JP2019107609A - Anaerobic treatment carrier, anaerobic treatment apparatus and treatment method - Google Patents

Anaerobic treatment carrier, anaerobic treatment apparatus and treatment method Download PDF

Info

Publication number
JP2019107609A
JP2019107609A JP2017242122A JP2017242122A JP2019107609A JP 2019107609 A JP2019107609 A JP 2019107609A JP 2017242122 A JP2017242122 A JP 2017242122A JP 2017242122 A JP2017242122 A JP 2017242122A JP 2019107609 A JP2019107609 A JP 2019107609A
Authority
JP
Japan
Prior art keywords
methanol
carrier
anaerobic treatment
methane
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017242122A
Other languages
Japanese (ja)
Other versions
JP6956621B2 (en
Inventor
藤井 弘明
Hiroaki Fujii
弘明 藤井
悠 鵜飼
Yu Ukai
悠 鵜飼
卓矢 大澤
Takuya Osawa
卓矢 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2017242122A priority Critical patent/JP6956621B2/en
Publication of JP2019107609A publication Critical patent/JP2019107609A/en
Application granted granted Critical
Publication of JP6956621B2 publication Critical patent/JP6956621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

To provide an anaerobic treatment carrier, an anaerobic treatment apparatus, and an anaerobic treatment method for efficiently treating methanol by using a pathway for direct methane fermentation of methanol in anaerobic treatment of methanol-containing wastewater.SOLUTION: In the treatment of methanol-containing wastewater, the anaerobic treatment is performed by causing a methane fermentation tank to have a carrier in which methane fermenting bacteria directly using methanol is present on the surface and/or inside without passing through acetic acid or formic acid.SELECTED DRAWING: Figure 1

Description

本発明は嫌気処理用担体、嫌気処理装置および嫌気処理方法に関する。詳しくは、メタノール含有排水を効率よく安定的に嫌気処理するための嫌気処理用担体、嫌気処理装置および嫌気処理方法に関する。   The present invention relates to a support for anaerobic treatment, an anaerobic treatment apparatus, and an anaerobic treatment method. More specifically, the present invention relates to an anaerobic treatment carrier, an anaerobic treatment apparatus, and an anaerobic treatment method for efficiently and stably treating methanol-containing wastewater.

有機物を含有する排水の処理方法として、メタンガスの回収、再利用が可能な嫌気処理法は、広く産業排水の処理方法として用いられている。なかでも沈降性良好なグラニュールを形成し、有機性排水を上向流で通水し、高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法は、特に中〜高濃度排水を処理する方法として発展してきた。また、このUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通水し、高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket:膨張粒状汚泥床)法も実用化されている。   As a treatment method of waste water containing organic matter, an anaerobic treatment method capable of recovering and reusing methane gas is widely used as a treatment method of industrial waste water. Above all, the UASB (Upflow Anaerobic Sludge Blanket) method, in which granules with good sedimentation are formed, organic drainage is passed upward, and high-load, high-speed treatment is carried out, is particularly the middle-flow anaerobic sludge blanket method. It has been developed as a method of treating high concentration drainage. In addition, as a development of this UASB method, an EGSB (Expanded Granule Sludge Blanket) method in which water is supplied at a higher flow rate using a tall reaction vessel and anaerobic treatment is performed at a high load. Is also in practical use.

メタノールをメタン発酵処理する場合、大きく分けて2つの反応経路がある。1つはメタノールを直接利用するメタノサルシナ(methanosarcina)属やメタノメチロボランス(methanometylovorance)属によりメタノールを直接メタンに分解する反応経路である。他の反応は、通性嫌気性菌(酸生成菌)により、一旦メタノールを酢酸やギ酸に分解させた後、これらを分解するメタノサエタ(methanosaeta)属やメタノバクテリウム(methanobacterium)属により、酢酸やギ酸をメタンと炭酸ガスに分解する反応経路である。   When methanol is subjected to methane fermentation, there are roughly two reaction pathways. One is a reaction pathway which directly decomposes methanol into methane according to the genus Methanosarcina or Methanometylovorance, which directly utilizes methanol. In other reactions, once the methanol is decomposed into acetic acid and formic acid by facultative anaerobes (acid-producing bacteria), acetic acid and acetic acid and methanobacterium (methanobacterium) can be used to decompose these. It is a reaction pathway that decomposes formic acid into methane and carbon dioxide gas.

上記2つの反応経路のうち、メタノールを直接メタンに分解する反応経路の方が、反応が単純で効率的であるが、メタノサルシナ属やメタノメチロボランス属はグラニュールを形成しにくいという欠点がある。グラニュールが形成されないとメタン発酵菌がUASBやEGSBの反応槽に留まることができず、安定した嫌気処理ができない。   Of the above two reaction pathways, the reaction pathway that directly decomposes methanol into methane is simpler and more efficient, but has the disadvantage that Methanosarcina spp. . If granules are not formed, methane fermentation bacteria can not stay in the reaction vessel of UASB or EGSB, and stable anaerobic treatment can not be performed.

特許文献1には、通性嫌気性菌により一旦メタノールを酢酸やギ酸に分解させた後、これらを分解するメタノサエタ属やメタノバクテリウム属により、酢酸やギ酸をメタンと炭酸ガスに分解する反応経路を経ることが好ましい旨が記載されており、そのためにメタノール濃度を調整するなどの方法が記載されている。   Patent Document 1 discloses a reaction pathway in which methanol is decomposed into acetic acid and formic acid by facultative anaerobes, and then decomposition of acetic acid and formic acid into methane and carbon dioxide by the genus Methanosae or Methanobacterium. It is described that it is preferable to go through, and methods such as adjusting the methanol concentration are described.

特許文献2および特許文献3にも、メタノール濃度を調整したり、反応槽での上昇速度を制限したりする方法が記載されている。   Patent Document 2 and Patent Document 3 also describe methods of adjusting the methanol concentration and limiting the rate of increase in the reaction vessel.

特許文献4には、グラニュールを維持するために、スタートアップ時に酢酸または酢酸を生成する物質を供給したり、メタノスリクス属の汚泥を供給したりする方法が記載されている。   Patent Document 4 describes a method of supplying acetic acid or a substance that generates acetic acid at start-up, or supplying a methanotric sludge, in order to maintain granules.

特開2012−239954号公報Unexamined-Japanese-Patent No. 2012-239954 特開2008−155072号公報JP, 2008-155072, A 特開2012−557号公報JP 2012-557 A 特開平4−310294号公報JP-A-4-310294

本発明は、メタノール含有排水の嫌気処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌を用いて、メタノールを直接メタン発酵する経路を利用することで、効率的な処理をするための嫌気処理用担体、嫌気処理装置および嫌気処理方法を提供することを課題とする。   The present invention is an anaerobic treatment of methanol-containing waste water by utilizing a pathway for direct methane fermentation of methanol using methane fermentation bacteria that directly utilizes methanol without passing through acetic acid or formic acid, thereby achieving efficient treatment. An object of the present invention is to provide a support for anaerobic treatment, an anaerobic treatment apparatus, and an anaerobic treatment method.

発明者らは、鋭意検討を重ねた結果、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いることにより、上記課題を解決できることを見出した。   As a result of intensive investigations, the inventors found that in the methane fermentation pathway of methanol-containing wastewater, methane fermenting bacteria directly utilizing methanol are present on the surface and / or inside of the carrier without passing through acetic acid or formic acid. It has been found that the above-mentioned problems can be solved by using the characteristic support for anaerobic treatment.

本発明について、以下具体的に説明する。
すなわち本発明は、
[1]メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体、
[2]前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、[1]に記載の嫌気処理用担体、
[3]前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、[1]または[2]に記載の嫌気処理用担体、
[4]メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理装置、
[5]前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、[4]に記載の嫌気処理装置、
[6]前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、[4]または[5]に記載の嫌気処理装置、
[7]メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理方法、
[8]前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、[7]に記載の嫌気処理方法、
[9]前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、[7]または[8]に記載の嫌気処理方法、
に関する。
The present invention will be specifically described below.
That is, the present invention
[1] A carrier for anaerobic treatment, characterized in that methane fermenting bacteria directly utilizing methanol are present on the surface and / or inside of the carrier without using acetic acid or formic acid in the methane fermentation pathway of methanol-containing waste water,
[2] The support for anaerobic treatment according to [1], wherein the methanogenic bacterium directly using methanol is a genus of methanosarcina and / or a genus of methanomethylovorance,
[3] The carrier for anaerobic treatment according to [1] or [2], wherein the carrier for anaerobic treatment is a polyvinyl alcohol gel carrier.
[4] In the treatment of methanol-containing wastewater, anaerobic treatment is carried out by causing a methane fermentation tank to have a carrier on the surface and / or inside of which methane fermentation bacteria using methanol directly without using acetic acid or formic acid are present in a methane fermentation tank Anaerobic treatment equipment, characterized by
[5] The anaerobic treatment apparatus according to [4], wherein the methanogenic bacterium which directly uses methanol is a genus of methanosarcina and / or a genus of methanomethylovorance,
[6] The anaerobic treatment apparatus according to [4] or [5], wherein the anaerobic treatment carrier is a polyvinyl alcohol gel carrier.
[7] In the treatment of methanol-containing wastewater, anaerobic treatment is carried out by causing a methane fermentation tank to have a carrier on the surface and / or inside of which methane fermentation bacteria using methanol directly without using acetic acid or formic acid are present in a methane fermentation tank Anaerobic treatment method, characterized by
[8] The anaerobic treatment method according to [7], wherein the methanogenic bacterium which directly uses methanol is a genus of methanosarcina and / or a genus of methanomethylovorance,
[9] The anaerobic treatment method according to [7] or [8], wherein the anaerobic treatment carrier is a polyvinyl alcohol gel carrier.
About.

本発明によれば、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いて、メタノールを直接メタン発酵することができ、効率的な処理が可能となる。   According to the present invention, in the methane fermentation pathway of methanol-containing waste water, methane fermentation bacteria using methanol directly without using acetic acid or formic acid are present on the surface and / or inside of the carrier. Using a carrier, methanol can be directly methane fermented, enabling efficient processing.

実施例、比較例で用いたメタン発酵槽の構成を示す系統図である。It is a systematic diagram showing composition of a methane fermentation tank used by an example and a comparative example.

以下、本発明の実施形態を詳細に説明する。
本発明の嫌気処理用担体は、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The carrier for anaerobic treatment of the present invention is characterized in that methane fermenting bacteria directly utilizing methanol are present on the surface and / or inside of the carrier without passing through acetic acid or formic acid in the methane fermentation pathway of methanol-containing wastewater. .

メタノールを直接利用するメタン発酵菌としては、メタノール直接資化時に発現し、機能する酵素遺伝子Methanol:MtaC Protein Co−methyl transferase(mtaB)を持つメタン発酵菌が該当する。   As a methane fermentation bacteria which directly utilizes methanol, the methane fermentation bacteria which express at the time of methanol direct assimilation and have a functional enzyme gene Methanol: MtaC Protein Co-methyl transferase (mtaB) correspond.

一例として、メタノサルシナ(methanosarcina)属、メタノメチロボランス(methanometylovorance)属が挙げられる。   As an example, the genus Methanosarcina (methanosarcina), the genus Methanometylovorance are mentioned.

メタノールを直接利用するメタン発酵菌の量は、定量的リアルタイムPCR法を用いて測定する。メタンを生成する酵素遺伝子Methyl−CoM reductase(mcrA)とメタノール資化する酵素遺伝子Methanol:MtaC Protein Co−methyl transferase(mtaB)を定量し、それらの比率mtaB/mcrAからメタノールを直接利用するメタン発酵菌(メタノール直接資化菌)の割合を求める。   The amount of methane-fermenting bacteria using methanol directly is measured using quantitative real-time PCR. A methane-fermenting bacterium that quantitates the enzyme gene Methyl-CoM reductase (mcrA) that produces methane and the enzyme gene Methanol: MtaC Protein Co-methyltransferase (mtaB) that utilizes methanol and uses methanol directly from their ratio mtaB / mcrA Determine the percentage of (methanol direct assimilation bacteria).

mtaB/mcrAは排水原水中のメタノール量によっても変わってくるものであるが、本願発明の効果を奏するものであればよく、20%以上100%以下が好ましく、30%以上100%以下がさらに好ましい。   Although mtaB / mcrA also changes depending on the amount of methanol in the raw water for drainage, it is sufficient if it achieves the effect of the present invention, preferably 20% to 100%, and more preferably 30% to 100%. .

本発明に用いることができる担体としては、ゲル状担体、プラスチック担体、セラミックス担体などが挙げられるが、微生物棲息性に優れた高分子ゲル状担体、特にポリビニルアルコール系ゲル状担体が好ましい。担体の平均粒径は1〜10mm、特に2〜6mmであることが好ましい。担体の平均粒径は、ノギスなどを使用して直接測定することもできるし、担体の実体積を測定し換算で求めることもできる。例えば、担体が球状の場合、担体100個を水が10ml入ったメスシリンダーに加え、上がった水位から担体1個当たりの実体積を算出し、球相当径として平均粒径を算出する。球相当径とは担体の体積と等しい体積を有する球の直径のことである。   Carriers that can be used in the present invention include gel carriers, plastic carriers, ceramic carriers and the like, but polymer gel carriers excellent in microbial habitability, particularly polyvinyl alcohol gel carriers are preferable. The average particle size of the carrier is preferably 1 to 10 mm, particularly 2 to 6 mm. The average particle size of the carrier can be measured directly using a caliper or the like, or can be determined by measuring the actual volume of the carrier. For example, when the carrier is spherical, 100 carriers are added to a measuring cylinder containing 10 ml of water, the actual volume per carrier is calculated from the raised water level, and the average particle diameter is calculated as the sphere equivalent diameter. The equivalent sphere diameter is the diameter of a sphere having a volume equal to the volume of the carrier.

担体の形状は、限定されるものではなく、立方体、直方体、円柱状、球状、マカロニ状など任意の形状をとることができる。メタン菌との接触効率を考えると球状が好ましい。   The shape of the carrier is not limited, and may be any shape such as cube, rectangular parallelepiped, cylinder, sphere, macaroni and the like. Spherical shape is preferable in view of the contact efficiency with methane bacteria.

メタノールを直接利用するメタン発酵菌を効率よく保持するためには、担体の表面から内部に連通孔があいていることが好ましい。担体の表面から内部に連通する孔における孔径は、自由にコントロールできるが、バクテリアのみが担体内部に棲息できるものが好ましく、表面付近の孔径は0.1μm以上100μm以下のものが好ましく、0.5μm以上50μm以下がさらに好ましい。表面付近の孔径が0.1μmよりも小さいとバクテリアが内部に進入できないなどの問題があり、100μmよりも大きいとバクテリア以外の大きな生物が侵入し効率が低下する場合がある。担体中心付近の孔径については特に制限はない。   In order to efficiently retain methane-fermenting bacteria that directly use methanol, it is preferable that communication holes be provided from the surface of the carrier to the inside. The pore diameter in the pores communicating from the surface to the inside of the carrier can be freely controlled, but it is preferable that only bacteria can live inside the carrier, and the pore diameter near the surface is preferably 0.1 μm to 100 μm, and 0.5 μm The thickness is more preferably 50 μm or less. If the pore diameter near the surface is smaller than 0.1 μm, there is a problem that bacteria can not enter inside, and if it is larger than 100 μm, large organisms other than bacteria may invade to lower the efficiency. There is no particular limitation on the pore size near the center of the carrier.

メタノールを直接利用するメタン発酵菌を担体の表面および/または内部に存在させる方法としては、担体製造時に菌を練りこむ方法と、担体製造後に担体表面および/または内部に菌を増殖させる方法がある。   Methods of causing methane-fermenting bacteria directly utilizing methanol to be present on the surface and / or inside of the carrier include a method of kneading the bacteria at the time of carrier production and a method of growing the bacteria on the carrier surface and / or inside after carrier production. .

担体製造時に菌を練りこむ場合、菌の種類としては、メタン発酵で使用中または使用後のグラニュールやその粉砕物、嫌気消化汚泥、培養したメタン菌などが挙げられる。メタノールを直接利用するメタン発酵菌数が多いほどその能力が早期に発現する。メタノールを直接利用するメタン発酵菌数が少なくても、メタノールを含む排水などで馴養することにより、メタノールを直接利用するメタン発酵菌が増殖し、能力を発揮する。   In the case of mixing bacteria at the time of carrier production, types of bacteria include granules used or used in methane fermentation, crushed products thereof, anaerobically digested sludge, cultured methane bacteria and the like. The higher the number of methane-fermenting bacteria directly using methanol, the earlier the ability appears. Even if the number of methane-fermenting bacteria directly utilizing methanol is small, methane-fermentative bacteria directly utilizing methanol can proliferate and exert their ability by acclimatization with waste water containing methanol and the like.

担体製造後に担体表面および/または内部に菌を増殖させるためには、担体と種菌を接触させた後、メタノールを含む排水などで馴養し、メタノールを直接利用するメタン発酵菌を増殖させる方法がある。種菌としては、メタン発酵で使用中または使用後のグラニュールやその粉砕物、嫌気消化汚泥、培養したメタン菌などが挙げられる。また、すでにメタン発酵菌が表面および/または内部に存在している担体を種菌として用いることもできる。すでにメタン発酵菌が表面および/または内部に存在している担体と、菌が増殖していない担体を接触させることにより、菌が増殖していない担体にメタン発酵菌が付着し、馴養により増殖する。   In order to grow bacteria on the surface and / or inside of the carrier after producing the carrier, there is a method of bringing the carrier into contact with the seed and acclimating with waste water containing methanol to grow methane fermentation bacteria using methanol directly. . As the inoculum, there may be mentioned granules in and after use in methane fermentation and crushed products thereof, anaerobically digested sludge, cultured methane bacteria and the like. In addition, carriers in which methane fermenting bacteria are already present on the surface and / or in the inside can also be used as inoculum. By contacting a carrier on which methane fermentation bacteria are already present on the surface and / or inside with a carrier on which bacteria are not grown, methane fermentation bacteria adheres to the carrier on which bacteria are not grown and proliferates by acclimatization .

担体表面および/または内部に菌を増殖させる操作は、排水処理で使用するメタン発酵槽とは別の容器を用いて実施してもよいし、メタン発酵槽内で実施してもよい。   The operation of growing the bacteria on the surface of the carrier and / or in the interior may be carried out using a container separate from the methane fermenter used for waste water treatment, or may be carried out in the methane fermenter.

本発明の嫌気処理装置および嫌気処理方法は、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させる嫌気処理装置および嫌気処理方法である。   The anaerobic treatment apparatus and the anaerobic treatment method of the present invention are an anaerobic treatment apparatus and an anaerobic treatment method in which a methane fermenter directly using methanol without using acetic acid or formic acid and having a carrier on the surface and / or inside is present in a methane fermentation tank It is a processing method.

メタン発酵槽としては、特に限定するものではなく、従来のUASBやEGSBのメタン発酵槽で差し支えない。担体と排水の接触に関して、担体を積極的には撹拌せずに排水を上向流または下降流で通過させることにより接触させる方法や撹拌機などで担体を流動させることにより排水と接触させる方法があり、いずれの方法をとっても良い。   The methane fermenter is not particularly limited, and may be a conventional UASB or EGSB methane fermenter. With regard to the contact between the carrier and the drainage, there is a method in which the carrier is brought into contact by passing the drainage upward or downward without being actively stirred, or a method in which the carrier is brought into contact with the drainage by making the carrier flow. Yes, either way is fine.

撹拌する場合の方法としては、特に限定されるものではなく、撹拌機などで槽内を撹拌して流動させる方法、原水や処理水を利用して担体を槽内で流動させる方法、窒素やメタンガスなどの酸素を含有しない気体で槽内を曝気流動させる方法、などが考えられる。   The method for stirring is not particularly limited, and a method of stirring and flowing the inside of the tank with a stirrer, a method of flowing the carrier in the tank using raw water or treated water, nitrogen and methane gas A method of aerating and flowing the inside of the tank with an oxygen-free gas such as is considered.

本発明において、メタノールを直接利用するメタン発酵菌を担体の表面および/または内部に存在させる方法としては、担体製造時に菌を練りこむ方法と、担体製造後に担体表面および/または内部に菌を増殖させる方法がある。担体表面および/または内部に菌を増殖させる操作は、排水処理で使用するメタン発酵槽とは別の容器を用いて実施してもよいし、メタン発酵槽内で実施してもよい。上述のような方法でメタノールを直接利用するメタン発酵菌を表面および/または内部に存在させた担体をメタン発酵槽に存在させることにより嫌気処理を行う際、メタン発酵槽に存在させる担体の量は、特に制限はないが、通常は槽容量に対して5容量%から70容量%が好ましく、10容量%から60容量%がより好ましく、20容量%から50容量%が最も好ましい。   In the present invention, as a method of causing methane fermenters directly utilizing methanol to be present on the surface and / or inside of the carrier, there is a method of kneading the bacteria at the time of carrier production, and growing bacteria on the carrier surface and / or inside after carrier production. There is a way to The operation of growing the bacteria on the surface of the carrier and / or in the interior may be carried out using a container separate from the methane fermenter used for waste water treatment, or may be carried out in the methane fermenter. When an anaerobic treatment is carried out by causing a methane fermenter to have a carrier on the surface and / or inside of which methane fermenters using methanol directly as described above are present, the amount of the carrier to be present in the methane fermenter is There is no particular limitation, but in general, 5% by volume to 70% by volume is preferable, 10% by volume to 60% by volume is more preferable, and 20% by volume to 50% by volume is most preferable.

本発明において、処理対象とするメタノール含有排水のメタノール濃度に特に制限はないが、他の排水処理方法と比較して効果的であるのは1000mg/L以上、より効果的であるのは3000mg/L以上である。メタノールが高濃度な場合でも、本発明の嫌気性処理用担体は、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在しているので、グラニュールの解体の有無にかかわらず、効率的にメタノール含有排水を処理することができるからである。すなわち、グラニュール形成のためにメタノール濃度を調整したり、酢酸などの有機成分を添加したりする必要がないため、簡便で効率的な処理が可能となる。本発明の嫌気処理装置および嫌気処理方法は、メタノール濃度を調整する手段、工程を含んでいてもよいが、上述と同様の理由から、これらを含まなくてもよい。   In the present invention, there is no particular limitation on the methanol concentration of the methanol-containing wastewater to be treated, but it is more effective than 1000 mg / L, more effective 3000 mg / L as compared with other wastewater treatment methods. L or more. Even when the concentration of methanol is high, the support for anaerobic treatment of the present invention has methane fermentation bacteria directly utilizing methanol present on the surface and / or inside of the support, so whether or not the granules are broken up or not. This is because methanol-containing wastewater can be treated efficiently. That is, since it is not necessary to adjust the methanol concentration or to add an organic component such as acetic acid to form granules, simple and efficient processing is possible. The anaerobic treatment apparatus and the anaerobic treatment method of the present invention may include means for adjusting the concentration of methanol, and steps, but may not include these for the same reason as described above.

メタン発酵槽の負荷は、担体に存在するメタノールを直接利用するメタン発酵菌の量に応じて処理性を見ながら選択することができる。たとえば、5〜50kg−CODCr/m・日と高負荷をかけることも可能である。 The load of the methane fermenter can be selected while looking at the processability according to the amount of methane fermentation bacteria that directly utilizes the methanol present in the carrier. For example, it is possible to apply a high load of 5 to 50 kg-COD Cr / m 3 · day.

メタン発酵槽のpHは6.5〜7.5であることが好ましく、必要に応じてpH調整を行なう。メタン発酵槽の温度は、通常のメタン発酵の条件と同様で25〜40℃、特に30〜38℃とすることが好ましい。   The pH of the methane fermenter is preferably 6.5 to 7.5, and pH adjustment is performed as necessary. The temperature of the methane fermentation tank is preferably 25 to 40 ° C., particularly 30 to 38 ° C., as in the case of ordinary methane fermentation.

以上に述べた通り、本発明によれば、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いて、メタノールを直接メタン発酵することができ、グラニュール形成のためにメタノール濃度を調整したり、酢酸などの有機成分を添加したりすることなく、効率的な処理が可能となる。   As described above, according to the present invention, in the methane fermentation pathway of methanol-containing waste water, methane fermentation bacteria that directly utilize methanol are present on the surface and / or inside of the carrier without passing through acetic acid or formic acid. Methanol can be directly methane-fermented using the characterized support for anaerobic treatment, and it is efficient without adjusting the methanol concentration to form granules or adding an organic component such as acetic acid. Processing becomes possible.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples and comparative examples, but the present invention is not limited to these examples.

[実施例1]
図1に示すフローに従って、平均粒径が約4mmのポリビニルアルコール系ゲル状担体4Lを10Lの円筒形容器(嫌気反応槽)に充填した。担体に菌を付着する方法としては、担体と種菌を接触させた後、メタノールを含む排水などで馴養し、メタノールを直接利用するメタン発酵菌を増殖させる方法をとった。具体的には化学系排水を処理している嫌気性グラニュール(粒径1〜2mm)1Lを添加した後、メタノールを主成分とする工場排水(メタノール濃度4000mg/L、CODCr6000mg/L)を原水とし、これを嫌気反応槽に1L/日で供給し(CODCr容積負荷0.6kg/m・日)、処理状況を見ながら徐々に供給量を上げていった。嫌気反応槽のpHは6.5〜7.0、水温は34〜36℃で実施した。1ヵ月後に40L/日まで供給量を上げることができ、メタノールが10mg/L以下まで処理できることを確認した。CODCr容積負荷は24kg/m・日と高い処理能力を出すことができた。結果を表1に示す。最初に投入したグラニュールは、徐々に解体して処理水とともに流出し、最終的にグラニュールが槽内に見られなかったことから、担体の表面および/または内部に存在する菌によってメタノールが処理されたことがわかる。
Example 1
According to the flow shown in FIG. 1, 4 L of polyvinyl alcohol gel-like carrier having an average particle diameter of about 4 mm was filled in a 10 L cylindrical container (anaerobic reaction tank). As a method of attaching bacteria to the carrier, a method of contacting the carrier with the inoculum, acclimatizing with waste water containing methanol, etc., and growing methane-fermenting bacteria using methanol directly was adopted. Specifically, after adding 1 L of anaerobic granules (particle diameter 1 to 2 mm) treating chemical wastewater, industrial wastewater mainly composed of methanol (methanol concentration 4000 mg / L, COD Cr 6000 mg / L) As raw water, this was supplied to the anaerobic reaction tank at 1 L / day (COD Cr volume load 0.6 kg / m 3 · day), and the amount of feed was gradually raised while observing the treatment status. The pH of the anaerobic reaction tank was 6.5 to 7.0, and the water temperature was 34 to 36 ° C. After one month, the supply amount could be increased to 40 L / day, and it was confirmed that methanol could be processed to 10 mg / L or less. COD Cr volume loading was able to deliver a high throughput of 24 kg / m 3 · day. The results are shown in Table 1. The granules that were initially introduced gradually dismantled and flowed out with the treated water, and finally the granules were not found in the tank, so the bacteria were treated with the bacteria present on the surface and / or inside of the carrier. I understand that it was done.

メタノールを直接利用するメタン発酵菌の量は、定量的リアルタイムPCR法を用いて測定した。実施例1において、1ヵ月経過後の担体に存在する菌の測定を実施したところmtaB/mcrA=55%であり、メタノールを直接利用するメタン発酵菌が優占種であることがわかった。また、次世代シーケンスによる遺伝子解析により、メタノサルシナ(methanosarcina)属およびメタノメチロボランス(methanometylovorance)属のメタン発酵菌が存在することが確認できた。   The amount of methane fermentation bacteria using methanol directly was measured using a quantitative real time PCR method. In Example 1, measurement of the bacteria present in the carrier after one month was carried out to find that mtaB / mcrA = 55%, and it was found that the methane-fermenting bacteria which directly use methanol was the dominant species. In addition, by gene analysis by next-generation sequencing, it has been confirmed that methane fermenting bacteria of the genus Methanosarcina and Methanometylovorance are present.

[比較例1]
図1に示すフローに従って、化学系排水を処理している嫌気性グラニュール(粒径1〜2mm)4Lを10Lの円筒形容器(嫌気反応槽)に充填し、メタノールを主成分とする工場排水(メタノール濃度4000mg/L、CODCr6000mg/L)を原水とし、これを1L/日で供給した(CODCr容積負荷0.6kg/m・日)。嫌気反応槽のpHは6.5〜7.0、水温は34〜36℃で実施した。しかし、グラニュールは徐々に解体して処理水とともに流出し、メタノールを10mg/L以下まで処理することができなかった。結果を表1に示す。
Comparative Example 1
According to the flow shown in Fig. 1, 4 liters of anaerobic granules (particle diameter 1 to 2 mm) treating chemical wastewater are filled in a 10 liter cylindrical container (anaerobic reaction tank), and the factory drainage mainly composed of methanol (Methanol concentration 4000 mg / L, COD Cr 6000 mg / L) was used as raw water, and this was supplied at 1 L / day (COD Cr volume load 0.6 kg / m 3 · day). The pH of the anaerobic reaction tank was 6.5 to 7.0, and the water temperature was 34 to 36 ° C. However, the granules were gradually disintegrated and flowed out with the treated water, and it was not possible to process methanol to 10 mg / L or less. The results are shown in Table 1.

[比較例2]
図1に示すフローに従って、化学系排水を処理している嫌気性グラニュール(粒径1〜2mm)4Lを10Lの円筒形容器(嫌気反応槽)に充填した。メタノールを主成分とする工場排水に酢酸と水を加えて調整し、メタノール濃度1000mg/L、酢酸濃度200mg/Lの原水(CODCr1700mg/L)とし、これを嫌気反応槽に1L/日で供給し(CODCr容積負荷0.6kg/m・日)、処理状況を見ながら徐々に供給量を上げていった。嫌気反応槽のpHは6.5〜7.0、水温は34〜36℃で実施した。1ヵ月後に30L/日まで供給量を上げることができ、メタノールが10mg/L以下まで処理できることを確認した。グラニュールは解体せず粒径は1〜2mmを保持していた。しかし、CODCr容積負荷は5.1kg/m・日が限界であり、実施例のような高い容積負荷をかけることはできなかった。この時のグラニュールはmtaB/mcrA=0.1%であり、メタノールを直接利用するメタン発酵菌はほとんど存在しないことが判明した。結果を表1に示す。
Comparative Example 2
According to the flow shown in FIG. 1, 4 L of anaerobic granules (particle diameter: 1 to 2 mm) treating chemical waste water was filled in a 10 L cylindrical container (anaerobic reaction tank). Acetic acid and water are added to the industrial waste water containing methanol as a main component to adjust it to make a raw water with a methanol concentration of 1000 mg / L and an acetic acid concentration of 200 mg / L (COD Cr 1700 mg / L). This is 1 L / day in an anaerobic reaction tank. Supply (COD Cr volume load 0.6 kg / m 3 · day) and gradually increase the supply while observing the treatment status. The pH of the anaerobic reaction tank was 6.5 to 7.0, and the water temperature was 34 to 36 ° C. After one month, the supply amount could be increased to 30 L / day, and it was confirmed that methanol could be processed to 10 mg / L or less. The granules were not disassembled and the particle size was kept at 1 to 2 mm. However, COD Cr volume loading is limited to 5.1 kg / m 3 · day, and could not be applied as high as in the example. The granules at this time were mtaB / mcrA = 0.1%, and it was found that there were almost no methane-fermenting bacteria that directly use methanol. The results are shown in Table 1.

以上の実施例、比較例からわかるように、本発明によれば、メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体を用いて、メタノールを直接メタン発酵することができ、グラニュール形成のためにメタノール濃度を調整したり、酢酸などの有機成分を添加したりすることなく、効率的な処理が可能となった。   As can be seen from the above Examples and Comparative Examples, according to the present invention, in the methane fermentation pathway of methanol-containing wastewater, methane fermenting bacteria that directly use methanol without passing through acetic acid or formic acid are the surface of the carrier and / or Methanol can be directly methane fermented using a support for anaerobic treatment characterized by being present inside, and the concentration of methanol is adjusted to form granules, or an organic component such as acetic acid is added Efficient processing became possible.

1・・・原水
2・・・嫌気反応槽
3・・・反応ガス
4・・・処理水
1 ... Raw water
2 ... Anaerobic reaction tank
3 ・ ・ ・ Reaction gas
4 ・ ・ ・ treated water

Claims (9)

メタノール含有排水のメタン発酵経路において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が担体の表面および/または内部に存在することを特徴とする嫌気処理用担体。   What is claimed is: 1. A carrier for anaerobic treatment comprising methane fermenting bacteria directly utilizing methanol in the methane fermentation pathway of methanol-containing wastewater without using acetic acid or formic acid, present on the surface and / or inside of the carrier. 前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、請求項1に記載の嫌気処理用担体。   The anaerobic treatment carrier according to claim 1, wherein the methanogenic bacterium which directly uses methanol is a genus of methanosarcina and / or a genus of methanomethylovorance. 前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、請求項1または2に記載の嫌気処理用担体。   The support for anaerobic treatment according to claim 1 or 2, wherein the support for anaerobic treatment is a polyvinyl alcohol gel support. メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理装置。   In the treatment of methanol-containing wastewater, the anaerobic treatment is performed by causing a methane fermentation tank to have a carrier in which methane fermenting bacteria directly using methanol is present on the surface and / or inside without passing through acetic acid or formic acid. And, anaerobic processing equipment. 前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、請求項4に記載の嫌気処理装置。   The anaerobic processing apparatus according to claim 4, wherein the methanogenic bacterium that directly uses methanol is a genus of methanosarcina and / or a genus of methanomethylovorance. 前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、請求項4または5に記載の嫌気処理装置。   The anaerobic treatment apparatus according to claim 4, wherein the anaerobic treatment carrier is a polyvinyl alcohol gel carrier. メタノール含有排水の処理において、酢酸やギ酸を経由せず、メタノールを直接利用するメタン発酵菌が表面および/または内部に存在する担体をメタン発酵槽に存在させることにより、嫌気処理を行うことを特徴とする、嫌気処理方法。   In the treatment of methanol-containing wastewater, the anaerobic treatment is performed by causing a methane fermentation tank to have a carrier in which methane fermenting bacteria directly using methanol is present on the surface and / or inside without passing through acetic acid or formic acid. And, an anaerobic treatment method. 前記メタノールを直接利用するメタン発酵菌が、メタノサルシナ(methanosarcina)属および/またはメタノメチロボランス(methanometylovorance)属である、請求項7に記載の嫌気処理方法。   The anaerobic treatment method according to claim 7, wherein the methanogenic bacterium which directly uses methanol is a genus of methanosarcina and / or a genus of methanomethylovorance. 前記嫌気処理用担体がポリビニルアルコール系ゲル状担体である、請求項7または8に記載の嫌気処理方法。

The anaerobic treatment method according to claim 7 or 8, wherein the anaerobic treatment carrier is a polyvinyl alcohol gel carrier.

JP2017242122A 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method Active JP6956621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242122A JP6956621B2 (en) 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242122A JP6956621B2 (en) 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method

Publications (2)

Publication Number Publication Date
JP2019107609A true JP2019107609A (en) 2019-07-04
JP6956621B2 JP6956621B2 (en) 2021-11-02

Family

ID=67178497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242122A Active JP6956621B2 (en) 2017-12-18 2017-12-18 Carrier for anaerobic treatment, anaerobic treatment device and anaerobic treatment method

Country Status (1)

Country Link
JP (1) JP6956621B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341397A (en) * 1991-05-20 1992-11-27 Shimizu Corp Methane fermentation treatment apparatus and methane fermentation method
JPH08252595A (en) * 1996-03-29 1996-10-01 Ebara Corp Upflow anaerobic sludge bed process
US20090325253A1 (en) * 2008-04-25 2009-12-31 Ascon Miguel Methods and systems for production of biofuels and bioenergy products from sewage sludge, including recalcitrant sludge
KR20100028413A (en) * 2008-09-04 2010-03-12 주식회사 윌텍 Disposal method of high concentration organic matter waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2014024032A (en) * 2012-07-27 2014-02-06 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341397A (en) * 1991-05-20 1992-11-27 Shimizu Corp Methane fermentation treatment apparatus and methane fermentation method
JPH08252595A (en) * 1996-03-29 1996-10-01 Ebara Corp Upflow anaerobic sludge bed process
US20090325253A1 (en) * 2008-04-25 2009-12-31 Ascon Miguel Methods and systems for production of biofuels and bioenergy products from sewage sludge, including recalcitrant sludge
KR20100028413A (en) * 2008-09-04 2010-03-12 주식회사 윌텍 Disposal method of high concentration organic matter waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2014024032A (en) * 2012-07-27 2014-02-06 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment device

Also Published As

Publication number Publication date
JP6956621B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN106746198A (en) A kind of integrated processing method of the high salt high concentration hard-degraded organic waste water for producing cellulose ether
CN105776745A (en) Biological treatment method of high-ammonia nitrogen pig raising biogas slurry
JP2014024002A (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
JP6662424B2 (en) Anaerobic digestion method and apparatus for sewage sludge
Jin et al. A key cultivation technology for denitrifying granular sludge
Xie et al. Bioflocculation of photo-fermentative bacteria induced by calcium ion for enhancing hydrogen production
JP6046991B2 (en) Anaerobic wastewater treatment method using carrier
JP6196767B2 (en) Anaerobic wastewater treatment method using carrier
CN107337283B (en) Method for rapidly culturing pig breeding sewage activated sludge
JP2014024001A (en) Method and apparatus for treating nitrogen in methane fermentation digested liquid
KR101425104B1 (en) System for producing biogas using substitution reaction in pretreatment process of anaerobic fermentation to improve biogas production from organic wastes, production method thereof and biogas produced by the method
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
CN112725397A (en) Method for producing single-cell protein by microbial fermentation
CN105800781B (en) A kind of method of graphite felt materials filling anaerobic reactor processing cassava alcohol waste water
KR101549666B1 (en) Manufacturing method of culture medium for microalgae using anaerobic digestate of piggery manure, cultivation method of microalgae, and treatment method of piggery manure comprising the same
Zhao et al. Enhancement of COD, ammonia, phosphate and sulfide simultaneous removal by the anaerobic photosynthetic bacterium of Ectothiorhodospira magna in batch and sequencing batch culture
WO2020078433A1 (en) Method for treatment and resource utilization of acidic organic wastewater
CN110408658A (en) A method of polyhydroxyalkanoates is produced using white wine wastewater as matrix
JP2019107609A (en) Anaerobic treatment carrier, anaerobic treatment apparatus and treatment method
JPWO2008120629A1 (en) Hydrogen production method and apparatus, and microorganism immobilization support
CN101468852B (en) Method for aerobic synchronous nitration and denitrification of coking wastewater
JP3966417B2 (en) Method for producing high spore seed sludge and waste water treatment method using high spore seed sludge
Bedane et al. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse
CN113104991A (en) Two-stage co-anaerobic treatment process for simultaneously treating N, N-dimethylformamide and sludge
WO2008002448A2 (en) Method of enhancing methane production from organic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150