JP6185708B2 - Anaerobic wastewater treatment method - Google Patents

Anaerobic wastewater treatment method Download PDF

Info

Publication number
JP6185708B2
JP6185708B2 JP2012254969A JP2012254969A JP6185708B2 JP 6185708 B2 JP6185708 B2 JP 6185708B2 JP 2012254969 A JP2012254969 A JP 2012254969A JP 2012254969 A JP2012254969 A JP 2012254969A JP 6185708 B2 JP6185708 B2 JP 6185708B2
Authority
JP
Japan
Prior art keywords
reaction tank
carrier
granules
uasb
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012254969A
Other languages
Japanese (ja)
Other versions
JP2014100678A (en
Inventor
美佐 馬場
美佐 馬場
藤井 弘明
弘明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2012254969A priority Critical patent/JP6185708B2/en
Publication of JP2014100678A publication Critical patent/JP2014100678A/en
Application granted granted Critical
Publication of JP6185708B2 publication Critical patent/JP6185708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は有機性排水を上向流で通水して嫌気性処理を行なうUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法またはこのUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通水し、高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket)法において、メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されている場合に、反応槽内のメタン菌を維持させ、能力を安定化させる方法に関する。   The present invention is based on the UASB (Upflow Anaerobic Sludge Blanket) method in which organic wastewater is passed in an upward flow to perform anaerobic treatment, or as an extension of this UASB method, In the EGSB (Expanded Granule Sludge Blanket) method, which uses a high reaction tank to pass water at a higher flow rate and performs anaerobic treatment with high load, raw water conditions and operation are difficult to form methane bacteria granules and / or are easy to dismantle The present invention relates to a method for maintaining methane bacteria in a reaction tank and stabilizing the capacity when operated under conditions.

有機物を含有する排水(有機性排水)の処理方法として、メタンガスの回収、再利用が可能な嫌気処理法は、広く産業排水の処理方法として用いられている。なかでも沈降性良好なグラニュール形成し、有機性排水を上向流で通水し、高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法は、特に中〜高濃度排水を処理する方法として発展してきた。また、このUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通水し、高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket)法も実用化されている。   As a method for treating wastewater containing organic matter (organic wastewater), an anaerobic treatment method capable of collecting and reusing methane gas is widely used as a method for treating industrial wastewater. Among them, the UASB (Upflow Anaerobic Sludge Blanket) method, which forms granules with good sedimentation, passes organic wastewater in an upward flow, and performs high-load high-speed treatment, is particularly medium- It has been developed as a method for treating highly concentrated wastewater. As an extension of the UASB method, the EGSB (Expanded Granule Sludge Blanket) method, which uses a high-height reaction tank to pass water at a higher flow rate and performs anaerobic treatment with a high load, has also been put to practical use. Yes.

UASB法やEGSB法においてはメタン菌が良好なグラニュールを形成させることが重要で、グラニュールが形成されなければ上向流とともにメタン菌が流出し、排水処理能力を失ってしまう。   In the UASB method and the EGSB method, it is important that the methane bacterium forms a good granule. If the granule is not formed, the methane bacterium flows out together with the upward flow and loses the wastewater treatment capacity.

原水の種類や運転条件によって、メタン菌グラニュールが形成しにくいおよび/または解体しやすい場合があり、そのような場合には流出したメタン菌を補うために定期的にグラニュールを別のUASB法やEGSB法が適用されている反応槽から運搬し補充する必要があった。   Depending on the type of raw water and the operating conditions, methane bacteria granules may be difficult to form and / or easy to dismantle. In such cases, the granule is periodically separated by another UASB method to make up for the outflowing methane bacteria. It was necessary to transport and replenish from the reaction tank to which the EGSB method was applied.

特許文献1には、UASB法において、スタートアップ時に反応槽より流出した汚泥を後段に設置した担体カラム内に充填した担体に付着させ、これを前段の反応槽に返送することにより、UASB法の最大の課題であったスタートアップ期間の短縮を図る旨が記載されているが、UASB法が適用されている反応槽に担体を添加して処理能力を安定化させることは記載されていない。   In Patent Document 1, in the UASB method, the sludge that flows out from the reaction tank at the time of start-up is attached to the support packed in the support column installed in the latter stage, and this is returned to the previous reaction tank, so that the maximum of the UASB process is achieved. However, there is no description of stabilizing the processing capacity by adding a carrier to a reaction tank to which the UASB method is applied.

特開平03−109998JP 03-109998

本発明は、UASB法、EGSB法において、メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されている場合に、反応槽内のメタン菌を維持させ、能力を安定化させる方法を提供することを課題とする。   In the UASB method and EGSB method, when the methane bacterium granules are hardly formed and / or operated under raw water conditions or operating conditions that are easy to dismantle, the methane bacterium in the reaction tank is maintained and the ability is improved. It is an object to provide a method for stabilization.

本発明者らは、鋭意検討を重ねた結果、UASB法またはEGSB法において、メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されている場合に、担体を添加し、効率よくメタン菌を増殖させる運転条件を採用することにより、上記課題を解決することができることを見出した。   As a result of intensive studies, the present inventors added a carrier when the UASB method or the EGSB method is operated under raw water conditions or operating conditions in which methane bacteria granules are difficult to form and / or easily dismantle. And it discovered that the said subject could be solved by employ | adopting the driving | running condition which proliferates methane bacteria efficiently.

本発明について、以下具体的に説明する。   The present invention will be specifically described below.

[1]有機性排水を上向流で通水して嫌気性処理を行なう嫌気性排水処理方法において、メタン菌グラニュールが初期投入されすでに運転されている反応槽に、ポリビニルアルコール系担体を添加することを特徴とする有機性排水の処理方法。 [1] and passed through an organic waste water by upflow in anaerobic waste water treatment method for performing an anaerobic treatment, the reaction vessel methanobacteria granules are initially introduced it is already operating, after a polyvinyl alcohol type carrier An organic wastewater treatment method comprising adding the organic wastewater.

[2]前記ポリビニルアルコール系担体の平均粒径が1〜10mmである、[1]に記載の有機性排水の処理方法。 [2] The organic wastewater treatment method according to [1], wherein the polyvinyl alcohol-based carrier has an average particle diameter of 1 to 10 mm .

UASB法やEGSB法においてはメタン菌が良好なグラニュールを形成させることが重要で、グラニュールが形成されなければ上向流とともにメタン菌が流出し、排水処理能力を失ってしまう。原水の種類や運転条件によって、メタン菌グラニュールが形成しにくいおよび/または解体しやすい場合があり、従来、そのような場合には流出したメタン菌を補うために定期的にグラニュールを別のUASB法やEGSB法が適用されている反応槽から運搬し補充しながら運転していた。   In the UASB method and the EGSB method, it is important that the methane bacterium forms a good granule. If the granule is not formed, the methane bacterium flows out together with the upward flow and loses the wastewater treatment capacity. Depending on the type of raw water and operating conditions, methane bacteria granules may be difficult to form and / or easily dismantled. It was operated while being transported and replenished from a reaction tank to which the UASB method or the EGSB method was applied.

本発明によれば、メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されているUASB法またはEGSB法が適用されている反応槽に担体を添加することにより反応槽内のメタン菌を維持させ、能力を安定化させることができる。   According to the present invention, the reaction can be achieved by adding a carrier to a reaction tank to which the UASB method or the EGSB method is applied that is operated under raw water conditions and / or operating conditions in which methane bacteria granules are difficult to form and / or easily dismantle. The methane bacteria in the tank can be maintained and the capacity can be stabilized.

以上説明したとおり、本発明によれば、メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されているUASB法またはEGSB法が適用されている反応槽に担体を添加することにより、定期的なグラニュール追加を実施しなくても反応槽内のメタン菌を維持でき能力安定化、さらには能力向上も期待できる。   As described above, according to the present invention, the carrier is added to the reaction vessel to which the UASB method or the EGSB method is applied that is operated under raw water conditions or operating conditions where it is difficult to form methane bacteria granules and / or is easy to dismantle. By adding, it is possible to maintain the methane bacteria in the reaction tank without carrying out periodic granule addition, and to stabilize the capacity and further improve the capacity.

実施例1及び比較例1で用いた生物処理装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the biological treatment apparatus used in Example 1 and Comparative Example 1. 実施例1、比較例1及び比較例2における処理能力の経時変化を示すグラフである。6 is a graph showing changes in processing capability over time in Example 1, Comparative Example 1 and Comparative Example 2.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の有機性排水の処理方法は、UASB法またはEGSB法において、メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されている場合に、担体を添加することを特徴とする。   The organic wastewater treatment method of the present invention is such that, in the UASB method or the EGSB method, a carrier is added when operating under raw water conditions or operating conditions in which methane bacteria granules are difficult to form and / or easily dismantle. It is characterized by.

メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件とはさまざまな場合が考えられるが、ひとつは低濃度排水(一般的にCODCr2000mg/L以下)である場合、また、懸濁浮遊物質やたんぱく質、脂質、糖質成分の多い排水種である場合、負荷変動が激しい場合などが挙げられる。   There are various cases of raw water conditions and operating conditions that make it difficult for Methane granules to form and / or easily dismantle, but one is low-concentration wastewater (generally CODCr 2000 mg / L or less). Examples include turbid suspended solids, protein, lipid, and wastewater species with a large amount of carbohydrate components, and severe load fluctuations.

本発明によれば、メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されているUASB法またはEGSB法が適用されている反応槽に担体を添加することにより、担体にメタン菌を増殖させることができ、反応槽内のメタン菌を維持・能力安定化、さらには能力向上も期待できる。   According to the present invention, by adding a carrier to a reaction vessel to which a UASB method or an EGSB method is operated which is operated under raw water conditions and / or operating conditions that are difficult to form methane bacteria granules and / or are easily disassembled, It is possible to grow methane bacteria on the carrier, maintain methane bacteria in the reaction tank, stabilize the capacity, and further improve the capacity.

本発明において、処理対象とする有機性排水は、嫌気性微生物により処理可能な有機物を含むものであればよく、そのCOD濃度・種類に規定はないが、具体的には、食品工場等の製造排水、化学工場等の有機性排水、一般下水等が挙げられる。しかし、何らこれらに限定されるものではない。メタン菌グラニュールが形成しにくいおよび/または解体しやすい原水条件や運転条件で運転されている場合に特に効果を発揮する。   In the present invention, the organic wastewater to be treated is not limited as long as it contains an organic substance that can be treated by anaerobic microorganisms, and its COD concentration / type is not specified. Examples include wastewater, organic wastewater from chemical factories, and general sewage. However, it is not limited to these. It is particularly effective when operated under raw water conditions or operating conditions where it is difficult to form methane bacteria granules and / or is easy to dismantle.

使用する担体としては、特に制限は無いが微生物棲息性に優れた高分子ゲル状担体、特にポリビニルアルコール系ゲル担体が好ましい。担体の平均粒径は1〜10mm、特に2〜6mmであることが好ましい。
担体の表面から内部に連通する孔における孔径は、自由にコントロールできるが、バクテリアのみが担体内部に棲息できるものが好ましく、表面付近の孔径は0.1μm以上100μm以下のものが好ましく、0.5μm以上50μm以下がさらに好ましい。表面付近の孔径が0.1μmよりも小さいとバクテリアが内部に進入できないなどの問題があり、100μmよりも大きいとバクテリア以外の大きな生物が侵入し効率が低下する場合がある。担体中心付近の孔径については特に制限はない。
The carrier to be used is not particularly limited, but a polymer gel carrier excellent in microbial habitability, particularly a polyvinyl alcohol gel carrier is preferable. The average particle size of the carrier is preferably 1 to 10 mm, particularly preferably 2 to 6 mm.
The pore diameter in the hole communicating from the surface to the inside of the carrier can be freely controlled, but preferably only bacteria can inhabit the inside of the carrier, and the pore diameter near the surface is preferably from 0.1 μm to 100 μm, preferably 0.5 μm More preferably, it is 50 μm or less. If the pore diameter near the surface is smaller than 0.1 μm, there is a problem that bacteria cannot enter the inside. If it is larger than 100 μm, large organisms other than bacteria may invade and the efficiency may be lowered. There is no particular limitation on the pore diameter near the center of the carrier.

担体の形状は、限定されるものではなく、立方体、直方体、円柱状、球状、マカロニ状など任意の形状をとることができる。メタン菌との接触効率を考えると球状が好ましい。   The shape of the carrier is not limited, and can be any shape such as a cube, a rectangular parallelepiped, a cylinder, a sphere, or a macaroni. Considering the contact efficiency with methane bacteria, the spherical shape is preferable.

担体の添加量は、槽容積に対して1%以上70%以下が好ましく、特に10%以上50%以下が好ましい。   The addition amount of the carrier is preferably 1% or more and 70% or less, and particularly preferably 10% or more and 50% or less with respect to the tank volume.

原水の有機物濃度は特に限定されるものではなく、CODCr500〜50000mg/Lなど幅広く適用できる。反応槽に流入する際の原液のpHは6.5〜7.5程度であることが好ましく、従って、原水は必要に応じてpH調整を行ってから反応槽に通水することが好ましい。   The organic substance density | concentration of raw | natural water is not specifically limited, CODCr500-50000mg / L etc. can apply widely. The pH of the undiluted solution when flowing into the reaction tank is preferably about 6.5 to 7.5. Therefore, it is preferable that the raw water is adjusted to the pH if necessary and then passed through the reaction tank.

反応槽の負荷も特に限定はないが、5〜50kg−CODCr/m・日と高負荷をかけることも可能である。また、反応槽内の温度は通常のメタン発酵の条件と同様で25〜40℃、特に30〜38℃とすることが好ましい。 The load on the reaction tank is not particularly limited, but a high load of 5 to 50 kg-CODCr / m 3 · day can be applied. The temperature in the reaction tank is 25 to 40 ° C., particularly 30 to 38 ° C., as in the usual methane fermentation conditions.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these Examples.

[実施例1]
図1に示すフローに従って、食品会社Hの実排水による嫌気性排水処理を実施した。反応槽の仕様並びに処理条件は下記の通りとした。
[Example 1]
In accordance with the flow shown in FIG. The specifications and processing conditions of the reaction vessel were as follows.

・反応槽の仕様
反応槽:容量50L
槽内温度:35〜37℃
反応槽内のグラニュール量:20容量%(槽容積に対する。)
・処理条件
原水CODCr濃度:3000mg/L
・ Reaction tank specifications Reaction tank: 50L capacity
Tank temperature: 35-37 ° C
Granule amount in reaction tank: 20% by volume (relative to tank volume)
・ Treatment conditions Raw water CODCr concentration: 3000 mg / L

UASB法として20容量%のグラニュールを初期投入している反応槽に上記実排水を通水し、除去量(処理能力)10kg−CODCr/m・日に到達(定常状態)した。1.5ヶ月運転を継続した後に、上記反応槽へアセタール化ポリビニルアルコール系ゲル状担体(直径約4mm,比重1.025)を15容量%(槽容積に対する。)投入したところ、元々有していた除去量(処理能力)10kg−CODCr/m・日を下回ることなく、約半年間の安定運転を確認することができた。なお、CODCr除去率は、常に85%以上を推移し、非常に良好であった。 As the UASB method, the actual waste water was passed through a reaction vessel in which 20% by volume of granule was initially charged, and the removal amount (processing capacity) reached 10 kg-CODCr / m 3 · day (steady state). After continuous operation for 1.5 months, 15 vol% (relative to the tank volume) of acetalized polyvinyl alcohol gel-like carrier (diameter: about 4 mm, specific gravity: 1.025) was charged into the reaction tank. Moreover, the stable operation for about half a year was able to be confirmed, without falling below the removal amount (processing capacity) 10kg-CODCr / m < 3 > * day. Note that the CODCr removal rate always remained at 85% or more and was very good.

[比較例1]
図1に示すフローに従って、食品会社Hの実排水による嫌気性排水処理を実施した。反応槽の仕様および処理条件は、実施例1と同じとした。
[Comparative Example 1]
In accordance with the flow shown in FIG. The specifications and processing conditions of the reaction vessel were the same as those in Example 1.

UASB法として20容量%のグラニュールを初期投入している反応槽に上記実排水を通水したところ、除去量(処理能力)10kg−CODCr/m・日に到達したものの、次第にグラニュールが解体し、2ヵ月後には処理能力が7kg−CODCr/m・日まで低下した。そこで、グラニュールを10容量%追加した。そのまま運転を継続すると、運転開始から4ヵ月後には、再度処理能力が7kg−CODCr/m・日まで低下した。 As the UASB method, when the actual waste water was passed through the reaction tank initially charged with 20% by volume of granules, the removal amount (processing capacity) reached 10 kg-CODCr / m 3 · day, but the granules gradually increased. After dismantling, the processing capacity dropped to 7 kg-CODCr / m 3 · day after 2 months. Therefore, 10% by volume of granules were added. When the operation was continued as it was, the processing capacity decreased again to 7 kg-CODCr / m 3 · day after 4 months from the start of operation.

[比較例2]
図1に示すフローに従って、食品会社Hの実排水による嫌気性排水処理を実施した。反応槽の仕様および処理条件は、実施例1と同じとした。
[Comparative Example 2]
In accordance with the flow shown in FIG. The specifications and processing conditions of the reaction vessel were the same as those in Example 1.

UASB法として20容量%のグラニュールを初期投入している反応槽に上記実排水を通水したところ、除去量(処理能力)10kg−CODCr/m・日に到達したものの、次第にグラニュールが解体し、2ヵ月後には処理能力が7kg−CODCr/m・日まで低下した。そのまま運転を継続すると、5ヵ月後には処理能力が5kg−CODCr/m・日以下となり、運転の継続は困難となった。 As the UASB method, when the actual waste water was passed through the reaction tank initially charged with 20% by volume of granules, the removal amount (processing capacity) reached 10 kg-CODCr / m 3 · day, but the granules gradually increased. After dismantling, the processing capacity dropped to 7 kg-CODCr / m 3 · day after 2 months. If the operation was continued as it was, the processing capacity became 5 kg-CODCr / m 3 · day or less after 5 months, and it was difficult to continue the operation.

図2に示す実施例1の結果より、UASB法において、グラニュールの形成が困難な場合、反応槽に担体を後添加することにより、処理能力を保持できることが確認できた。 From the results of Example 1 shown in FIG. 2, it was confirmed that in the UASB method, when it was difficult to form granules, it was possible to maintain the processing capability by adding a support to the reaction vessel afterwards.

1・・・原水
2・・・嫌気反応槽
3・・・反応ガス
4・・・処理水
DESCRIPTION OF SYMBOLS 1 ... Raw water 2 ... Anaerobic reaction tank 3 ... Reaction gas 4 ... Treated water

Claims (2)

有機性排水を上向流で通水してメタン菌グラニュールによって嫌気性処理を行なう嫌気性排水処理方法において、メタン菌グラニュールが初期投入されすでに運転されている反応槽に、ポリビニルアルコール系担体を添加することを特徴とする有機性排水の処理方法。 In an anaerobic wastewater treatment method in which organic wastewater is passed in an upward flow and anaerobic treatment is performed with methane bacteria granules , a polyvinyl alcohol carrier is placed in a reaction tank in which methane bacteria granules are initially charged and already operated. A method for treating organic wastewater, characterized by adding after- treatment. 前記ポリビニルアルコール系担体の平均粒径が1〜10mmである、請求項1に記載の有機性排水の処理方法。 The method for treating organic waste water according to claim 1 , wherein the polyvinyl alcohol-based carrier has an average particle diameter of 1 to 10 mm .
JP2012254969A 2012-11-21 2012-11-21 Anaerobic wastewater treatment method Active JP6185708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254969A JP6185708B2 (en) 2012-11-21 2012-11-21 Anaerobic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254969A JP6185708B2 (en) 2012-11-21 2012-11-21 Anaerobic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2014100678A JP2014100678A (en) 2014-06-05
JP6185708B2 true JP6185708B2 (en) 2017-08-23

Family

ID=51023712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254969A Active JP6185708B2 (en) 2012-11-21 2012-11-21 Anaerobic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6185708B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422683B2 (en) * 2014-06-24 2018-11-14 オルガノ株式会社 Anaerobic biological treatment apparatus and anaerobic biological treatment method
JP2016185523A (en) * 2015-03-27 2016-10-27 住友重機械エンバイロメント株式会社 Anaerobic treatment device
CN105948241A (en) * 2016-06-03 2016-09-21 湖南恒凯环保科技投资有限公司 Packed EGSB reactor
CN107162186B (en) * 2017-06-20 2020-08-28 北京工业大学 Device and method for urban sewage anaerobic ammonia oxidation autotrophic nitrogen removal based on granular sludge
JP2019069421A (en) * 2017-10-10 2019-05-09 株式会社クラレ Wastewater treatment device and wastewater treatment method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203993A (en) * 1989-01-31 1990-08-13 Shinko Pantec Co Ltd Anaerobic waste water treating method
JPH0747387A (en) * 1993-08-10 1995-02-21 Toshiba Corp Anaerobic device for water treatment and method therefor
JP2001089574A (en) * 1999-07-15 2001-04-03 Kuraray Co Ltd Polyvinyl alcohol-based water-containing gel, its production and drainage treating device
JP2005342588A (en) * 2004-06-01 2005-12-15 Sumitomo Heavy Ind Ltd Anaerobic treatment method and anaerobic treatment system
JP2008068233A (en) * 2006-09-15 2008-03-27 Hitachi Plant Technologies Ltd Nitrogen elimination measure and nitrogen removing apparatus
MX2009011428A (en) * 2007-04-23 2009-12-14 Univ Maryland Biotech Inst Methods for the conversion of fish waste from aquaculture systems to methane via a modified uasb reactor.
JP5443057B2 (en) * 2009-05-29 2014-03-19 オルガノ株式会社 Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
JP2012076000A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd One tank type anaerobic wastewater treatment apparatus
JP6491406B2 (en) * 2012-07-27 2019-03-27 オルガノ株式会社 Anaerobic biological treatment method and anaerobic biological treatment apparatus

Also Published As

Publication number Publication date
JP2014100678A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
Del Rio et al. Aerobic granular SBR systems applied to the treatment of industrial effluents
JP6185708B2 (en) Anaerobic wastewater treatment method
Jungles et al. Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal
Jungles et al. Sequencing batch reactor operation for treating wastewater with aerobic granular sludge
JP6046991B2 (en) Anaerobic wastewater treatment method using carrier
JP6196767B2 (en) Anaerobic wastewater treatment method using carrier
Aygun et al. Application of sequencing batch biofilm reactor for treatment of sewage wastewater treatment: effect of power failure
JP2012076001A (en) Anaerobic wastewater treatment apparatus
Xu et al. Long-term continuous extraction of medium-chain carboxylates by pertraction with submerged hollow-fiber membranes
Li et al. Mechanism and performance of algal pond assisted constructed wetlands for wastewater polishing and nutrient recovery
JP2008221033A (en) Wastewater treatment method and apparatus
JP4949742B2 (en) Waste water treatment method and waste water treatment equipment
JP6046990B2 (en) Anaerobic wastewater treatment method using carrier
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
JP2013230413A (en) Method and apparatus for treating nitrogen-containing waste water
CN102153227B (en) Method for treating ultrahigh-concentration organic industrial wastewater
JP5205316B2 (en) Wastewater treatment method
Akbari Shahabi et al. Enhanced heterotrophic denitrification: effect of dairy industry sludge acclimatization and operating conditions
Ji et al. Combined UMBAF‐MBAF process treating detergent wastewater
JP6644586B2 (en) Anaerobic wastewater treatment method using carrier
JP2018083139A (en) Processing method of organic waste water
Gül et al. Modelling of hydrogenotrophic denitrification process in a venturi-integrated membrane bioreactor
JP2008188552A (en) Method and device for treating organic waste
JP6956621B2 (en) Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method
JP6533113B2 (en) Wastewater treatment method using carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170728

R150 Certificate of patent or registration of utility model

Ref document number: 6185708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150