JP2008188552A - Method and device for treating organic waste - Google Patents

Method and device for treating organic waste Download PDF

Info

Publication number
JP2008188552A
JP2008188552A JP2007027587A JP2007027587A JP2008188552A JP 2008188552 A JP2008188552 A JP 2008188552A JP 2007027587 A JP2007027587 A JP 2007027587A JP 2007027587 A JP2007027587 A JP 2007027587A JP 2008188552 A JP2008188552 A JP 2008188552A
Authority
JP
Japan
Prior art keywords
hydrogen
fermentation
organic waste
tank
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007027587A
Other languages
Japanese (ja)
Inventor
Tadayuki Imanaka
忠行 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IIB KK
Original Assignee
IIB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IIB KK filed Critical IIB KK
Priority to JP2007027587A priority Critical patent/JP2008188552A/en
Publication of JP2008188552A publication Critical patent/JP2008188552A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for treating organic waste by which the production of hydrogen from organic waste such as waste sludge and decomposition treatment for the organic waste can be efficiently and stably performed. <P>SOLUTION: The treatment method comprises: a fermentation stage where, with an adjustment liquid in which organic waste is diluted as nutrition, hydrogen production hyperthermophilic bacteria are reproduced at 60 to 105°C in an anaerobic atmosphere, for producing hydrogen from the bacterial cells; and a fermented sludge decomposition stage where, with the fermented residue formed in the fermentation stage as nutrition, activated sludge is reproduced in an aerobic atmosphere at ordinary temperature using an oxygen feeding means 31, thus, while the fermented residue is decomposed into carbon dioxide and water, the fermented residue is passed through a solid-liquid separation means 32, and liquid components passed through the solid-liquid separation means 32 are exhausted as waste water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば余剰汚泥等の有機性廃棄物を有効利用するために用いられる処理方法および処理装置に関するものである。   The present invention relates to a processing method and a processing apparatus used to effectively use organic waste such as excess sludge, for example.

活性汚泥法は、都市下水や産業排水等の汚水の処理方法として従来から広く用いられている。この活性汚泥法が行われる活性汚泥槽では、余剰汚泥が年間約2億トン発生しているともいわれている。これらの余剰汚泥は、現在焼却等の処分に付されてるが、余剰汚泥をただ処分するだけでなく、例えば、メタン発酵を行わせる等、余剰汚泥を有効活用する技術開発も進められている(例えば、特許文献1参照)。   The activated sludge method has been widely used as a method for treating sewage such as municipal sewage and industrial wastewater. In the activated sludge tank in which this activated sludge method is performed, it is said that about 200 million tons of excess sludge is generated annually. These surplus sludges are currently subjected to disposal such as incineration. However, not only disposal of surplus sludge, but also technological development that effectively utilizes surplus sludge, such as methane fermentation, is underway ( For example, see Patent Document 1).

特開2003−1299号公報JP 2003-1299 A

ところで、水素は、クリーンエネルギーとして注目されており、余剰汚泥から水素を効率的に生産する技術開発が要望されている。しかしながら、現状では、実用化し得る有望なシステムはない。   By the way, hydrogen is attracting attention as clean energy, and there is a demand for technological development for efficiently producing hydrogen from excess sludge. However, at present, there is no promising system that can be put into practical use.

本発明は上記事情に鑑みてなされたものであり、その目的は、余剰汚泥等の有機性廃棄物からの水素生産、および有機性廃棄物の分解処理を効率的かつ安定的に行える有機性廃棄物の処理方法および処理装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is organic waste that can efficiently and stably produce hydrogen from organic waste such as excess sludge and decompose organic waste. The object is to provide a processing method and a processing apparatus for an object.

すなわち、本発明の要旨は以下のとおりである。
〔1〕 有機性廃棄物が希釈されてなる調整液を栄養として、60〜105℃および嫌気性雰囲気下で水素生産超好熱菌を増殖させることで、該菌体から水素を生産させる発酵工程と、前記発酵工程で形成された発酵残渣を栄養として、常温および酸素供給手段を用いた好気性雰囲気下で活性汚泥を増殖させることで、前記発酵残渣を炭酸ガスと水に分解させつつ、該発酵残渣を固液分離手段に通し、該固液分離手段を通過した液体成分を排水として排出させる発酵残渣分解工程と、を有する有機性廃棄物の処理方法、
〔2〕 前記水素生産超好熱菌が、サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1(FERM P−15007)である、前記〔1〕記載の処理方法、
〔3〕 調整液を貯留する調整槽と、
水素生産超好熱菌、窒素供給手段、および生産された水素を槽外へ導出するガス導出管を備える、前記超好熱菌による発酵工程を行わせる発酵槽と、
活性汚泥、酸素供給手段および固液分離手段を備える、発酵残渣分解工程を行わせるノンスラッジ排水処理槽と、
を具備する、前記〔1〕に記載の処理方法に用いられる、有機性廃棄物の処理装置、
〔4〕 前記水素生産超好熱菌が、サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1(FERM P−15007)である、前記〔3〕記載の処理装置。
That is, the gist of the present invention is as follows.
[1] A fermentation process in which hydrogen-producing hyperthermophilic bacteria are grown at 60 to 105 ° C. and in an anaerobic atmosphere to produce hydrogen from the cells using nutritionally prepared liquid prepared by diluting organic waste. And the fermentation residue formed in the fermentation step as nutrition, the activated sludge is grown in an aerobic atmosphere using normal temperature and oxygen supply means, the decomposition of the fermentation residue into carbon dioxide gas and water, A fermentation residue decomposition step of passing the fermentation residue through solid-liquid separation means and discharging the liquid component that has passed through the solid-liquid separation means as waste water,
[2] The treatment method according to [1], wherein the hydrogen-producing hyperthermophilic bacterium is Thermococcus kodakaraensis KOD1 (FERM P-15007),
[3] An adjustment tank for storing the adjustment liquid;
A fermenter for performing a fermentation step with the hyperthermophilic bacterium, comprising a hydrogen-producing hyperthermophilic bacterium, a nitrogen supply means, and a gas outlet pipe for deriving the produced hydrogen to the outside of the tank;
A non-sludge wastewater treatment tank comprising an activated sludge, an oxygen supply means and a solid-liquid separation means, and a fermentation residue decomposition step;
An organic waste processing apparatus used for the processing method according to [1], comprising:
[4] The processing apparatus according to [3], wherein the hydrogen-producing hyperthermophilic bacterium is Thermococcus kodakaraensis KOD1 (FERM P-15007).

本発明の処理方法によれば、発酵工程では、供給された調整液中に含まれる微生物を殺菌して、該微生物を構成する細胞内の各種有機物を漏出させたものを栄養として用いることができるので、水素を長時間安定して生産することができる。また、発酵残渣分解工程では、発酵残渣中に水素生産超好熱菌が含まれる場合でも、該超好熱菌の影響を受けることなく、発酵残渣の分解処理を長時間安定して行うことができる。   According to the treatment method of the present invention, in the fermentation process, microorganisms contained in the supplied adjustment liquid can be sterilized, and various organic substances in the cells constituting the microorganisms can be used as nutrients. Therefore, hydrogen can be produced stably for a long time. In the fermentation residue decomposition step, even when hydrogen-producing hyperthermophilic bacteria are contained in the fermentation residue, the fermentation residue can be stably decomposed for a long time without being affected by the hyperthermophilic bacteria. it can.

図1は、本発明の実施形態の一例を示す概略構成図である。有機性廃棄物の処理装置Aは、調整槽1、発酵槽2およびノンスラッジ排水処理槽3(以下、「排水処理槽3」という)を備えており、調整槽1と発酵槽2ならびに発酵槽2と排水処理槽3とは、それぞれ調整液移送管4と発酵残渣移送管5とで連結されている。   FIG. 1 is a schematic configuration diagram showing an example of an embodiment of the present invention. The organic waste treatment apparatus A includes an adjustment tank 1, a fermentation tank 2, and a non-sludge wastewater treatment tank 3 (hereinafter referred to as “drainage treatment tank 3”), and the adjustment tank 1, the fermentation tank 2, and the fermentation tank. 2 and the waste water treatment tank 3 are connected to each other by an adjustment liquid transfer pipe 4 and a fermentation residue transfer pipe 5.

調整槽1は、内部空間を有する密閉構造からなり、槽外から槽内へと通ずる廃棄物移送管6を備えている。調整槽1では、廃棄物移送管6を通じて有機性廃棄物が移送され、濃度,pH等が、次の発酵槽2による発酵工程に適した状態になるように調整され、これを調整液として貯留している。本発明において「有機性廃棄物」とは、生物由来の有機性資源のうち、廃棄されたものをいい、例えば、余剰汚泥、生ゴミ、し尿等を例示することができる。   The adjustment tank 1 has a sealed structure having an internal space, and includes a waste transfer pipe 6 that leads from the outside of the tank to the inside of the tank. In the adjustment tank 1, the organic waste is transferred through the waste transfer pipe 6, and the concentration, pH, and the like are adjusted so as to be in a state suitable for the fermentation process in the next fermentation tank 2, and stored as the adjustment liquid. is doing. In the present invention, “organic waste” refers to discarded organic resources derived from living organisms, and examples thereof include excess sludge, raw garbage, human waste and the like.

発酵槽2は、内部空間を有する密閉構造からなり、槽内に水素生産超好熱菌を備えるとともに、槽外から槽内へと通ずる窒素ガス供給管21および槽内から槽外へと通じるガス導出管22を備えている。また、胴部から底部にかけて発酵槽2を加熱および保温するための加温部(図示せず)が設けられている。   The fermenter 2 has a sealed structure having an internal space. The fermenter 2 is provided with hydrogen-producing hyperthermophilic bacteria in the tank, and has a nitrogen gas supply pipe 21 that leads from the outside of the tank to the inside of the tank and a gas that leads from the inside of the tank to the outside of the tank. A lead-out tube 22 is provided. Moreover, the heating part (not shown) for heating and heat-maintaining the fermenter 2 is provided from the trunk | drum to the bottom part.

水素生産超好熱菌としては、60℃〜105℃および嫌気性雰囲気下で増殖可能で、上記調整液を栄養として水素を生産する能力を有するものであれば特に限定されず、例えば、サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)、ピロコッカス・フリオサス(Pyricoccus furiosus)、テルモトガ・マリチマ(Thermotoga maritima)等を例示することができる。これらの中では、上記調整液を栄養としたときの水素生産能に優れる点で、サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)が好ましい。サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)としては、サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1が入手可能である。この菌株は工業技術院生命工学工業研究所(現在:独立行政法人産業技術総合研究所特許生物寄託センター)に、受託番号:FERM P−15007として寄託されている(なお、「ピロコッカス スピーシーズ(Pyrococcus sp.)KOD1」として登録されているが、正確には「サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1」である。)。   The hydrogen-producing hyperthermophilic bacterium is not particularly limited as long as it is capable of growing in an anaerobic atmosphere at 60 ° C. to 105 ° C. and has the ability to produce hydrogen using the above-mentioned adjustment liquid as a nutrient. Examples thereof include Thermococcus kodakaraensis, Pyricoccus furiosus, Thermotoga maritima, and the like. Among these, Thermococcus kodakaraensis is preferable because it is excellent in hydrogen production ability when the above-mentioned adjustment liquid is used as a nutrient. As Thermococcus kodakaraensis, Thermococcus kodakaraensis KOD1 is available. This strain is deposited at the National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center) under the accession number: FERM P-15007 (“Pyrococcus sp (Pyrococcus sp. .) KOD1 ”, but more precisely“ Thermococcus kodakaraensis KOD1 ”).

発酵槽2の運転は次のように行われる。すなわち、加温部にて、発酵槽2内が60〜105℃、更に好ましくは70〜95℃、特に好ましくは80〜90℃になるように温度制御するとともに、窒素ガス供給管21から窒素ガスを適宜供給することで、発酵槽2内を高温の嫌気性雰囲気とする。そして、調整槽1内にある調整液が調整液移送管4を通じて発酵槽2内へ移送され、これを栄養として、水素生産超好熱菌を増殖させることで、この菌体からガス(水素および二酸化炭素)を生産させる。続いて、生産されたガスは、ガス導出管22を通じて発酵槽2の外部へ導出される。槽外へ導出されたガスは、その後水素と二酸化炭素に分離される。分離された水素は、例えば、燃料電池自動車、水素ステーション、定置用燃料電池等種々の用途に使用される。   The operation of the fermenter 2 is performed as follows. That is, in the heating unit, the temperature in the fermenter 2 is 60 to 105 ° C., more preferably 70 to 95 ° C., particularly preferably 80 to 90 ° C., and nitrogen gas is supplied from the nitrogen gas supply pipe 21. Is appropriately supplied to make the fermenter 2 a high temperature anaerobic atmosphere. Then, the adjustment liquid in the adjustment tank 1 is transferred into the fermentation tank 2 through the adjustment liquid transfer pipe 4, and this is used as a nutrient to grow hydrogen-producing hyperthermophilic bacteria, so that gas (hydrogen and Carbon dioxide). Subsequently, the produced gas is led out of the fermenter 2 through the gas lead-out pipe 22. The gas led out of the tank is then separated into hydrogen and carbon dioxide. The separated hydrogen is used in various applications such as a fuel cell vehicle, a hydrogen station, and a stationary fuel cell.

発酵槽2で行われる発酵工程によれば、供給された調整液中に含まれる微生物を60〜105℃という高温で殺菌して、該微生物を構成する細胞内の各種有機物を漏出させたものを栄養として用いることができるので、水素生産超好熱菌の発酵による水素生産が効率よく進むとともに、発酵槽2の運転も長時間安定して行うことができる。   According to the fermentation process performed in the fermenter 2, the microorganisms contained in the supplied adjustment liquid are sterilized at a high temperature of 60 to 105 ° C., and various organic substances in the cells constituting the microorganisms are leaked. Since it can be used as nutrition, hydrogen production by fermentation of hydrogen-producing hyperthermophilic bacteria efficiently proceeds, and the operation of the fermenter 2 can be performed stably for a long time.

排水処理槽3は、内部空間を有する開放構造からなり、槽内に活性汚泥、酸素供給手段31および固液分離手段32を備えるとともに、該固液分離手段32と連通して槽外へ導出される排水管33を備えている。   The waste water treatment tank 3 has an open structure having an internal space, and includes activated sludge, oxygen supply means 31 and solid-liquid separation means 32 in the tank, and is communicated with the solid-liquid separation means 32 and led out of the tank. A drain pipe 33 is provided.

「活性汚泥」は、常温の好気性雰囲気下で増殖可能で、発酵槽2で形成された発酵残渣を分解できるものであれば特に限定されず、通常の活性汚泥の他、発酵残渣の分解効率を高めるため、発酵残渣の種類、すなわち有機性廃棄物および水素生産超好熱菌の種類、性状等に応じて適宜適したものを用いることができる。   “Activated sludge” is not particularly limited as long as it can grow in an aerobic atmosphere at room temperature and can decompose the fermentation residue formed in the fermenter 2. In addition to normal activated sludge, the decomposition efficiency of fermentation residue In order to increase the amount of the fermentation residue, a suitable one can be used depending on the type of fermentation residue, that is, the type, properties, etc. of the organic waste and the hydrogen-producing hyperthermophilic bacterium.

例えば、油脂分の多い有機性廃棄物を処理する場合、公知の油脂分解菌を用いることができる。これらの中でも、油脂分の分解効率を高めたい場合は、本発明者による特開2001−61468号公報に記載される油脂分解性桿菌が好適である。また、ポリビニルアルコール(PVA)を含有する有機性廃棄物を処理する場合、公知のPVA分解菌を用いることができる。これらの中でも、PVAの分解効率を高めたい場合は、本発明者による特開2006−180706号に記載されているPVA分解菌が好適である。   For example, when processing organic waste containing a large amount of oils and fats, known oil-degrading bacteria can be used. Among these, when it is desired to increase the decomposition efficiency of oil and fat, the oil and fat-degrading bacilli described in JP-A-2001-61468 by the present inventor is suitable. Moreover, when processing the organic waste containing polyvinyl alcohol (PVA), a well-known PVA degrading bacterium can be used. Among these, when it is desired to increase the degradation efficiency of PVA, the PVA-degrading bacterium described in JP-A-2006-180706 by the present inventor is suitable.

上記油脂分解性桿菌の代表例として、バチルス・ズブチリス(Bacillus subtilis)FERM BP−7270、バチルス・ズブチリス(Bacillus subtilis)FERM BP−7271が挙げられる(それぞれ1999年8月11日に、工業技術院生命工学工業研究所(現在:産業技術総合研究所特許生物寄託センター)に寄託され、そして2000年8月10日に、原寄託よりブダペスト条約に基づく寄託へ移管されている)。   As representative examples of the oil-degrading gonococci, Bacillus subtilis FERM BP-7270 and Bacillus subtilis FERM BP-7271 may be mentioned (Institute of Industrial Technology Life on August 11, 1999, respectively) (Deposited at the National Institute of Engineering and Technology (currently: National Institute of Advanced Industrial Science and Technology Patent Biological Depositary), and transferred from the original deposit to the deposit under the Budapest Treaty on August 10, 2000).

上記PVA分解菌の代表例として、シュードモナス(Pseudomonas)FERM P−19204株、アシネトバクター(Acinetobacter)IAM−3株、IAM−4株が挙げられる。シュードモナス(Pseudomonas)FERM P−19204株は、2003年2月7日付けで産業技術総合研究所特許生物寄託センターに寄託されている。また、アシネトバクター(Acinetobacter)IAM−3株およびIAM−4株は、京都大学工学研究科(京都市左京区吉田本町)に保存され、請求により分譲される。   Representative examples of the PVA-degrading bacterium include Pseudomonas FERM P-19204 strain, Acinetobacter IAM-3 strain, and IAM-4 strain. Pseudomonas FERM P-19204 strain was deposited on February 7, 2003 at the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary Center. In addition, Acinetobacter IAM-3 and IAM-4 strains are stored at Kyoto University Graduate School of Engineering (Yoshida Honmachi, Sakyo-ku, Kyoto City) and distributed upon request.

水素生産超好熱菌として上述したサーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1を用いる場合は、活性汚泥として、例えば、醤油工場や海水産物処理場の排水処理施設内に形成される、好塩菌を含む活性汚泥を用いることができる。また、排水処理槽3内に水を供給する水供給管路を別途設け、排水処理槽3に移送された発酵残渣を約3〜5倍に希釈するようにすれば、通常の活性汚泥を用いることもできる。   When using Thermococcus kodakaraensis KOD1 described above as a hydrogen-producing hyperthermophilic bacterium, activated sludge, for example, a halophilic salt formed in a wastewater treatment facility of a soy sauce factory or seawater product treatment plant Activated sludge containing bacteria can be used. Further, if a water supply pipe for supplying water is separately provided in the waste water treatment tank 3 and the fermentation residue transferred to the waste water treatment tank 3 is diluted about 3 to 5 times, normal activated sludge is used. You can also.

酸素供給手段31は、空気導入管31aおよび酸素供給部31bからなり、槽外から取り込んだ酸素を槽内へ送り込むように構成されている。酸素供給手段31としては、槽内へ酸素を送りこむことができるものであれば特に限定されず、例えば、エアーポンプ等を例示することができる。   The oxygen supply means 31 includes an air introduction pipe 31a and an oxygen supply unit 31b, and is configured to send oxygen taken from outside the tank into the tank. The oxygen supply means 31 is not particularly limited as long as it can send oxygen into the tank, and examples thereof include an air pump.

固液分離手段32は、固液分離によって約13,000ppmを超える高濃度の微生物による排水処理を可能にする。固液分離手段32としては、例えば、精密濾過膜、限外濾過膜、逆浸透膜等を使用し得る。代表的には、固液分離手段として金属膜が用いられ、例えば、ステンレス製の金網にステンレスの金属粒子を吹きつけ、焼結して作製される。この固液分離金属膜は、樹脂膜にはない物理的強度を有し、過酷な条件下においても使用可能である。要約すれば、(1)耐熱性が高く、121℃での蒸気滅菌が可能;(2)耐薬品性が高く、強アルカリ、強酸を用いた洗浄か可能;(3)有機溶媒の取り扱いが可能;(4)機械的強度が大きく、高粘性の流体も取り扱いが可能;(5)膜そのものが微生物に資化されることがなく、保管の際に静菌剤に浸しておく必要がない、等である。膜のファウリング(fouling)が起これば、アルカリによる有機成分の分解と、酸による無機質スケールの溶解を行えばよい。劣化による機能の低下はほとんど無視できる。上記金属膜は、多孔性膜であって、代表的には、直径約0.2μmのポアサイズを有する。   The solid-liquid separation means 32 enables wastewater treatment with high-concentration microorganisms exceeding about 13,000 ppm by solid-liquid separation. As the solid-liquid separation means 32, for example, a microfiltration membrane, an ultrafiltration membrane, a reverse osmosis membrane or the like can be used. Typically, a metal film is used as the solid-liquid separation means. For example, the metal film is produced by spraying stainless metal particles onto a stainless steel wire net and sintering. This solid-liquid separation metal membrane has physical strength not found in resin membranes and can be used even under severe conditions. In summary: (1) High heat resistance and steam sterilization at 121 ° C; (2) High chemical resistance; can be washed with strong alkalis and strong acids; (3) Organic solvents can be handled ; (4) High mechanical strength and highly viscous fluids can be handled; (5) The membrane itself is not assimilated by microorganisms and does not need to be immersed in a bacteriostatic agent during storage; Etc. If fouling of the film occurs, decomposition of the organic component by alkali and dissolution of the inorganic scale by acid may be performed. The deterioration of function due to deterioration is almost negligible. The metal film is a porous film, and typically has a pore size of about 0.2 μm in diameter.

排水処理槽3の運転は次のように行われる。すなわち、酸素供給手段31から槽内に酸素を供給することで、排水処理槽3内を常温の好気性雰囲気とし、発酵槽2内にある発酵残渣が発酵残渣移送管5を通じて排水処理槽3内へ移送される。そして、排水処理槽3内へ移送された発酵残渣を栄養として活性汚泥を増殖させることで、発酵残渣を炭酸ガスと水に分解させつつ、該発酵残渣を固液分離手段32に通し、該固液分離手段32を通過した液体成分を排水として排出させる。   The operation of the waste water treatment tank 3 is performed as follows. That is, by supplying oxygen into the tank from the oxygen supply means 31, the inside of the wastewater treatment tank 3 is brought to a normal temperature aerobic atmosphere, and the fermentation residue in the fermentation tank 2 passes through the fermentation residue transfer pipe 5 in the wastewater treatment tank 3. It is transferred to. Then, by allowing activated sludge to grow using the fermentation residue transferred into the wastewater treatment tank 3 as nutrition, the fermentation residue is passed through the solid-liquid separation means 32 while decomposing the fermentation residue into carbon dioxide gas and water. The liquid component that has passed through the liquid separation means 32 is discharged as waste water.

排水処理槽3で行われる発酵残渣分解工程によれば、常温かつ好気性雰囲気下で行われるので、仮に発酵残渣と一緒に水素生産超好熱菌が排水処理槽3に移送された場合でも、該超好熱菌は増殖できず、活性汚泥のみが増殖可能なので、発酵残渣のみならず、水素生産超好熱菌も分解することができるとともに、排水処理槽3の運転も長時間安定して行うことができる。   According to the fermentation residue decomposition process performed in the wastewater treatment tank 3, since it is performed at room temperature and in an aerobic atmosphere, even if the hydrogen-producing superthermophilic bacteria are transferred to the wastewater treatment tank 3 together with the fermentation residue, Since the hyperthermophilic bacteria cannot grow and only activated sludge can grow, not only fermentation residues but also hydrogen-producing hyperthermophilic bacteria can be decomposed, and the operation of the waste water treatment tank 3 is also stable for a long time. It can be carried out.

以上、発酵残渣分解工程について説明したが、発酵残渣の分解効率をさらに高める場合には、上記酸素供給手段31に加えて、微細気泡発生手段を備えてもよい。   Although the fermentation residue decomposition step has been described above, in order to further increase the decomposition efficiency of the fermentation residue, in addition to the oxygen supply unit 31, a fine bubble generation unit may be provided.

代表的には、上記微細気泡発生手段は、直径(φ)が約3μmより小さい微細気泡(超微細気泡)を発生し得る。微細気泡発生手段としては、例えば、超微細気泡発生装置(鈴木産業株式会社、京都市西京区山田中吉見町5番地6)、特開平2001−314888号公報に記載の散気装置等を用いることができる。例えば、特開平2001−314888号公報に記載の散気装置は、ベル型の気液混合筒を持ち、超高速のスパイラル流を発生させ、上部(上半球)に配置した突起部に衝突させて微細泡を放出する。これによって、大量の溶存酸素を含む散気効率の高い渦流を排水処理槽3内に対流させることができる。   Typically, the fine bubble generating means can generate fine bubbles (ultrafine bubbles) having a diameter (φ) smaller than about 3 μm. As the fine bubble generating means, for example, an ultrafine bubble generating device (Suzuki Sangyo Co., Ltd., 5 Yamada Nakayoshimi-cho, Nishikyo-ku, Kyoto-shi, 6), an air diffuser described in JP-A-2001-314888, and the like are used. Can do. For example, an air diffuser described in Japanese Patent Application Laid-Open No. 2001-314888 has a bell-shaped gas-liquid mixing tube, generates an ultra-high speed spiral flow, and collides with a protrusion disposed on the upper part (upper hemisphere). Releases fine bubbles. As a result, a highly diffused eddy current containing a large amount of dissolved oxygen can be convected into the wastewater treatment tank 3.

超微細気泡は、直径が0.1μmから3μmの径の気泡であり、微細気泡(直径が10〜100μm)より小さいものをいう。超微細気泡は、直径が小さいためにその浮力が小さく、旋回する水流に載り、排水処理槽3内の下方に向かう流れに巻き込まれ易く、それによって処理処理槽3内に滞留し、排水処理槽3内に均一に拡散される。これにより、微細気泡は、水に溶解しているのではなく、むしろ水に分散して浮遊し、180〜200ppmに相当する濃度で水中に存在し得る。   The ultrafine bubbles are bubbles having a diameter of 0.1 μm to 3 μm and smaller than the fine bubbles (diameter is 10 to 100 μm). Since the ultrafine bubbles have a small diameter, their buoyancy is small, and they are placed on the swirling water flow and easily trapped in the downward flow in the wastewater treatment tank 3, thereby retaining in the treatment tank 3, and the wastewater treatment tank 3 is uniformly diffused. Thereby, the fine bubbles are not dissolved in water, but rather dispersed and suspended in water, and may be present in water at a concentration corresponding to 180 to 200 ppm.

微細気泡発生手段は、酸素供給装置に連結してもよく、それによって、さらに高濃度酸素環境を提供し得る。微細気泡発生手段および酸素供給装置を備えた高濃度酸素供給手段は、純度約93%の酸素を180ppmの濃度で溶存させることができ、直径約3μmの気泡の中に酸素を投入し、それによって、従来の活性汚泥法に比べ約10倍のBOD処理能力を可能にする。例えば、標準活性汚泥BOD容積負荷0.5〜1.5kg/m・日を、約5kg/m・日に増加し得る。 The fine bubble generating means may be connected to an oxygen supply device, thereby providing a higher concentration oxygen environment. The high-concentration oxygen supply means including the fine bubble generation means and the oxygen supply device can dissolve oxygen having a purity of about 93% at a concentration of 180 ppm, and inject oxygen into bubbles having a diameter of about 3 μm, thereby The BOD treatment capacity is about 10 times that of the conventional activated sludge process. For example, the standard activated sludge BOD volume load 0.5~1.5kg / m 2 · day, may increase to approximately 5 kg / m 2 · day.

なお、図1では、回分式の処理装置Aを用いて本発明を説明したが、本発明は回分式だけではなく連続式とすることもできる。すなわち、連続式の処理装置を構成する場合には、例えば、図1に示す処理装置Aにおいて、排水処理槽3と調整槽1とを管路で連結して、排水処理槽3内にある発酵残渣を調整槽1等に返送しつつ、発酵工程と発酵残渣分解工程を行わせるようにすればよい。   In FIG. 1, the present invention has been described using the batch processing apparatus A. However, the present invention may be a continuous type as well as a batch type. That is, in the case of configuring a continuous treatment apparatus, for example, in the treatment apparatus A shown in FIG. 1, the wastewater treatment tank 3 and the adjustment tank 1 are connected by a pipe line, and the fermentation is in the wastewater treatment tank 3. What is necessary is just to make it perform a fermentation process and a fermentation residue decomposition | disassembly process, returning a residue to the adjustment tank 1 grade | etc.,.

以上、本発明の実施形態について説明したが、本発明者は、図1に記載の装置において、有機性廃棄物として余剰汚泥を用い、水素生産超好熱菌および活性汚泥として、それぞれサーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1(FERM P−15007)および醤油工場の排水処理施設内に形成された活性汚泥を用いるとともに、発酵槽2を85℃、排水処理槽3を常温に制御して処理装置Aを運転したところ、発酵槽2において、水素を長時間安定して生産することができること、および排水処理槽3において、発酵残渣の分解処理を長時間安定して行えることが確認された。   As described above, the embodiment of the present invention has been described. However, in the apparatus shown in FIG. 1, the present inventor uses surplus sludge as the organic waste, and thermococcus Using activated sludge formed in the wastewater treatment facility of Kodakaraensis (Thermococcus kodakaraensis) KOD1 (FERM P-15007) and soy sauce factory, fermenter 2 is controlled at 85 ° C and wastewater treatment tank 3 is controlled at room temperature. When the apparatus A was operated, it was confirmed that hydrogen can be stably produced for a long time in the fermenter 2 and that the fermentation residue can be stably decomposed for a long time in the wastewater treatment tank 3.

本発明は、水素生産能を備えた、有機性廃棄物の処理方法および処理装置として広く利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely used as an organic waste processing method and processing apparatus having hydrogen production capability.

本発明の実施形態の一例を示す概略構成図である。It is a schematic structure figure showing an example of an embodiment of the present invention.

符号の説明Explanation of symbols

A 処理装置
1 調整槽
2 発酵槽
3 排水処理槽
21 窒素供給手段
22 ガス導出管
31 酸素供給手段
32 固液分離手段
A treatment apparatus 1 adjustment tank 2 fermenter 3 waste water treatment tank 21 nitrogen supply means 22 gas outlet pipe 31 oxygen supply means 32 solid-liquid separation means

Claims (4)

有機性廃棄物が希釈されてなる調整液を栄養として、60〜105℃および嫌気性雰囲気下で水素生産超好熱菌を増殖させることで、該菌体から水素を生産させる発酵工程と、
前記発酵工程で形成された発酵残渣を栄養として、常温および酸素供給手段を用いた好気性雰囲気下で活性汚泥を増殖させることで、前記発酵残渣を炭酸ガスと水に分解させつつ、該発酵残渣を固液分離手段に通し、該固液分離手段を通過した液体成分を排水として排出させる発酵残渣分解工程と、
を有する有機性廃棄物の処理方法。
Fermentation process for producing hydrogen from the cells by growing hydrogen-producing hyperthermophilic bacteria under an anaerobic atmosphere at 60 to 105 ° C., using nutritionally prepared organic waste solution as a nutrient,
While fermenting activated sludge under normal temperature and an aerobic atmosphere using an oxygen supply means using the fermentation residue formed in the fermentation process as nutrition, the fermentation residue is decomposed into carbon dioxide gas and water while the fermentation residue is decomposed. Through a solid-liquid separation means, and a fermentation residue decomposition step for discharging the liquid component that has passed through the solid-liquid separation means as waste water,
A method for treating organic waste.
前記水素生産超好熱菌が、サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1(FERM P−15007)である、請求項1記載の処理方法。   The processing method according to claim 1, wherein the hydrogen-producing hyperthermophilic bacterium is Thermococcus kodakaraensis KOD1 (FERM P-15007). 調整液を貯留する調整槽と、
水素生産超好熱菌、窒素供給手段、および生産された水素を槽外へ導出するガス導出管を備える、前記超好熱菌による発酵工程を行わせる発酵槽と、
活性汚泥、酸素供給手段および固液分離手段を備える、発酵残渣分解工程を行わせるノンスラッジ排水処理槽と、
を具備する、請求項1に記載の処理方法に用いられる、有機性廃棄物の処理装置。
An adjustment tank for storing the adjustment liquid;
A fermenter for performing a fermentation step with the hyperthermophilic bacterium, comprising a hydrogen-producing hyperthermophilic bacterium, a nitrogen supply means, and a gas outlet pipe for deriving the produced hydrogen to the outside of the tank;
A non-sludge wastewater treatment tank comprising an activated sludge, an oxygen supply means and a solid-liquid separation means, and a fermentation residue decomposition step;
The processing apparatus of the organic waste used for the processing method of Claim 1 which comprises.
前記水素生産超好熱菌が、サーモコッカス・コダカラエンシス(Thermococcus kodakaraensis)KOD1(FERM P−15007)である、請求項3記載の処理装置。   The processing apparatus according to claim 3, wherein the hydrogen-producing hyperthermophilic bacterium is Thermococcus kodakaraensis KOD1 (FERM P-15007).
JP2007027587A 2007-02-07 2007-02-07 Method and device for treating organic waste Pending JP2008188552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027587A JP2008188552A (en) 2007-02-07 2007-02-07 Method and device for treating organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027587A JP2008188552A (en) 2007-02-07 2007-02-07 Method and device for treating organic waste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008265440A Division JP2009056463A (en) 2008-10-14 2008-10-14 Method for utilizing hydrogen produced via method for treating organic waste

Publications (1)

Publication Number Publication Date
JP2008188552A true JP2008188552A (en) 2008-08-21

Family

ID=39749162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027587A Pending JP2008188552A (en) 2007-02-07 2007-02-07 Method and device for treating organic waste

Country Status (1)

Country Link
JP (1) JP2008188552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002121A1 (en) * 2013-07-04 2015-01-08 住友電気工業株式会社 Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
CN108101956A (en) * 2017-12-22 2018-06-01 河北科技大学 A kind of terramycin strain Slag treatment and Application way
JP2019047777A (en) * 2017-09-07 2019-03-28 エスペック株式会社 Hydrogen producing method and producing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002121A1 (en) * 2013-07-04 2015-01-08 住友電気工業株式会社 Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
JP2015013255A (en) * 2013-07-04 2015-01-22 住友電気工業株式会社 Sewage purification method and apparatus
JP2019047777A (en) * 2017-09-07 2019-03-28 エスペック株式会社 Hydrogen producing method and producing apparatus
CN108101956A (en) * 2017-12-22 2018-06-01 河北科技大学 A kind of terramycin strain Slag treatment and Application way
CN108101956B (en) * 2017-12-22 2021-09-21 河北科技大学 Method for treating and utilizing oxytetracycline bacterial residues

Similar Documents

Publication Publication Date Title
US7083956B2 (en) Method for hydrogen production from organic wastes using a two-phase bioreactor system
Smith et al. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review
Achilli et al. A performance evaluation of three membrane bioreactor systems: aerobic, anaerobic, and attached-growth
KR101394888B1 (en) 1,4-dioxane-containing wastewater treatment method and disposal plant
Armah et al. Emerging trends in wastewater treatment technologies: the current perspective
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
JP2006520684A (en) Organic matter treatment method and organic matter treatment system
Lee et al. Anaerobic membrane bioreactors for wastewater treatment: Challenges and opportunities
JP6046991B2 (en) Anaerobic wastewater treatment method using carrier
Xu et al. Long-term continuous extraction of medium-chain carboxylates by pertraction with submerged hollow-fiber membranes
Kaushik et al. Microbubble technology: emerging field for water treatment
JP2012076001A (en) Anaerobic wastewater treatment apparatus
KR100985374B1 (en) Method and apparatus for the production of hydrogen and methane from organic wastes
JP2008188552A (en) Method and device for treating organic waste
JP5372845B2 (en) Organic wastewater treatment system and method
JP2014100678A (en) Method for treating waste water anaerobically
JP6052893B2 (en) Anaerobic treatment facility and anaerobic treatment method
JP2014100677A (en) Anaerobic wastewater treatment method using carrier
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
JP2009056463A (en) Method for utilizing hydrogen produced via method for treating organic waste
JP2006043649A (en) Treatment method of organic waste and its treatment apparatus
JP6644586B2 (en) Anaerobic wastewater treatment method using carrier
Maqbool et al. Effects of hydrocarbon degrading inoculum for carwash effluent treatment in a UASB reactor
CN205061679U (en) Sewage treatment system of gasification dephosphorization
KR101775010B1 (en) Anaerobic treatment system of wastewater combinined pressure retarded osmosis system and bio-electrochemical system