポンプを用いて返送することができる。 The return of the carrier to the reaction vessel can be smoothly performed by pumping. Although there is no restriction | limiting in particular in the kind of pump used for transfer of a support | carrier, Since the support | carrier to be transferred is harder than sludge, it can be returned using the pump which can transfer the water containing a granular solid.
このような気泡の分離除去、固液分離、ポンプ移送などの処理を、造粒汚泥であるグラニュールに対して行うと、グラニュールの崩壊、分散の問題があるが、非生物担体であれば、このような問題を引き起こすことなく、気泡の分離除去、固液分離、及びポンプ移送を行うことができる。 When processing such as separation and removal of bubbles, solid-liquid separation, and pump transfer is performed on granule, which is granulated sludge, there is a problem of granule disintegration and dispersion. Without causing such problems, separation and removal of bubbles, solid-liquid separation, and pump transfer can be performed.
なお、反応槽への返送処理水量を抑えた上で担体を含む処理水を円滑にポンプ移送するために、反応槽に返送される水中の担体濃度としては体積%として1〜30%程度であることが好ましい。 In addition, in order to smoothly pump the treated water containing the carrier while suppressing the amount of treated water returned to the reaction tank, the carrier concentration in the water returned to the reaction tank is about 1 to 30% as a volume%. It is preferable.
本発明において処理対象となる被処理水は、嫌気性微生物と接触させて嫌気性処理を行うことにより処理可能な有機物を含む液であればよく、組成や濃度には特に制限は無い。 In the present invention, the water to be treated may be any liquid containing an organic substance that can be treated by anaerobic treatment by contacting with anaerobic microorganisms, and the composition and concentration are not particularly limited.
被処理水のCOD濃度としては特に制限はないが、担体を用いる嫌気性処理は、前述の如く、UASB法やEGSB法のようなグラニュールを用いた処理への適用が困難な低濃度排水の処理において特に優れた効果を発揮することから、本発明における被処理水としては、CODCr濃度が2000mg/L以下、例えば500〜2000mg/Lの低濃度排水の処理に有効である。
このような排水としては、食品工場等の製造廃水、化学工場等の有機性廃水、一般下水等が含まれるが、何らこれらに限定されるものではない。
The COD concentration of the water to be treated is not particularly limited, but as described above, the anaerobic treatment using a carrier is a low-concentration wastewater that is difficult to apply to treatment using granules such as the UASB method and the EGSB method. Since particularly excellent effects are exhibited in the treatment, the water to be treated in the present invention is effective for the treatment of low-concentration wastewater having a COD Cr concentration of 2000 mg / L or less, for example, 500 to 2000 mg / L.
Such wastewater includes, but is not limited to, manufacturing wastewater from food factories, organic wastewater from chemical factories, general sewage, and the like.
被処理水中に糖、タンパク等の高分子成分が含まれる場合には、後掲の図1に示す嫌気性処理装置のように、流動性非生物担体を充填した反応槽の前処理手段として高分子を酢酸やプロピオン酸といった低分子有機酸まで分解する酸生成槽を設けてもよい。 When polymer components such as sugar and protein are contained in the water to be treated, as a pretreatment means for a reaction tank filled with a fluid non-biological carrier, as in the anaerobic treatment apparatus shown in FIG. You may provide the acid generation tank which decomposes | disassembles a molecule | numerator into low molecular organic acids, such as an acetic acid and propionic acid.
この場合、酸生成槽の処理条件としては、被処理水の生分解性等の条件により異なるが、pH5〜8、好ましくは5.5〜7.0、温度20〜40℃、好ましくは25〜35℃、HRT2〜24hr、好ましくは2〜8hrが適当である。
このような酸生成槽により低分子化が十分進行していると、後段の流動性非生物担体を充填した反応槽における処理が良好に進行する。
In this case, the treatment conditions of the acid generation tank vary depending on the conditions such as biodegradability of the water to be treated, but the pH is 5 to 8, preferably 5.5 to 7.0, and the temperature is 20 to 40 ° C., preferably 25 to 25 ° C. A temperature of 35 ° C. and HRT of 2 to 24 hours, preferably 2 to 8 hours is suitable.
When the molecular weight reduction is sufficiently advanced by such an acid generation tank, the treatment in the reaction tank filled with the fluid nonbiological carrier in the subsequent stage proceeds well.
メタノール、酢酸等のメタン生成細菌が直接利用可能な化合物のみを含む排水の場合には、酸生成槽は必要なく、被処理水を直接流動性非生物担体を充填した反応槽に通水することができる。 In the case of wastewater containing only compounds that can be directly used by methanogenic bacteria such as methanol and acetic acid, there is no need for an acid generator tank, and the treated water is directly passed through a reaction tank filled with a fluid non-biological carrier. Can do.
本発明において、前述の流動性非生物担体が充填され、被処理水が通水される反応槽としては、攪拌機等を用いる完全混合型反応槽、水流と発生ガスにより槽内を混合する上向流型反応槽等を利用することができるが、特に反応槽の高さ、形を自由に設定でき、担体を多く投入できることから上向流型反応槽を用いることが好ましい。前述の如く、担体を用いる方法では、グラニュール法のような気固液分離機構(GSS)が不要となり、例えば水深5m程度の上向流型反応槽であっても槽負荷15〜20kg−CODCr/m3/day或いはそれ以上の高負荷処理を行うことができる。 In the present invention, the reaction tank filled with the above-described fluid non-biological carrier and into which the water to be treated is passed is a fully mixed reaction tank using a stirrer or the like, an upward mixing in the tank with water flow and generated gas. Although a flow-type reaction tank or the like can be used, it is preferable to use an upward flow-type reaction tank because the height and shape of the reaction tank can be freely set and a large amount of carrier can be charged. As described above, in the method using a carrier, a gas-solid-liquid separation mechanism (GSS) such as a granule method is not required. For example, even in an upward flow type reaction tank with a water depth of about 5 m, the tank load is 15 to 20 kg-COD. Cr / m 3 / day or higher load processing can be performed.
完全混合型反応槽、上向流型反応槽における処理条件としては、所望の処理効率を得ることができる範囲において、特に制限はないが、例えば以下のような条件を設定することができる。 The processing conditions in the complete mixing type reaction tank and the upward flow type reaction tank are not particularly limited as long as desired processing efficiency can be obtained. For example, the following conditions can be set.
<完全混合型反応槽>
担体充填率:10〜30%
HRT:1.0〜24hr
槽負荷:4.0〜12.0kg−CODCr/m3/day
汚泥負荷:0.8〜3.0kg−CODCr/kg−VSS/day
pH:6.5〜7.5
温度:25〜38℃
<上向流型反応槽>
担体充填率:10〜80%
HRT:1.0〜24hr
上昇流速(LV):1.0〜20m/h
槽負荷:4.0〜32kg−CODCr/m3/day
汚泥負荷:0.8〜3.0kg−CODCr/kg−VSS/day
pH:6.5〜7.5
温度:25〜38℃
<Completely mixed reaction tank>
Carrier filling rate: 10-30%
HRT: 1.0-24 hr
Tank load: 4.0 to 12.0 kg-COD Cr / m 3 / day
Sludge load: 0.8~3.0kg-COD Cr / kg- VSS / day
pH: 6.5-7.5
Temperature: 25-38 ° C
<Upward flow reactor>
Carrier filling rate: 10-80%
HRT: 1.0-24 hr
Ascending flow velocity (LV): 1.0 to 20 m / h
Tank load: 4.0 to 32 kg-COD Cr / m 3 / day
Sludge load: 0.8~3.0kg-COD Cr / kg- VSS / day
pH: 6.5-7.5
Temperature: 25-38 ° C
以下に図1を参照して本発明の嫌気性処理装置の一例を説明するが、本発明の嫌気性処理装置は何ら図1に示すものに限定されるものではない。 Hereinafter, an example of the anaerobic treatment apparatus of the present invention will be described with reference to FIG. 1, but the anaerobic treatment apparatus of the present invention is not limited to that shown in FIG.
この嫌気性処理装置は、被処理水(原水)を酸生成槽1で処理した後、pH調整槽2に送給してpH調整し、pH調整水をポンプP1により流動性非生物担体4を充填した反応槽3に上向流で通水して処理するものである。反応槽3の上部側壁には、反応槽3内の処理水を浮上した担体と共に抜き出す流出配管5Aが設けられ、この流出配管5Aに、50cm以上の落差を有する気泡分離配管5が鉛直方向に連結されている。
気泡分離配管5の流出口側は、底面が傾斜面とされた処理水槽6内に開口する。6Aはスクリーンである。反応槽3から流出する浮上担体を含む処理水は、流出配管5Aを経て気泡分離配管5を流下した後、スクリーン6Aを有する処理水槽6に送給される。反応槽3から流出した処理水中の担体は、気泡分離配管5を流下する間に気泡が分離除去されることにより沈降性が回復し、処理水槽6内で速やかに沈降する。処理水槽6のスクリーン6Aの透過水の一部は、処理水として系外へ排出され、残部は酸生成槽1に循環される。一方、処理水槽6で沈降した担体は、ポンプP2により処理水と共に反応槽4に返送される。1A,2AはpH計である。なお、図1では、スクリーン6Aは処理水槽6の内部に設けているが、流出配管5Aの途中にスクリーンボックス(図示せず)を設けて担体を分離して反応槽3に戻すようにして処理水槽を省略することもできる。
This anaerobic treatment apparatus treats water to be treated (raw water) in the acid generation tank 1, then feeds it to the
The outlet side of the
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[実施例1、比較例1,2]
図1に示す嫌気性処理装置により、糖とタンパクを主体とする合成排水(CODCr濃度:2000mg/L、pH7.0)を原水として通水試験を行った。
この嫌気性処理装置は、原水を酸生成槽1で処理した後、pH調整槽(容量0.5L)2に送給してpH調整し、pH調整水をポンプP1により流動性非生物担体4を充填した反応槽3に上向流で通水して処理するものである。反応槽3の流出水は、気泡分離配管5を流下した後、スクリーン6Aを有する処理水槽6に送給される。反応槽3からは、反応槽3内で浮上した担体が処理水と共に流出するが、この流出水中の担体は、気泡分離配管5を流下する間に気泡が分離除去されることにより沈降性が回復し、処理水槽6内で速やかに沈降する。処理水槽6のスクリーン6Aの透過水の一部は、処理水として系外へ排出され、残部は酸生成槽1に循環される。一方、処理水槽6で沈降した担体は、ポンプP2により処理水と共に反応槽4に返送される。
[Example 1, Comparative Examples 1 and 2]
Using the anaerobic treatment apparatus shown in FIG. 1, a water flow test was conducted using synthetic wastewater (COD Cr concentration: 2000 mg / L, pH 7.0) mainly composed of sugar and protein as raw water.
The anaerobic treatment apparatus, after processing the raw water with acid production tank 1, and pH adjusted fed to pH adjustment tank (volume 0.5 L) 2, flowable non-biological carrier pH adjusted water by a pump P 1 4 is passed through the reaction tank 3 filled with 4 in an upward flow. The effluent water from the reaction tank 3 flows down the
酸生成槽1及び反応槽3の処理条件は以下の通りとした。
<酸生成槽>
容量:200L
HRT:2.0hr
pH:6.5
温度:30℃
The processing conditions of the acid generation tank 1 and the reaction tank 3 were as follows.
<Acid production tank>
Capacity: 200L
HRT: 2.0 hr
pH: 6.5
Temperature: 30 ° C
<反応槽>
容量:約400L
HRT:6.0hr
上昇流速(LV):10m/hr
pH:7.0
担体充填率:40%
<Reaction tank>
Capacity: Approximately 400L
HRT: 6.0 hr
Ascending flow velocity (LV): 10 m / hr
pH: 7.0
Carrier filling rate: 40%
また、気泡分離配管5の仕様及び条件は次の通りである。
<気泡分離配管>
落差(鉛直部長さ):50cm
直径:15cm
断面積:177cm2
気泡分離配管内流速(LV):1.0m/hr
The specifications and conditions of the
<Bubble separation piping>
Head (vertical length): 50cm
Diameter: 15cm
Cross-sectional area: 177 cm 2
Bubble separation pipe flow velocity (LV): 1.0 m / hr
また、処理水槽6から反応槽4へ返送される処理水中の担体濃度は1.0〜10.0%であった。
Further, the carrier concentration in the treated water returned from the treated
反応槽に充填する担体としては、表1に示す大きさ(円柱の高さの寸法)及び沈降速度のポリオレフィン系樹脂担体を用い、処理の開始に当っては種汚泥として分散状の嫌気汚泥を反応槽3に投入した。また、原水の通水開始から、得られた処理水のCODCr濃度を測定し、処理水CODCr濃度200mg/L以下となるような条件で徐々に負荷を上げてゆく処理を行った。 As the carrier to be filled in the reaction tank, a polyolefin resin carrier having the size shown in Table 1 (the height of the cylinder) and the sedimentation speed is used, and dispersed anaerobic sludge is used as seed sludge at the start of the treatment. The reaction vessel 3 was charged. Moreover, the COD Cr density | concentration of the obtained treated water was measured from the start of water flow of raw | natural water, and the process which raises a load gradually was performed on the conditions used as the treated water COD Cr density | concentration of 200 mg / L or less.
各々の処理結果を表1に示した。 The results of each treatment are shown in Table 1.
以上の結果から、本発明によれば、非生物担体を用いた嫌気性処理において、微細な気泡が付着することにより担体が浮上、流出してしまう現象が起きた場合でも、特定の大きさと沈降速度を有する非生物担体を用い、反応槽から流出した担体の表面に付着した気泡を除去することにより沈降させ、処理水と分離してからポンプを用いて反応槽に返送することにより、高負荷で安定した処理を行えることが分かる。 From the above results, according to the present invention, in the anaerobic treatment using a non-biological carrier, even when a phenomenon occurs in which the carrier floats and flows out due to the attachment of fine bubbles, the specific size and sedimentation occur. A non-biological carrier with a high speed is used to settle by removing bubbles adhering to the surface of the carrier that has flowed out of the reaction tank, separated from the treated water, and then returned to the reaction tank using a pump. It can be seen that stable processing can be performed.
1 酸生成槽
2 pH調整槽
3 反応槽
4 流動性非生物担体
5 気泡分離配管
6 処理水槽
DESCRIPTION OF SYMBOLS 1
Claims (6)
大きさが1.0〜5.0mmで、沈降速度が200〜500m/hrの非生物担体を該反応槽に充填し、
該反応槽から流出した処理水に含まれる該担体に付着した気泡を分離除去した後、該担体を該反応槽に返送することを特徴とする嫌気性処理方法。 In an anaerobic treatment method of treating water to be treated by passing water to be treated into a reaction tank filled with a fluid non-biological carrier under anaerobic conditions, forming a biofilm on the surface of the non-biological carrier,
A non-biological carrier having a size of 1.0 to 5.0 mm and a sedimentation speed of 200 to 500 m / hr is charged into the reaction vessel,
An anaerobic treatment method comprising separating and removing bubbles attached to the carrier contained in the treated water flowing out of the reaction tank, and then returning the carrier to the reaction tank.
該反応槽に充填される担体の大きさが1.0〜5.0mmで、沈降速度が200〜500m/hrであり、
該反応槽から流出した処理水に含まれる該担体に付着した気泡を分離除去する手段と、該気泡が分離除去された担体を該反応槽に返送する手段とを有することを特徴とする嫌気性処理装置。 In an anaerobic treatment apparatus for treating water to be treated by passing water to be treated into a reaction tank filled with a fluid non-biological carrier under anaerobic conditions and forming a biofilm on the surface of the non-biological carrier.
The size of the carrier filled in the reaction tank is 1.0 to 5.0 mm, the sedimentation speed is 200 to 500 m / hr,
Anaerobic, characterized by having means for separating and removing bubbles attached to the carrier contained in the treated water flowing out of the reaction tank, and means for returning the carrier from which the bubbles have been separated and removed to the reaction tank Processing equipment.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010261349A JP5691434B2 (en) | 2010-11-24 | 2010-11-24 | Anaerobic treatment method and apparatus |
KR1020187028721A KR20180113635A (en) | 2010-11-24 | 2011-11-17 | Method and apparatus for anaerobic treatment |
SG2013038872A SG190348A1 (en) | 2010-11-24 | 2011-11-17 | Anaerobic treatment method and apparatus |
CN201410163549.2A CN103936147B (en) | 2010-11-24 | 2011-11-17 | The processing method of organic drainage |
KR20137011868A KR20130132796A (en) | 2010-11-24 | 2011-11-17 | Method and apparatus for anaerobic treatment |
PCT/JP2011/076488 WO2012070459A1 (en) | 2010-11-24 | 2011-11-17 | Method and apparatus for anaerobic treatment |
SG10201401598RA SG10201401598RA (en) | 2010-11-24 | 2011-11-17 | Anaerobic treatment method and apparatus |
MYPI2013001872A MY158496A (en) | 2010-11-24 | 2011-11-17 | Anaerobic treatment method and apparatus |
US13/885,946 US9096448B2 (en) | 2010-11-24 | 2011-11-17 | Anaerobic treatment method and apparatus |
CN201180056761.3A CN103228580B (en) | 2010-11-24 | 2011-11-17 | Method and apparatus for anaerobic treatment |
TW100142898A TWI585047B (en) | 2010-11-24 | 2011-11-23 | Anaerobic treatment method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010261349A JP5691434B2 (en) | 2010-11-24 | 2010-11-24 | Anaerobic treatment method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012110820A true JP2012110820A (en) | 2012-06-14 |
JP5691434B2 JP5691434B2 (en) | 2015-04-01 |
Family
ID=46495627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010261349A Active JP5691434B2 (en) | 2010-11-24 | 2010-11-24 | Anaerobic treatment method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5691434B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013240768A (en) * | 2012-05-22 | 2013-12-05 | Japan Organo Co Ltd | Wastewater treatment apparatus and wastewater treatment method |
JP2014100679A (en) * | 2012-11-21 | 2014-06-05 | Kuraray Co Ltd | Anaerobic wastewater treatment method using carrier |
JP6048557B1 (en) * | 2015-09-25 | 2016-12-21 | 栗田工業株式会社 | Anaerobic treatment apparatus and anaerobic treatment method |
JP2017113662A (en) * | 2015-12-21 | 2017-06-29 | 栗田工業株式会社 | Anaerobic treatment apparatus, and anaerobic treatment method |
CN108658225A (en) * | 2018-05-15 | 2018-10-16 | 北京建筑大学 | A kind of country sewage strengthens composite anaerobic processing unit and processing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121789A (en) * | 1984-07-09 | 1986-01-30 | Kurita Water Ind Ltd | Fluidized bed type anaerobic treatment of organic waste water |
JPH08502937A (en) * | 1993-08-28 | 1996-04-02 | ランドブレント リミテッド | Improvements in plastic products |
JPH1015582A (en) * | 1996-07-03 | 1998-01-20 | Chiyoda Corp | Fluidized bed type denitrification method of waste water |
JPH10257885A (en) * | 1997-01-14 | 1998-09-29 | Tsutsunaka Plast Ind Co Ltd | Microorganism immobilized carrier for fluidized bed |
JPH11128979A (en) * | 1997-10-30 | 1999-05-18 | Shinko Pantec Co Ltd | Apparatus and method for water treatment |
JPH11165189A (en) * | 1997-12-01 | 1999-06-22 | Shinko Pantec Co Ltd | Apparatus and method for treating water |
JP2002051771A (en) * | 2000-08-10 | 2002-02-19 | Kansai Paint Co Ltd | Microorganism-immobilized carrier mixture and bioreactor using the same |
JP2009066592A (en) * | 2007-08-23 | 2009-04-02 | Nisshinbo Ind Inc | Carrier for treating fluid and method for manufacturing the same |
-
2010
- 2010-11-24 JP JP2010261349A patent/JP5691434B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121789A (en) * | 1984-07-09 | 1986-01-30 | Kurita Water Ind Ltd | Fluidized bed type anaerobic treatment of organic waste water |
JPH08502937A (en) * | 1993-08-28 | 1996-04-02 | ランドブレント リミテッド | Improvements in plastic products |
JPH1015582A (en) * | 1996-07-03 | 1998-01-20 | Chiyoda Corp | Fluidized bed type denitrification method of waste water |
JPH10257885A (en) * | 1997-01-14 | 1998-09-29 | Tsutsunaka Plast Ind Co Ltd | Microorganism immobilized carrier for fluidized bed |
JPH11128979A (en) * | 1997-10-30 | 1999-05-18 | Shinko Pantec Co Ltd | Apparatus and method for water treatment |
JPH11165189A (en) * | 1997-12-01 | 1999-06-22 | Shinko Pantec Co Ltd | Apparatus and method for treating water |
JP2002051771A (en) * | 2000-08-10 | 2002-02-19 | Kansai Paint Co Ltd | Microorganism-immobilized carrier mixture and bioreactor using the same |
JP2009066592A (en) * | 2007-08-23 | 2009-04-02 | Nisshinbo Ind Inc | Carrier for treating fluid and method for manufacturing the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013240768A (en) * | 2012-05-22 | 2013-12-05 | Japan Organo Co Ltd | Wastewater treatment apparatus and wastewater treatment method |
JP2014100679A (en) * | 2012-11-21 | 2014-06-05 | Kuraray Co Ltd | Anaerobic wastewater treatment method using carrier |
JP6048557B1 (en) * | 2015-09-25 | 2016-12-21 | 栗田工業株式会社 | Anaerobic treatment apparatus and anaerobic treatment method |
WO2017051560A1 (en) * | 2015-09-25 | 2017-03-30 | 栗田工業株式会社 | Anaerobic treatment device and anaerobic treatment method |
JP2017113662A (en) * | 2015-12-21 | 2017-06-29 | 栗田工業株式会社 | Anaerobic treatment apparatus, and anaerobic treatment method |
CN108658225A (en) * | 2018-05-15 | 2018-10-16 | 北京建筑大学 | A kind of country sewage strengthens composite anaerobic processing unit and processing method |
Also Published As
Publication number | Publication date |
---|---|
JP5691434B2 (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012070459A1 (en) | Method and apparatus for anaerobic treatment | |
JP5949554B2 (en) | Anaerobic treatment method | |
US4454038A (en) | Apparatus for biological treatment of waste water in downflow operation | |
JP5691434B2 (en) | Anaerobic treatment method and apparatus | |
JP5650373B2 (en) | Method for manufacturing fluid processing carrier | |
JP6241187B2 (en) | Anaerobic treatment method and anaerobic treatment apparatus | |
JP5685902B2 (en) | Organic wastewater treatment method | |
WO2014156216A1 (en) | Anaerobic treatment method | |
JP5691439B2 (en) | Anaerobic treatment method and apparatus | |
JP2004358328A (en) | Microorganism carrier | |
JP2004174491A (en) | Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same | |
JPH1015582A (en) | Fluidized bed type denitrification method of waste water | |
JP2005021831A (en) | Carrier for microorganism proliferation, and its using method | |
JPH0242473B2 (en) | ||
JP4229426B2 (en) | Microorganism immobilization carrier and waste water treatment method using the same | |
JP2018149494A (en) | Anaerobic treatment method | |
JPS5928391B2 (en) | Particles for attaching microorganisms | |
DE3735680A1 (en) | Floating granular carrier material prodn. - for bio:technological processes by heating foamed polystyrene flakes at below the carbonisation temp. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5691434 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |