WO2016111288A1 - Diamond-like carbon layered laminate and method for manufacturing same - Google Patents

Diamond-like carbon layered laminate and method for manufacturing same Download PDF

Info

Publication number
WO2016111288A1
WO2016111288A1 PCT/JP2016/050115 JP2016050115W WO2016111288A1 WO 2016111288 A1 WO2016111288 A1 WO 2016111288A1 JP 2016050115 W JP2016050115 W JP 2016050115W WO 2016111288 A1 WO2016111288 A1 WO 2016111288A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon
dlc
substrate
diamond
Prior art date
Application number
PCT/JP2016/050115
Other languages
French (fr)
Japanese (ja)
Inventor
弘高 伊藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2016111288A1 publication Critical patent/WO2016111288A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only

Definitions

  • the present invention relates to a diamond-like carbon layer laminate and a method for producing the same.
  • the present invention relates to a laminate in which a diamond-like carbon layer is formed on a metal substrate with good adhesion.
  • the “diamond-like carbon layer” may be referred to as a DLC (Diamond Like Carbon) layer.
  • the “diamond-like carbon layer laminate” may be referred to as “DLC layer laminate” or simply “laminate”.
  • the DLC layer is applied in various fields including automobiles, machine parts, and medical devices.
  • the DLC layer has particularly low adhesion to a metal substrate, it is easy to peel off even if directly formed on the metal substrate and lacks practicality.
  • the metal substrate is simply referred to as “substrate”.
  • an intermediate layer is formed between the base material and the DLC layer in order to ensure adhesion with the base material.
  • a base layer-side first layer made of Cr and / or Al metal, and an outermost surface layer made of an amorphous layer containing Cr and / or Al metal and carbon.
  • An intermediate layer having a two-layer structure composed of a second layer on the side has been proposed.
  • Patent Document 2 as the intermediate layer, a first layer on the substrate side made of one or more metal layers selected from the group consisting of W, Ta, Mo and Nb, and W, Ta, Mo and Nb An intermediate layer having a two-layer structure composed of a second layer on the outermost surface layer side composed of an amorphous layer containing one or more metal elements selected from the group and carbon is proposed.
  • Patent Document 3 proposes an intermediate layer having a four-layer structure in which the following four layers (1) to (4) are formed in the described order from the base material side to the outermost surface layer side as the intermediate layer. ing.
  • First layer made of a metal layer of Cr and / or Al
  • Mixed layer of a metal of Cr and / or Al and one or more metals selected from the group consisting of W, Ta, Mo and Nb
  • the second layer (3) consisting of W, Ta, Mo and Nb selected from the group consisting of one or more metal layers (4) selected from the group consisting of W, Ta, Mo and Nb
  • a fourth layer comprising an amorphous layer containing one or more metals and carbon
  • Japanese Unexamined Patent Publication No. 2002-256415 Japanese Unexamined Patent Publication No. 2000-119843 Japanese Unexamined Patent Publication No. 2003-171758
  • the present invention has been made paying attention to the circumstances as described above, and its purpose is high adhesion between the base material and the DLC layer, particularly when the use environment is severe as described above or when the DLC layer is thick. Even so, the object is to realize a diamond-like carbon layer laminate that has high adhesion between the substrate and the DLC layer and that can be formed with high productivity without a complicated structure.
  • adheresion between the substrate and the DLC layer may be simply referred to as “adhesion”.
  • the diamond-like carbon layer laminate of the present invention that has solved the above problems is a laminate in which a diamond-like carbon layer is formed on a base material via an intermediate layer, and the intermediate layer comprises the base
  • the first layer provided on the material and the second layer provided on the first layer, the substrate is made of metal
  • the first layer is made of Cr
  • the second layer is made of Cr.
  • the ratio of carbon to the total of Cr and carbon is 80 atomic% or less.
  • the ratio of carbon to the total of Cr and carbon on the surface in contact with the diamond-like carbon layer of the second layer is preferably 40 atom% or more and 80 atom% or less.
  • the film thickness of the intermediate layer is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • the present invention also includes a sliding member provided with the diamond-like carbon layer laminate.
  • the present invention includes a method for producing the diamond-like carbon layer laminate.
  • the manufacturing method is characterized in that the intermediate layer is formed by a PVD method and the diamond-like carbon layer is formed by a PVD method or a CVD method.
  • a DLC layer laminate having a high adhesion between the substrate and the DLC layer, particularly when the use environment is severe or the DLC layer is thick, Can be provided.
  • This DLC layer laminate can be formed with high productivity since the intermediate layer is not a complicated structure as in Patent Document 3.
  • the present inventor conducted intensive studies to obtain a molded article having excellent adhesion between the base material and the DLC layer even in a severe use environment or when the DLC layer is thickened. Many techniques for providing a composition gradient layer between a substrate and a DLC layer have been proposed so far in order to improve adhesion. However, the present inventor refocused on the composition of the composition gradient layer and studied to further improve the adhesion between the substrate and the DLC layer.
  • the intermediate layer of the present invention has a laminated structure comprising a first layer provided on a substrate and a second layer provided on the first layer.
  • the first layer is made of Cr
  • the second layer is made of Cr and carbon.
  • the second layer has a composition gradient structure in which carbon increases from the base material side toward the DLC layer side and Cr decreases.
  • the bonding force with Cr constituting the first layer can be increased at the interface with the first layer, and the bonding force with the DLC layer at the interface with the DLC layer. Can be increased. Specifically, by setting the surface of the second layer in contact with the first layer to Cr 100 atomic%, a high bonding strength with the first layer can be obtained, that is, high adhesion with the metal substrate can be obtained. Further, as described above, the composition gradient structure in which carbon increases and Cr decreases as it goes from the substrate side to the DLC layer side increases affinity with the DLC layer.
  • the interface between the intermediate layer and the DLC layer is not increased to 100 atomic% of carbon, but the ratio of carbon to the total of Cr and carbon is suppressed to 80 atomic% or less.
  • the ratio of carbon to the total of Cr and carbon may be simply referred to as “carbon ratio”.
  • the reason why the adhesiveness is increased by suppressing the carbon ratio in this way is not clear enough, but can be considered as follows from the results of Examples described later. That is, when the carbon ratio is higher than 80 atomic%, there is no problem with the bonding force with the DLC layer, but a portion with low hardness is easily formed. For example, when used at a large surface pressure, cracks are likely to occur in the low hardness portion, and as a result, the DLC layer is likely to be peeled off.
  • the carbon ratio is preferably 75 atomic percent or less, and more preferably 70 atomic percent or less.
  • the carbon ratio is preferably 40 atomic% or more.
  • the carbon ratio is more preferably 45 atomic% or more, further preferably 50 atomic% or more, and still more preferably 55 atomic% or more.
  • middle layer becomes like this.
  • it is 0.01 micrometer or more, More preferably, it is 0.03 micrometer or more.
  • the thickness of the first layer is preferably 0.4 ⁇ m or less, more preferably 0.3 ⁇ m or less from the viewpoint of suppressing deformation in a high surface pressure environment. is there.
  • the film thickness of the second layer is preferably 0.02 ⁇ m or more, more preferably 0.1 ⁇ m or more, from the viewpoint of ensuring adhesion with the DLC layer.
  • the film thickness is thinner than 0.02 ⁇ m, the gradient of the gradient composition becomes steep, and cracks are generated starting from the gradient composition layer having a steep composition gradient, which may lead to peeling of the DLC layer.
  • the second layer since the second layer has an inclined structure, if the film thickness becomes too thick, the soft layer containing a large amount of Cr may increase and deform in a high surface pressure environment.
  • the thickness of the second layer is preferably 0.8 ⁇ m or less, and more preferably 0.6 ⁇ m or less.
  • the total film thickness of the first layer and the second layer that is, the film thickness of the intermediate layer is preferably in the range of 0.05 ⁇ m to 1.0 ⁇ m.
  • the film thickness is more preferably 0.10 ⁇ m or more, and still more preferably 0.20 ⁇ m or more.
  • the proportion of the intermediate layer made of a Cr layer or a Cr—C gradient composition layer having a lower hardness than the DLC layer tends to increase.
  • cracks may occur starting from this thick intermediate layer, which may lead to peeling of the DLC layer.
  • the film thickness is preferably 1.0 ⁇ m or less, more preferably 0.80 ⁇ m or less, and still more preferably 0.75 ⁇ m or less.
  • the total film thickness of the first layer and the second layer is referred to as “intermediate film thickness”.
  • DLC layer The present invention does not define the specific composition of the DLC layer, and various DLC layers can be used.
  • aC H which is amorphous hydrogenated carbon
  • aC which is amorphous carbon
  • ta-C H which is hydrogenated tetrahedral amorphous carbon
  • ta-C which is tetrahedral amorphous carbon
  • a DLC layer having a laminated structure of any two or more of the above can be used.
  • the DLC layer of the present invention may contain one or more elements X other than carbon and hydrogen in order to control the friction coefficient and wear resistance.
  • elements X include B, N, O, F, Al, Si, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, and Ru.
  • Ag, Sn, Sb, Ta, W, Ir, Pt, Au, Pb, Bi, etc. may be used alone or in combination of two or more, for example, within a range of 30 atomic% or less of the entire DLC layer.
  • the film thickness of the DLC layer is not particularly limited, and can be, for example, 0.5 ⁇ m or more and 50.0 ⁇ m or less. As described above, according to the configuration of the present invention, even when a relatively thick DLC layer is formed, the adhesion between the DLC layer and the substrate is excellent.
  • the thickness of the DLC layer is preferably 1.5 ⁇ m or more, more preferably 1.8 ⁇ m or more, and further preferably 2.0 ⁇ m or more. Thus, even when the film thickness of the DLC layer is thick, excellent adhesion to the substrate can be maintained, and the effects such as wear resistance of the DLC layer are fully exhibited. Of course, an extremely thin film can be formed as the DLC layer.
  • a low hardness layer may be provided as the conforming layer.
  • the low-hardness layer include a low-hardness DLC layer and a DLC layer containing the element X as described above.
  • the substrate is not particularly limited as long as it is a metal.
  • carbon steel for machine structure, alloy steel for structure, tool steel including high speed steel HSS, bearing steel, stainless steel, cast iron and the like can be used as the iron base material.
  • metals other than iron-based metals Al, Ti, Cu pure metals and alloys; W pure metals and alloys; WC-based cemented carbides can be used.
  • the substrate may be subjected to carburizing treatment, nitriding treatment, anodizing treatment, plating treatment, or the like in order to increase the strength of the substrate.
  • the present invention also includes a sliding member provided with the DLC layer laminate. It suffices that the DLC layer laminate of the present invention is provided on at least the sliding surface of the sliding member.
  • the DLC layer laminate of the present invention can be suitably used for various parts such as molds, cutting tools, wear-resistant mechanical parts, magnetic / optical parts and the like in addition to the sliding members.
  • the DLC layer laminate of the present invention is characterized in that the intermediate layer is formed by a PVD (Physical Vapor Deposition) method, and the DLC layer is formed by a PVD method or a CVD (Chemical Vapor Deposition) method.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • a substrate is prepared as an object to be processed, and is subjected to various cleaning processes such as degreasing, ultrasonic cleaning with acetone, ethanol, and the like, and drying of a cleaning liquid. Thereafter, the substrate is mounted in a vacuum chamber of the film forming apparatus, and evacuation is performed as necessary.
  • the degree of vacuum is preferably evacuated to a level of 10 ⁇ 2 Pa or less from the viewpoint of preventing the mixing of impurity components. However, depending on the object to be processed, the influence of impurities may not be considered. Not required.
  • ⁇ Ar ion bombardment is performed to clean moisture adsorbed on the surface of the metal substrate and components remaining in the cleaning process, such as impurities derived from rust preventive oil.
  • a step of heating the inside of the chamber or between 100 to 1200 ° C. may be provided in order to evaporate the moisture adsorbed on the inside of the chamber or the substrate surface.
  • the inert gas for bombardment is cheap and easily available Ar gas.
  • the purity of Ar gas is preferably 99.9% or more, but there is no problem even if it is less than that.
  • Ar gas is introduced into the vacuum chamber and waits until the gas pressure reaches a predetermined pressure of 0.2 Pa to 4 Pa. The pressure can be arbitrarily changed. After reaching a predetermined pressure, by applying a current of 2 to 20 A from an external power source to the tungsten filament installed in the vacuum chamber, the tungsten filament becomes red hot and emits thermoelectrons. Ar ions are ionized by collision of the thermal electrons with Ar gas.
  • the ionized argon is drawn into the substrate when a negative voltage is applied to the substrate, and the argon ion strikes the substrate surface to clean the substrate surface.
  • the above description is a method when a normal DC (Direct Current) voltage or a pulsed DC voltage is applied to the substrate.
  • the effect of argon ion bombardment on the substrate is enhanced, while a positive bias is applied to the other substrate, and the surface is modified by electron irradiation.
  • the surface is activated by electron beam irradiation to become a highly reactive surface. That is, according to this method, the substrate surface cleaning and modification effects can be sufficiently enhanced.
  • the negative bias and the positive bias described above are alternately applied, and the cleaning and reforming effects on the substrate surface are accelerated.
  • the above effect can be obtained by applying the applied voltage within the range of the power supply set value of 350V to 1600V.
  • middle layer is formed by PVD method as above-mentioned. This is because the Cr layer as the first layer cannot be formed by a CVD method in which a gas is decomposed to form a film. It is effective to use a Cr target having a purity of 99% or more for forming the Cr layer.
  • a sputtering method including an unbalanced magnetron sputtering (UBMS) method, an arc ion plating (AIP) method, a vacuum deposition method, or the like.
  • the gradient composition layer as the second layer can be formed by the following method.
  • a Cr target as the target and introducing a hydrocarbon gas such as methane, acetylene, benzene, toluene, etc. as the film forming gas, and gradually increasing the amount of introduction
  • the Cr—C gradient composition The method of forming a layer is mentioned.
  • a Cr target and a C target are used as targets.
  • Ar gas is used as an atmospheric gas, and the film formation rate of Cr is reduced.
  • a method of increasing the film formation rate of carbon specifically, for example, increasing the input power of the carbon target.
  • a film forming method using a Cr target and a C target as targets and also using a hydrocarbon gas as a carbon supply source can be considered. As described above, it is effective to use a Cr target having a purity of 99% or more as the Cr target.
  • the target component can be effectively adhered to the substrate by applying a negative bias to the substrate by a bias power source.
  • the density of the film can be controlled by controlling the bias voltage. Since the dense film has high deformation resistance, the possibility of breaking when an external force is applied is reduced. That is, adhesion is also improved.
  • the negative bias voltage is preferably smaller than ⁇ 40V, that is, a value having a large absolute value. On the other hand, if the value is smaller than ⁇ 1000 V, the effect of the bias is too strong, and the formed intermediate layer is easily etched, and the deposition rate is extremely reduced. As a result, the adhesion tends to decrease. Therefore, it is preferable that the negative bias voltage is larger than ⁇ 1000 V, that is, a value having an absolute value smaller than ⁇ 1000 V.
  • the film formation conditions of the first layer and the second layer can be as follows. That is, the substrate temperature can be in the range of room temperature to 200 ° C.
  • the total pressure can be in the range of 0.1 to 5.0 Pa, and the partial pressure can be adjusted so that the amount ratio of Ar is in the range of 100 to 30%.
  • the power applied to the target can be in the range of 0.1 to 5.0 kW.
  • Either the PVD method or CVD method may be sufficient as the formation method of a DLC layer.
  • the PVD method an AIP method, a sputtering method, or the like can be used.
  • a DLC layer not containing hydrogen can be formed.
  • a DLC layer containing hydrogen can be formed by introducing a hydrocarbon gas during film formation.
  • a target containing the element can be used.
  • a DLC layer is formed by decomposing the hydrocarbon gas by applying a voltage or electric power to the base material with the hydrocarbon gas as a main component and decomposing the hydrocarbon gas.
  • Any of DC, pulsed DC, and AC (Alternating Current) may be used as a method for applying voltage or power to the substrate.
  • a gas containing silicon, various metal components, or oxides thereof can be used. .
  • Examples of film forming conditions for forming by the CVD method include the following conditions.
  • the substrate temperature can be in the range of room temperature to 200 ° C. In general, the substrate is not heated, and the substrate is not heated in the examples described later, but the substrate temperature can rise to, for example, about 50 to 200 ° C. during film formation. However, when the substrate temperature exceeds 250 ° C., DLC softening occurs, which is not preferable.
  • the total pressure during film formation by the CVD method can be in the range of 0.5 to 20 Pa. Increasing the total pressure increases the film formation rate, but tends to cause problems such as a decrease in hardness and an increase in surface roughness.
  • the partial pressure may be adjusted so that the hydrocarbon gas such as acetylene and methane is in the range of 100 to 30%, and the rest is an inert gas such as Ar. When an inert gas is contained, the film formation rate decreases but the hardness tends to increase. On the other hand, an excessive amount of inert gas is not preferable because the film forming rate is extremely lowered.
  • the applied voltage during film formation by the CVD method can be in the range of 500V to 2000V. If this applied voltage is too low, plasma is not generated. On the other hand, if it is too high, abnormal discharge occurs frequently and the plasma is not stable.
  • the substrate temperature can be in the range of room temperature to 200 ° C. In general, the substrate is not heated, and the substrate is not heated in the examples described later, but the substrate temperature can rise to, for example, about 50 to 200 ° C. during film formation. However, when the substrate temperature exceeds 250 ° C., DLC softening occurs, which is not preferable.
  • the total pressure during film formation by the PVD method can be in the range of 0.1 to 2.0 Pa.
  • the partial pressure may be adjusted so that the amount ratio of Ar is in the range of 50% or more and less than 100%. More preferable conditions include, for example, a total pressure of 1.0 Pa, a hydrocarbon gas such as methane of 1 to 10% and the balance of Ar.
  • the voltage applied to the target during film formation by the PVD method can be 0.1 to 5.0 kW.
  • the negative bias voltage applied to the substrate can be in the range of 50 to 400 V in absolute value. By increasing the absolute value of this negative bias voltage, the hardness of the film can be increased and the wear resistance can be increased. On the other hand, if the absolute value of the negative bias voltage is too high, an etching effect occurs and the film formation rate tends to be extremely reduced.
  • the arc current can be in the range of 10 to 100 A, and the Ar gas can be in the range of 0 to 100%.
  • the intermediate layer was formed using an unbalanced magnetron sputtering apparatus manufactured by Kobe Steel, Ltd., trade name: UBMS202.
  • the substrate used was JIS SKH51 with a mirror polished surface and an HRC of 65.
  • the substrate was introduced into the chamber and then evacuated to 1 ⁇ 10 ⁇ 3 Pa or less. Thereafter, moisture in the chamber was removed by heat treatment at 300 ° C. for 10 minutes.
  • Ar ion bombardment for cleaning the substrate surface was performed using a DC power source or an AC power source under the following conditions. Ar ion bombardment conditions Ar gas purity: 99.9% Gas pressure: 1.0Pa Tungsten filament current: When using 5 ADC power supply Power supply: Kyosan Seisakusho HPK03ZI Bias voltage: -200 VAC when using power supply Power: Huttinger Tru-Plasma MF3010 Bias voltage: -200V
  • the intermediate layer was formed by a UBMS method using a Cr target with a purity of 99.9% and a C target with a purity of 99.9%.
  • Argon gas is used as the process gas and acetylene gas as the hydrocarbon-based gas.
  • argon gas is used, and when forming the carbon-containing layer, a mixed gas of argon gas and acetylene gas is placed in the chamber. Introduced.
  • the substrate temperature during film formation of the first layer and the second layer was 100 ° C., the total gas pressure was 1.0 Pa, and the substrate bias was constant at ⁇ 200V.
  • a power of 2.0 kW was applied to the Cr target to discharge it, and a Cr layer as the first layer was formed.
  • the voltage applied to the Cr target was decreased, and at the same time, the voltage applied to the C target was increased to 2.0 kW.
  • the Cr—C gradient composition layer as the second layer was formed by changing the flow ratio of argon gas and acetylene gas to control the ratio of Cr and carbon in the intermediate layer.
  • the film thickness of the intermediate layer was adjusted by the film formation time.
  • a DLC layer was formed.
  • a DLC layer having a film thickness shown in Table 1 was formed by a CVD method or a UBMS method as a PVD method.
  • the CVD method methane as a hydrocarbon gas is introduced into the chamber so that the total pressure becomes 2.0 Pa, 900 V is applied to the substrate holder from a pulsed DC power source manufactured by Kyosan Seisakusho, and the components of the hydrocarbon gas was decomposed to form a DLC film.
  • the PVD method specifically, the UBMS method, a power of 2.0 kW is applied to the carbon target, a mixed gas of methane and Ar is used as a process gas, the total pressure is 1.0 Pa, the negative bias voltage is 100 V, and the above DLC films having various film thicknesses shown in Table 1 were formed under the conditions of 5% methane and the balance Ar.
  • the component composition of the gradient composition layer of the second layer was determined from the depth profile of the AES (Atomic Emission Spectroscopy) method.
  • the carbon ratio at the interface of the DLC layer in the second layer was determined from the boundary with the DLC layer of the second layer.
  • Adhesion was performed by a peel determination test shown in the standard VDI3198 of the German Engineers Association. Specifically, the C scale evaluation of the Rockwell test, that is, a diamond cone having a tip angle of 120 degrees was driven at a load of 150 kg. And the peeling
  • Table 1 shows the following. No. 1 to 8 are configurations of the first layer and the second layer in the intermediate layer, the film thickness of the intermediate layer, the film formation method of the DLC layer, and the film thickness of the DLC layer, and the inclination of the second layer in the intermediate layer
  • the composition is changed.
  • no. In 1 and 2 the carbon ratio at the interface of the DLC layer of the second layer exceeded 80 atomic%, and thus the adhesion decreased.
  • no. 1 is an example in which the carbon concentration is increased from 0 atomic% on the substrate side to 100 atomic% on the DLC layer side, which is recommended in Patent Document 1 and Patent Document 2, but excellent adhesion is obtained in this example. There wasn't.
  • No. 7 and 8 are examples in which the carbon ratio at the DLC layer interface of the second layer is too small, in other words, the amount of Cr is too large. In this case, it is considered that the bond strength with the carbon constituting the DLC layer is weakened, the interface strength between the DLC and the second layer in the intermediate layer is weakened, and the adhesion is lowered.
  • No. 9 to 14 are the configurations of the first layer and the second layer in the intermediate layer, the gradient composition of the second layer in the intermediate layer, the film forming method of the DLC layer, and the film thickness of the DLC layer. This is an example in which only is changed. Of these examples, no. No. 9 was a gradient composition layer with a steep composition gradient because the intermediate layer was too thin, and good adhesion could not be obtained. This No. In No. 9, it is considered that cracks occurred starting from the steep gradient composition layer. On the other hand, no. No. 14, because the film thickness of the intermediate layer was too thick, good adhesion could not be obtained. This No. No. 14, it is considered that peeling occurred from the inside of the thick intermediate layer.
  • No. 15 to 18 are examples in which the thickness of the DLC layer is changed while the composition of the first layer and the second layer in the intermediate layer, the gradient composition of the second layer in the intermediate layer, and the thickness of the intermediate layer are made constant. is there.
  • No. 15 shows the result of forming the DLC layer by the UBMS method which is a kind of PVD method. From these results, it was found that good adhesion can be obtained even when the film forming method and film thickness of the DLC layer are changed.
  • No. No. 19 is an example in which the second layer in the intermediate layer is not a gradient composition but a single composition of Cr—C. In this way, when the inclined structure was not formed in the intermediate layer, the adhesion was remarkably lowered.
  • No. 20 is an example in which a laminated film is formed in the same manner as in the present invention except that tungsten is used instead of Cr. In this case, since the strength of the interface between tungsten and the substrate is insufficient, it is considered that the adhesiveness has decreased.
  • the DLC layer laminate of the present invention is useful as various parts such as sliding members, molds, cutting tools, wear-resistant mechanical parts, magnetic / optical parts, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention pertains to a laminate in which a DLC layer is formed on a metallic substrate with an intermediate layer therebetween, wherein the intermediate layer comprises a first layer and a second layer in that order from the substrate, the first layer is made of Cr, and the second layer is made of Cr and carbon. Furthermore, the intermediate layer has a composition gradient structure in which carbon content increases and Cr content decreases from the substrate toward the DLC layer, and the ratio of carbon to the sum of Cr and carbon at the surface of the second layer contacting the DLC layer is 80 at% or less.

Description

ダイヤモンドライクカーボン層積層体およびその製造方法Diamond-like carbon layer laminate and manufacturing method thereof
 本発明は、ダイヤモンドライクカーボン層積層体およびその製造方法に関する。特には、金属基材上にダイヤモンドライクカーボン層が密着性良く形成された積層体に関する。尚、以下では、前記「ダイヤモンドライクカーボン層」をDLC(Diamond Like Carbon)層という場合がある。また前記「ダイヤモンドライクカーボン層積層体」を「DLC層積層体」または単に「積層体」ということがある。 The present invention relates to a diamond-like carbon layer laminate and a method for producing the same. In particular, the present invention relates to a laminate in which a diamond-like carbon layer is formed on a metal substrate with good adhesion. Hereinafter, the “diamond-like carbon layer” may be referred to as a DLC (Diamond Like Carbon) layer. Further, the “diamond-like carbon layer laminate” may be referred to as “DLC layer laminate” or simply “laminate”.
 ダイヤモンドライクカーボンは硬く、かつ摩擦係数の低い材料であるため、耐久性に優れると共に、フリクションロスを低減できる。よってDLC層は、自動車、機械部品、医療用具を始めとした種々の分野で適用されている。一方、前記DLC層は、特に金属基材との密着性が低いため、金属基材に直接形成しても剥離しやすく実用性に欠ける。以下、金属基材を単に「基材」という。 Since diamond-like carbon is a hard material with a low coefficient of friction, it has excellent durability and can reduce friction loss. Therefore, the DLC layer is applied in various fields including automobiles, machine parts, and medical devices. On the other hand, since the DLC layer has particularly low adhesion to a metal substrate, it is easy to peel off even if directly formed on the metal substrate and lacks practicality. Hereinafter, the metal substrate is simply referred to as “substrate”.
 そのために実用性を考慮して、基材との密着性を確保すべく、該基材と前記DLC層との間に中間層を形成することが行われている。例えば特許文献1には、前記中間層として、Crおよび/またはAlの金属からなる基材側の第1層と、Crおよび/またはAlの金属と炭素を含む非晶質層からなる最表面層側の第2層からなる2層構造の中間層が提案されている。 Therefore, in consideration of practicality, an intermediate layer is formed between the base material and the DLC layer in order to ensure adhesion with the base material. For example, in Patent Document 1, as the intermediate layer, a base layer-side first layer made of Cr and / or Al metal, and an outermost surface layer made of an amorphous layer containing Cr and / or Al metal and carbon. An intermediate layer having a two-layer structure composed of a second layer on the side has been proposed.
 特許文献2には、前記中間層として、W,Ta,MoおよびNbよりなる群から選択される1種以上の金属層からなる基材側の第1層と、W,Ta,MoおよびNbよりなる群から選択される1種以上の金属元素と炭素を含む非晶質層からなる最表面層側の第2層からなる2層構造である中間層が提案されている。 In Patent Document 2, as the intermediate layer, a first layer on the substrate side made of one or more metal layers selected from the group consisting of W, Ta, Mo and Nb, and W, Ta, Mo and Nb An intermediate layer having a two-layer structure composed of a second layer on the outermost surface layer side composed of an amorphous layer containing one or more metal elements selected from the group and carbon is proposed.
 特許文献3には、前記中間層として、下記(1)~(4)の4層が基材側から最表面層側に向けて該記載順序で形成された4層構造の中間層が提案されている。
(1)Crおよび/またはAlの金属層からなる第1層
(2)Crおよび/またはAlの金属と、W,Ta,MoおよびNbよりなる群から選択される1種以上の金属の混合層からなる第2層
(3)W,Ta,MoおよびNbよりなる群から選択される1種以上の金属層からなる第3層
(4)W,Ta,MoおよびNbよりなる群から選択される1種以上の金属と炭素を含む非晶質層からなる第4層
Patent Document 3 proposes an intermediate layer having a four-layer structure in which the following four layers (1) to (4) are formed in the described order from the base material side to the outermost surface layer side as the intermediate layer. ing.
(1) First layer made of a metal layer of Cr and / or Al (2) Mixed layer of a metal of Cr and / or Al and one or more metals selected from the group consisting of W, Ta, Mo and Nb The second layer (3) consisting of W, Ta, Mo and Nb selected from the group consisting of one or more metal layers (4) selected from the group consisting of W, Ta, Mo and Nb A fourth layer comprising an amorphous layer containing one or more metals and carbon
日本国特開2002-256415号公報Japanese Unexamined Patent Publication No. 2002-256415 日本国特開2000-119843号公報Japanese Unexamined Patent Publication No. 2000-119843 日本国特開2003-171758号公報Japanese Unexamined Patent Publication No. 2003-171758
 上記の通り、基材とDLC層の密着性確保のために種々の中間層が提案されている。特許文献1や特許文献2に記載の中間層を形成してもある程度の密着性は確保できる。しかし、使用環境が厳しい状況、例えば高い面圧で使用する場合;やDLC層を厚くし、その結果、DLC層の内部応力が大きくなった場合;には、密着性が不足し、DLC層が剥離する場合がある。また特許文献3の中間層は、上記DLC層が厚い場合でも使用できるように提案された皮膜であるが、複雑な構造であるため、生産性の観点から改善が必要であると思われる。 As described above, various intermediate layers have been proposed to ensure adhesion between the substrate and the DLC layer. Even if the intermediate layer described in Patent Document 1 or Patent Document 2 is formed, a certain degree of adhesion can be secured. However, when the usage environment is severe, for example, when the surface is used at a high surface pressure; or when the DLC layer is thickened and as a result, the internal stress of the DLC layer becomes large; May peel. In addition, the intermediate layer of Patent Document 3 is a film that has been proposed so that it can be used even when the DLC layer is thick. However, since it has a complicated structure, it seems that improvement is necessary from the viewpoint of productivity.
 本発明は上記の様な事情に着目してなされたものであって、その目的は、基材とDLC層の密着性が高く、特には上述の通り使用環境が厳しい場合やDLC層が厚い場合であっても基材とDLC層の密着性が高く、かつ複雑な構造を有さず生産性よく形成することのできるダイヤモンドライクカーボン層積層体を実現することにある。以下「基材とDLC層の密着性」を単に「密着性」ということがある。 The present invention has been made paying attention to the circumstances as described above, and its purpose is high adhesion between the base material and the DLC layer, particularly when the use environment is severe as described above or when the DLC layer is thick. Even so, the object is to realize a diamond-like carbon layer laminate that has high adhesion between the substrate and the DLC layer and that can be formed with high productivity without a complicated structure. Hereinafter, “adhesion between the substrate and the DLC layer” may be simply referred to as “adhesion”.
 前記課題を解決し得た本発明のダイヤモンドライクカーボン層積層体は、基材上に、ダイヤモンドライクカーボン層が、中間層を介して形成された積層体であって、前記中間層は、前記基材上に設けられた第1層と、該第1層上に設けられた第2層とからなり、前記基材は金属からなり、前記第1層はCrからなり、前記第2層はCrと炭素とからなり、前記基材側から前記ダイヤモンドライクカーボン層側に向かって炭素が増加するとともにCrが減少する組成傾斜構造を有し、かつ該第2層のダイヤモンドライクカーボン層と接する面の、Crと炭素の合計に対する炭素の割合が80原子%以下であるところに特徴を有する。 The diamond-like carbon layer laminate of the present invention that has solved the above problems is a laminate in which a diamond-like carbon layer is formed on a base material via an intermediate layer, and the intermediate layer comprises the base The first layer provided on the material and the second layer provided on the first layer, the substrate is made of metal, the first layer is made of Cr, and the second layer is made of Cr. Of the surface in contact with the diamond-like carbon layer of the second layer, and having a composition gradient structure in which Cr increases and Cr decreases from the base material side toward the diamond-like carbon layer side. The ratio of carbon to the total of Cr and carbon is 80 atomic% or less.
 前記第2層のダイヤモンドライクカーボン層と接する面の、Crと炭素の合計に対する炭素の割合は、40原子%以上80原子%以下であることが好ましい。  The ratio of carbon to the total of Cr and carbon on the surface in contact with the diamond-like carbon layer of the second layer is preferably 40 atom% or more and 80 atom% or less.
 前記中間層の膜厚は、0.05μm以上1.0μm以下であることが好ましい。  The film thickness of the intermediate layer is preferably 0.05 μm or more and 1.0 μm or less.
 本発明には、前記ダイヤモンドライクカーボン層積層体を備えた摺動部材も含まれる。  The present invention also includes a sliding member provided with the diamond-like carbon layer laminate.
 本発明には、前記ダイヤモンドライクカーボン層積層体の製造方法も含まれる。該製造方法は、前記中間層をPVD法で形成し、かつ前記ダイヤモンドライクカーボン層をPVD法またはCVD法で形成するところに特徴を有する。 The present invention includes a method for producing the diamond-like carbon layer laminate. The manufacturing method is characterized in that the intermediate layer is formed by a PVD method and the diamond-like carbon layer is formed by a PVD method or a CVD method.
 本発明によれば、基材とDLC層の密着性が高い、特には使用環境が厳しい場合やDLC層が厚い場合であっても、基材とDLC層の密着性が高いDLC層積層体を提供できる。このDLC層積層体は、中間層が特許文献3の様な複雑な構造でないため、生産性よく形成することができる。 According to the present invention, a DLC layer laminate having a high adhesion between the substrate and the DLC layer, particularly when the use environment is severe or the DLC layer is thick, Can be provided. This DLC layer laminate can be formed with high productivity since the intermediate layer is not a complicated structure as in Patent Document 3.
 本発明者は、厳しい使用環境下や、DLC層を厚くした場合においても、基材とDLC層の密着性に優れた成形体を得るべく鋭意研究を重ねた。これまでにも、密着性向上のために基材とDLC層の間に組成傾斜層を設ける技術は多数提案されてきた。しかし本発明者はあらためて組成傾斜層の組成に焦点を当て、基材とDLC層の密着性をより高めるべく検討を行った。 The present inventor conducted intensive studies to obtain a molded article having excellent adhesion between the base material and the DLC layer even in a severe use environment or when the DLC layer is thickened. Many techniques for providing a composition gradient layer between a substrate and a DLC layer have been proposed so far in order to improve adhesion. However, the present inventor refocused on the composition of the composition gradient layer and studied to further improve the adhesion between the substrate and the DLC layer.
 その結果、次の知見が得られた。即ち、従来は、中間層の、DLC層と直接接触する面を炭素100%とすることが推奨されてきた。このことは、特許文献1の段落[0026]や特許文献2の段落[0019]に「第1層側(基材側)からDLC層側(表面層側)に向けて、金属が段階的または連続的に減少する(即ち、炭素濃度を0%から100%に増加)様な傾斜組成とすることが好ましい。こうした膜構成を採用することによって、多層膜の機械的特性を基材側からDLC側に段階的または連続的に変化させることができ、これによってサーマルショック等による局所的な応力集中による剥離を防止することができる。」と記載の通りである。しかしながら、これでは上記過酷な使用状況で十分な密着性が得られないこと;むしろ中間層の、DLC層と直接接触する面の炭素割合を一定以下に抑えることによって、密着性がかえって高まること;を見出し、本発明を完成した。 As a result, the following knowledge was obtained. That is, conventionally, it has been recommended that the surface of the intermediate layer in direct contact with the DLC layer be 100% carbon. This means that in the paragraph [0026] of Patent Document 1 and the paragraph [0019] of Patent Document 2, “the metal is stepped from the first layer side (base material side) to the DLC layer side (surface layer side) It is preferable to use a gradient composition that continuously decreases (that is, the carbon concentration increases from 0% to 100%) By adopting such a film configuration, the mechanical properties of the multilayer film can be increased from the substrate side to the DLC. It can be changed stepwise or continuously to the side, thereby preventing peeling due to local stress concentration due to thermal shock or the like. " However, in this case, sufficient adhesion cannot be obtained in the above severe use condition; rather, adhesion is increased by suppressing the carbon ratio of the surface of the intermediate layer in direct contact with the DLC layer to a certain level or less; The present invention has been completed.
 以下、この点を含めて、本発明の特徴部分である中間層から説明する。 Hereinafter, the intermediate layer which is a characteristic part of the present invention will be described including this point.
中間層について
 本発明の中間層は、基材上に設けられた第1層と、該第1層上に設けられた第2層とからなる積層構造である。
About the intermediate layer The intermediate layer of the present invention has a laminated structure comprising a first layer provided on a substrate and a second layer provided on the first layer.
 本発明では、中間層を構成する金属元素として、金属基材表面との結合力を高めるためにCrを用いる。具体的に、前記第1層はCrからなり、前記第2層はCrと炭素とからなる。前記第2層は、前記基材側から前記DLC層側に向かって炭素が増加するとともにCrが減少する組成傾斜構造を有する。 In the present invention, Cr is used as a metal element constituting the intermediate layer in order to increase the bonding strength with the metal substrate surface. Specifically, the first layer is made of Cr, and the second layer is made of Cr and carbon. The second layer has a composition gradient structure in which carbon increases from the base material side toward the DLC layer side and Cr decreases.
 第2層を上記組成傾斜構造とすることによって、第1層との界面では第1層を構成するCrとの結合力を高めることができ、またDLC層との界面ではDLC層との結合力を高めることができる。詳細には、第2層のうち第1層と接する面は、Cr100原子%とすることで第1層との高い結合力が得られる、つまり金属基材との高い密着性が得られる。更に、上述の通り、基材側からDLC層側に向かうにつれて、炭素が増加するとともにCrが減少する組成傾斜構造とすることで、DLC層との親和性を高める。しかし上述の通り、本発明では、従来の様に中間層のDLC層との界面を炭素100原子%まで高めるのではなく、Crと炭素の合計に対する炭素の割合を80原子%以下に抑える点に特徴がある。以下、「Crと炭素の合計に対する炭素の割合」を単に「炭素割合」ということがある。 By making the second layer have the above-described composition gradient structure, the bonding force with Cr constituting the first layer can be increased at the interface with the first layer, and the bonding force with the DLC layer at the interface with the DLC layer. Can be increased. Specifically, by setting the surface of the second layer in contact with the first layer to Cr 100 atomic%, a high bonding strength with the first layer can be obtained, that is, high adhesion with the metal substrate can be obtained. Further, as described above, the composition gradient structure in which carbon increases and Cr decreases as it goes from the substrate side to the DLC layer side increases affinity with the DLC layer. However, as described above, in the present invention, the interface between the intermediate layer and the DLC layer is not increased to 100 atomic% of carbon, but the ratio of carbon to the total of Cr and carbon is suppressed to 80 atomic% or less. There are features. Hereinafter, “the ratio of carbon to the total of Cr and carbon” may be simply referred to as “carbon ratio”.
 この様に炭素割合を抑えることにより密着性が高まる理由は十分明らかではないが、後述する実施例の結果等から次の様に考えられる。即ち、炭素割合が80原子%よりも多い場合、DLC層との結合力は問題ないが、硬さの低い部分が形成され易い。例えば大きな面圧で使用時に、この硬さの低い部分にクラックが生じやすく、その結果、DLC層の剥離が生じやすくなると考えられる。 The reason why the adhesiveness is increased by suppressing the carbon ratio in this way is not clear enough, but can be considered as follows from the results of Examples described later. That is, when the carbon ratio is higher than 80 atomic%, there is no problem with the bonding force with the DLC layer, but a portion with low hardness is easily formed. For example, when used at a large surface pressure, cracks are likely to occur in the low hardness portion, and as a result, the DLC layer is likely to be peeled off.
 前記炭素割合は、好ましくは75原子%以下であり、より好ましくは70原子%以下である。 The carbon ratio is preferably 75 atomic percent or less, and more preferably 70 atomic percent or less.
 一方、前記炭素割合が低すぎると、第2層の組成傾斜が小さすぎて組成傾斜層とした本来の目的を達成できない。即ち、第2層とDLC層との結合力が弱くなり、第2層とDLC層との界面から剥離する可能性が高くなる。よって、前記炭素割合は、40原子%以上とすることが好ましい。前記炭素割合は、より好ましくは45原子%以上であり、更に好ましくは50原子%以上、より更に好ましくは55原子%以上である。 On the other hand, if the carbon ratio is too low, the composition gradient of the second layer is too small to achieve the original purpose of the composition gradient layer. That is, the bonding force between the second layer and the DLC layer becomes weak, and the possibility of peeling from the interface between the second layer and the DLC layer increases. Therefore, the carbon ratio is preferably 40 atomic% or more. The carbon ratio is more preferably 45 atomic% or more, further preferably 50 atomic% or more, and still more preferably 55 atomic% or more.
中間層の膜厚について
 前記第1層の膜厚は、基材との密着性確保の観点から、好ましくは0.01μm以上、より好ましくは0.03μm以上である。一方、第1層は軟質であるため、高い面圧環境での変形を抑制する観点から、第1層の膜厚は、0.4μm以下であることが好ましく、より好ましくは0.3μm以下である。
About the film thickness of an intermediate | middle layer From the viewpoint of ensuring adhesiveness with a base material, the film thickness of the said 1st layer becomes like this. Preferably it is 0.01 micrometer or more, More preferably, it is 0.03 micrometer or more. On the other hand, since the first layer is soft, the thickness of the first layer is preferably 0.4 μm or less, more preferably 0.3 μm or less from the viewpoint of suppressing deformation in a high surface pressure environment. is there.
 前記第2層の膜厚は、DLC層との密着性確保の観点から、好ましくは0.02μm以上、より好ましくは0.1μm以上である。膜厚が0.02μmより薄くなると、傾斜組成の勾配が急峻になり、この組成勾配の急峻な傾斜組成層を起点にクラックが発生し、DLC層の剥離に至る可能性がある。一方、第2層は傾斜構造であるため、膜厚が厚くなりすぎるとCrの多い軟質層が増加して高い面圧環境で変形する可能性がある。上記変形を防ぐ観点から、第2層の膜厚は、好ましくは0.8μm以下であり、より好ましくは0.6μm以下である。 The film thickness of the second layer is preferably 0.02 μm or more, more preferably 0.1 μm or more, from the viewpoint of ensuring adhesion with the DLC layer. When the film thickness is thinner than 0.02 μm, the gradient of the gradient composition becomes steep, and cracks are generated starting from the gradient composition layer having a steep composition gradient, which may lead to peeling of the DLC layer. On the other hand, since the second layer has an inclined structure, if the film thickness becomes too thick, the soft layer containing a large amount of Cr may increase and deform in a high surface pressure environment. From the viewpoint of preventing the deformation, the thickness of the second layer is preferably 0.8 μm or less, and more preferably 0.6 μm or less.
 前記第1層と第2層の合計膜厚、即ち中間層の膜厚は、0.05μm以上1.0μm以下の範囲内であることが好ましい。前記膜厚は、より好ましくは0.10μm以上、更に好ましくは0.20μm以上である。一方、前記膜厚が1.0μmよりも厚いと、DLC層よりも硬さの低いCr層やCr-C傾斜組成層からなる中間層の割合が大きくなりやすい。その結果、面圧が大きい使用環境では、この厚い中間層を起点にクラックが発生し、DLC層の剥離に至る可能性がある。よって前記膜厚は、1.0μm以下であることが好ましく、より好ましくは0.80μm以下、更に好ましくは0.75μm以下である。以下、この第1層と第2層の合計膜厚を「中間層の膜厚」という。 The total film thickness of the first layer and the second layer, that is, the film thickness of the intermediate layer is preferably in the range of 0.05 μm to 1.0 μm. The film thickness is more preferably 0.10 μm or more, and still more preferably 0.20 μm or more. On the other hand, when the film thickness is greater than 1.0 μm, the proportion of the intermediate layer made of a Cr layer or a Cr—C gradient composition layer having a lower hardness than the DLC layer tends to increase. As a result, in a use environment where the surface pressure is large, cracks may occur starting from this thick intermediate layer, which may lead to peeling of the DLC layer. Therefore, the film thickness is preferably 1.0 μm or less, more preferably 0.80 μm or less, and still more preferably 0.75 μm or less. Hereinafter, the total film thickness of the first layer and the second layer is referred to as “intermediate film thickness”.
 前記第1層の膜厚と前記第2層の膜厚の割合は、第1層:第2層=1:1~1:25の範囲内であることが好ましい。 The ratio of the thickness of the first layer to the thickness of the second layer is preferably in the range of 1st layer: 2nd layer = 1: 1 to 1:25.
DLC層について
 本発明は、DLC層の具体的組成まで規定するものでなく、種々のDLC層を用いることができる。例えば、アモルファス水素化カーボンであるa-C:H、アモルファスカーボンであるa-C、水素化テトラヘドラルアモルファスカーボンであるta-C:H、テトラヘドラルアモルファスカーボンであるta-C、またはそれらに金属を含有させたものである炭素と水素以外の元素Xを添加したX-DLCを用いるか、前記の何れか2種以上を積層構造としたDLC層を用いることができる。
DLC layer The present invention does not define the specific composition of the DLC layer, and various DLC layers can be used. For example, aC: H which is amorphous hydrogenated carbon, aC which is amorphous carbon, ta-C: H which is hydrogenated tetrahedral amorphous carbon, ta-C which is tetrahedral amorphous carbon, or those X-DLC added with an element X other than carbon and hydrogen, which contains metal, or a DLC layer having a laminated structure of any two or more of the above can be used.
 本発明のDLC層には、炭素と水素以外の元素Xを、摩擦係数や耐摩耗性を制御するために1種以上含んでいてもよい。前記元素Xとして、例えば、B、N、O、F、Al、Si、P、S、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Ag、Sn、Sb、Ta、W、Ir、Pt、Au、Pb、Bi等を単独でまたは2種以上を合計で、例えばDLC層全体の30原子%以下の範囲内で含んでもよい。 The DLC layer of the present invention may contain one or more elements X other than carbon and hydrogen in order to control the friction coefficient and wear resistance. Examples of the element X include B, N, O, F, Al, Si, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, and Ru. , Ag, Sn, Sb, Ta, W, Ir, Pt, Au, Pb, Bi, etc. may be used alone or in combination of two or more, for example, within a range of 30 atomic% or less of the entire DLC layer.
 DLC層の膜厚は、特に限定されず、例えば0.5μm以上50.0μm以下とすることができる。上述した通り、本発明の構成によれば、膜厚の比較的厚いDLC層を形成した場合であっても、該DLC層と基材との密着性に優れる。例えば該DLC層の膜厚は、好ましくは1.5μm以上、より好ましくは1.8μm以上、更に好ましくは2.0μm以上とすることができる。この様にDLC層の膜厚が厚い場合であっても、基材との優れた密着性を維持でき、かつDLC層の有する耐摩耗性等の効果が存分に発揮される。勿論、DLC層として極めて薄い膜を形成することもできる。 The film thickness of the DLC layer is not particularly limited, and can be, for example, 0.5 μm or more and 50.0 μm or less. As described above, according to the configuration of the present invention, even when a relatively thick DLC layer is formed, the adhesion between the DLC layer and the substrate is excellent. For example, the thickness of the DLC layer is preferably 1.5 μm or more, more preferably 1.8 μm or more, and further preferably 2.0 μm or more. Thus, even when the film thickness of the DLC layer is thick, excellent adhesion to the substrate can be maintained, and the effects such as wear resistance of the DLC layer are fully exhibited. Of course, an extremely thin film can be formed as the DLC layer.
 本発明のDLC層積層体は、前記DLC層が最表面層として形成される場合の他、該DLC層上に更に別の層を設けてもよい。別の層として、例えば低硬度の層をなじみ層として設けることが挙げられる。低硬度の層として、例えば硬度の低いDLC層や、前述したような元素Xを含むDLC層等が挙げられる。上記低硬度の層をなじみ層として設けることによって、摺動開始直後における摩擦係数の上昇を抑制することができる。また前記別の層として、例えば従来より用いられているMoS等の固体潤滑剤などを形成してもよい。 In the DLC layer laminate of the present invention, in addition to the case where the DLC layer is formed as the outermost surface layer, another layer may be provided on the DLC layer. As another layer, for example, a low hardness layer may be provided as the conforming layer. Examples of the low-hardness layer include a low-hardness DLC layer and a DLC layer containing the element X as described above. By providing the low hardness layer as the conforming layer, an increase in the friction coefficient immediately after the start of sliding can be suppressed. Further, as the other layer, for example, a conventionally used solid lubricant such as MoS 2 may be formed.
基材について
 基材は金属であれば特に限定されない。例えば鉄系基材として、機械構造用炭素鋼、構造用合金鋼、高速度鋼HSSを含む工具鋼、軸受鋼、ステンレス鋼、鋳鉄などを用いることができる。また鉄系以外の金属として、Al、Ti、Cuの純金属や合金;Wの純金属や合金;WC系の超硬合金;を用いることができる。また前記基材は、表面に、基材の強度を高めるために浸炭処理や窒化処理、陽極酸化処理、めっき処理などが施されていてもよい。
About the substrate The substrate is not particularly limited as long as it is a metal. For example, carbon steel for machine structure, alloy steel for structure, tool steel including high speed steel HSS, bearing steel, stainless steel, cast iron and the like can be used as the iron base material. Further, as metals other than iron-based metals, Al, Ti, Cu pure metals and alloys; W pure metals and alloys; WC-based cemented carbides can be used. In addition, the substrate may be subjected to carburizing treatment, nitriding treatment, anodizing treatment, plating treatment, or the like in order to increase the strength of the substrate.
 本発明には、上記DLC層積層体を備えた摺動部材も含まれる。該摺動部材の少なくとも摺動面に本発明のDLC層積層体が備わっていればよい。本発明のDLC層積層体は、前記摺動部材の他、金型、切削工具類、耐摩耗性機械部品、磁気・光学部品等の各種部品等にも好適に用いることができる。 The present invention also includes a sliding member provided with the DLC layer laminate. It suffices that the DLC layer laminate of the present invention is provided on at least the sliding surface of the sliding member. The DLC layer laminate of the present invention can be suitably used for various parts such as molds, cutting tools, wear-resistant mechanical parts, magnetic / optical parts and the like in addition to the sliding members.
 次に、本発明のDLC層積層体の製造方法について説明する。本発明のDLC層積層体は、前記中間層をPVD(Physical Vapor Deposition)法で形成し、かつ前記DLC層をPVD法またはCVD(Chemical Vapor Deposition)法で形成するところに特徴を有する。以下、これらの方法を含む本発明の製造方法について説明する。 Next, a method for producing the DLC layer laminate of the present invention will be described. The DLC layer laminate of the present invention is characterized in that the intermediate layer is formed by a PVD (Physical Vapor Deposition) method, and the DLC layer is formed by a PVD method or a CVD (Chemical Vapor Deposition) method. Hereinafter, the production method of the present invention including these methods will be described.
 まず中間層形成までの手順として下記例が挙げられる。被処理物として基材を用意し、脱脂やアセトン、エタノール等による超音波洗浄、および洗浄液の乾燥等の各種洗浄工程を経る。その後、基材を成膜装置の真空チャンバー内に搭載し、必要に応じて真空引きを行う。真空度は不純物成分の混入を防ぐ観点から10-2Pa台以下まで真空引きを行うことが望ましいが、被処理物によっては不純物の影響を考慮しなくてよい場合もあるため、この真空引きは必須ではない。 First, the following example is given as a procedure up to the formation of the intermediate layer. A substrate is prepared as an object to be processed, and is subjected to various cleaning processes such as degreasing, ultrasonic cleaning with acetone, ethanol, and the like, and drying of a cleaning liquid. Thereafter, the substrate is mounted in a vacuum chamber of the film forming apparatus, and evacuation is performed as necessary. The degree of vacuum is preferably evacuated to a level of 10 −2 Pa or less from the viewpoint of preventing the mixing of impurity components. However, depending on the object to be processed, the influence of impurities may not be considered. Not required.
 金属基材表面に吸着した水分や洗浄工程で残留した成分、例えば防錆油由来の不純物等をクリーニングするためにArイオンボンバードを行う。Arイオンボンバードの前に、チャンバー内や基材表面の吸着水分を蒸発させるためにチャンバー内を100~1200℃の間で加熱する工程を設けても良い。 ¡Ar ion bombardment is performed to clean moisture adsorbed on the surface of the metal substrate and components remaining in the cleaning process, such as impurities derived from rust preventive oil. Before the Ar ion bombardment, a step of heating the inside of the chamber or between 100 to 1200 ° C. may be provided in order to evaporate the moisture adsorbed on the inside of the chamber or the substrate surface.
 ボンバードのための不活性ガスは安価で入手しやすいArガスを用いる。Arガスの純度は99.9%以上が好ましいが、それ以下でも問題はない。始めにArガスを真空チャンバー内に導入し、ガス圧が0.2Pa~4Paまでの所定の圧力になるまで待つ。尚、圧力は任意に変更可能である。所定の圧力になった後、真空チャンバー内に設置されたタングステンフィラメントに外部電源から2~20Aの電流を印加することで、タングステンフィラメントが赤熱し、熱電子を放出する。熱電子がArガスと衝突することでArがイオン化する。イオン化したアルゴンは、基材にマイナス電圧を印加した場合には基材へ引き込まれ、アルゴンイオンが基材表面を叩くことで基材表面をクリーニングする。以上の説明は、基材へ通常のDC(Direct Current)電圧やパルスDC電圧を印加した場合の方法である。 The inert gas for bombardment is cheap and easily available Ar gas. The purity of Ar gas is preferably 99.9% or more, but there is no problem even if it is less than that. First, Ar gas is introduced into the vacuum chamber and waits until the gas pressure reaches a predetermined pressure of 0.2 Pa to 4 Pa. The pressure can be arbitrarily changed. After reaching a predetermined pressure, by applying a current of 2 to 20 A from an external power source to the tungsten filament installed in the vacuum chamber, the tungsten filament becomes red hot and emits thermoelectrons. Ar ions are ionized by collision of the thermal electrons with Ar gas. The ionized argon is drawn into the substrate when a negative voltage is applied to the substrate, and the argon ion strikes the substrate surface to clean the substrate surface. The above description is a method when a normal DC (Direct Current) voltage or a pulsed DC voltage is applied to the substrate.
 ボンバードの効果を更に高めるためには、基材を複数用い、基材と基材の間に交流電圧を外部電源により印加する方法が挙げられる。上述した通常のDC電圧やパルスDC電圧を印加した場合は、アルゴンイオンがタングステンフィラメントと基材の間のみを移動する。これに対し、上記の基材と基材の間に交流電圧を外部電源により印加する方法によれば、上記アルゴンイオンの移動に加えて、基材と基材の間でのアルゴンイオンと電子のやり取りが加速される。これにより、一方の基材に負バイアス印加時は、該基材に対するアルゴンイオンボンバードの効果が高められ、その間、他方の基材には正バイアスが印加され、電子の照射により表面の改質、具体的には、電子線の照射により表面が活性化して反応性の高い表面となる。つまりこの方法によれば、基材表面のクリーニングと改質効果を十分に高めることができる。また交流電源を用いることで、上記の負バイアス、正バイアスが交互に印加され、基材表面のクリーニングと改質効果が加速される。この交流電源を用いた場合の印加電圧は、電源設定値が350V~1600Vの範囲内で印加することによって上記効果を得ることができる。 In order to further enhance the effect of bombardment, there is a method in which a plurality of base materials are used and an AC voltage is applied between the base materials by an external power source. When the above-described normal DC voltage or pulse DC voltage is applied, argon ions move only between the tungsten filament and the substrate. On the other hand, according to the method of applying an AC voltage between the base material and the base material by an external power source, in addition to the movement of the argon ions, the argon ions and electrons between the base material and the base material Communication is accelerated. Thereby, when a negative bias is applied to one of the substrates, the effect of argon ion bombardment on the substrate is enhanced, while a positive bias is applied to the other substrate, and the surface is modified by electron irradiation. Specifically, the surface is activated by electron beam irradiation to become a highly reactive surface. That is, according to this method, the substrate surface cleaning and modification effects can be sufficiently enhanced. Further, by using an AC power source, the negative bias and the positive bias described above are alternately applied, and the cleaning and reforming effects on the substrate surface are accelerated. When the AC power supply is used, the above effect can be obtained by applying the applied voltage within the range of the power supply set value of 350V to 1600V.
中間層の形成方法について
 中間層は、前述の通りPVD法で形成する。第1層であるCr層は、ガスを分解して成膜するCVD法で成膜することができないためである。Cr層の成膜には純度が99%以上のCrターゲットを用いることが有効である。前記PVD法として、アンバランスドマグネトロンスパッタリング(UBMS、Un-Balanced Magnetron Sputtering)法を含むスパッタリング法、アークイオンプレーティング(AIP、Arc Ion Plating)法、真空蒸着法などを用いることが有効である。
About the formation method of an intermediate | middle layer An intermediate | middle layer is formed by PVD method as above-mentioned. This is because the Cr layer as the first layer cannot be formed by a CVD method in which a gas is decomposed to form a film. It is effective to use a Cr target having a purity of 99% or more for forming the Cr layer. As the PVD method, it is effective to use a sputtering method including an unbalanced magnetron sputtering (UBMS) method, an arc ion plating (AIP) method, a vacuum deposition method, or the like.
 また、第2層である傾斜組成層は、次の方法で形成することができる。例えば、ターゲットとしてCrターゲットを用い、成膜ガスとして炭化水素系ガス、つまりメタン、アセチレン、ベンゼン、トルエンなど炭化水素ガスを導入し、その導入量を徐々に多くすることで、Cr-C傾斜組成層を形成する方法が挙げられる。その他の方法として、ターゲットとしてCrターゲットとCターゲットを用い、この場合は雰囲気ガスとして例えばArガスを用い、Crの成膜速度を減少させる、具体的に例えばCrターゲット投入電力を徐々に低減すると共に、炭素の成膜速度を増加させる、具体的に例えばカーボンターゲット投入電力を増加させる方法が挙げられる。更にその他の方法として、ターゲットとしてCrターゲットとCターゲットを用い、更に炭素供給源として炭化水素系ガスも併用して、成膜する方法が考えられる。前記Crターゲットとして、上述の通り純度が99%以上のCrターゲットを用いることが有効である。 Further, the gradient composition layer as the second layer can be formed by the following method. For example, by using a Cr target as the target and introducing a hydrocarbon gas such as methane, acetylene, benzene, toluene, etc. as the film forming gas, and gradually increasing the amount of introduction, the Cr—C gradient composition The method of forming a layer is mentioned. As another method, a Cr target and a C target are used as targets. In this case, for example, Ar gas is used as an atmospheric gas, and the film formation rate of Cr is reduced. A method of increasing the film formation rate of carbon, specifically, for example, increasing the input power of the carbon target. Further, as another method, a film forming method using a Cr target and a C target as targets and also using a hydrocarbon gas as a carbon supply source can be considered. As described above, it is effective to use a Cr target having a purity of 99% or more as the Cr target.
 中間層の成膜時、つまり第1層と第2層の成膜時には、バイアス電源により基材に負バイアスをかけることで、ターゲットの成分を有効に基材に付着させることができる。更にバイアス電圧を制御することで、膜の緻密さを制御できる。緻密な膜は高い変形抵抗を有するため、外力が加わった際に破断する可能性が低くなる。つまり密着性も向上する。この様に密着性を高めるには、負バイアス電圧は-40Vよりも小さい、即ち絶対値が大きい値とすることが好ましい。一方、-1000Vよりも小さい値では、バイアスの効果が強すぎて、形成された中間層がエッチングされ易く成膜速度が極端に低下する。その結果として密着性が低下しやすくなる。よって前記負バイアス電圧は、-1000Vよりも大きい、即ち-1000Vよりも絶対値の小さい値とすることが好ましい。 When the intermediate layer is formed, that is, when the first layer and the second layer are formed, the target component can be effectively adhered to the substrate by applying a negative bias to the substrate by a bias power source. Further, the density of the film can be controlled by controlling the bias voltage. Since the dense film has high deformation resistance, the possibility of breaking when an external force is applied is reduced. That is, adhesion is also improved. In order to improve the adhesion, the negative bias voltage is preferably smaller than −40V, that is, a value having a large absolute value. On the other hand, if the value is smaller than −1000 V, the effect of the bias is too strong, and the formed intermediate layer is easily etched, and the deposition rate is extremely reduced. As a result, the adhesion tends to decrease. Therefore, it is preferable that the negative bias voltage is larger than −1000 V, that is, a value having an absolute value smaller than −1000 V.
 その他の成膜条件として、例えば第1層と第2層の成膜条件を下記の通りとすることができる。即ち、基板温度は室温~200℃の範囲とすることができる。また全圧は0.1~5.0Paの範囲とすることができ、分圧はArの量比が100~30%の範囲となるように調整することができる。また、ターゲットへの印加電力は0.1~5.0kWの範囲内とすることができる。 As other film formation conditions, for example, the film formation conditions of the first layer and the second layer can be as follows. That is, the substrate temperature can be in the range of room temperature to 200 ° C. The total pressure can be in the range of 0.1 to 5.0 Pa, and the partial pressure can be adjusted so that the amount ratio of Ar is in the range of 100 to 30%. The power applied to the target can be in the range of 0.1 to 5.0 kW.
DLC層の形成方法について
 DLC層の形成方法はPVD法、CVD法のいずれでもよい。前記PVD法として、AIP法やスパッタリング法などを用いることができる。固体のカーボンターゲットを主原料としてDLCを形成することによって、水素を含まないDLC層を形成することができる。または、成膜時に炭化水素ガスを導入することによって水素を含むDLC層を形成することができる。炭素と水素以外の元素を添加したDLC層を、前記PVD法で形成する場合には、該元素を含むターゲット等を用いることができる。
About the formation method of a DLC layer Either the PVD method or CVD method may be sufficient as the formation method of a DLC layer. As the PVD method, an AIP method, a sputtering method, or the like can be used. By forming DLC using a solid carbon target as a main raw material, a DLC layer not containing hydrogen can be formed. Alternatively, a DLC layer containing hydrogen can be formed by introducing a hydrocarbon gas during film formation. When a DLC layer to which an element other than carbon and hydrogen is added is formed by the PVD method, a target containing the element can be used.
 前記CVD法で形成する場合は、炭化水素ガスを主成分とし、基材に電圧あるいは電力を印加し、炭化水素ガスを分解してDLC層を成膜する。基材への電圧あるいは電力の印加方式として、DC、パルスDC、AC(Alternating Current)のいずれを用いてもよい。炭素と水素以外の元素を添加したDLC層を、このCVD法で形成する場合には、前記炭化水素ガスに加えて、ケイ素や各種金属成分、あるいはそれらの酸化物を含むガスを用いることができる。 In the case of forming by the CVD method, a DLC layer is formed by decomposing the hydrocarbon gas by applying a voltage or electric power to the base material with the hydrocarbon gas as a main component and decomposing the hydrocarbon gas. Any of DC, pulsed DC, and AC (Alternating Current) may be used as a method for applying voltage or power to the substrate. When the DLC layer to which elements other than carbon and hydrogen are added is formed by this CVD method, in addition to the hydrocarbon gas, a gas containing silicon, various metal components, or oxides thereof can be used. .
 前記CVD法で形成する場合の成膜条件として、例えば次の条件が挙げられる。基材温度は室温~200℃の範囲内とすることができる。尚、一般に基材の加熱は行わず、後述する実施例でも基材の加熱を行っていないが、基材温度は、成膜中に例えば50~200℃程度にまで上昇し得る。但し、基材温度が250℃を超えるとDLCの軟質化が起こるため好ましくない。 Examples of film forming conditions for forming by the CVD method include the following conditions. The substrate temperature can be in the range of room temperature to 200 ° C. In general, the substrate is not heated, and the substrate is not heated in the examples described later, but the substrate temperature can rise to, for example, about 50 to 200 ° C. during film formation. However, when the substrate temperature exceeds 250 ° C., DLC softening occurs, which is not preferable.
 前記CVD法で成膜時の全圧は0.5~20Paの範囲内とすることができる。この全圧を高めると成膜速度は速くなるが、硬度が低下したり、表面粗さが大きくなる等の弊害が生じうる傾向にある。また分圧は、アセチレン、メタン等の炭化水素ガスが100~30%の範囲、残りはArなど不活性ガスとなるよう調整することが挙げられる。不活性ガスが含まれると、成膜速度は下がるが硬度は高まる傾向にある。一方、不活性ガスが過剰に含まれると成膜レートが極端に落ちるため好ましくない。 The total pressure during film formation by the CVD method can be in the range of 0.5 to 20 Pa. Increasing the total pressure increases the film formation rate, but tends to cause problems such as a decrease in hardness and an increase in surface roughness. The partial pressure may be adjusted so that the hydrocarbon gas such as acetylene and methane is in the range of 100 to 30%, and the rest is an inert gas such as Ar. When an inert gas is contained, the film formation rate decreases but the hardness tends to increase. On the other hand, an excessive amount of inert gas is not preferable because the film forming rate is extremely lowered.
 前記CVD法で成膜時の印加電圧は、500V~2000Vの範囲内とすることができる。この印加電圧が低すぎるとプラズマが発生せず、一方、高すぎると異常放電が頻発してプラズマが安定しないため好ましくない。 The applied voltage during film formation by the CVD method can be in the range of 500V to 2000V. If this applied voltage is too low, plasma is not generated. On the other hand, if it is too high, abnormal discharge occurs frequently and the plasma is not stable.
 前記PVD法で形成する場合の成膜条件として、例えば次の条件が挙げられる。基材温度は室温~200℃の範囲内とすることができる。尚、一般に基材の加熱は行わず、後述する実施例でも基材の加熱を行っていないが、基材温度は、成膜中に例えば50~200℃程度にまで上昇し得る。但し、基材温度が250℃を超えるとDLCの軟質化が起こるため好ましくない。 For example, the following conditions may be cited as film forming conditions when forming by the PVD method. The substrate temperature can be in the range of room temperature to 200 ° C. In general, the substrate is not heated, and the substrate is not heated in the examples described later, but the substrate temperature can rise to, for example, about 50 to 200 ° C. during film formation. However, when the substrate temperature exceeds 250 ° C., DLC softening occurs, which is not preferable.
 前記PVD法で成膜時の全圧は、0.1~2.0Paの範囲内とすることができる。また分圧は、Arの量比が50%以上100%未満の範囲となるよう調整することが挙げられる。より好ましい条件として、例えば全圧を1.0Paとし、例えばメタン等の炭化水素ガスが1~10%で残部がArとなるようにすることが挙げられる。 The total pressure during film formation by the PVD method can be in the range of 0.1 to 2.0 Pa. In addition, the partial pressure may be adjusted so that the amount ratio of Ar is in the range of 50% or more and less than 100%. More preferable conditions include, for example, a total pressure of 1.0 Pa, a hydrocarbon gas such as methane of 1 to 10% and the balance of Ar.
 前記PVD法で成膜時のターゲットへの印加電圧は、0.1~5.0kWとすることができる。また、基材に印加する負バイアス電圧は、絶対値で50~400Vの範囲内とすることができる。この負バイアス電圧の絶対値を高めることによって、膜の硬度を高めることができ、耐摩耗性を高めることができる。一方、負バイアス電圧の絶対値が高すぎると、エッチング効果が生じて成膜速度が極端に低下する傾向にある。 The voltage applied to the target during film formation by the PVD method can be 0.1 to 5.0 kW. Also, the negative bias voltage applied to the substrate can be in the range of 50 to 400 V in absolute value. By increasing the absolute value of this negative bias voltage, the hardness of the film can be increased and the wear resistance can be increased. On the other hand, if the absolute value of the negative bias voltage is too high, an etching effect occurs and the film formation rate tends to be extremely reduced.
 AIP法の場合の条件として、例えばアーク電流を10~100A、Arガスを0~100%の範囲とすることができる。 As conditions for the AIP method, for example, the arc current can be in the range of 10 to 100 A, and the Ar gas can be in the range of 0 to 100%.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
 中間層の成膜は、株式会社神戸製鋼所製アンバランスドマグネトロンスパッタ装置、商品名:UBMS202を用いて行った。基材は、表面を鏡面研磨したJIS規格のSKH51であってHRCが65のものを用いた。  The intermediate layer was formed using an unbalanced magnetron sputtering apparatus manufactured by Kobe Steel, Ltd., trade name: UBMS202. The substrate used was JIS SKH51 with a mirror polished surface and an HRC of 65.
 まず、前記基材をチャンバー内に導入後、1×10-3Pa以下に排気した。その後、300℃で10分間の加熱処理によりチャンバー内の水分等を取り除いた。次いで、基材表面クリーニングのためのArイオンボンバードを、DC電源またはAC電源を用い、下記条件で実施した。
Arイオンボンバードの実施条件
Arガス純度:99.9%
ガス圧:1.0Pa
タングステンフィラメント電流:5ADC電源使用時
電源:京三製作所製 HPK03ZI
バイアス電圧:-200VAC電源使用時
電源:Huttinger製 Tru-Plasma MF3010
バイアス電圧:-200V
First, the substrate was introduced into the chamber and then evacuated to 1 × 10 −3 Pa or less. Thereafter, moisture in the chamber was removed by heat treatment at 300 ° C. for 10 minutes. Next, Ar ion bombardment for cleaning the substrate surface was performed using a DC power source or an AC power source under the following conditions.
Ar ion bombardment conditions Ar gas purity: 99.9%
Gas pressure: 1.0Pa
Tungsten filament current: When using 5 ADC power supply Power supply: Kyosan Seisakusho HPK03ZI
Bias voltage: -200 VAC when using power supply Power: Huttinger Tru-Plasma MF3010
Bias voltage: -200V
 中間層の成膜には、純度99.9%のCrターゲットおよび純度99.9%のCターゲットを用い、UBMS法で成膜した。プロセスガスとして、アルゴンガスと、炭化水素系ガスとしてアセチレンガスとを用い、炭素非含有層形成時はアルゴンガスのみ、また、炭素含有層形成時はアルゴンガスとアセチレンガスの混合ガスをチャンバー内に導入した。第1層と第2層の成膜時の基材温度は100℃、全ガス圧は1.0Pa、基板印加バイアスは-200Vで一定とした。 The intermediate layer was formed by a UBMS method using a Cr target with a purity of 99.9% and a C target with a purity of 99.9%. Argon gas is used as the process gas and acetylene gas as the hydrocarbon-based gas. When forming the carbon-free layer, only argon gas is used, and when forming the carbon-containing layer, a mixed gas of argon gas and acetylene gas is placed in the chamber. Introduced. The substrate temperature during film formation of the first layer and the second layer was 100 ° C., the total gas pressure was 1.0 Pa, and the substrate bias was constant at −200V.
 まずCrターゲットに2.0kWの電力を印加して放電させ、第1層であるCr層の成膜を行った。次いで、Crターゲットへの印加電圧を低下させると同時に、Cターゲットへの印加電圧を2.0kWまで増加させた。さらに、アルゴンガスとアセチレンガスの流量比を変化させることによって、中間層のCrと炭素との比率を制御して、第2層であるCr-C傾斜組成層を成膜した。また中間層の膜厚は成膜時間により調整した。 First, a power of 2.0 kW was applied to the Cr target to discharge it, and a Cr layer as the first layer was formed. Next, the voltage applied to the Cr target was decreased, and at the same time, the voltage applied to the C target was increased to 2.0 kW. Furthermore, the Cr—C gradient composition layer as the second layer was formed by changing the flow ratio of argon gas and acetylene gas to control the ratio of Cr and carbon in the intermediate layer. The film thickness of the intermediate layer was adjusted by the film formation time.
 比較例として、下記表1のNo.19では、上記組成傾斜層を形成せず、第2層としてCrとCが原子比で1:1の組成単一層を形成した。また下記表1のNo.20では、上記Crターゲットの代わりに、タングステンターゲットを用い、第1層としてW層、第2層としてW-C傾斜組成層の成膜を行った。 As a comparative example, No. in Table 1 below. In No. 19, the composition gradient layer was not formed, and a compositional single layer of Cr and C having an atomic ratio of 1: 1 was formed as the second layer. No. 1 in Table 1 below. In No. 20, a tungsten target was used instead of the Cr target, and a W layer as a first layer and a WC gradient composition layer as a second layer were formed.
 次いでDLC層を成膜した。該DLC膜は、CVD法、またはPVD法としてUBMS法で、表1に示す膜厚のDLC層を成膜した。前記CVD法では、チャンバー内に炭化水素ガスとしてメタンを、全圧が2.0Paとなるように導入し、基板ホルダーに京三製作所製のパルスDC電源から900Vを印加し、炭化水素ガスの成分を分解することによってDLC膜を成膜した。また前記PVD法、具体的にUBMS法では、カーボンターゲットに2.0kWの電力を印加し、プロセスガスとしてメタンとArの混合ガスを用い、全圧:1.0Pa、負バイアス電圧:100V、上記メタンが5%で残部はArの条件で、表1に示す各膜厚のDLC膜を成膜した。 Next, a DLC layer was formed. As the DLC film, a DLC layer having a film thickness shown in Table 1 was formed by a CVD method or a UBMS method as a PVD method. In the CVD method, methane as a hydrocarbon gas is introduced into the chamber so that the total pressure becomes 2.0 Pa, 900 V is applied to the substrate holder from a pulsed DC power source manufactured by Kyosan Seisakusho, and the components of the hydrocarbon gas Was decomposed to form a DLC film. In the PVD method, specifically, the UBMS method, a power of 2.0 kW is applied to the carbon target, a mixed gas of methane and Ar is used as a process gas, the total pressure is 1.0 Pa, the negative bias voltage is 100 V, and the above DLC films having various film thicknesses shown in Table 1 were formed under the conditions of 5% methane and the balance Ar.
 上記の通り基材上に中間層とDLC層を順次形成した試料をチャンバーから取り出し、下記の測定や評価を行った。  As described above, a sample in which the intermediate layer and the DLC layer were sequentially formed on the substrate was taken out of the chamber, and the following measurements and evaluations were performed.
中間層とDLC層の膜厚の測定 
 測定用試料として、前記試料の膜厚方向断面を観察できるようFIB(FocusedIon Beam)加工を施して、SEM(Scanning Electron Microscope)観察用試料を作成した。そしてこのSEM観察用試料を用いて、SEM観察を行い、得られた断面SEM像から中間層の膜厚、即ち、第1層と第2層の膜厚、およびDLC層の膜厚を測定した。
Measurement of intermediate layer and DLC layer thickness
As a measurement sample, FIB (Focused Ion Beam) processing was performed so that a cross section in the film thickness direction of the sample could be observed, and a SEM (Scanning Electron Microscope) observation sample was created. Then, using this SEM observation sample, SEM observation was performed, and the film thickness of the intermediate layer, that is, the film thickness of the first layer and the second layer, and the film thickness of the DLC layer were measured from the obtained cross-sectional SEM image. .
第2層におけるDLC層界面の炭素割合の測定
 第2層の傾斜組成層の成分組成は、AES(Atomic Emission Spectroscopy)法の深さ方向プロファイルから求めた。第2層におけるDLC層界面の炭素割合は、第2層のDLC層との境界部から求めた。該炭素割合は、CrとC以外の不純物を考慮せずに、Cr+C=100原子%としたときの、炭素の割合を原子%(t%)で求めた。
Measurement of carbon ratio at interface of DLC layer in second layer The component composition of the gradient composition layer of the second layer was determined from the depth profile of the AES (Atomic Emission Spectroscopy) method. The carbon ratio at the interface of the DLC layer in the second layer was determined from the boundary with the DLC layer of the second layer. The carbon ratio was determined in terms of atomic% (t%) when Cr + C = 100 atomic% without considering impurities other than Cr and C.
密着性の評価
 密着性は、ドイツ技術者協会の規格VDI3198に示されている剥離判定試験により行った。詳細には、ロックウェル試験のCスケール評価、即ち、先端角120度のダイヤモンド円錐を荷重150kgで打ち込んだ。そして、圧子打ち込み部分の皮膜の剥離状況を、前記規格における、最も密着性が良いHF1から最も密着性が悪いHF6の6段階で評価した。そして本実施例では、HF1およびHF2を密着性良好であると評価し、HF3~HF6を密着性が悪いと評価した。
Evaluation of Adhesion Adhesion was performed by a peel determination test shown in the standard VDI3198 of the German Engineers Association. Specifically, the C scale evaluation of the Rockwell test, that is, a diamond cone having a tip angle of 120 degrees was driven at a load of 150 kg. And the peeling | exfoliation condition of the film | membrane of an indenter implantation part was evaluated in six steps from HF1 with the highest adhesiveness to HF6 with the lowest adhesiveness in the said specification. In this example, HF1 and HF2 were evaluated as having good adhesion, and HF3 to HF6 were evaluated as having poor adhesion.
 これらの結果を表1に併記する。 These results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から次のことがわかる。No.1~8は、中間層における第1層と第2層の構成、中間層の膜厚、DLC層の成膜方法、およびDLC層の膜厚をほぼ一定とし、中間層における第2層の傾斜組成を変化させた例である。これらの例のうち、No.1および2は、第2層のDLC層界面の炭素割合が80原子%を超えているため、密着性が低下した。これらの例では、第2層のC量が多い領域で硬さの低い部位が形成され、この硬さの低い部位から剥離が発生したと考えられる。特にNo.1は、特許文献1や特許文献2で推奨される、炭素濃度を基材側0原子%からDLC層側100原子%に増加させた例であるが、この例では優れた密着性が得られなかった。 Table 1 shows the following. No. 1 to 8 are configurations of the first layer and the second layer in the intermediate layer, the film thickness of the intermediate layer, the film formation method of the DLC layer, and the film thickness of the DLC layer, and the inclination of the second layer in the intermediate layer This is an example in which the composition is changed. Of these examples, no. In 1 and 2, the carbon ratio at the interface of the DLC layer of the second layer exceeded 80 atomic%, and thus the adhesion decreased. In these examples, it is considered that a portion having low hardness was formed in a region where the amount of C in the second layer was large, and peeling occurred from the portion having low hardness. In particular, no. 1 is an example in which the carbon concentration is increased from 0 atomic% on the substrate side to 100 atomic% on the DLC layer side, which is recommended in Patent Document 1 and Patent Document 2, but excellent adhesion is obtained in this example. There wasn't.
 一方、No.7および8は、第2層のDLC層界面の炭素割合が少なすぎる、言い換えるとCr量が多すぎる例である。この場合、DLC層を構成する炭素との結合力が弱まり、DLCと中間層における第2層との界面強度が弱くなり、密着性が低下したと考えられる。 On the other hand, No. 7 and 8 are examples in which the carbon ratio at the DLC layer interface of the second layer is too small, in other words, the amount of Cr is too large. In this case, it is considered that the bond strength with the carbon constituting the DLC layer is weakened, the interface strength between the DLC and the second layer in the intermediate layer is weakened, and the adhesion is lowered.
 表1のNo.9~14は、中間層における第1層と第2層の構成、中間層における第2層の傾斜組成、DLC層の成膜方法、およびDLC層の膜厚を一定とし、中間層の膜厚のみを変化させた例である。これらの例のうち、No.9は、中間層の膜厚が薄すぎるため組成勾配の急峻な傾斜組成層となり、良好な密着性が得られなかった。このNo.9では、前記急峻な傾斜組成層を起点にクラックが発生したと考えられる。一方、No.14は、中間層の膜厚が厚すぎるため、良好な密着性が得られなかった。このNo.14では、厚い中間層の内部から剥離が発生したと考えられる。 No. in Table 1. Nos. 9 to 14 are the configurations of the first layer and the second layer in the intermediate layer, the gradient composition of the second layer in the intermediate layer, the film forming method of the DLC layer, and the film thickness of the DLC layer. This is an example in which only is changed. Of these examples, no. No. 9 was a gradient composition layer with a steep composition gradient because the intermediate layer was too thin, and good adhesion could not be obtained. This No. In No. 9, it is considered that cracks occurred starting from the steep gradient composition layer. On the other hand, no. No. 14, because the film thickness of the intermediate layer was too thick, good adhesion could not be obtained. This No. No. 14, it is considered that peeling occurred from the inside of the thick intermediate layer.
 No.15~18は、中間層における第1層と第2層の構成、中間層における第2層の傾斜組成、および中間層の膜厚を一定にして、DLC層の膜厚を変化させた例である。尚、No.15はDLC層をPVD法の一種であるUBMS法で成膜した結果である。これらの結果から、DLC層の成膜方法や膜厚を変化させても良好な密着性が得られることがわかった。 No. 15 to 18 are examples in which the thickness of the DLC layer is changed while the composition of the first layer and the second layer in the intermediate layer, the gradient composition of the second layer in the intermediate layer, and the thickness of the intermediate layer are made constant. is there. No. 15 shows the result of forming the DLC layer by the UBMS method which is a kind of PVD method. From these results, it was found that good adhesion can be obtained even when the film forming method and film thickness of the DLC layer are changed.
 No.19は、中間層における第2層を傾斜組成ではなく単一組成のCr-Cとした例である。この様に中間層に傾斜構造を形成しない場合は密着性が著しく低下した。No.20は、Crの代わりにタングステンを用いる以外は本発明と同様にして積層膜を形成した例である。この場合、タングステンと基材との界面の強度が不十分なため、密着性が低下したと考えられる。 No. No. 19 is an example in which the second layer in the intermediate layer is not a gradient composition but a single composition of Cr—C. In this way, when the inclined structure was not formed in the intermediate layer, the adhesion was remarkably lowered. No. 20 is an example in which a laminated film is formed in the same manner as in the present invention except that tungsten is used instead of Cr. In this case, since the strength of the interface between tungsten and the substrate is insufficient, it is considered that the adhesiveness has decreased.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年1月9日出願の日本特許出願(特願2015-003517)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on January 9, 2015 (Japanese Patent Application No. 2015-003517), the contents of which are incorporated herein by reference.
 本発明のDLC層積層体は、摺動部材、金型、切削工具類、耐摩耗性機械部品、磁気・光学部品等の各種部品等として有用である。 The DLC layer laminate of the present invention is useful as various parts such as sliding members, molds, cutting tools, wear-resistant mechanical parts, magnetic / optical parts, and the like.

Claims (5)

  1.  基材上に、ダイヤモンドライクカーボン層が、中間層を介して形成された積層体であって、 
     前記中間層は、前記基材上に設けられた第1層と、該第1層上に設けられた第2層とからなり、 
     前記基材は金属からなり、 
     前記第1層はCrからなり、 
     前記第2層はCrと炭素とからなり、前記基材側から前記ダイヤモンドライクカーボン層側に向かって炭素が増加するとともにCrが減少する組成傾斜構造を有し、かつ該第2層のダイヤモンドライクカーボン層と接する面の、Crと炭素の合計に対する炭素の割合が80原子%以下であることを特徴とするダイヤモンドライクカーボン層積層体。
    On the substrate, a diamond-like carbon layer is a laminate formed through an intermediate layer,
    The intermediate layer includes a first layer provided on the base material and a second layer provided on the first layer,
    The substrate is made of metal;
    The first layer is made of Cr;
    The second layer is made of Cr and carbon, has a composition gradient structure in which carbon increases from the substrate side toward the diamond-like carbon layer side and Cr decreases, and the diamond-like layer of the second layer A diamond-like carbon layer laminate, wherein the ratio of carbon to the total of Cr and carbon on the surface in contact with the carbon layer is 80 atomic% or less.
  2.  前記第2層のダイヤモンドライクカーボン層と接する面の、Crと炭素の合計に対する炭素の割合は、40原子%以上80原子%以下である請求項1に記載のダイヤモンドライクカーボン層積層体。 2. The diamond-like carbon layer laminate according to claim 1, wherein a ratio of carbon to a total of Cr and carbon on a surface in contact with the second diamond-like carbon layer is 40 atomic% or more and 80 atomic% or less.
  3.  前記中間層の膜厚は、0.05μm以上1.0μm以下である請求項1または2に記載のダイヤモンドライクカーボン層積層体。 The diamond-like carbon layer laminate according to claim 1 or 2, wherein the intermediate layer has a thickness of 0.05 µm or more and 1.0 µm or less.
  4.  請求項1に記載のダイヤモンドライクカーボン層積層体を備えた摺動部材。 A sliding member comprising the diamond-like carbon layer laminate according to claim 1.
  5.  請求項1に記載のダイヤモンドライクカーボン層積層体の製造方法であって、前記中間層はPVD法で形成し、かつ前記ダイヤモンドライクカーボン層はPVD法またはCVD法で形成することを特徴とするダイヤモンドライクカーボン層積層体の製造方法。 The diamond-like carbon layer laminate manufacturing method according to claim 1, wherein the intermediate layer is formed by a PVD method, and the diamond-like carbon layer is formed by a PVD method or a CVD method. A method for producing a like carbon layer laminate.
PCT/JP2016/050115 2015-01-09 2016-01-05 Diamond-like carbon layered laminate and method for manufacturing same WO2016111288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-003517 2015-01-09
JP2015003517A JP2016128599A (en) 2015-01-09 2015-01-09 Diamond-like carbon layer laminate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016111288A1 true WO2016111288A1 (en) 2016-07-14

Family

ID=56355975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050115 WO2016111288A1 (en) 2015-01-09 2016-01-05 Diamond-like carbon layered laminate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2016128599A (en)
WO (1) WO2016111288A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107881469A (en) * 2017-12-25 2018-04-06 深圳先进技术研究院 Diamond-like composite coating and preparation method thereof and purposes and coated tool
JP2018158355A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Mold for press of titanium plate and method for press-molding titanium plate
CN113862613A (en) * 2021-09-18 2021-12-31 美戈利(浙江)轨道交通研究院有限公司 Amorphous gradient structure superhard DLC (diamond-like carbon) cutter coating and preparation method thereof and cutter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383908B2 (en) * 2019-06-11 2023-11-21 株式会社豊田中央研究所 Vane type oil pump and its vane manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207273A (en) * 1992-09-24 1994-07-26 General Electric Co <Ge> Wear resisting article having extra-hard coating and production thereof
JP2000256850A (en) * 1999-03-04 2000-09-19 Riken Corp Diamondlike carbon thin film and its production
JP2002256415A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Compact with hard multilayer of diamond-like carbon, and manufacturing method therefor
JP2004060668A (en) * 2002-07-24 2004-02-26 Nsk Ltd Rolling device
JP2008506036A (en) * 2004-07-09 2008-02-28 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト Copper-containing conductive material with Me-DLC hard material coating
JP2011068941A (en) * 2009-09-25 2011-04-07 Ntn Corp Method for depositing hard film, and hard film
JP2015218347A (en) * 2014-05-15 2015-12-07 株式会社デンソー Slide member, method for manufacturing the same and injector including slide member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207273A (en) * 1992-09-24 1994-07-26 General Electric Co <Ge> Wear resisting article having extra-hard coating and production thereof
JP2000256850A (en) * 1999-03-04 2000-09-19 Riken Corp Diamondlike carbon thin film and its production
JP2002256415A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Compact with hard multilayer of diamond-like carbon, and manufacturing method therefor
JP2004060668A (en) * 2002-07-24 2004-02-26 Nsk Ltd Rolling device
JP2008506036A (en) * 2004-07-09 2008-02-28 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト Copper-containing conductive material with Me-DLC hard material coating
JP2011068941A (en) * 2009-09-25 2011-04-07 Ntn Corp Method for depositing hard film, and hard film
JP2015218347A (en) * 2014-05-15 2015-12-07 株式会社デンソー Slide member, method for manufacturing the same and injector including slide member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158355A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Mold for press of titanium plate and method for press-molding titanium plate
CN107881469A (en) * 2017-12-25 2018-04-06 深圳先进技术研究院 Diamond-like composite coating and preparation method thereof and purposes and coated tool
CN107881469B (en) * 2017-12-25 2023-11-14 深圳先进技术研究院 Diamond-like composite coating, preparation method and application thereof and coated tool
CN113862613A (en) * 2021-09-18 2021-12-31 美戈利(浙江)轨道交通研究院有限公司 Amorphous gradient structure superhard DLC (diamond-like carbon) cutter coating and preparation method thereof and cutter

Also Published As

Publication number Publication date
JP2016128599A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP4918656B2 (en) Amorphous hard carbon film
KR100845372B1 (en) Diamondlike carbon hard multilayer film formed body and method for producing the same
JP3934136B2 (en) Hard film coating member and coating method thereof
CN101463461B (en) Method of making a coated cutting tool, and cutting tools thereof
US11465214B2 (en) Coated cutting tool
JP4373897B2 (en) Hard film coating member and coating method thereof
CN110770362B (en) Sliding member and coating film
JP6525310B2 (en) Coated tools
JP2020531300A (en) Abrasion resistant PVD tool coating with TiAlN nanolayer film
JP2010106311A (en) Formed article with hard multilayer film and method for producing the same
JP2004238736A (en) Hard film, and hard film-coated tool
WO2016111288A1 (en) Diamond-like carbon layered laminate and method for manufacturing same
JP6163141B2 (en) Hard coating
KR20190142359A (en) Sheath cutting tool
JP2008024996A (en) Diamond-like carbon laminated coating film member and method of manufacturing the same
JP6243796B2 (en) Method for forming diamond-like carbon film
JP4112296B2 (en) Coated cutting tool and coating method thereof
JP5226826B2 (en) Method for producing diamond-like carbon hard multilayer film molded body
JP5418917B2 (en) Manufacturing method of surface coated parts with excellent film adhesion
JP5065758B2 (en) Coated cutting tool
JP2011068941A (en) Method for depositing hard film, and hard film
JP5065757B2 (en) Coated cutting tool
KR20230093316A (en) cloth cutting tool
WO2019035219A1 (en) Coated cutting tool
WO2015186790A1 (en) Piston ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735027

Country of ref document: EP

Kind code of ref document: A1