JP2014098184A - Slide member having multilayer dlc film - Google Patents

Slide member having multilayer dlc film Download PDF

Info

Publication number
JP2014098184A
JP2014098184A JP2012250148A JP2012250148A JP2014098184A JP 2014098184 A JP2014098184 A JP 2014098184A JP 2012250148 A JP2012250148 A JP 2012250148A JP 2012250148 A JP2012250148 A JP 2012250148A JP 2014098184 A JP2014098184 A JP 2014098184A
Authority
JP
Japan
Prior art keywords
dlc
layer
hardness
carbon
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012250148A
Other languages
Japanese (ja)
Inventor
Shinichi Niwa
真一 丹羽
Shigeyuki Adachi
重之 足立
Toshiaki Asakawa
寿昭 浅川
Kazuki Shibagaki
一輝 柴垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2012250148A priority Critical patent/JP2014098184A/en
Publication of JP2014098184A publication Critical patent/JP2014098184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide member having a multilayer DLC film excellent in both characteristics of adhesion and abrasion resistance.SOLUTION: In a slide member, a multilayer diamond-like carbon (DLC) film composed of a ground layer comprising Cr, a gradient layer containing Cr and carbon, and a Cr-DLC monolayer or a Cr-DLC laminate containing Cr and DLC is formed on the surface of a metal substrate, and the gradient layer has a gradient composition in which the Cr content rate is gradually reduced and the carbon content rate is gradually increased in proportion to the distance from the surface of the metal substrate.

Description

本発明は、特に耐摩耗性が求められる部材の表面保護に適する多層ダイヤモンドライクカーボン皮膜を摺動面に有する摺動部材に関する。   The present invention relates to a sliding member having a multi-layer diamond-like carbon film on the sliding surface, which is particularly suitable for protecting the surface of a member that requires wear resistance.

ダイヤモンドライクカーボン(以下、DLCという)は主に炭素と水素で構成される非晶質の硬質膜であり、硬度特性、耐摩耗性、固体潤滑性、熱伝導性及び化学的安定性に優れ、低摩擦係数を有するという特性を持つことから、こうした特性が求められる各種部材の表面改質に大きな効果を奏する。そのため、DLCは摺動部材、耐摩耗性機械部品、切削工具等、各種部材の表面層として利用されている。
但しDLCは基材となる金属との界面で剥離が発生しやすいという問題があり、基材との密着性を高める技術が種々提案されている。
たとえば特許文献1には、基材との密着性を改善する技術として、鉄系基材の上に、Crおよび/またはAlの金属からなる第1層とCrおよび/またはAlの金属と炭素を含む非晶質層からなる第2層からなる2層構造の中間層を設け、その上に最表面層としてDLC膜を形成する硬質多層膜形成体が提案されている。
Diamond-like carbon (hereinafter referred to as DLC) is an amorphous hard film mainly composed of carbon and hydrogen, and has excellent hardness characteristics, wear resistance, solid lubricity, thermal conductivity and chemical stability. Since it has the characteristic of having a low friction coefficient, it has a great effect on the surface modification of various members that require such a characteristic. Therefore, DLC is used as a surface layer of various members such as sliding members, wear-resistant machine parts, cutting tools, and the like.
However, DLC has a problem that peeling easily occurs at an interface with a metal serving as a base material, and various techniques for improving adhesion with the base material have been proposed.
For example, in Patent Document 1, as a technique for improving adhesion to a base material, a first layer made of a Cr and / or Al metal, a Cr and / or Al metal, and carbon are formed on an iron base material. There has been proposed a hard multilayer film forming body in which an intermediate layer having a two-layer structure including a second layer including an amorphous layer is provided and a DLC film is formed thereon as an outermost surface layer.

特開2002−256415号公報JP 2002-256415 A

上述のように、DLCは高硬度且つ低摩擦係数という優れた特性を有するものの、既存のプロセスによる膜形成では基材との密着力が弱く、特許文献1に提案される技術においても、高い面圧下では必ずしも耐摩耗性を実現できているとはいえず、依然としてDLC皮膜を適用した摺動部材に関しては、高い密着性と耐摩耗性を兼ね備えたDLC皮膜形成技術が求められている。   As described above, DLC has excellent properties such as high hardness and a low friction coefficient, but adhesion with a base material is weak in film formation by an existing process, and even in the technique proposed in Patent Document 1, it is a high surface. It cannot be said that the wear resistance is always realized under the reduction, and the DLC film forming technique having both high adhesion and wear resistance is still required for the sliding member to which the DLC film is applied.

本発明は、このような状況に鑑みてなされたものであって、密着性と耐摩耗性の双方の特性に優れた多層DLC皮膜を有する摺動部材を提供することを目的とする。   This invention is made | formed in view of such a condition, Comprising: It aims at providing the sliding member which has the multilayer DLC film excellent in the characteristic of both adhesiveness and abrasion resistance.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、金属基材の表面に、Cr金属層(下地層)、Crと炭素を含む傾斜層を設け、被摺動部材との接触面となる最上層部にCrとダイヤモンドライクカーボンからなる層としてCr−DLC単層又は前記Cr−DLC積層を設けることにより、密着性と耐摩耗性の双方に優れる多層DLC皮膜を有する摺動部材となることを見出し、本発明を完成させた。   As a result of intensive studies in order to achieve the above object, the present inventors provided a Cr metal layer (underlying layer), an inclined layer containing Cr and carbon on the surface of the metal substrate, By providing a Cr-DLC single layer or the Cr-DLC laminated layer as a layer made of Cr and diamond-like carbon on the uppermost layer portion that becomes the contact surface of this, a slide having a multilayer DLC film excellent in both adhesion and wear resistance is provided. As a result, the present invention has been completed.

すなわち本発明は、金属基材の表面に、
Crからなる下地層と、Crと炭素を含む傾斜層と、Crとダイヤモンドライクカーボン(DLC)を含み且つCr含有率が層の厚さに亘って実質的に変化しないCr−DLC単層とからなる多層DLC皮膜、或いは、
Crからなる下地層と、Crと炭素を含む傾斜層と、CrからなるCr層とDLCからなるDLC層とが交互に重なるCr−DLC積層とからなる多層DLC皮膜
を形成してなり、
そして前記傾斜層は、前記金属基材の表面から遠ざかるに従い、Cr含有率が漸減すると
ともに、炭素含有率が漸増する傾斜組成を有してなる、摺動部材に関する。
That is, the present invention provides a surface of a metal substrate.
An underlayer made of Cr, a graded layer containing Cr and carbon, and a Cr-DLC single layer containing Cr and diamond-like carbon (DLC) and the Cr content does not vary substantially over the thickness of the layer A multilayer DLC film, or
Forming a multi-layer DLC film composed of a Cr-DLC laminate in which an underlayer made of Cr, a gradient layer containing Cr and carbon, and a Cr layer made of Cr and a DLC layer made of DLC are alternately stacked;
The gradient layer relates to a sliding member having a gradient composition in which the Cr content gradually decreases and the carbon content gradually increases as the distance from the surface of the metal substrate increases.

本発明の摺動部材は、前記傾斜層と、前記Cr−DLC単層又は前記Cr−DLC積層との間に、ナノインデンター測定法に従う測定にて20GPa未満の硬さを有する低硬度DLC層をさらに形成していても良い。   The sliding member of the present invention is a low-hardness DLC layer having a hardness of less than 20 GPa between the gradient layer and the Cr-DLC single layer or the Cr-DLC laminate, as measured by a nanoindenter measurement method. May be further formed.

また本発明の摺動部材において、前記Cr−DLC単層又は前記Cr−DLC積層が、2〜12原子%のCr含有率を有することが好ましい。
さらに前記Cr−DLC積層が、Cr層−DLC層 1周期あたり、6nm以上8nm以下の厚さを有することが好ましい。
そして前記Cr−DLC単層又は前記Cr−DLC積層が、ナノインデンター測定法に従う測定にて20GPa以上の表面硬さを有することがより好ましい。
Moreover, the sliding member of this invention WHEREIN: It is preferable that the said Cr-DLC single layer or the said Cr-DLC lamination | stacking has Cr content rate of 2-12 atomic%.
Furthermore, it is preferable that the Cr-DLC stack has a thickness of 6 nm or more and 8 nm or less per cycle of the Cr layer-DLC layer.
And it is more preferable that the said Cr-DLC single layer or the said Cr-DLC lamination | stacking has a surface hardness of 20 GPa or more by the measurement according to a nanoindenter measurement method.

本発明によれば、金属基材との密着性に優れ、しかも硬度と摩耗性の双方の特性を同時に満足させた多層DLC皮膜が形成された摺動部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sliding member in which the multilayer DLC film which was excellent in the adhesiveness with a metal base material and satisfy | filled the characteristics of both hardness and abrasion simultaneously was formed can be provided.

図1は、本発明にかかる多層DLC皮膜の構造を示す概念図であり、最上層部がCr−DLC単層であるもの(図1(a))、最上層部がCr−DLC積層であるもの(図1(b))を示す図である。FIG. 1 is a conceptual diagram showing the structure of a multilayer DLC film according to the present invention, in which the uppermost layer portion is a Cr-DLC single layer (FIG. 1A), and the uppermost layer portion is a Cr-DLC laminate. It is a figure which shows a thing (FIG.1 (b)). 図2は、本発明にかかる低硬度DLC層を含む多層DLC皮膜の構造を示す概念図であり、最上層部がCr−DLC単層であるもの(図2(c))、最上層部がCr−DLC積層であるもの(図2(d))を示す図である。FIG. 2 is a conceptual diagram showing the structure of a multilayer DLC film including a low-hardness DLC layer according to the present invention, in which the uppermost layer portion is a Cr-DLC single layer (FIG. 2 (c)), and the uppermost layer portion is It is a figure which shows what is a Cr-DLC lamination | stacking (FIG.2 (d)). 図3は、本発明で使用可能なマグネトロン・スパッタ装置の概念図である。FIG. 3 is a conceptual diagram of a magnetron sputtering apparatus that can be used in the present invention. 図4は、比較例1(最上層部におけるDLC層−Cr層の積層周期を12nmに設定)におけるCr−DLC積層の走査型電子顕微鏡(SEM)写真を示す図である(倍率30万倍)。FIG. 4 is a view showing a scanning electron microscope (SEM) photograph of the Cr-DLC stack in Comparative Example 1 (the stack cycle of the DLC layer—Cr layer in the uppermost layer is set to 12 nm) (magnification of 300,000 times). . 図5は、実施例3(最上層部におけるDLC層−Cr層の積層周期を2nmに設定)におけるCr−DLC単層の走査型電子顕微鏡(SEM)写真を示す図である(倍率30万倍)。FIG. 5 is a view showing a scanning electron microscope (SEM) photograph of a Cr-DLC single layer in Example 3 (the DLC layer-Cr layer stacking period in the uppermost layer is set to 2 nm) (magnification of 300,000 times) ). 図6は、実施例4(最上層部におけるDLC層−Cr層の積層周期を6nmに設定)におけるCr−DLC積層の最表面から内部(基材側)に向かうエッチング深さ別の炭素(□)及びCr(▲)の含有率を示す図である。FIG. 6 shows carbons by etching depth (□) from the outermost surface of the Cr-DLC stack toward the inside (base material side) in Example 4 (the DLC layer-Cr layer stacking period in the uppermost layer is set to 6 nm). It is a figure which shows the content rate of Cr) (). 図7は、実施例2(最上層部におけるDLC層−Cr層の積層周期を0.6nmに設定)におけるCr−DLC単層の最表面から内部(基材側)に向かうエッチング深さ別の炭素(□)及びCr(▲)の含有率を示す図である。FIG. 7 shows the etching depth according to the etching depth from the outermost surface of the Cr-DLC single layer to the inside (base material side) in Example 2 (the DLC layer-Cr layer stacking period in the uppermost layer is set to 0.6 nm). It is a figure which shows the content rate of carbon (□) and Cr (▲). 図8は、実施例1乃至実施例4及び比較例1における、最上層部におけるDLC層−Cr層の積層周期(nm)に対する摺動部材の表面硬度を示すグラフである。FIG. 8 is a graph showing the surface hardness of the sliding member with respect to the lamination period (nm) of the DLC layer-Cr layer in the uppermost layer portion in Examples 1 to 4 and Comparative Example 1. 図9は、実施例1乃至実施例8並びに比較例1乃至比較例3及び比較例5における、最上層部のDLC層−Cr層の積層周期に対する面圧1.3GPaにおける比摩耗量を示すグラフである。FIG. 9 is a graph showing the specific wear amount at a surface pressure of 1.3 GPa with respect to the lamination cycle of the DLC layer-Cr layer in the uppermost layer in Examples 1 to 8 and Comparative Examples 1 to 3 and Comparative Example 5. It is. 図10は、図10は、実施例1乃至実施例8並びに比較例1乃至比較例3及び比較例5における、最上層部のDLC層−Cr層の積層周期に対する面圧1.3GPaにおける比摩耗量を示すグラフ(図9の縦軸の縮尺を変えたもの)である。FIG. 10 shows the specific wear at a surface pressure of 1.3 GPa with respect to the lamination period of the DLC layer-Cr layer in the uppermost layer in Examples 1 to 8 and Comparative Examples 1 to 3 and Comparative Example 5. It is a graph (what changed the scale of the vertical axis | shaft of FIG. 9) which shows quantity.

本発明が対象とする摺動部材としてはたとえば、滑り軸受、転がり軸受、ローラー、プーリー、リニアガイドなどが挙げられ、滑りによる摺動面のみならず、転がりと滑りを伴う転がり摺動面を有する部材も含まれる。
こうした摺動部材は、例えば炭素鋼、軸受鋼、ステンレス鋼などの鉄系材料、銅合金、アルミニウム合金、チタン合金など機械部品に通常使われる金属材料から構成されるが、これら金属材料からなる摺動部材の摺動面に高い硬度のDLC層を形成した場合、具体的にはナノインデンター測定法(ISO 14577)による硬度が20GPa以上の硬度を有するDLC層を形成した場合、金属材料とDLC層との密着性が劣るという問題が生ずる。一方、硬度が20GPa未満の低い硬度のDLC層を形成すると、密着性は改善されるものの、摩耗量が増加するという問題が生ずる。
本発明者らはこうした問題を考慮し、良好な摩耗特性と良好な密着性を両立させた多層DLC皮膜を有する摺動部材の構成を以下の通り考案した。
以下、本発明を更に詳しく説明する。
Examples of the sliding member targeted by the present invention include a sliding bearing, a rolling bearing, a roller, a pulley, and a linear guide. The sliding member has not only a sliding surface by sliding but also a rolling sliding surface with rolling and sliding. Members are also included.
Such sliding members are made of metal materials usually used for machine parts such as iron-based materials such as carbon steel, bearing steel and stainless steel, copper alloys, aluminum alloys and titanium alloys. When a DLC layer having a high hardness is formed on the sliding surface of the moving member, specifically, when a DLC layer having a hardness of 20 GPa or more according to the nanoindenter measurement method (ISO 14577) is formed, the metal material and the DLC The problem of poor adhesion with the layer arises. On the other hand, when a low hardness DLC layer having a hardness of less than 20 GPa is formed, the adhesion is improved, but the problem is that the amount of wear increases.
In consideration of these problems, the present inventors have devised a structure of a sliding member having a multilayer DLC film that achieves both good wear characteristics and good adhesion as follows.
Hereinafter, the present invention will be described in more detail.

本発明は、金属基材の表面に多層DLC皮膜を設けた摺動部材であって、該多層DLC皮膜は、金属基材側からCrからなる下地層と、Crと炭素を含む傾斜層と、そして被摺動部材との接触面となる最上層部として、Crとダイヤモンドライクカーボン(DLC)を含み且つCr含有率が層の厚さに亘って実質的に変化しないCr−DLC単層とから構成されるか、或いは、金属基材側からCrからなる下地層と、Crと炭素を含む傾斜層と、そして被摺動部材との接触面となる最上層部として、CrからなるCr層とDLCからなるDLC層とが交互に重なるCr−DLC積層とから構成されることを特徴とする。
そして前記傾斜層は、前記金属基材の表面から遠ざかるに従い、Cr含有率が漸減するとともに、炭素含有率が漸増する傾斜組成を有する。
The present invention is a sliding member provided with a multi-layer DLC film on the surface of a metal substrate, the multi-layer DLC film comprises a base layer made of Cr from the metal substrate side, a gradient layer containing Cr and carbon, Then, as the uppermost layer portion that becomes the contact surface with the sliding member, a Cr-DLC single layer containing Cr and diamond-like carbon (DLC) and having a Cr content that does not substantially change over the thickness of the layer. Or a Cr layer made of Cr as an uppermost layer portion that becomes a contact surface with the sliding member, and an underlayer made of Cr from the metal substrate side, an inclined layer containing Cr and carbon, It is characterized by comprising a Cr-DLC stack in which DLC layers made of DLC are alternately stacked.
The gradient layer has a gradient composition in which the Cr content gradually decreases and the carbon content gradually increases as the distance from the surface of the metal substrate increases.

図1及び図2は、本発明にかかる多層DLC皮膜の構造を示す概念図である。
図1(a)に示すように、上記多層DLC皮膜の構造は、金属基材の上に順にCr100%で構成される下地層、傾斜層、Cr−DLC単層が形成される。また図1(b)に示すように、下地層、傾斜層、そしてDLC層とCr層が交互に積層されてなるCr−DLC積層として形成されてもよい。
前記傾斜層とCr−DLC単層又はCr−DLC積層の間には、低硬度DLC層を形成することができる(図2(c)、(d))。
1 and 2 are conceptual diagrams showing the structure of a multilayer DLC film according to the present invention.
As shown to Fig.1 (a), the structure of the said multilayer DLC film | membrane forms the base layer, inclination layer, and Cr-DLC single layer which consist of Cr100% in order on a metal base material. Further, as shown in FIG. 1B, a base layer, an inclined layer, and a Cr-DLC stack in which a DLC layer and a Cr layer are alternately stacked may be formed.
A low-hardness DLC layer can be formed between the gradient layer and the Cr-DLC single layer or the Cr-DLC stack (FIGS. 2C and 2D).

上記金属基材としては特に種類を問わず、例えば炭素鋼、軸受鋼、ステンレス鋼などの鉄系材料、銅合金、アルミニウム合金、チタン合金など、機械部品に通常使われる材料を使用することができる。   The metal substrate is not particularly limited, and materials usually used for machine parts, such as iron-based materials such as carbon steel, bearing steel, and stainless steel, copper alloys, aluminum alloys, and titanium alloys can be used. .

上記傾斜層は、Crと炭素から構成され、下層の金属基材側(下地層側)から最上層部であるCr−DLC単層又はCr−DLC積層に向けて、Crの含有率が段階的又は連続的に減少する、すなわち、Crの原子%が100%から0%に減少し、一方、炭素の含有率が段階的又は連続的に減少する、すなわち炭素の原子%が0%から100%に増加する、傾斜組成を有して成る。
こうした傾斜組成の構成を採用することによって、多層DLC皮膜の機械的特性を金属基材側から最上層部(Cr−DLC単層又はCr−DLC積層)側に段階的または連続的に変化させることができ、これによってサーマルショック等による局所的な応力集中による剥離を防止することができる
傾斜層の厚さは特に限定されないが、例えば100nm乃至300nmから選択することができる。
The gradient layer is composed of Cr and carbon, and the Cr content is stepped from the lower metal substrate side (underlayer side) toward the uppermost Cr-DLC single layer or Cr-DLC laminate. Or continuously decreasing, i.e. Cr atomic percent decreases from 100% to 0%, while carbon content decreases stepwise or continuously, i.e. carbon atomic percent decreases from 0% to 100%. With a gradient composition.
By adopting such a composition of graded composition, the mechanical properties of the multilayer DLC film can be changed stepwise or continuously from the metal substrate side to the uppermost layer (Cr-DLC single layer or Cr-DLC laminate) side. Thus, peeling due to local stress concentration due to thermal shock or the like can be prevented. The thickness of the inclined layer is not particularly limited, but can be selected from, for example, 100 nm to 300 nm.

被摺動部材との接触面となる最上層部は、CrとDLCから構成され、Cr含有率が層の厚さに亘って実質的に変化しないCr−DLC単層(図1(a)、図2(c))、或いは、CrからなるCr層とDLCからなるDLC層を交互に積層させてなるCr−DLC積層(図1(b)、図2(d))として形成される。なおCr−DLC積層の場合、図1(b)及び図2(d)に示すように、最上層はDLC層が形成される。
最上層部におけるCrの含有率は、Cr−DLC単層/Cr−DLC積層の形態を問わず、2乃至12原子%とすることが望ましく、より望ましくは10乃至12原子%である。
また最上層部の厚さは特に限定されないが、例えば500nm乃至800nmから選択することができる。
The uppermost layer serving as the contact surface with the sliding member is composed of Cr and DLC, and the Cr-DLC single layer (FIG. 1A), in which the Cr content does not substantially change over the thickness of the layer. 2 (c)), or a Cr-DLC stack (FIG. 1 (b), FIG. 2 (d)) formed by alternately stacking a Cr layer made of Cr and a DLC layer made of DLC. In the case of a Cr-DLC stack, as shown in FIGS. 1B and 2D, a DLC layer is formed as the uppermost layer.
The Cr content in the uppermost layer is preferably 2 to 12 atomic%, more preferably 10 to 12 atomic%, regardless of the form of the Cr-DLC single layer / Cr-DLC laminate.
The thickness of the uppermost layer is not particularly limited, but can be selected from, for example, 500 nm to 800 nm.

最上層部は、後述するスパッタ装置を用いてCr層とDLC層を交互に積層することによって形成され、ここで、Cr層とDLC層の1周期当たりの厚さの違いによって、Cr含有率が実質的に変化しないCr−DLC単層の形態となるか、或いはCr−DLC積層の形態となるかが決まる。
具体的には、Cr層−DLC層の1周期当たりの厚さが6nm未満に設定して層形成すると、Cr層とDLC層が交互に形成されてなるいわゆる積層構造は形成されずに、CrとDLCが混合して層を形成することとなり、Cr含有率が実質的に変化しないCr−DLC単層の形態となる。
一方、1周期当たりの厚さを6nm以上に設定して層形成すると、Cr層とDLC層が交互に形成される積層構造を形成する。
但し本発明においては、Cr層−DLC層の1周期当たりの厚さを8nmより厚くすると、耐摩耗性が低下するため望ましくない。
The uppermost layer portion is formed by alternately laminating Cr layers and DLC layers using a sputtering apparatus to be described later. Here, the Cr content is different depending on the difference in thickness per cycle between the Cr layer and the DLC layer. It is determined whether it is in the form of a Cr-DLC single layer that does not substantially change or in the form of a Cr-DLC stack.
Specifically, when the layer is formed with the thickness per cycle of the Cr layer-DLC layer set to less than 6 nm, a so-called laminated structure in which the Cr layer and the DLC layer are alternately formed is not formed. And DLC are mixed to form a layer, and a Cr-DLC single layer is formed in which the Cr content does not substantially change.
On the other hand, when a layer is formed with the thickness per period set to 6 nm or more, a laminated structure in which Cr layers and DLC layers are alternately formed is formed.
However, in the present invention, if the thickness per cycle of the Cr layer-DLC layer is more than 8 nm, it is not desirable because the wear resistance is lowered.

また最上層部(Cr−DLC単層又はCr−DLC積層)は、ISO 14577に基づくナノインデンター測定法に従う測定にて、20GPa以上の表面硬さを有することが好ましい。但し、38GPa以上の表面硬さとすると、耐摩耗性の低下につながるため望ましくない。   Moreover, it is preferable that the uppermost layer part (Cr-DLC single layer or Cr-DLC lamination | stacking) has a surface hardness of 20 GPa or more by the measurement according to the nanoindenter measuring method based on ISO14577. However, a surface hardness of 38 GPa or higher is not desirable because it leads to a decrease in wear resistance.

前記傾斜層と最上層部(Cr−DLC単層又はCr−DLC積層)の間に低硬度DLC層が形成される場合、低硬度DLC層の硬度は、ISO 14577に基づくナノインデンター測定法に従う測定にて、最上層部より低い硬さ、具体的には20GPa未満の硬さとなるように設定する。
低硬度DLC層は後述するスパッタ装置を用いた成膜プロセスにおいて、金属基材に付加するバイアス電圧をゼロ、すなわちバイアス無しでDLCを成膜することによって得ることができる。バイアス無しで成膜することにより、得られるDLCはナノインデンター測定法による硬さが20GPa未満となり、この層は、硬さが例えば20GPa以上である高硬度DLCとなる最上層部よりも、下地層に対する密着性に優れるので層の剥離がより効果的に防止される。
低硬度DLC層の厚さは例えば50nm乃至300nmから選択することができる。
When a low-hardness DLC layer is formed between the inclined layer and the uppermost layer (Cr-DLC single layer or Cr-DLC laminate), the hardness of the low-hardness DLC layer follows a nanoindenter measurement method based on ISO 14577 In the measurement, the hardness is set to be lower than that of the uppermost layer, specifically, less than 20 GPa.
The low hardness DLC layer can be obtained by forming a DLC film with zero bias voltage applied to the metal substrate, that is, without bias, in a film forming process using a sputtering apparatus described later. By forming a film without a bias, the DLC obtained has a hardness of less than 20 GPa by the nanoindenter measurement method, and this layer is lower than the uppermost layer portion that becomes a high hardness DLC having a hardness of, for example, 20 GPa or more. Since the adhesion to the formation is excellent, peeling of the layer is more effectively prevented.
The thickness of the low hardness DLC layer can be selected from, for example, 50 nm to 300 nm.

なお、本発明においては、低硬度DLC層の厚さが上述のごとくおよそ50nm乃至300nmであるのに対し、最上層部がCr層とDLC層を交互に積層させてなるCr−DLC積層の場合のDLC層の膜厚は数nmとなるため、低硬度DLC層は積層部分のDLC層とは区別して考えることができる。   In the present invention, the thickness of the low-hardness DLC layer is approximately 50 nm to 300 nm as described above, whereas the uppermost layer portion is a Cr-DLC laminate in which a Cr layer and a DLC layer are alternately laminated. Since the thickness of the DLC layer is several nm, the low-hardness DLC layer can be distinguished from the DLC layer in the stacked portion.

図1及び図2に示す本発明にかかる多層DLC皮膜の構造は、図3に示すマグネトロン・スパッタ装置を用いて形成される。
具体的な成膜プロセスは以下のとおりである。
まず洗浄によって表面を清浄にした金属基材をドラムにセットし、準備室である真空チャンバCH1内にドラムを移動させる。真空チャンバCH1内を、実質的な真空状態になるまで排気した後、Arガスを導入してArガス雰囲気とする。ここで金属基材は、成膜前に真空チャンバCH1内で高周波電源RFによってバイアス電圧が印加され、Arプラズマでイオンボンバード処理される。本処理により基材表面がエッチングされてクリーニングされる。こうした成膜前の高周波バイアスによるクリーニング処理を行うことで、基
材表面の不純物が除去されるとともに、基材表面が活性化し、基材表面への薄膜の密着力が向上する効果が得られる。
The structure of the multilayer DLC film according to the present invention shown in FIGS. 1 and 2 is formed using a magnetron sputtering apparatus shown in FIG.
A specific film forming process is as follows.
First, a metal substrate whose surface has been cleaned by cleaning is set on a drum, and the drum is moved into a vacuum chamber CH1, which is a preparation chamber. After evacuating the vacuum chamber CH1 to a substantial vacuum state, Ar gas is introduced to make an Ar gas atmosphere. Here, the metal substrate is subjected to an ion bombardment treatment with Ar plasma by applying a bias voltage by a high-frequency power source RF in the vacuum chamber CH1 before film formation. By this treatment, the substrate surface is etched and cleaned. By performing such a cleaning process using a high-frequency bias before film formation, impurities on the substrate surface are removed, the substrate surface is activated, and an effect of improving the adhesion of the thin film to the substrate surface is obtained.

次に、成膜室である真空チャンバCH2内にドラムを移動し、Arガス雰囲気での成膜が実施される。真空チャンバCH2内には、Cr金属層(下地層、Cr−DLC積層におけるCr層)、傾斜層、Cr−DLC単層及びCr−DLC積層におけるDLC層などを形成するための炭素材及びCr材によるターゲット(Cターゲット、Crターゲット)を取り付ける。
Arガス圧力をスパッタに適した圧力に設定し、ドラムを回転させ、DCパルス電源によって金属基材に負のバイアス電圧を印加しながら、AC電源(図示せず)によってCターゲット或いはCrターゲット側にスパッタ電力を供給すると、グロー放電が発生して成膜が開始する。
ここで皮膜を構成する層の種類、膜厚や硬さの制御は、Arガス圧力、バイアス電圧、スパッタ電力、ドラムの回転速度、成膜時間などを調節して行われる。また最上層部におけるCr層とDLC層の厚さの比率や積層周期の制御も同様にして行われる。
成膜時の標準的な条件は、Arガス圧力1〜5Pa程度、バイアス電圧0〜−200V、スパッタ電力0.4〜10kW、ドラム回転速度1〜100rpmである。
各層を順に形成し、所定の膜厚に達したら、スパッタ電力供給を止めて成膜プロセスを終了し、真空チャンバCH2から真空チャンバCH1そして外部へとドラムを移動させ、基材を取り出し、多層DLC皮膜の構造を有してなる基材(摺動部材)を得る。
Next, the drum is moved into the vacuum chamber CH2, which is a film formation chamber, and film formation is performed in an Ar gas atmosphere. In the vacuum chamber CH2, a carbon material and a Cr material for forming a Cr metal layer (underlayer, Cr layer in the Cr-DLC stack), an inclined layer, a Cr-DLC single layer, a DLC layer in the Cr-DLC stack, and the like Attach targets (C target, Cr target).
The Ar gas pressure is set to a pressure suitable for sputtering, the drum is rotated, a negative bias voltage is applied to the metal substrate by a DC pulse power source, and an AC power source (not shown) is applied to the C target or Cr target side. When sputtering power is supplied, glow discharge occurs and film formation starts.
Here, the type, thickness and hardness of the layers constituting the coating are controlled by adjusting the Ar gas pressure, bias voltage, sputtering power, drum rotation speed, film formation time, and the like. Further, the ratio of the thickness of the Cr layer to the DLC layer and the stacking cycle in the uppermost layer are also controlled in the same manner.
Standard conditions at the time of film formation are an Ar gas pressure of about 1 to 5 Pa, a bias voltage of 0 to −200 V, a sputtering power of 0.4 to 10 kW, and a drum rotation speed of 1 to 100 rpm.
Each layer is formed in order, and when the predetermined film thickness is reached, the sputtering power supply is stopped to finish the film formation process, the drum is moved from the vacuum chamber CH2 to the vacuum chamber CH1 and the outside, the substrate is taken out, and the multilayer DLC is removed. A base material (sliding member) having a film structure is obtained.

本発明にかかる摺動部材において、金属基材表面に形成する多層DLC皮膜の総膜厚は0.5〜3μm程度とすることができる。   In the sliding member according to the present invention, the total film thickness of the multilayer DLC film formed on the surface of the metal substrate can be about 0.5 to 3 μm.

以下、本発明を実施例により、さらに詳しく説明する。ただし、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this.

[実施例1乃至実施例8乃至比較例1及び比較例2]
図1及び図2に示す多層DLC皮膜の構造を有してなる摺動部材を下記手順にて作製した。なお実施例1乃至実施例3は図1(a)に、実施例4及び比較例1は図1(b)に、実施例6乃至実施例7は図2(c)に、実施例8及び比較例2は図2(d)に、それぞれ示す多層DLC皮膜の構造を有してなる摺動部材である。
[Example 1 to Example 8 to Comparative Example 1 and Comparative Example 2]
A sliding member having the multilayer DLC film structure shown in FIGS. 1 and 2 was produced by the following procedure. Examples 1 to 3 are shown in FIG. 1 (a), Example 4 and Comparative Example 1 are shown in FIG. 1 (b), Examples 6 to 7 are shown in FIG. 2 (c), Example 8 and Comparative Example 2 is a sliding member having a multilayer DLC film structure shown in FIG.

金属基材としては、マルテンサイト系ステンレス鋼[鏡面(Ra<0.1μm程度)のφ20mm角、厚さ3mm]を用い、これをアルカリ槽と純水槽にて超音波洗浄した後乾燥した。洗浄処理を施した金属基材を、図3のマグネトロンスパッタ装置内に取り付けた後、2×10−5Torr(2.6×10−3Pa)まで真空引きし、ヒータにてベーキングした後、Arプラズマにてイオンボンバード処理し、基材表面をエッチングによりクリーニングした。 As the metal substrate, martensitic stainless steel [mirror surface (Ra <0.1 μm), φ20 mm square, thickness 3 mm] was used, which was ultrasonically cleaned in an alkali bath and a pure water bath and then dried. After the metal substrate subjected to the cleaning treatment is mounted in the magnetron sputtering apparatus of FIG. 3, it is evacuated to 2 × 10 −5 Torr (2.6 × 10 −3 Pa) and baked with a heater. Ion bombardment treatment was performed with Ar plasma, and the substrate surface was cleaned by etching.

クリーニング後の基材に対し、前述の成膜プロセスに従い、下記1)〜4)の順に、膜厚等の条件を満足するようにArガス圧力、バイアス電圧、スパッタ電力、ドラム回転速度を適宜調整し、層形成した。
1)下地層:Cr含有率100%および膜厚約250nmにて形成。
2)傾斜層:Cr含有率を100%から0%(すなわち炭素含有率を0%から100%)まで段階的に変化させながら、膜厚70nm〜90nmにて形成。なお、所望のCr/炭素混合比率になるように、C及びCrターゲットの印加電力を決定し、順次各ターゲットの電力を変化させて混合比率を調整するとともに、積層構造とならないようにドラムの回転速度を適宜調整した。
3)低硬度DLC層:実施例5乃至実施例8並びに比較例2においては、傾斜層に連続して、膜厚70nm〜125nmにて形成。金属基材に印加するバイアス電圧をゼロとすることにより、ISO 01577に基づくナノインデンター測定法に従う測定にて硬度を15GPaに設定。
4)最上層部:実施例1乃至実施例3及び実施例5乃至実施例6においては、Cr層とDLC層の積層周期を0.06nm、0.6nm、2nm、実施例4及び実施例8は同6nm、比較例1及び比較例2は同12nmとし、膜厚約600nm〜700nmにて形成。なお、所定の積層周期(Cr層、DLC層の膜厚)となるように、C及びCrターゲットの印加電力を調整するとともに、ドラムの回転速度適宜調整した。
低硬度DLC層の膜厚、最上層部の積層周期(積層の有無)、膜厚、硬さ、Cr含有率及び成膜時の金属基材に印加したバイアス電圧について表1に示す。なお、表1のCr含有率はX線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)による測定値である。
The Ar gas pressure, bias voltage, sputtering power, and drum rotation speed are adjusted as appropriate to satisfy the conditions such as film thickness in the order of the following 1) to 4) according to the above-described film forming process for the substrate after cleaning. Layer formation.
1) Underlayer: formed with a Cr content of 100% and a film thickness of about 250 nm.
2) Gradient layer: formed with a film thickness of 70 nm to 90 nm while changing the Cr content from 100% to 0% (that is, the carbon content from 0% to 100%) stepwise. Note that the power applied to the C and Cr targets is determined so that the desired Cr / carbon mixing ratio is obtained, the mixing ratio is adjusted by sequentially changing the power of each target, and the drum is rotated so as not to have a laminated structure. The speed was adjusted accordingly.
3) Low-hardness DLC layer: In Examples 5 to 8 and Comparative Example 2, the DLC layer is formed in a film thickness of 70 nm to 125 nm continuously to the inclined layer. By setting the bias voltage applied to the metal substrate to zero, the hardness is set to 15 GPa in the measurement according to the nanoindenter measurement method based on ISO 015777.
4) Uppermost layer portion: In Examples 1 to 3 and Examples 5 to 6, the lamination period of the Cr layer and the DLC layer is 0.06 nm, 0.6 nm, 2 nm, Examples 4 and 8 Is 6 nm, Comparative Example 1 and Comparative Example 2 are 12 nm, and the film thickness is about 600 nm to 700 nm. In addition, while adjusting the applied electric power of C and Cr target so that it might become a predetermined | prescribed lamination | stacking period (film thickness of a Cr layer and a DLC layer), the rotational speed of the drum was adjusted suitably.
Table 1 shows the film thickness of the low-hardness DLC layer, the stacking cycle (presence / absence of stacking), the film thickness, hardness, Cr content, and bias voltage applied to the metal substrate during film formation. In addition, the Cr content rate of Table 1 is a measured value by X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).

[比較例3乃至比較例6]
最上層部(Cr−DLC単層又はCr−DLC積層)の代わりに、低硬度DLC層(硬度15GPa)又は高硬度DLC層(硬度38GPa)を単層にて層形成した以外は、前述の手順に従い、比較例3乃至比較例6の摺動部材を形成した。
なお、比較例3及び比較例4は傾斜層の上にDLC単層を形成し、比較例5及び比較例6は傾斜層の上に低硬度DLC層を形成した後、DLC単層を形成した。
低硬度DLC層の膜厚、DLC単層の硬さ、膜厚、DLC単層成膜時の金属基材に印加したバイアス電圧及びDLC単層成膜時のArガス圧力について表2に示す。
[Comparative Examples 3 to 6]
The procedure described above, except that a low-hardness DLC layer (hardness 15 GPa) or a high-hardness DLC layer (hardness 38 GPa) is formed as a single layer instead of the top layer (Cr-DLC single layer or Cr-DLC laminate) Accordingly, the sliding members of Comparative Examples 3 to 6 were formed.
In Comparative Examples 3 and 4, a DLC single layer was formed on the gradient layer, and in Comparative Examples 5 and 6, a low-hardness DLC layer was formed on the gradient layer, and then a DLC single layer was formed. .
Table 2 shows the film thickness of the low hardness DLC layer, the hardness of the DLC single layer, the film thickness, the bias voltage applied to the metal substrate during the DLC single layer deposition, and the Ar gas pressure during the DLC single layer deposition.

図3に示すマグネトロン・スパッタ装置において、ドラムの回転につれて基材がCrターゲット側を向くとCr層が成膜され、Cターゲット側を向くとDLC層が成膜される。また、バイアス電圧を一定にしたときはスパッタ電力の強弱によって膜形成速度を変化させることができる。CrターゲットとCターゲットの両方に同時にスパッタ電力を与えると、ドラムが一周するごとにCr層とDLC層が交互に積層される。また、CrターゲットとCターゲットに供給する電力によって、Crと炭素の含有率または各層の膜厚が変化する。したがって、ドラム回転速度とスパッタ電力の制御によって積層周期およびCrと炭素の比率の制御が可能である。   In the magnetron sputtering apparatus shown in FIG. 3, a Cr layer is formed when the substrate faces the Cr target side as the drum rotates, and a DLC layer is formed when the substrate faces the C target side. Further, when the bias voltage is made constant, the film formation rate can be changed depending on the strength of the sputtering power. When sputtering power is simultaneously applied to both the Cr target and the C target, the Cr layer and the DLC layer are alternately laminated every time the drum makes a full turn. Moreover, the content rate of Cr and carbon or the film thickness of each layer changes with the electric power supplied to a Cr target and a C target. Therefore, it is possible to control the lamination period and the ratio of Cr and carbon by controlling the drum rotation speed and the sputtering power.

表1に示すように、実施例1乃至実施例8では最上層部を形成する際、スパッタ装置の積層周期を0.06nm乃至6nmに設定して成膜を行った。また、比較例1及び比較例2では積層周期を12nmに設定し、成膜を行った。
図4に、比較例1における最上層部(DLC−Cr積層)の走査型電子顕微鏡(SEM)写真を、図5に、実施例3における最上層部(DLC−Cr単層)の走査型電子顕微鏡(SEM)写真をそれぞれ示す。
また図6に、実施例4における最上層部(DLC−Cr積層)の最表面から内部(基材側)に向かって皮膜を徐々にエッチングして除去し、異なるエッチング深さで炭素及びCrの含有率をXPSによって測定した結果を、図7には同じく実施例2(DLC−Cr単層)における結果を、それぞれ示す。
As shown in Table 1, in Examples 1 to 8, when the uppermost layer portion was formed, the deposition period was set to 0.06 nm to 6 nm. Moreover, in Comparative Example 1 and Comparative Example 2, the stacking cycle was set to 12 nm and film formation was performed.
FIG. 4 is a scanning electron microscope (SEM) photograph of the uppermost layer portion (DLC-Cr laminate) in Comparative Example 1, and FIG. 5 is a scanning electron image of the uppermost layer portion (DLC-Cr single layer) in Example 3. A microscope (SEM) photograph is shown respectively.
Also, in FIG. 6, the coating is gradually etched away from the outermost surface of the uppermost layer (DLC-Cr laminate) in Example 4 toward the inside (base material side), and carbon and Cr at different etching depths are removed. The results obtained by measuring the content by XPS are shown in FIG. 7, and the results in Example 2 (DLC-Cr single layer) are also shown.

図4に示すように、DLC層−Cr層の積層周期を12nmに設定した比較例1では、DCL層とCr層が交互に重なる多層構造が得られた。なお、積層周期を6nmに設定した実施例4及び実施例8においても同様の多層構造が得られ、積層周期を6nm以上に設定することにより、Cr層とDLC層が交互に形成される積層構造となることを確認した。
一方、積層周期を6nm未満、例えば2nmに設定した実施例3では、図5に示すように多層構造は見られなかった。これは積層周期を6nm未満に設定すると周期が小さすぎるため、Cr層とDLC層を個別の層として形成するまでに至らず、CrとDLCが混合して層を形成し、Cr含有率が実質的に変化しないCr−DLC単層となったと考えられる。
As shown in FIG. 4, in Comparative Example 1 in which the DLC layer-Cr layer stacking period was set to 12 nm, a multilayer structure in which the DCL layer and the Cr layer overlapped alternately was obtained. Note that the same multilayer structure is obtained in Example 4 and Example 8 in which the stacking period is set to 6 nm, and the stacked structure in which the Cr layer and the DLC layer are alternately formed by setting the stacking period to 6 nm or more. It was confirmed that
On the other hand, in Example 3 in which the lamination period was set to less than 6 nm, for example, 2 nm, no multilayer structure was seen as shown in FIG. This is because when the stacking period is set to less than 6 nm, the period is too small, so the Cr layer and the DLC layer are not formed as separate layers, and the Cr and DLC are mixed to form a layer, and the Cr content is substantially It is thought that it became the Cr-DLC single layer which does not change automatically.

また図7に示すように、設定した積層周期が0.6nmの実施例2においては、エッチング深さに関係なく、炭素とCrの含有率がそれぞれ約90原子%と約10原子%に一定に保たれるとする結果を得た。これはCrとDLCが混合して、Cr−DLC単層が形成されていることを示す結果であった。
一方、図6に示すように、設定した積層周期が6nmの実施例4においては、エッチン
グ深さによって炭素含有率が88〜98原子%の間で、Cr含有率が2〜12原子%の間で、いずれも周期的に変化するという結果を得た。また、炭素の含有率が極大値を取るとき、Crの含有率が極小値を取り、炭素の含有率が極小値を取るときにはCrの含有率が極大値を取るという結果を得た。すなわちこの結果においても、積層周期を6nm以上に設定することにより、最上層部がCr層とDLC層が交互に形成される積層構造を有していることが確認された。
Further, as shown in FIG. 7, in Example 2 where the set lamination period is 0.6 nm, the carbon and Cr contents are kept constant at about 90 atomic% and about 10 atomic%, respectively, regardless of the etching depth. The result that it was kept was obtained. This was a result showing that Cr and DLC were mixed to form a Cr-DLC single layer.
On the other hand, as shown in FIG. 6, in Example 4 in which the set lamination period is 6 nm, the carbon content is between 88 and 98 atomic% and the Cr content is between 2 and 12 atomic% depending on the etching depth. In both cases, the results showed that they change periodically. In addition, when the carbon content takes the maximum value, the Cr content takes the minimum value, and when the carbon content takes the minimum value, the Cr content takes the maximum value. That is, also in this result, it was confirmed that the uppermost layer portion has a laminated structure in which Cr layers and DLC layers are alternately formed by setting the lamination period to 6 nm or more.

図8は、実施例1乃至実施例4及び比較例1において、最上層部を形成するに当たり設定したDLC層−Cr層の積層周期と、摺動部材の表面硬度(多層DLC皮膜の硬度)の関係を示すグラフである。図8に示すように、積層周期6nm付近で最大硬度が得られ、硬度のみの観点を考慮すると、DLC層−Cr層の積層周期を0.6nm〜10nmの範囲に設定することが望ましいとする結果となった。特に積層周期を2〜8nmの範囲とすることにより、20〜23GPaの硬度を得られ、耐摩耗性に優れる摺動部材を得られることから、この数値範囲に最上層部のDLC層−Cr層の積層周期を設定することが望ましい。   FIG. 8 shows the DLC layer-Cr layer stacking cycle and the surface hardness of the sliding member (the hardness of the multilayer DLC film) set in forming the uppermost layer in Examples 1 to 4 and Comparative Example 1. It is a graph which shows a relationship. As shown in FIG. 8, the maximum hardness is obtained in the vicinity of the stacking period of 6 nm, and it is desirable to set the stacking period of the DLC layer-Cr layer in the range of 0.6 nm to 10 nm in view of only the hardness. As a result. In particular, by setting the lamination period in the range of 2 to 8 nm, a hardness of 20 to 23 GPa can be obtained, and a sliding member having excellent wear resistance can be obtained. It is desirable to set the stacking period.

実施例1乃至実施例8並びに比較例1乃至比較例6の摺動部材における多層DLC皮膜に対して、その耐摩耗特性をボールオンディスク装置により評価した。
試験条件は高負荷荷重を想定して面圧1.3GPaとし、ボールはφ6mmの窒化珪素ボール、無潤滑下、回転速度480rpmとした。なお摺動部材の金属基材としてマルテンサイト系ステンレス鋼を採用した。
得られた結果を表3に示す。また表3の結果をグラフ化した図を図9及び図10(図9の縦軸の縮尺を変えたもの)に示す。
The wear resistance characteristics of the multilayer DLC films on the sliding members of Examples 1 to 8 and Comparative Examples 1 to 6 were evaluated by a ball-on-disk device.
The test conditions were set to a surface pressure of 1.3 GPa assuming a high load load, and the ball was a φ6 mm silicon nitride ball, unlubricated, and a rotational speed of 480 rpm. In addition, martensitic stainless steel was adopted as the metal base material of the sliding member.
The obtained results are shown in Table 3. Moreover, the figure which made the result of Table 3 into a graph is shown in FIG.9 and FIG.10 (what changed the scale of the vertical axis | shaft of FIG. 9).

比較例4及び比較例6は、表2に示すようにDLC単層の硬度が38GPaであり、実施例の摺動部材(19〜23GPa、表1参照)や他の比較例の摺動部材と比べて最も高硬度であったが、表3に示すように、比摩耗量が最も大きいとする結果となった。このようにDLC単層はそれ自体が高硬度であっても、高い面圧下では必ずしもよい耐摩耗性を示さないとする結果となった。
一方、実施例1乃至実施例8においては、いずれも比較例よりも一桁以上小さい比摩耗量を示し、例えば実施例4及び実施例8(積層周期:6nm)は、比較例1及び比較例2
(積層周期:12nm)に対して、約3,000倍の比摩耗量を示した。
この結果は、摩耗特性を考慮すると、最上層部のDLC層−Cr層の積層周期を0.06nm〜8nmの範囲に設定することが好ましく、特に積層周期を0.6〜6nmとすることが特に好適であるとする結果となった。
さらに、低硬度DLC層の有無で摩耗特性を比較すると、傾斜層に連続して低硬度DLC層が形成されている実施例6〜実施例8の方が、低硬度DLC層を有しない実施例1〜実施例4と比べていずれも少ない比摩耗量を示し、低硬度DLC層を傾斜層と最上層部の間に設けることの優位性が確認された。
In Comparative Example 4 and Comparative Example 6, as shown in Table 2, the hardness of the DLC single layer is 38 GPa, and the sliding member of Example (19 to 23 GPa, see Table 1) and the sliding member of other comparative examples Although the hardness was the highest in comparison, as shown in Table 3, the specific wear amount was the largest. As described above, even if the DLC single layer itself has a high hardness, the result shows that the DLC single layer does not necessarily exhibit good wear resistance under a high surface pressure.
On the other hand, each of Examples 1 to 8 shows a specific wear amount that is an order of magnitude smaller than that of the comparative example. For example, Example 4 and Example 8 (lamination period: 6 nm) are Comparative Examples 1 and Comparative Example. 2
The specific wear amount was about 3,000 times that of (lamination cycle: 12 nm).
As a result, in consideration of wear characteristics, it is preferable to set the stacking period of the DLC layer-Cr layer as the uppermost layer in a range of 0.06 nm to 8 nm, and it is particularly preferable to set the stacking period to 0.6 to 6 nm. The result was particularly suitable.
Further, when comparing the wear characteristics with and without the low-hardness DLC layer, Examples 6 to 8 in which the low-hardness DLC layer is continuously formed on the inclined layer are examples in which the low-hardness DLC layer is not provided. As compared with Examples 1 to 4, the specific wear amount was small, and the superiority of providing a low hardness DLC layer between the inclined layer and the uppermost layer was confirmed.

本発明にかかる上記多層DLC皮膜を摺動面に形成すれば、金属基材との密着性に優れ、かつ摩耗の少ない、長寿命を達成できる摺動部材が得られる。また、本発明にかかる多層DLC皮膜は、スパッタリングによって形成されるため、被覆する金属基材の種類を問わず、例えば炭素鋼、軸受鋼、ステンレス鋼などの鋼、銅合金、アルミニウム合金、チタン合金など、機械部品に通常使われる幅広い材料を用いて摺動部材を形成できる。   When the multilayer DLC film according to the present invention is formed on a sliding surface, a sliding member that has excellent adhesion to a metal substrate and has little wear and can achieve a long life can be obtained. Moreover, since the multilayer DLC film concerning this invention is formed by sputtering, regardless of the kind of metal base material to coat | cover, steel, such as carbon steel, bearing steel, stainless steel, copper alloy, aluminum alloy, titanium alloy, for example The sliding member can be formed using a wide range of materials usually used for machine parts.

Claims (5)

金属基材の表面に、
Crからなる下地層と、Crと炭素を含む傾斜層と、Crとダイヤモンドライクカーボン(DLC)を含み且つCr含有率が層の厚さに亘って実質的に変化しないCr−DLC単層とからなる多層DLC皮膜、或いは、
Crからなる下地層と、Crと炭素を含む傾斜層と、CrからなるCr層とDLCからなるDLC層とが交互に重なるCr−DLC積層とからなる多層DLC皮膜
を形成してなり、
そして前記傾斜層は、前記金属基材の表面から遠ざかるに従い、Cr含有率が漸減するとともに、炭素含有率が漸増する傾斜組成を有してなる、摺動部材。
On the surface of the metal substrate,
An underlayer made of Cr, a graded layer containing Cr and carbon, and a Cr-DLC single layer containing Cr and diamond-like carbon (DLC) and the Cr content does not vary substantially over the thickness of the layer A multilayer DLC film, or
Forming a multi-layer DLC film composed of a Cr-DLC laminate in which an underlayer made of Cr, a gradient layer containing Cr and carbon, and a Cr layer made of Cr and a DLC layer made of DLC are alternately stacked;
The gradient layer has a gradient composition in which the Cr content gradually decreases and the carbon content gradually increases as the distance from the surface of the metal substrate increases.
前記傾斜層と、前記Cr−DLC単層又は前記Cr−DLC積層との間に、ナノインデンター測定法に従う測定にて20GPa未満の硬さを有する低硬度DLC層をさらに形成してなることを特徴とする、請求項1に記載の摺動部材。 A low-hardness DLC layer having a hardness of less than 20 GPa is further formed between the gradient layer and the Cr-DLC single layer or the Cr-DLC laminate by measurement according to a nanoindenter measurement method. The sliding member according to claim 1, wherein the sliding member is characterized. 前記Cr−DLC単層又は前記Cr−DLC積層が、2〜12原子%のCr含有率を有することを特徴とする、請求項1又は2に記載の摺動部材。 The sliding member according to claim 1 or 2, wherein the Cr-DLC single layer or the Cr-DLC laminate has a Cr content of 2 to 12 atomic%. 前記Cr−DLC積層が、Cr層−DLC層 1周期あたり、6nm以上8nm以下の厚さを有することを特徴とする、請求項1乃至3のうち何れか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein the Cr-DLC stack has a thickness of 6 nm or more and 8 nm or less per one period of the Cr layer-DLC layer. 前記Cr−DLC単層又は前記Cr−DLC積層が、ナノインデンター測定法に従う測定にて20GPa以上の表面硬さを有することを特徴とする、請求項1乃至4のうち何れか一項に記載の摺動部材。 The said Cr-DLC single layer or the said Cr-DLC lamination | stacking has the surface hardness of 20 GPa or more by the measurement according to a nanoindenter measurement method, It is any one of Claims 1 thru | or 4 characterized by the above-mentioned. The sliding member.
JP2012250148A 2012-11-14 2012-11-14 Slide member having multilayer dlc film Pending JP2014098184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250148A JP2014098184A (en) 2012-11-14 2012-11-14 Slide member having multilayer dlc film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250148A JP2014098184A (en) 2012-11-14 2012-11-14 Slide member having multilayer dlc film

Publications (1)

Publication Number Publication Date
JP2014098184A true JP2014098184A (en) 2014-05-29

Family

ID=50940424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250148A Pending JP2014098184A (en) 2012-11-14 2012-11-14 Slide member having multilayer dlc film

Country Status (1)

Country Link
JP (1) JP2014098184A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002948A (en) * 2015-06-05 2017-01-05 株式会社クボタ Slide member and pump
JP2017160899A (en) * 2016-03-08 2017-09-14 儀徴亜新科双環活塞環有限公司 Diamond-like carbon-coating layer for piston ring surface, piston ring and manufacturing process
CN107881469A (en) * 2017-12-25 2018-04-06 深圳先进技术研究院 Diamond-like composite coating and preparation method thereof and purposes and coated tool
CN107881468A (en) * 2017-12-06 2018-04-06 周口师范学院 A kind of micro- drill of printed circuit board (PCB) processing coating and preparation method thereof
CN113862613A (en) * 2021-09-18 2021-12-31 美戈利(浙江)轨道交通研究院有限公司 Amorphous gradient structure superhard DLC (diamond-like carbon) cutter coating and preparation method thereof and cutter
CN114836715A (en) * 2022-03-21 2022-08-02 华南理工大学 Metal surface Cr/CrN/CrCN/Cr-DLC multilayer composite self-lubricating film and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237627A (en) * 1997-02-24 1998-09-08 Sumitomo Electric Ind Ltd Hard carbon coating-coated member
JP2002256415A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Compact with hard multilayer of diamond-like carbon, and manufacturing method therefor
JP2004238695A (en) * 2003-02-07 2004-08-26 Kayaba Ind Co Ltd Dlc coating film
JP2005536267A (en) * 2002-08-21 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cutting member with superlattice coating
JP2006169614A (en) * 2004-12-20 2006-06-29 Toyota Motor Corp Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JP2006247756A (en) * 2005-03-08 2006-09-21 Kayaba Ind Co Ltd Clamp device for tool
JP2007070667A (en) * 2005-09-05 2007-03-22 Kobe Steel Ltd Formed article with hard multilayer film of diamond-like carbon, and production method therefor
JP2008095837A (en) * 2006-10-12 2008-04-24 Ihi Corp Sliding structure and film forming method
JP2010100878A (en) * 2008-10-22 2010-05-06 Nachi Fujikoshi Corp Substantially hydrogen-free low chromium-containing dlc film and sliding component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237627A (en) * 1997-02-24 1998-09-08 Sumitomo Electric Ind Ltd Hard carbon coating-coated member
JP2002256415A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Compact with hard multilayer of diamond-like carbon, and manufacturing method therefor
JP2005536267A (en) * 2002-08-21 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cutting member with superlattice coating
JP2004238695A (en) * 2003-02-07 2004-08-26 Kayaba Ind Co Ltd Dlc coating film
JP2006169614A (en) * 2004-12-20 2006-06-29 Toyota Motor Corp Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JP2006247756A (en) * 2005-03-08 2006-09-21 Kayaba Ind Co Ltd Clamp device for tool
JP2007070667A (en) * 2005-09-05 2007-03-22 Kobe Steel Ltd Formed article with hard multilayer film of diamond-like carbon, and production method therefor
JP2008095837A (en) * 2006-10-12 2008-04-24 Ihi Corp Sliding structure and film forming method
JP2010100878A (en) * 2008-10-22 2010-05-06 Nachi Fujikoshi Corp Substantially hydrogen-free low chromium-containing dlc film and sliding component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002948A (en) * 2015-06-05 2017-01-05 株式会社クボタ Slide member and pump
JP2017160899A (en) * 2016-03-08 2017-09-14 儀徴亜新科双環活塞環有限公司 Diamond-like carbon-coating layer for piston ring surface, piston ring and manufacturing process
CN107881468A (en) * 2017-12-06 2018-04-06 周口师范学院 A kind of micro- drill of printed circuit board (PCB) processing coating and preparation method thereof
CN107881468B (en) * 2017-12-06 2018-12-25 周口师范学院 A kind of printed circuit board processing micro- drill of coating and preparation method thereof
CN107881469A (en) * 2017-12-25 2018-04-06 深圳先进技术研究院 Diamond-like composite coating and preparation method thereof and purposes and coated tool
CN107881469B (en) * 2017-12-25 2023-11-14 深圳先进技术研究院 Diamond-like composite coating, preparation method and application thereof and coated tool
CN113862613A (en) * 2021-09-18 2021-12-31 美戈利(浙江)轨道交通研究院有限公司 Amorphous gradient structure superhard DLC (diamond-like carbon) cutter coating and preparation method thereof and cutter
CN114836715A (en) * 2022-03-21 2022-08-02 华南理工大学 Metal surface Cr/CrN/CrCN/Cr-DLC multilayer composite self-lubricating film and preparation method thereof

Similar Documents

Publication Publication Date Title
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
JP2014098184A (en) Slide member having multilayer dlc film
JP6854241B2 (en) Cutting tools with multi-layer PVD coating
JP5393108B2 (en) Manufacturing method of hard multilayer film molded body
CN104508171B (en) Coat system, the matrix of coating and the method with coat system coating matrix surface
JP6297049B2 (en) Component having coating and method for manufacturing the same
JP5920681B2 (en) Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof
WO2010050542A1 (en) Hard multilayer film formed body and method for manufacturing same
JP2007070667A (en) Formed article with hard multilayer film of diamond-like carbon, and production method therefor
WO2015064538A1 (en) Piston ring and method for manufacturing same
JP5592625B2 (en) Hard film forming method and hard film
CN106544631A (en) A kind of chromium carbide multi-gradient composite coating of matrix surface and preparation method thereof
WO2019098363A1 (en) Coated cutting tool
JP6339784B2 (en) piston ring
JP2008024996A (en) Diamond-like carbon laminated coating film member and method of manufacturing the same
JP2008001951A (en) Diamond-like carbon film and method for forming the same
Liu et al. Wear performance of Y-doped nanolayered CrN/AlN coatings
JP2009035584A (en) Sliding member
Lee et al. Effects of substrate bias frequencies on the characteristics of chromium nitride coatings deposited by pulsed DC reactive magnetron sputtering
JP5592626B2 (en) Hard film forming method and hard film
JP5226826B2 (en) Method for producing diamond-like carbon hard multilayer film molded body
JP2013087325A (en) Hard carbon film, and method for forming the same
JP6298019B2 (en) Manufacturing method of sliding member
JP2018053307A (en) Slide member and method of manufacturing the same
WO2016111288A1 (en) Diamond-like carbon layered laminate and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151209