JP6956621B2 - Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method - Google Patents

Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method Download PDF

Info

Publication number
JP6956621B2
JP6956621B2 JP2017242122A JP2017242122A JP6956621B2 JP 6956621 B2 JP6956621 B2 JP 6956621B2 JP 2017242122 A JP2017242122 A JP 2017242122A JP 2017242122 A JP2017242122 A JP 2017242122A JP 6956621 B2 JP6956621 B2 JP 6956621B2
Authority
JP
Japan
Prior art keywords
carrier
methanol
methane
anaerobic treatment
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242122A
Other languages
Japanese (ja)
Other versions
JP2019107609A (en
Inventor
藤井 弘明
悠 鵜飼
卓矢 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2017242122A priority Critical patent/JP6956621B2/en
Publication of JP2019107609A publication Critical patent/JP2019107609A/en
Application granted granted Critical
Publication of JP6956621B2 publication Critical patent/JP6956621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は嫌気処理用担体、嫌気処理装置および嫌気処理方法に関する。詳しくは、メタノール含有排水を効率よく安定的に嫌気処理するための嫌気処理用担体、嫌気処理装置および嫌気処理方法に関する。 The present invention relates to an anaerobic treatment carrier, an anaerobic treatment apparatus and an anaerobic treatment method. More specifically, the present invention relates to an anaerobic treatment carrier, an anaerobic treatment apparatus, and an anaerobic treatment method for efficiently and stably anaerobically treating methanol-containing wastewater.

有機物を含有する排水の処理方法として、メタンガスの回収、再利用が可能な嫌気処理法は、広く産業排水の処理方法として用いられている。なかでも沈降性良好なグラニュールを形成し、有機性排水を上向流で通水し、高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法は、特に中〜高濃度排水を処理する方法として発展してきた。また、このUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通水し、高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket:膨張粒状汚泥床)法も実用化されている。 As a method for treating wastewater containing organic matter, an anaerobic treatment method capable of recovering and reusing methane gas is widely used as a method for treating industrial wastewater. Among them, the UASB (Upflow Anaerobic Sludge Blanket) method, which forms a granule with good sedimentation property, allows organic wastewater to flow in an upward flow, and performs high-load high-speed treatment, is particularly medium. ~ It has been developed as a method for treating high-concentration wastewater. In addition, as an extension of this UASB method, the EGSB (Expanded Granule Sludge Blanket) method, in which water is passed at a higher flow velocity using a high reaction tank and anaerobic treatment is performed under a high load, is performed. Has also been put into practical use.

メタノールをメタン発酵処理する場合、大きく分けて2つの反応経路がある。1つはメタノールを直接利用するメタノサルシナ(methanosarcina)属やメタノメチロボランス(methanometylovorance)属によりメタノールを直接メタンに分解する反応経路である。他の反応は、通性嫌気性菌(酸生成菌)により、一旦メタノールを酢酸やギ酸に分解させた後、これらを分解するメタノサエタ(methanosaeta)属やメタノバクテリウム(methanobacterium)属により、酢酸やギ酸をメタンと炭酸ガスに分解する反応経路である。 When methanol is treated by methane fermentation, there are roughly two reaction routes. One is a reaction pathway that directly decomposes methanol into methane by the genera Methanosarcina and Methanosarcina, which directly utilize methanol. In other reactions, acetic acid or acetic acid is used by the genus Methanosaeta or the genus Methanosaeta, which decomposes methanol into acetic acid or formic acid by a common anaerobic bacterium (acid-producing bacterium). It is a reaction pathway that decomposes formic acid into methane and carbon dioxide.

上記2つの反応経路のうち、メタノールを直接メタンに分解する反応経路の方が、反応が単純で効率的であるが、メタノサルシナ属やメタノメチロボランス属はグラニュールを形成しにくいという欠点がある。グラニュールが形成されないとメタン発酵菌がUASBやEGSBの反応槽に留まることができず、安定した嫌気処理ができない。 Of the above two reaction pathways, the reaction pathway that directly decomposes methanol into methane is simpler and more efficient, but the genus Methanosarcina and the genus Methanosarcina have the disadvantage that it is difficult to form granules. .. If granules are not formed, methane-fermenting bacteria cannot stay in the reaction tanks of UASB and EGSB, and stable anaerobic treatment cannot be performed.

特許文献1には、通性嫌気性菌により一旦メタノールを酢酸やギ酸に分解させた後、これらを分解するメタノサエタ属やメタノバクテリウム属により、酢酸やギ酸をメタンと炭酸ガスに分解する反応経路を経ることが好ましい旨が記載されており、そのためにメタノール濃度を調整するなどの方法が記載されている。 Patent Document 1 describes a reaction pathway in which methanol is once decomposed into acetic acid and formic acid by a anaerobic bacterium, and then acetic acid and formic acid are decomposed into methane and carbon dioxide by the genus Methanosaeta and the genus Methanobacterium, which decompose these. It is described that it is preferable to go through the above, and for that purpose, a method such as adjusting the methanol concentration is described.

特許文献2および特許文献3にも、メタノール濃度を調整したり、反応槽での上昇速度を制限したりする方法が記載されている。 Patent Document 2 and Patent Document 3 also describe methods for adjusting the methanol concentration and limiting the rate of increase in the reaction vessel.

特許文献4には、グラニュールを維持するために、スタートアップ時に酢酸または酢酸を生成する物質を供給したり、メタノスリクス属の汚泥を供給したりする方法が記載されている。 Patent Document 4 describes a method of supplying acetic acid or a substance that produces acetic acid at startup, or supplying sludge of the genus Metanoslix in order to maintain granules.

特開2012−239954号公報Japanese Unexamined Patent Publication No. 2012-239954 特開2008−155072号公報Japanese Unexamined Patent Publication No. 2008-155072 特開2012−557号公報Japanese Unexamined Patent Publication No. 2012-557 特開平4−310294号公報Japanese Unexamined Patent Publication No. 4-310294

本発明は、メタノール含有排水の嫌気処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌を用いて、メタノールを直接メタン発酵する経路を利用することで、効率的な処理をするための嫌気処理用担体、嫌気処理装置および嫌気処理方法を提供することを課題とする。 In the anaerobic treatment of methanol-containing wastewater, the present invention provides efficient treatment by using a route for directly methane-fermenting methanol using a methane-fermenting bacterium that directly uses methanol without passing through acetic acid or formic acid. It is an object of the present invention to provide an anaerobic treatment carrier, an anaerobic treatment apparatus, and an anaerobic treatment method.

発明者らは、鋭意検討を重ねた結果、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いることにより、上記課題を解決できることを見出した。 As a result of diligent studies, the inventors have found that in the methane fermentation pathway of methanol-containing wastewater, methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid are present on the surface and / or inside of the carrier. It has been found that the above-mentioned problems can be solved by using the characteristic anaerobic treatment carrier.

本発明について、以下具体的に説明する。
すなわち本発明は、
[1]メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体、
[2]前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、[1]に記載の嫌気処理用担体、
[3]前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、[1]または[2]に記載の嫌気処理用担体、
[4]メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理装置、
[5]前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、[4]に記載の嫌気処理装置、
[6]前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、[4]または[5]に記載の嫌気処理装置、
[7]メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理方法、
[8]前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、[7]に記載の嫌気処理方法、
[9]前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、[7]または[8]に記載の嫌気処理方法、
に関する。
The present invention will be specifically described below.
That is, the present invention
[1] A carrier for anaerobic treatment, characterized in that methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid are present on the surface and / or inside of the carrier in the methane fermentation route of methanol-containing wastewater.
[2] The anaerobic treatment carrier according to [1], wherein the methane-fermenting bacterium that directly utilizes methanol is a genus Methanosarcina and / or a genus Methanosarcina.
[3] The anaerobic treatment carrier according to [1] or [2], wherein the anaerobic treatment carrier is a polyvinyl alcohol-based gel-like carrier.
[4] In the treatment of methanol-containing wastewater, anaerobic treatment is performed by allowing a carrier present on the surface and / or inside of a methane fermenting bacterium that directly uses methanol without passing through acetic acid or formic acid in the methane fermentation tank. An anaerobic treatment device, which is characterized by
[5] The anaerobic treatment apparatus according to [4], wherein the methane-fermenting bacterium that directly utilizes methanol belongs to the genus Methanosarcina and / or the genus Methanosarcina.
[6] The anaerobic treatment apparatus according to [4] or [5], wherein the anaerobic treatment carrier is a polyvinyl alcohol-based gel-like carrier.
[7] In the treatment of methanol-containing wastewater, anaerobic treatment is performed by allowing a carrier present on the surface and / or inside of a methane fermenting bacterium that directly uses methanol without passing through acetic acid or formic acid in the methane fermentation tank. An anaerobic treatment method, which is characterized by
[8] The anaerobic treatment method according to [7], wherein the methane-fermenting bacterium that directly utilizes methanol belongs to the genus Methanosarcina and / or the genus Methanosarcina.
[9] The anaerobic treatment method according to [7] or [8], wherein the anaerobic treatment carrier is a polyvinyl alcohol-based gel-like carrier.
Regarding.

本発明によれば、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いて、メタノールを直接メタン発酵することができ、効率的な処理が可能となる。 According to the present invention, in the methane fermentation pathway of methanol-containing wastewater, methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid are present on the surface and / or inside of the carrier for anaerobic treatment. Methanol can be directly methane-fermented using a carrier, enabling efficient treatment.

実施例、比較例で用いたメタン発酵槽の構成を示す系統図である。It is a system diagram which shows the structure of the methane fermenter used in an Example and a comparative example.

以下、本発明の実施形態を詳細に説明する。
本発明の嫌気処理用担体は、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The carrier for anaerobic treatment of the present invention is characterized in that methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid are present on the surface and / or inside of the carrier in the methane fermentation route of methanol-containing wastewater. ..

メタノールを直接利用するメタン発酵菌としては、メタノール直接資化時に発現し、機能する酵素遺伝子Methanol:MtaC Protein Co−methyl transferase(mtaB)を持つメタン発酵菌が該当する。 Examples of methane-fermenting bacteria that directly utilize methanol include methane-fermenting bacteria that have the enzyme gene Methanol: MtaC Protein Co-methyl transphase (mtaB) that is expressed and functions during the direct assimilation of methanol.

一例として、メタノサルシナ(methanosarcina)属、メタノメチロボランス(methanometylovorance)属が挙げられる。 Examples include the genus Methanosarcina and the genus Methanosarcina.

メタノールを直接利用するメタン発酵菌の量は、定量的リアルタイムPCR法を用いて測定する。メタンを生成する酵素遺伝子Methyl−CoM reductase(mcrA)とメタノール資化する酵素遺伝子Methanol:MtaC Protein Co−methyl transferase(mtaB)を定量し、それらの比率mtaB/mcrAからメタノールを直接利用するメタン発酵菌(メタノール直接資化菌)の割合を求める。 The amount of methane-fermenting bacteria that directly utilize methanol is measured using a quantitative real-time PCR method. Methane fermenting bacteria that quantify the enzyme gene Methyl-CoM redutase (mcrA) that produces methane and the enzyme gene Methyl: MtaC Protein Co-methyl transphase (mtaB) that assimilate methanol, and directly utilize methanol from their ratio mtaB / mcrA. Determine the ratio of (methanol direct assimilating bacteria).

mtaB/mcrAは排水原水中のメタノール量によっても変わってくるものであるが、本願発明の効果を奏するものであればよく、20%以上100%以下が好ましく、30%以上100%以下がさらに好ましい。 Although mtaB / mcrA varies depending on the amount of methanol in the wastewater raw water, it may be any one that exhibits the effect of the present invention, preferably 20% or more and 100% or less, and more preferably 30% or more and 100% or less. ..

本発明に用いることができる担体としては、ゲル状担体、プラスチック担体、セラミックス担体などが挙げられるが、微生物棲息性に優れた高分子ゲル状担体、特にポリビニルアルコール系ゲル状担体が好ましい。担体の平均粒径は1〜10mm、特に2〜6mmであることが好ましい。担体の平均粒径は、ノギスなどを使用して直接測定することもできるし、担体の実体積を測定し換算で求めることもできる。例えば、担体が球状の場合、担体100個を水が10ml入ったメスシリンダーに加え、上がった水位から担体1個当たりの実体積を算出し、球相当径として平均粒径を算出する。球相当径とは担体の体積と等しい体積を有する球の直径のことである。 Examples of the carrier that can be used in the present invention include a gel-like carrier, a plastic carrier, a ceramics carrier, and the like, and a polymer gel-like carrier having excellent microbial habitability, particularly a polyvinyl alcohol-based gel-like carrier is preferable. The average particle size of the carrier is preferably 1 to 10 mm, particularly preferably 2 to 6 mm. The average particle size of the carrier can be directly measured using a caliper or the like, or the actual volume of the carrier can be measured and obtained by conversion. For example, when the carrier is spherical, 100 carriers are added to a graduated cylinder containing 10 ml of water, the actual volume per carrier is calculated from the raised water level, and the average particle size is calculated as the equivalent diameter of the sphere. The sphere equivalent diameter is the diameter of a sphere having a volume equal to the volume of the carrier.

担体の形状は、限定されるものではなく、立方体、直方体、円柱状、球状、マカロニ状など任意の形状をとることができる。メタン菌との接触効率を考えると球状が好ましい。 The shape of the carrier is not limited, and can take any shape such as a cube, a rectangular parallelepiped, a columnar shape, a spherical shape, and a macaroni shape. Considering the contact efficiency with methane bacteria, a spherical shape is preferable.

メタノールを直接利用するメタン発酵菌を効率よく保持するためには、担体の表面から内部に連通孔があいていることが好ましい。担体の表面から内部に連通する孔における孔径は、自由にコントロールできるが、バクテリアのみが担体内部に棲息できるものが好ましく、表面付近の孔径は0.1μm以上100μm以下のものが好ましく、0.5μm以上50μm以下がさらに好ましい。表面付近の孔径が0.1μmよりも小さいとバクテリアが内部に進入できないなどの問題があり、100μmよりも大きいとバクテリア以外の大きな生物が侵入し効率が低下する場合がある。担体中心付近の孔径については特に制限はない。 In order to efficiently retain methane-fermenting bacteria that directly utilize methanol, it is preferable that there are communication holes from the surface of the carrier to the inside. The pore size of the pores communicating from the surface of the carrier to the inside can be freely controlled, but it is preferable that only bacteria can live inside the carrier, and the pore diameter near the surface is preferably 0.1 μm or more and 100 μm or less, and 0.5 μm. More preferably 50 μm or less. If the pore size near the surface is smaller than 0.1 μm, there is a problem that bacteria cannot enter inside, and if it is larger than 100 μm, large organisms other than bacteria may invade and the efficiency may decrease. There is no particular limitation on the pore size near the center of the carrier.

メタノールを直接利用するメタン発酵菌を担体の表面および/または内部に存在させる方法としては、担体製造時に菌を練りこむ方法と、担体製造後に担体表面および/または内部に菌を増殖させる方法がある。 As a method for allowing methane-fermenting bacteria that directly utilize methanol to exist on the surface and / or inside of the carrier, there are a method of kneading the bacteria during carrier production and a method of growing the bacteria on the surface and / or inside of the carrier after carrier production. ..

担体製造時に菌を練りこむ場合、菌の種類としては、メタン発酵で使用中または使用後のグラニュールやその粉砕物、嫌気消化汚泥、培養したメタン菌などが挙げられる。メタノールを直接利用するメタン発酵菌数が多いほどその能力が早期に発現する。メタノールを直接利用するメタン発酵菌数が少なくても、メタノールを含む排水などで馴養することにより、メタノールを直接利用するメタン発酵菌が増殖し、能力を発揮する。 When the bacteria are kneaded during the production of the carrier, the types of the bacteria include granules and crushed products thereof during and after use in methane fermentation, anaerobic digestive sludge, and cultured methane bacteria. The greater the number of methane-fermenting bacteria that directly use methanol, the earlier its ability will be manifested. Even if the number of methane-fermenting bacteria that directly use methanol is small, methane-fermenting bacteria that directly use methanol can grow and exert their abilities by acclimatizing with wastewater containing methanol.

担体製造後に担体表面および/または内部に菌を増殖させるためには、担体と種菌を接触させた後、メタノールを含む排水などで馴養し、メタノールを直接利用するメタン発酵菌を増殖させる方法がある。種菌としては、メタン発酵で使用中または使用後のグラニュールやその粉砕物、嫌気消化汚泥、培養したメタン菌などが挙げられる。また、すでにメタン発酵菌が表面および/または内部に存在している担体を種菌として用いることもできる。すでにメタン発酵菌が表面および/または内部に存在している担体と、菌が増殖していない担体を接触させることにより、菌が増殖していない担体にメタン発酵菌が付着し、馴養により増殖する。 In order to grow the bacteria on the surface and / or inside of the carrier after the carrier is manufactured, there is a method in which the carrier and the inoculum are brought into contact with each other and then acclimatized with drainage containing methanol to grow methane fermenting bacteria that directly use methanol. .. Examples of the inoculum include granules and crushed products thereof during and after use in methane fermentation, anaerobic digestive sludge, and cultured methane bacteria. In addition, a carrier in which methane-fermenting bacteria are already present on the surface and / or inside can be used as an inoculum. By contacting a carrier on which methane-fermenting bacteria are already present on the surface and / or inside with a carrier on which the bacteria have not grown, the methane-fermenting bacteria adhere to the carrier on which the bacteria have not grown and grow by acclimatization. ..

担体表面および/または内部に菌を増殖させる操作は、排水処理で使用するメタン発酵槽とは別の容器を用いて実施してもよいし、メタン発酵槽内で実施してもよい。 The operation of growing the bacteria on the surface and / or inside of the carrier may be carried out using a container different from the methane fermenter used in the wastewater treatment, or may be carried out in the methane fermenter.

本発明の嫌気処理装置および嫌気処理方法は、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させる嫌気処理装置および嫌気処理方法である。 The anaerobic treatment device and the anaerobic treatment method of the present invention are an anaerobic treatment device and an anaerobic treatment device in which a carrier in which a methane fermenting bacterium that directly utilizes methanol is present on the surface and / or inside is present in a methane fermentation tank without passing through acetic acid or formic acid. It is a processing method.

メタン発酵槽としては、特に限定するものではなく、従来のUASBやEGSBのメタン発酵槽で差し支えない。担体と排水の接触に関して、担体を積極的には撹拌せずに排水を上向流または下降流で通過させることにより接触させる方法や撹拌機などで担体を流動させることにより排水と接触させる方法があり、いずれの方法をとっても良い。 The methane fermenter is not particularly limited, and a conventional UASB or EGSB methane fermenter may be used. Regarding the contact between the carrier and the wastewater, there are a method of contacting the wastewater by passing the wastewater in an upward flow or a downward flow without actively stirring the carrier, or a method of contacting the wastewater by flowing the carrier with a stirrer or the like. Yes, either method can be used.

撹拌する場合の方法としては、特に限定されるものではなく、撹拌機などで槽内を撹拌して流動させる方法、原水や処理水を利用して担体を槽内で流動させる方法、窒素やメタンガスなどの酸素を含有しない気体で槽内を曝気流動させる方法、などが考えられる。 The method for stirring is not particularly limited, and the method of stirring and flowing the inside of the tank with a stirrer or the like, the method of flowing the carrier in the tank using raw water or treated water, nitrogen or methane gas A method of aerating and flowing the inside of the tank with a gas that does not contain oxygen, such as, can be considered.

本発明において、メタノールを直接利用するメタン発酵菌を担体の表面および/または内部に存在させる方法としては、担体製造時に菌を練りこむ方法と、担体製造後に担体表面および/または内部に菌を増殖させる方法がある。担体表面および/または内部に菌を増殖させる操作は、排水処理で使用するメタン発酵槽とは別の容器を用いて実施してもよいし、メタン発酵槽内で実施してもよい。上述のような方法でメタノールを直接利用するメタン発酵菌を表面および/または内部に存在させた担体をメタン発酵槽に存在させることにより嫌気処理を行う際、メタン発酵槽に存在させる担体の量は、特に制限はないが、通常は槽容量に対して5容量%から70容量%が好ましく、10容量%から60容量%がより好ましく、20容量%から50容量%が最も好ましい。 In the present invention, as a method for allowing methane-fermenting bacteria that directly utilize methanol to exist on the surface and / or inside of the carrier, a method of kneading the bacteria during carrier production and a method of growing the bacteria on the surface and / or inside of the carrier after carrier production. There is a way to make it. The operation of growing the bacteria on the surface and / or inside of the carrier may be carried out using a container different from the methane fermenter used in the wastewater treatment, or may be carried out in the methane fermenter. When anaerobic treatment is performed by allowing a carrier in which a methane-fermenting bacterium that directly uses methanol is present on the surface and / or inside in the methane fermentation tank as described above, the amount of the carrier present in the methane fermentation tank is Although not particularly limited, usually, 5% by volume to 70% by volume is preferable, 10% by volume to 60% by volume is more preferable, and 20% by volume to 50% by volume is most preferable with respect to the tank capacity.

本発明において、処理対象とするメタノール含有排水のメタノール濃度に特に制限はないが、他の排水処理方法と比較して効果的であるのは1000mg/L以上、より効果的であるのは3000mg/L以上である。メタノールが高濃度な場合でも、本発明の嫌気性処理用担体は、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在しているので、グラニュールの解体の有無にかかわらず、効率的にメタノール含有排水を処理することができるからである。すなわち、グラニュール形成のためにメタノール濃度を調整したり、酢酸などの有機成分を添加したりする必要がないため、簡便で効率的な処理が可能となる。本発明の嫌気処理装置および嫌気処理方法は、メタノール濃度を調整する手段、工程を含んでいてもよいが、上述と同様の理由から、これらを含まなくてもよい。 In the present invention, the methanol concentration of the methanol-containing wastewater to be treated is not particularly limited, but is more effective at 1000 mg / L or more and more effective at 3000 mg / L as compared with other wastewater treatment methods. It is L or more. Even when the concentration of methanol is high, the anaerobic treatment carrier of the present invention has methane-fermenting bacteria that directly utilize methanol present on the surface and / or inside of the carrier, regardless of the presence or absence of disassembly of granules. This is because the methanol-containing wastewater can be treated efficiently. That is, since it is not necessary to adjust the methanol concentration or add an organic component such as acetic acid for granule formation, simple and efficient treatment is possible. The anaerobic treatment apparatus and the anaerobic treatment method of the present invention may include means and steps for adjusting the methanol concentration, but they may not be included for the same reason as described above.

メタン発酵槽の負荷は、担体に存在するメタノールを直接利用するメタン発酵菌の量に応じて処理性を見ながら選択することができる。たとえば、5〜50kg−CODCr/m・日と高負荷をかけることも可能である。 The load of the methane fermenter can be selected while observing the processability according to the amount of methane fermenting bacteria that directly utilize the methanol present in the carrier. For example, it is possible to apply a high load of 5 to 50 kg-COD Cr / m 3 days.

メタン発酵槽のpHは6.5〜7.5であることが好ましく、必要に応じてpH調整を行なう。メタン発酵槽の温度は、通常のメタン発酵の条件と同様で25〜40℃、特に30〜38℃とすることが好ましい。 The pH of the methane fermenter is preferably 6.5 to 7.5, and the pH is adjusted if necessary. The temperature of the methane fermentation tank is preferably 25 to 40 ° C., particularly preferably 30 to 38 ° C., which is the same as the normal methane fermentation conditions.

以上に述べた通り、本発明によれば、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いて、メタノールを直接メタン発酵することができ、グラニュール形成のためにメタノール濃度を調整したり、酢酸などの有機成分を添加したりすることなく、効率的な処理が可能となる。 As described above, according to the present invention, in the methane fermentation pathway of methanol-containing wastewater, methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid are present on the surface and / or inside of the carrier. Methanol can be directly methane-fermented using the characteristic anaerobic treatment carrier, which is efficient without adjusting the methanol concentration for granule formation or adding organic components such as acetic acid. Processing becomes possible.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

[実施例1]
図1に示すフローに従って、平均粒径が約4mmのポリビニルアルコール系ゲル状担体4Lを10Lの円筒形容器(嫌気反応槽)に充填した。担体に菌を付着する方法としては、担体と種菌を接触させた後、メタノールを含む排水などで馴養し、メタノールを直接利用するメタン発酵菌を増殖させる方法をとった。具体的には化学系排水を処理している嫌気性グラニュール(粒径1〜2mm)1Lを添加した後、メタノールを主成分とする工場排水(メタノール濃度4000mg/L、CODCr6000mg/L)を原水とし、これを嫌気反応槽に1L/日で供給し(CODCr容積負荷0.6kg/m・日)、処理状況を見ながら徐々に供給量を上げていった。嫌気反応槽のpHは6.5〜7.0、水温は34〜36℃で実施した。1ヵ月後に40L/日まで供給量を上げることができ、メタノールが10mg/L以下まで処理できることを確認した。CODCr容積負荷は24kg/m・日と高い処理能力を出すことができた。結果を表1に示す。最初に投入したグラニュールは、徐々に解体して処理水とともに流出し、最終的にグラニュールが槽内に見られなかったことから、担体の表面および/または内部に存在する菌によってメタノールが処理されたことがわかる。
[Example 1]
According to the flow shown in FIG. 1, 4 L of a polyvinyl alcohol-based gel-like carrier having an average particle size of about 4 mm was filled in a 10 L cylindrical container (anaerobic reaction tank). As a method of adhering the bacteria to the carrier, a method was adopted in which the carrier and the inoculum were brought into contact with each other and then acclimatized with drainage containing methanol to grow methane-fermenting bacteria that directly use methanol. Specifically, after adding 1 L of anaerobic granule (particle size 1-2 mm) that treats chemical wastewater, factory wastewater containing methanol as the main component (methanol concentration 4000 mg / L, COD Cr 6000 mg / L) Was used as raw water and supplied to the anaerobic reaction tank at 1 L / day (COD Cr volume load 0.6 kg / m 3 days), and the supply amount was gradually increased while observing the treatment status. The pH of the anaerobic reaction tank was 6.5 to 7.0, and the water temperature was 34 to 36 ° C. It was confirmed that the supply amount could be increased to 40 L / day after one month, and that methanol could be treated to 10 mg / L or less. The COD Cr volumetric load was 24 kg / m 3 days, which was a high processing capacity. The results are shown in Table 1. The first granules were gradually disassembled and flowed out with the treated water, and finally the granules were not found in the tank, so the methanol was treated by the bacteria present on the surface and / or inside of the carrier. You can see that it was done.

メタノールを直接利用するメタン発酵菌の量は、定量的リアルタイムPCR法を用いて測定した。実施例1において、1ヵ月経過後の担体に存在する菌の測定を実施したところmtaB/mcrA=55%であり、メタノールを直接利用するメタン発酵菌が優占種であることがわかった。また、次世代シーケンスによる遺伝子解析により、メタノサルシナ(methanosarcina)属およびメタノメチロボランス(methanometylovorance)属のメタン発酵菌が存在することが確認できた。 The amount of methane-fermenting bacteria that directly utilize methanol was measured using a quantitative real-time PCR method. In Example 1, when the bacteria present on the carrier after 1 month were measured, mtaB / mcrA = 55%, and it was found that the methane fermenting bacteria that directly utilize methanol are the dominant species. In addition, gene analysis by the next-generation sequence confirmed the existence of methane-fermenting bacteria of the genus Methanosarcina and the genus Methanosarcina.

[比較例1]
図1に示すフローに従って、化学系排水を処理している嫌気性グラニュール(粒径1〜2mm)4Lを10Lの円筒形容器(嫌気反応槽)に充填し、メタノールを主成分とする工場排水(メタノール濃度4000mg/L、CODCr6000mg/L)を原水とし、これを1L/日で供給した(CODCr容積負荷0.6kg/m・日)。嫌気反応槽のpHは6.5〜7.0、水温は34〜36℃で実施した。しかし、グラニュールは徐々に解体して処理水とともに流出し、メタノールを10mg/L以下まで処理することができなかった。結果を表1に示す。
[Comparative Example 1]
According to the flow shown in FIG. 1, 4 L of anaerobic granule (particle size 1-2 mm) treating chemical wastewater is filled in a 10 L cylindrical container (anaerobic reaction tank), and factory wastewater containing methanol as a main component is filled. (Methanol concentration 4000 mg / L, COD Cr 6000 mg / L) was used as raw water, and this was supplied at 1 L / day (COD Cr volumetric load 0.6 kg / m 3 days). The pH of the anaerobic reaction tank was 6.5 to 7.0, and the water temperature was 34 to 36 ° C. However, the granules were gradually disassembled and flowed out together with the treated water, and methanol could not be treated to 10 mg / L or less. The results are shown in Table 1.

[比較例2]
図1に示すフローに従って、化学系排水を処理している嫌気性グラニュール(粒径1〜2mm)4Lを10Lの円筒形容器(嫌気反応槽)に充填した。メタノールを主成分とする工場排水に酢酸と水を加えて調整し、メタノール濃度1000mg/L、酢酸濃度200mg/Lの原水(CODCr1700mg/L)とし、これを嫌気反応槽に1L/日で供給し(CODCr容積負荷0.6kg/m・日)、処理状況を見ながら徐々に供給量を上げていった。嫌気反応槽のpHは6.5〜7.0、水温は34〜36℃で実施した。1ヵ月後に30L/日まで供給量を上げることができ、メタノールが10mg/L以下まで処理できることを確認した。グラニュールは解体せず粒径は1〜2mmを保持していた。しかし、CODCr容積負荷は5.1kg/m・日が限界であり、実施例のような高い容積負荷をかけることはできなかった。この時のグラニュールはmtaB/mcrA=0.1%であり、メタノールを直接利用するメタン発酵菌はほとんど存在しないことが判明した。結果を表1に示す。
[Comparative Example 2]
According to the flow shown in FIG. 1, 4 L of anaerobic granule (particle size 1-2 mm) treating chemical wastewater was filled in a 10 L cylindrical container (anaerobic reaction tank). Acetic acid and water are added to the factory effluent containing methanol as the main component to prepare raw water with a methanol concentration of 1000 mg / L and an acetic acid concentration of 200 mg / L (COD Cr 1700 mg / L), which is placed in an anaerobic reaction tank at 1 L / day. It was supplied (COD Cr volumetric load 0.6 kg / m 3 days), and the supply amount was gradually increased while observing the treatment status. The pH of the anaerobic reaction tank was 6.5 to 7.0, and the water temperature was 34 to 36 ° C. It was confirmed that the supply amount could be increased to 30 L / day after one month, and that methanol could be treated to 10 mg / L or less. The granule was not disassembled and the particle size was maintained at 1 to 2 mm. However, the COD Cr volumetric load was limited to 5.1 kg / m 3 days, and it was not possible to apply the high volumetric load as in the examples. The granule at this time was mtaB / mcrA = 0.1%, and it was found that there were almost no methane-fermenting bacteria that directly used methanol. The results are shown in Table 1.

Figure 0006956621
Figure 0006956621

以上の実施例、比較例からわかるように、本発明によれば、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いて、メタノールを直接メタン発酵することができ、グラニュール形成のためにメタノール濃度を調整したり、酢酸などの有機成分を添加したりすることなく、効率的な処理が可能となった。 As can be seen from the above Examples and Comparative Examples, according to the present invention, in the methane fermentation pathway of methanol-containing wastewater, methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid are present on the surface of the carrier and / or Methanol can be directly methane-fermented using a carrier for anaerobic treatment, which is characterized by being present inside, and the concentration of methanol can be adjusted for granule formation, or organic components such as acetic acid can be added. Efficient processing has become possible without any problems.

1・・・原水
2・・・嫌気反応槽
3・・・反応ガス
4・・・処理水
1 ... Raw water
2 ... Anaerobic reaction tank
3 ... Reaction gas
4 ... Treated water

Claims (9)

メタノール含有排水のメタン発酵経路において、25〜40℃のメタン発酵槽中、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に55%以上、100%以下の割合で存在することを特徴とする嫌気処理用担体。 In the methanogenesis route of methanol-containing wastewater , 55% or more and 100% of methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid are present on the surface and / or inside of the carrier in a methane fermentation tank at 25 to 40 ° C. A carrier for anaerobic treatment, which is characterized by being present in the following proportions. 前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、請求項1に記載の嫌気処理用担体。 The carrier for anaerobic treatment according to claim 1, wherein the methane-fermenting bacterium that directly utilizes methanol is a genus Methanosarcina and / or a genus Methanosarcina. 前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、請求項1または2に記載の嫌気処理用担体。 The anaerobic treatment carrier according to claim 1 or 2, wherein the anaerobic treatment carrier is a polyvinyl alcohol-based gel-like carrier. メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に55%以上、100%以下の割合で存在する担体を25〜40℃のメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理装置。 In the treatment of methanol-containing wastewater, a carrier containing 55% or more and 100% or less of methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid is present on the surface and / or inside of methane at 25 to 40 ° C. An anaerobic treatment apparatus characterized in that anaerobic treatment is performed by being present in a fermenter. 前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、請求項4に記載の嫌気処理装置。 The anaerobic treatment apparatus according to claim 4, wherein the methane-fermenting bacterium that directly utilizes methanol belongs to the genus Methanosarcina and / or the genus Methanosarcina. 前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、請求項4または5に記載の嫌気処理装置。 The anaerobic treatment apparatus according to claim 4 or 5, wherein the anaerobic treatment carrier is a polyvinyl alcohol-based gel-like carrier. メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に55%以上、100%以下の割合で存在する担体を25〜40℃のメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理方法。 In the treatment of methanol-containing wastewater, a carrier containing 55% or more and 100% or less of methane-fermenting bacteria that directly utilize methanol without passing through acetic acid or formic acid is present on the surface and / or inside of methane at 25 to 40 ° C. An anaerobic treatment method characterized by performing anaerobic treatment by allowing it to exist in a fermenter. 前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、請求項7に記載の嫌気処理方法。 The anaerobic treatment method according to claim 7, wherein the methane-fermenting bacterium that directly utilizes methanol belongs to the genus Methanosarcina and / or the genus Methanosarcina. 前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、請求項7または8に記載の嫌気処理方法。 The anaerobic treatment method according to claim 7 or 8, wherein the anaerobic treatment carrier is a polyvinyl alcohol-based gel-like carrier.
JP2017242122A 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method Active JP6956621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242122A JP6956621B2 (en) 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242122A JP6956621B2 (en) 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method

Publications (2)

Publication Number Publication Date
JP2019107609A JP2019107609A (en) 2019-07-04
JP6956621B2 true JP6956621B2 (en) 2021-11-02

Family

ID=67178497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242122A Active JP6956621B2 (en) 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method

Country Status (1)

Country Link
JP (1) JP6956621B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341397A (en) * 1991-05-20 1992-11-27 Shimizu Corp Methane fermentation treatment apparatus and methane fermentation method
JP2878640B2 (en) * 1996-03-29 1999-04-05 株式会社荏原製作所 Upflow anaerobic sludge bed method
US20090325253A1 (en) * 2008-04-25 2009-12-31 Ascon Miguel Methods and systems for production of biofuels and bioenergy products from sewage sludge, including recalcitrant sludge
KR101003482B1 (en) * 2008-09-04 2010-12-28 이정규 Disposal method of high concentration organic matter waste water
JP5443057B2 (en) * 2009-05-29 2014-03-19 オルガノ株式会社 Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP6491406B2 (en) * 2012-07-27 2019-03-27 オルガノ株式会社 Anaerobic biological treatment method and anaerobic biological treatment apparatus

Also Published As

Publication number Publication date
JP2019107609A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
Tang et al. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater
Heubeck et al. Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond
De Godos et al. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate
CN106396112B (en) A kind of helotisn purifies the composite system of high ammonia nitrogen pig raising biogas slurry in conjunction with biological floating bed technology
CN106430820B (en) A kind of biological treatment device and its technique of high ammonia nitrogen pig raising biogas slurry
Lee et al. Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater
CN109456926A (en) A kind of microbial bacterial agent and its application containing thermophilic salt denitrifying bacterium YL5-2
Li et al. Seawater toilet flushing sewage treatment and nutrients recovery by marine bacterial-algal mutualistic system
JP6046991B2 (en) Anaerobic wastewater treatment method using carrier
JP2014024002A (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
Gao et al. Performance evaluation of a mesophilic (37 C) upflow anaerobic sludge blanket reactor in treating distiller's grains wastewater
JP2012076001A (en) Anaerobic wastewater treatment apparatus
JP6196767B2 (en) Anaerobic wastewater treatment method using carrier
JP6185708B2 (en) Anaerobic wastewater treatment method
Zhou et al. Performance and bacterial community structure of an anoxic/oxic membrane bioreactor treating anaerobically digested piggery wastewater
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
CN110240283B (en) Device and method for treating salt-containing organic wastewater by adopting deep-sea microorganisms
JP6956621B2 (en) Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method
CN207375911U (en) A kind of bacteria bed
CN101209880A (en) Method for purifying cultivation sewage by 'marine sponge-microalgae' integration system
JP6046990B2 (en) Anaerobic wastewater treatment method using carrier
WO2012168754A1 (en) Self-sustained microbial detoxification of soluble sulfate from environmental effluent
Calicioglu et al. Integrated nutrient removal and biogas production by Chlorella vulgaris cultures
Bedane et al. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse
JP6644586B2 (en) Anaerobic wastewater treatment method using carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150