JP4229426B2 - Microorganism immobilization carrier and waste water treatment method using the same - Google Patents

Microorganism immobilization carrier and waste water treatment method using the same Download PDF

Info

Publication number
JP4229426B2
JP4229426B2 JP2002208101A JP2002208101A JP4229426B2 JP 4229426 B2 JP4229426 B2 JP 4229426B2 JP 2002208101 A JP2002208101 A JP 2002208101A JP 2002208101 A JP2002208101 A JP 2002208101A JP 4229426 B2 JP4229426 B2 JP 4229426B2
Authority
JP
Japan
Prior art keywords
microorganism
immobilized carrier
carrier
resin
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002208101A
Other languages
Japanese (ja)
Other versions
JP2004049038A (en
JP2004049038A5 (en
Inventor
敬 奥村
渉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2002208101A priority Critical patent/JP4229426B2/en
Publication of JP2004049038A publication Critical patent/JP2004049038A/en
Publication of JP2004049038A5 publication Critical patent/JP2004049038A5/ja
Application granted granted Critical
Publication of JP4229426B2 publication Critical patent/JP4229426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生化学的に排水処理を行う際に、表面に微生物を付着させて使用される微生物固定化担体に関する。
【0002】
【従来の技術】
生物学的排水処理方法の一つとして、微生物が付着された微生物固定化担体を槽内で流動させ、同担体の表面に付着している微生物により有機物や窒素を吸着、分解して処理する方法が用いられている。この微生物固定化担体としては、親水性ゲル、多孔質中空樹脂、ウレタンフォーム等が、用いられている。
【0003】
ポリプロピレン、ポリエチレン等の多孔質中空樹脂は、材料が安価である上、成形が容易なことから広く使用されており、中でもポリプロピレンは、微生物の付着量を増やすため、発泡成形し、多孔質体として用いられることが多い。
【0004】
ポリプロピレン系樹脂発泡体の発泡性、寸法安定性等を向上させるための方法として、例えば特開平7−241898号公報には、ポリプロピレン系樹脂と、超低密度ポリエチレンとを混合した発泡体が開示されている。
【0005】
ところで近年、散気管目詰まりが殆どない、酸素溶解効率が高い、広範囲を均一に流動できる、汚濁負荷変動に容易に対応可能、という利点を有する水中エアレーター等の強力な攪拌機を用いる場合が増えているため、より機械的強度の高い微生物固定化担体が要請されている。
しかしながら、特開平7−241898号公報に開示された発泡体は、超低密度ポリエチレンを使用しているため、強度が低下しがちであった。加えて、特開平7−241898号公報では、発泡体を微生物固定化担体として用いることに関する記載はなく、樹脂の種類と微生物の親和性との関係については何ら考察されていない。
【0006】
【発明が解決しようとする課題】
本発明は、排水処理に使用するにあたって、強度が高く、長期間良好な処理水質を維持できる微生物固定化担体を提供することを目的としている。
【0007】
【課題を解決するための手段】
すなわち本発明は、ポリプロピレン樹脂と、密度0.94g/cm以上の高密度ポリエチレン樹脂とを含有し、該ポリプロピレン樹脂と該高密度ポリエチレン樹脂との質量組成比が95/5〜78/22の範囲である微生物固定化担体である。
【0008】
本発明の微生物固定化担体は、その見掛け密度が0.9〜1.1g/cmであると、流動性に優れるため好ましい。
【0009】
また、循環流動性が8時間以内であると、微生物固定化担体を使用開始してから良好な処理性能を示すまでに長い時間がかかることがないため、好ましい。
【0010】
また、本発明は、前記微生物固定化担体を流動床として使用する排水処理方法である。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0012】
本発明の微生物固定化担体に用いるポリプロピレン樹脂としては、プロピレンを主成分として重合したものであれば特に限定されず、通常市販されているポリプロピレン樹脂が使用できる。改質のため少量のエチレンを共重合したプロピレン樹脂も使用できる。更に樹脂との接着性を改善するために、酸変性ポリプロピレン系樹脂も使用できる。
また、リサイクル及び原料費低下の観点より再生ポリプロピレン樹脂を使用することもできる。
本発明に使用するポリプロピレン樹脂の密度としては、0.90〜0.91g/cm程度である。
【0013】
本発明の微生物固定化担体に用いる高密度ポリエチレン樹脂は、エチレンを主成分として重合したものであって、密度が0.94g/cm以上の市販のポリエチレン樹脂が使用できる。また、リサイクル及び原材料費低下の観点より再生ポリエチレン樹脂を使用することもできる。
なお、ポリエチレンの密度の上限は剛性や衝撃強度を考慮すると、0.96g/cm以下が好ましい。
【0014】
微生物固定化担体として、微生物との十分な親和性と機械的強度をバランスさせるには、前記ポリプロピレン樹脂と前記高密度ポリエチレン樹脂との質量組成比が、95/5〜78/22の範囲にあることが好まし
【0015】
前記高密度ポリエチレン樹脂の質量割合が2%未満では十分な流動性が得られない。また、前記高密度ポリエチレン樹脂の質量割合が25%を超えると、機械的強度が乏しくなり、水中エアレーター等の強力な攪拌では担体が割れ易くなるので好ましくない。
また、前述の質量割合で高密度ポリエチレン樹脂を混合させると、耐熱性が高くなると共に、連続気泡が適度に形成されやすくなる傾向にある。
【0016】
さらに、親和性、機械的強度を損なわない範囲で、他の熱可塑性樹脂と組み合わせて用いることもできる。他の熱可塑性樹脂としては、例えばポリエステル系樹脂、アクリル系樹脂、スチレン系樹脂、エチレン−酢酸ビニル共重合体、エチレン(メタ)アクリル酸共重合体、プロピレン−無水マレイン酸共重合体等の熱可塑性樹脂が挙げられる。
【0017】
また、他の成分として、炭酸カルシウム、タルク、ゼオライト、硫酸バリウム、酸化チタン、チタン酸カリウム、水酸化アルミニウム等の比重調整材や、多孔質化のためのアゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)、炭酸系などの発泡剤、発泡助剤や適当な添加剤、例えば粉系発泡剤を使用した際に、ペレットとの分散性を高めるために、流動パラフィンや非イオン系界面活性剤を主成分とする添加剤、等を含んでいてもよい。これらの成分を用いて微生物固定化担体を製造する際は、これらの成分を直接添加することもできるし、これらの成分を含む樹脂ペレットを用いても構わない。
【0018】
本発明の微生物固定化担体の形状は、円柱状、円筒状、球状、立方体状等にすることができるが、中空円筒状とすると、微生物の付着性が向上するため好ましい。
【0019】
本発明の微生物固定化担体は、微生物固定化担体中に含まれる空洞や気泡を除いた体積当たりの質量、即ち見掛け密度として0.9〜1.1g/cmとすると、流動床として使用した際の流動性が良好となるため好ましい。
【0020】
本発明の微生物固定化担体は、以下に定義する循環流動性が、8時間以内であることが好ましく、5時間以内であることがより好ましい。
本発明における微生物固定化担体の循環流動性とは、固形分含量が1000mg/Lの液1L中に、微生物固定化担体を見かけ容積として100ml添加し、1L/minの流量で曝気したとき、曝気開始から微生物固定化担体が液中を循環流動するまでの時間をいう。
【0021】
この循環流動性試験において短時間で流動する担体は、実際の装置、例えば生物学的排水処理装置においても速やかに流動する。
なお、ここでいう固形分とは、例えば活性汚泥にように、水中の有機成分を代謝、分解する能力を持つ微生物群を含んだものを言い、その含量は蒸発残分の測定により求められる。
【0022】
本発明の微生物固定化担体を流動床に用いて排水処理を行うと、強度に優れると共に、微生物の付着性が良好で、流動性も優れることから、好適に排水処理を行うことができる。
【0023】
以下、実施例及び比較例により本発明をさらに詳細に説明する。
【0024】
1.微生物固定化担体の製造方法
原料ペレット(ポリプロピレン樹脂ペレット、ポリエチレン樹脂ペレット、炭酸カルシウム含有ペレット)、添着剤を、タンブラーを用いて十分に混合し、さらに発泡剤を添加した後、タンブラーで再び混合した。この混合物を50m/mφ単軸押出機により押出成形を行い、冷却後、ロータリーカッターを用いて所定の長さに切断して中空円筒状の多孔性微生物固定化担体を作成した。形状は、外径10mm、内径6.4mm、長さ10mmとした。見掛け密度は0.95g/cmに調整した。
【0025】
なお、原料ペレットは、以下のものを使用した。
ポリプロピレン樹脂ペレット:日本ポリケム(株)製、商品名「ノバテックPP BC4L」
ポリエチレン樹脂ペレット:日本ポリケム(株)製、商品名「ノバテックHD HB332R」、密度0.952g/cm
炭酸カルシウム含有ペレット:日東粉化工業(株)製、商品名「カルペット A」、炭酸カルシウム含有量=80質量%。その他の成分はポリプロピレン。
【0026】
2.機械的強度試験
曝気エアーで生じる槽内液流動のせん断作用の影響を計るため、図1に示す構造の、内径210mm、長さ2000mmの外塔の内部に、内径99mm、長さ1000mmの内塔を配した2重円筒管内に、水を47.4L入れ、微生物固定化担体を5質量%添加し、空塔速度0.95cm/sにて内塔内部に空気を吹き込んで微生物固定化担体を流動させ、機械的強度試験を行った。
【0027】
機械的強度の判断基準としては、曝気開始から1ヶ月間、担体の質量減少を経時的に測定し、質量減少が全く認められない場合は◎、質量減少が1質量%以下の場合は○、担体の割れ、又は欠けが認められた場合は×とした。
【0028】
3.循環流動性試験
循環流動性試験は、図2に示す構造の、容量1Lの槽に固定分含量が1000mg/Lの汚泥と、微生物固定化担体を見掛け体積として100ml添加し、1L/minの空気を曝気しながら、人工排水を原水として負荷量0.4kg−COD/m3・日で馴養を行い、担体が流動するまでの時間を観察した。
【0029】
循環流動性の判断基準としては、曝気開始からの槽内での流動状態を目視観察し、添加した担体の全量が均一流動するまでの時間を測定した。また、8時間以内に全量流動した場合は○、8時間では一部浮上している等、完全に流動していない場合を×とした。
【0030】
また、この循環流動性試験の曝気開始から7日目の処理水と、処理前の原水とのCOD(Mn)の値を求め、処理水COD(Mn)/原水COD(Mn)からCOD(Mn)除去率を算出した。COD(Mn)は、JISK0102.17にそれぞれ準拠して測定した。
【0031】
実施例1、2、及び比較例1、2の微生物固定化担体組成、機械的強度、循環流動性、COD(Mn)除去率を、表1に示した。
【0032】
【表1】

Figure 0004229426
【0033】
以上の結果より、本発明の微生物固定化担体は、機械的強度に優れ、好適に排水処理を行うことができたことが分かる。
【0034】
【発明の効果】
ポリプロピレン樹脂と、密度0.94g/cm以上の高密度ポリエチレン樹脂からなる本発明の微生物固定化担体は、機械的強度に優れ、槽内で1ヶ月間流動させた後の重量減少が1質量%以下である。また、本発明の微生物固定化担体におけるポリプロピレン樹脂と高密度ポリエチレン樹脂との質量組成比が、95/5〜78/22の範囲であるので、微生物固定化担体の機械的強度と循環流動性を両立でき、さらに良好な処理水質を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例の機械的強度試験に用いた装置の概要を示す断面図である。
【図2】 本発明の実施例の流動性試験に用いた装置の概要を示す断面図である。
【符号の説明】
1 外塔
2 内塔
3 空気吹き込み口
4 水処理装置
10 曝気槽
10a 排水導入口
10b 処理水導出口
11 スクリーン
12 微生物固定化担体
13 整流板
14 散気管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microorganism-immobilized carrier used by attaching microorganisms to a surface when performing wastewater treatment biochemically.
[0002]
[Prior art]
One of the biological wastewater treatment methods is a method in which a microorganism-immobilized carrier to which microorganisms are attached flows in a tank, and organic matter and nitrogen are adsorbed and decomposed by microorganisms attached to the surface of the carrier. Is used. As this microorganism-immobilized carrier, hydrophilic gel, porous hollow resin, urethane foam and the like are used.
[0003]
Porous hollow resins such as polypropylene and polyethylene are widely used because they are inexpensive and easy to mold. Among them, polypropylene is foam-molded to increase the adhesion of microorganisms, and is used as a porous body. Often used.
[0004]
As a method for improving the foamability, dimensional stability, etc. of a polypropylene resin foam, for example, JP-A-7-241898 discloses a foam in which a polypropylene resin and ultra-low density polyethylene are mixed. ing.
[0005]
By the way, in recent years, there has been an increase in the use of powerful agitators such as underwater aerators, which have the advantages of almost no clogging of the diffuser, high oxygen dissolution efficiency, uniform flow over a wide range, and easy response to fluctuations in pollution load. Therefore, a microorganism-immobilized carrier having higher mechanical strength is required.
However, since the foam disclosed in JP-A-7-241898 uses ultra-low density polyethylene, the strength tends to decrease. In addition, in JP-A-7-241898, there is no description regarding the use of a foam as a microorganism-immobilized carrier, and no consideration is given to the relationship between the type of resin and the affinity of microorganisms.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a microorganism-immobilized carrier that has high strength and can maintain good treated water quality for a long period of time when used for wastewater treatment.
[0007]
[Means for Solving the Problems]
That is, the present invention contains a polypropylene resin and a high-density polyethylene resin having a density of 0.94 g / cm 3 or more, and the mass composition ratio of the polypropylene resin and the high-density polyethylene resin is 95/5 to 78/22 . It is a microbial immobilization carrier which is a range.
[0008]
When the apparent density of the microorganism-immobilized carrier of the present invention is 0.9 to 1.1 g / cm 3 , the fluidity is excellent, which is preferable.
[0009]
In addition, it is preferable that the circulation fluidity is within 8 hours, since it does not take a long time to start showing good treatment performance after starting to use the microorganism-immobilized carrier.
[0010]
The present invention is also a wastewater treatment method using the microorganism-immobilized carrier as a fluidized bed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0012]
The polypropylene resin used for the microorganism-immobilized carrier of the present invention is not particularly limited as long as it is polymerized mainly with propylene, and a commercially available polypropylene resin can be used. A propylene resin copolymerized with a small amount of ethylene can also be used for modification. Furthermore, in order to improve the adhesiveness with the resin, an acid-modified polypropylene resin can also be used.
Also, recycled polypropylene resin can be used from the viewpoint of recycling and lowering raw material costs.
The density of the polypropylene resin used in the present invention is about 0.90 to 0.91 g / cm 3 .
[0013]
The high-density polyethylene resin used for the microorganism-immobilized carrier of the present invention is polymerized with ethylene as a main component, and a commercially available polyethylene resin having a density of 0.94 g / cm 3 or more can be used. Also, recycled polyethylene resin can be used from the viewpoint of recycling and lowering raw material costs.
The upper limit of the density of polyethylene is preferably 0.96 g / cm 3 or less in consideration of rigidity and impact strength.
[0014]
In order to balance sufficient affinity with microorganisms and mechanical strength as a microorganism-immobilized carrier, the mass composition ratio of the polypropylene resin and the high-density polyethylene resin is in the range of 95/5 to 78/22. it is not preferable.
[0015]
If the mass ratio of the high-density polyethylene resin is less than 2%, sufficient fluidity cannot be obtained. On the other hand, if the mass ratio of the high-density polyethylene resin exceeds 25%, the mechanical strength becomes poor, and strong agitation such as an underwater aerator makes the carrier easy to break, which is not preferable.
Moreover, when high density polyethylene resin is mixed with the above-mentioned mass ratio, heat resistance becomes high and open cells tend to be formed appropriately.
[0016]
Furthermore, it can also be used in combination with other thermoplastic resins as long as the affinity and mechanical strength are not impaired. Examples of other thermoplastic resins include polyester resins, acrylic resins, styrene resins, ethylene-vinyl acetate copolymers, ethylene (meth) acrylic acid copolymers, propylene-maleic anhydride copolymers, and the like. A plastic resin is mentioned.
[0017]
Other components include calcium carbonate, talc, zeolite, barium sulfate, titanium oxide, potassium titanate, aluminum hydroxide, and other specific gravity adjusting materials, azodicarbonamide (ADCA), dinitrosopenta for making porous. When using foaming agents such as methylenetetramine (DPT) and carbonic acid, foaming aids and appropriate additives such as powder-based foaming agents, liquid paraffin and nonionic interfaces are used to increase dispersibility with pellets. An additive mainly composed of an activator may be included. When producing a microorganism-immobilized carrier using these components, these components can be added directly, or resin pellets containing these components may be used.
[0018]
The shape of the microorganism-immobilized carrier of the present invention can be a columnar shape, a cylindrical shape, a spherical shape, a cubic shape, or the like, but a hollow cylindrical shape is preferable because the adhesion of microorganisms is improved.
[0019]
The microorganism-immobilized carrier of the present invention was used as a fluidized bed when the mass per volume excluding cavities and bubbles contained in the microorganism-immobilized carrier, that is, the apparent density was 0.9 to 1.1 g / cm 3 . This is preferable because the fluidity at the time becomes good.
[0020]
The microorganism-immobilized carrier of the present invention preferably has a circulating fluidity defined below within 8 hours, and more preferably within 5 hours.
The circulating fluidity of the microorganism-immobilized carrier in the present invention is the aeration when 100 ml of an apparent volume of microorganism-immobilized carrier is added to 1 L of a liquid having a solid content of 1000 mg / L and aerated at a flow rate of 1 L / min. The time from the start until the microorganism-immobilized carrier circulates in the liquid.
[0021]
In this circulating fluidity test, the carrier that flows in a short time flows quickly even in an actual apparatus, for example, a biological wastewater treatment apparatus.
In addition, solid content here means what contains the microorganism group which has the capability to metabolize and decompose | disassemble the organic component in water like activated sludge, for example, The content is calculated | required by the measurement of evaporation residue.
[0022]
When wastewater treatment is performed using the microorganism-immobilized carrier of the present invention for a fluidized bed, the wastewater treatment can be suitably performed because of excellent strength, good adhesion of microorganisms, and excellent fluidity.
[0023]
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0024]
1. Production method of microorganism-immobilized carrier Raw material pellets (polypropylene resin pellets, polyethylene resin pellets, calcium carbonate-containing pellets) and additives are thoroughly mixed using a tumbler, and after further adding a foaming agent, they are mixed again using a tumbler. . This mixture was extruded using a 50 m / mφ single-screw extruder, cooled, and then cut into a predetermined length using a rotary cutter to prepare a hollow cylindrical porous microorganism-immobilized carrier. The shape was an outer diameter of 10 mm, an inner diameter of 6.4 mm, and a length of 10 mm. The apparent density was adjusted to 0.95 g / cm 3 .
[0025]
The following raw material pellets were used.
Polypropylene resin pellets manufactured by Nippon Polychem Co., Ltd., trade name “Novatec PP BC4L”
Polyethylene resin pellet: manufactured by Nippon Polychem Co., Ltd., trade name “Novatech HD HB332R”, density 0.952 g / cm 3
Calcium carbonate-containing pellet: manufactured by Nitto Flour Chemical Co., Ltd., trade name “Calpet A”, calcium carbonate content = 80 mass%. Other ingredients are polypropylene.
[0026]
2. Mechanical strength test In order to measure the influence of the shearing action of the liquid flow in the tank generated by aerated air, an inner tower having an inner diameter of 99 mm and a length of 1000 mm is arranged inside the outer tower having an inner diameter of 210 mm and a length of 2000 mm of the structure shown in FIG. 47.4 L of water is added to the double cylindrical tube in which is placed, and 5% by mass of the microorganism-immobilized carrier is added, and air is blown into the inner tower at a superficial velocity of 0.95 cm / s to obtain the microorganism-immobilized carrier. Fluidized and subjected to a mechanical strength test.
[0027]
As a criterion for determining the mechanical strength, the mass reduction of the carrier was measured over time for one month from the start of aeration, and ◎ if no mass reduction was observed, ○ if the mass reduction was 1% by mass or less, In the case where cracking or chipping of the carrier was observed, it was marked as x.
[0028]
3. Circulating fluidity test The circulating fluidity test was performed by adding 100 ml of sludge with a fixed content of 1000 mg / L and a microorganism-immobilized carrier to a 1 L tank having the structure shown in FIG. 2 and an air volume of 1 L / min. While aeration was performed, the artificial drainage was used as raw water, and it was acclimatized with a load of 0.4 kg-COD / m3 · day, and the time until the carrier flowed was observed.
[0029]
As a criterion for determining the circulating fluidity, the flow state in the tank after the start of aeration was visually observed, and the time until the total amount of the added carrier uniformly flowed was measured. Moreover, the case where it did not flow completely, such as ◯ when the whole amount flowed within 8 hours, and partly floating after 8 hours, was marked as x.
[0030]
Further, the COD (Mn) value of the treated water on the seventh day from the start of aeration in this circulating fluidity test and the raw water before the treatment is obtained, and the COD (Mn) is calculated from the treated water COD (Mn) / raw water COD (Mn). ) The removal rate was calculated. COD (Mn) was measured according to JISK0102.17.
[0031]
Table 1 shows the microorganism-immobilized carrier composition, mechanical strength, circulating fluidity, and COD (Mn) removal rate of Examples 1 and 2 and Comparative Examples 1 and 2.
[0032]
[Table 1]
Figure 0004229426
[0033]
From the above results, it can be seen that the microorganism-immobilized carrier of the present invention was excellent in mechanical strength and was able to perform wastewater treatment suitably.
[0034]
【The invention's effect】
The microorganism-immobilized carrier of the present invention comprising a polypropylene resin and a high-density polyethylene resin having a density of 0.94 g / cm 3 or more is excellent in mechanical strength and has a weight loss of 1 mass after flowing in a tank for one month. % Or less. In addition, since the mass composition ratio of the polypropylene resin and the high-density polyethylene resin in the microorganism-immobilized carrier of the present invention is in the range of 95/5 to 78/22 , the mechanical strength and the circulation fluidity of the microorganism-immobilized carrier are improved. It is possible to achieve both, and a better quality of treated water can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an outline of an apparatus used in a mechanical strength test of an example of the present invention.
FIG. 2 is a cross-sectional view showing an outline of an apparatus used in a fluidity test of an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer tower 2 Inner tower 3 Air inlet 4 Water treatment apparatus 10 Aeration tank 10a Drainage inlet 10b Treated water outlet 11 Screen 12 Microorganism immobilization support 13 Current plate 14 Aeration pipe

Claims (1)

ポリプロピレン樹脂と、密度0.94g/cm以上の高密度ポリエチレン樹脂とを含有し、該ポリプロピレン樹脂と該高密度ポリエチレン樹脂との質量組成比が95/5〜78/22の範囲である微生物固定化担体。Microbial immobilization comprising a polypropylene resin and a high density polyethylene resin having a density of 0.94 g / cm 3 or more, wherein a mass composition ratio of the polypropylene resin and the high density polyethylene resin is in a range of 95/5 to 78/22. Carrier.
JP2002208101A 2002-07-17 2002-07-17 Microorganism immobilization carrier and waste water treatment method using the same Expired - Fee Related JP4229426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208101A JP4229426B2 (en) 2002-07-17 2002-07-17 Microorganism immobilization carrier and waste water treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208101A JP4229426B2 (en) 2002-07-17 2002-07-17 Microorganism immobilization carrier and waste water treatment method using the same

Publications (3)

Publication Number Publication Date
JP2004049038A JP2004049038A (en) 2004-02-19
JP2004049038A5 JP2004049038A5 (en) 2005-10-27
JP4229426B2 true JP4229426B2 (en) 2009-02-25

Family

ID=31932339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208101A Expired - Fee Related JP4229426B2 (en) 2002-07-17 2002-07-17 Microorganism immobilization carrier and waste water treatment method using the same

Country Status (1)

Country Link
JP (1) JP4229426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735809A (en) * 2022-03-21 2022-07-12 四川达沃斯生态环保科技股份有限公司 Sewage biological treatment agent and preparation method thereof

Also Published As

Publication number Publication date
JP2004049038A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP3143412B2 (en) Microbial immobilization carrier for fluidized bed
US9096448B2 (en) Anaerobic treatment method and apparatus
JP5949554B2 (en) Anaerobic treatment method
JP5691434B2 (en) Anaerobic treatment method and apparatus
JP4489893B2 (en) Water treatment carrier, method for producing water treatment carrier and water treatment device
JP4229426B2 (en) Microorganism immobilization carrier and waste water treatment method using the same
JP2006263489A (en) Microorganism carrier for water treatment
JP4293404B2 (en) Foam molded body and method for producing the same
JP4514874B2 (en) Water treatment carrier, method for producing water treatment carrier and water treatment device
JP2004358328A (en) Microorganism carrier
JP4194012B2 (en) RESIN COMPOSITION FOR FOAM MOLDED BODY, FOAM MOLDED BODY, AND METHOD FOR PRODUCING THE SAME
JP5691439B2 (en) Anaerobic treatment method and apparatus
JPH09296066A (en) Preparation of carrier with microorganism deposited thereon and carrier with microortganism deposited thereon
JP2003055562A (en) Extruded molding and method for producing the same
JP2002223751A (en) Microorganism-immobilized carrier
JP3445253B2 (en) Water treatment carrier and water treatment equipment
JP3445210B2 (en) Water treatment carrier
JP2001205287A (en) Carrier for water treatment, its production method, and apparatus for water treatment
JP2001000180A (en) Microorganism carrier and sewage treatment apparatus
JP2000210691A (en) Production of carrier for microorganism and carrier for microorganism
JP2003340480A (en) Microbial cell immobilization support, method for producing the same and method for treating waste water using the same
JPH10193425A (en) Manufacture of extrusion foam
JP2004065021A (en) Microorganism-immobilizing support and method for treating wastewater using the same
JP2005021831A (en) Carrier for microorganism proliferation, and its using method
JP2007283222A (en) Biological treatment carrier

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

R151 Written notification of patent or utility model registration

Ref document number: 4229426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees